
Functional Analysis F3/F4/NVP (2005)

Homework assignment 1

All students should solve the following problems:

1. The boundary of a set A ⊂ (X, d) is defined in Section 1.3, Problem
11 (p.24). Show that the boundary of an arbitrary set is a closed set.

2. Section 1.6, Problem 10.

3. Section 2.3: Problem 2.

4. Section 2.5: Problem 2.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Section 2.1: Problem 14 and Section 2.3, Problem 14.

6. Section 2.5: Problem 4.

Solutions should be handed in by Tuesday, February 1, 16.00.
(Either give the solutions to me directly or put them in my mailbox,
third floor, House 3, Polacksbacken.)
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Functional Analysis F3/F4/NVP

Comments to homework assignment 1

(Notation as in my solutions.)

1. Note that to prove that a set is closed it is not sufficient to prove
that it is not open. In fact, in a metric space (X, d) there are often
many sets which are neither open nor closed. (There are also sets which
are both open and closed; for example, in every metric space (X, d), the
subsets X and ∅ (the empty set) are both open and closed.)

3. A common mistake: Since xj → x we have, for each n, limj→∞ ξn,j =
ηn. Hence we may write:

lim
n→∞

ηn = lim
n→∞

(

lim
j→∞

ξn,j

)

.

So far it is correct! But it is not acceptable to change the order of
limits here (to get “= limj→∞

(

limn→∞ ξn,j

)

= limj→∞ 0 = 0”) without
careful motivation!

Here is one example that shows why this is not possible: Let

x1 = (1, 0, 0, 0, 0, 0, ...)

x2 = (1, 1, 0, 0, 0, 0, ...)

x3 = (1, 1, 1, 0, 0, 0, ...)

x4 = (1, 1, 1, 1, 0, 0, ...)

etc.

This sequence does not converge in `∞. Furthermore we have limj→∞ ξn,j =
1 for every n, hence limn→∞

(

limj→∞ ξn,j

)

= 1, whereas limj→∞

(

limn→∞ ξn,j

)

=
0. This indicates that to motivate the desired change of order of limits
we must make further use of the fact that xj → x in `∞.

5. In Problem 2.1; 14, one has to prove that the stated operations
on cosets are well-defined. Logically this should be done before one
proves anything else about the operations (since it is only after we
have proved “well-definedness” that we truly know that the operations
“exist”). [But I did not give minus score for proving well-defined in the
end of solution.]

Another common mistake: As a step in trying to prove that || · ||0
satisfies (N4), many students have claimed

inf
y∈Y

(

||x + y|| + ||w + y||
)

= inf
y∈Y

||x + y||+ inf
y∈Y

||w + y||
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(or ∗ ∗ ∗ ≤ ∗ ∗ ∗). This is in general not true: The right hand side
is in general smaller than the left hand side since infy∈Y ||x + y|| and
infy∈Y ||w + y|| may be attained at completely different points y ∈ Y .
(In fact we even do not know if the infima are attained in general.)

Another common mistake: Many students seem to use laws like x̂ +
ŵ = {x + w | x ∈ x̂, w ∈ ŵ} in the second half of the problem, without
ever proving this. Note that we have no right to assume (without
proof) that this agrees with the definition of “+” given in the problem!
(Cf. the “alternative proof that addition and multiplication of cosets
are well-defined” in the solution below.)
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Functional Analysis F3/F4/NVP

Solutions to homework assignment 1

1. Let A be any subset of a metric space X. Let ∂A be the boundary
of A. We wish to prove that ∂A is closed.

Let x1, x2, ... be any sequence of points in ∂A such that xn → x for
some point x ∈ X.

Let ε > 0 be an arbitrary number. Then, since xn → x, there is
some index N such that d(xN , x) < ε/10.

But xN ∈ ∂A, hence by the definition of ∂A (problem 11, p.24) every
neighborhood of xN contains points of A as well as points not belonging
to A. In particular this holds for the neighborhood B(xN , ε/10), i.e.
there is a point a ∈ B(xN , ε/10) which lies in A, and there is another
point b ∈ B(xN , ε/10) which does not lie in A.

By the triangle inequality, using d(xN , x) < ε/10 and a ∈ B(xN , ε/10),
we get

d(x, a) ≤ d(x, xN ) + d(xN , a) <
ε

10
+

ε

10
< ε.

Similarly:

d(x, b) ≤ d(x, xN ) + d(xN , b) <
ε

10
+

ε

10
< ε.

Hence both a and b lie in the ball B(x, ε), meaning that B(x, ε) contains
a point of A as well as a point not belonging to A.

But recall that ε was an arbitrary positive number; hence we have
proved that every neighborhood of x contains points of A as well as
points not belonging to A. By the definition of ∂A (problem 11, p.24)
this means that x ∈ ∂A.

Since this is true for every point x ∈ X which is a limit point of a
sequence of points x1, x2, ... in ∂A, it follows from Theorem 1.4-6(b)
that the set ∂A is closed.

Alternative solution, not using Theorem 1.4-6. Let A be any
subset of a metric space X. Let ∂A be the boundary of A. We wish
to prove that ∂A is closed. In other words (see Def 1.3-2), we wish to
prove that the complement set X − ∂A is open.

Let x be an arbitrary point in X − ∂A. Then since x /∈ ∂A, by the
definition of ∂A in problem 11, p.24, there exists some ε > 0 such that
the ε-neighborhood B(x, ε) only contains points of A, or only contains
points not belonging to A, that is,

(∗) B(x, ε) ⊂ A or B(x, ε) ⊂ X − A.
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We now claim that in fact

(∗∗) B(x, ε) ⊂ X − ∂A.

To prove this, let y be an arbitrary point in B(x, ε). Then since B(x, ε)
is open (known from problem 1, p.23), there is some r > 0 such that
B(y, r) ⊂ B(x, ε). Combining this with (*), we see that:

B(y, r) ⊂ A or B(y, r) ⊂ X − A.

This means that y has a neighborhood which only contains points of
A, or only contains points not belonging to A. By the definition of
∂A (problem 11, p.24), this means that y /∈ ∂A, i.e. y ∈ X − ∂A. But
recall that y was an arbitrary point in B(x, ε). This means that (**)
is true!

Now recall that x was an arbitrary point in X − ∂A, i.e. (**) says
X−∂A contains a ball about each of its points. Hence X−∂A is open,
by Def 1.3-2.

Hence ∂A is closed.

Alternative solution (which uses more facts from the book,
and gives extra useful information about ∂A). It follows from
the definition of ∂A in problem 11, p.24 that

(∗) ∂A =
{

x ∈ X | ∀ε > 0 :
[

B(x, ε) ∩ A 6= ∅ and B(x, ε) ∩ (X − A) 6= ∅
]

}

.

We recall the definition of the interior of A (see p.19):

A◦ =
{

x ∈ X | ∃ε > 0 : B(x, ε) ⊂ A
}

.

This implies that

X − A◦ =
{

x ∈ X | ∀ε > 0 : B(x, ε) 6⊂ A
}

=
{

x ∈ X | ∀ε > 0 : B(x, ε) ∩ (X − A) 6= ∅
}

.

Furthermore the closure of A is (see p.21, easy reformulation):

A =
{

x ∈ X | ∀ε > 0 : B(x, ε) ∩ A 6= ∅
}

.

From the last two formulas we see that

(X − A◦) ∩ A

=
{

x ∈ X | ∀ε > 0 :
[

B(x, ε) ∩ A 6= ∅ and B(x, ε) ∩ (X − A) 6= ∅
]

}

.

Hence by (*),

∂A = (X − A◦) ∩ A.
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But we know from p. 19 that A◦ is open; hence X − A◦ is closed. We
also know from p. 21 that A is closed. Hence, since every intersection
of closed sets is closed1, ∂A = (X − A◦) ∩ A is closed.

(Remark: The formula ∂A = (X − A◦) ∩ A can also be written:
∂A = A − A◦.)

2. Assume that x1, x2, ... and x′

1, x
′

2, ... are sequences in X and that
xn → ` and x′

n → ` for some point ` ∈ X. Then limn→∞ d(xn, `) =
limn→∞ d(x′

n, `) = 0. But note that by the triangle inequality,

∀n : 0 ≤ d(xn, x′

n) ≤ d(xn, `) + d(`, x′

n) = d(xn, `) + d(x′

n, `).

Here d(xn, `) + d(x′

n, `) → 0 as n → ∞. Hence limn→∞ d(xn, x′

n) = 0.

Alternative solution using Lemma 1.4-2. Since xn → ` and
x′

n → `, Lemma 1.4-2(b) yields limn→∞ d(xn, x′

n) = d(`, `). But d(`, `) =
0 by (M2) in Def 1.1-1. Hence: limn→∞ d(xn, x′

n) = 0.

3. We will use Theorem 1.4-6(b) to prove that c0 is closed.
Let x1, x2, ... be any sequence of vectors in c0 such that limj→∞ xj =

x for some vector x ∈ `∞. By definition, x and each xj is a se-
quence of complex (or real) numbers, say x = (η1, η2, η3, ...) and xj =
(ξ1,j, ξ2,j, ξ3,j, ...), where all ηn and all ξn,j are complex numbers.

We wish to prove that limn→∞ ηn = 0. Let ε > 0. Then since
limj→∞ xj = x there is a number J such that

∀j ≥ J : ||x − xj|| < ε/10.

In particular we have ||x−xJ || < ε/10. Recall that ||·|| is the `∞-norm;
hence the last inequality can be written more explicitly as:

(∗) ∀n ≥ 1 : |ηn − ξn,J | < ε/10.

But xJ = (ξ1,J , ξ2,J , ξ3,J , ...) ∈ c0, hence limn→∞ ξn,J = 0. Hence there
is a number N such that

(∗∗) ∀n ≥ N : |ξn,J − 0| < ε/10.

Combining (*) and (**) and using the triangle inequality for complex
numbers, we obtain:

∀n ≥ N : |ηn − 0| ≤ |ηn − ξn,J | + |ξn,J − 0| < ε/10 + ε/10 < ε.

1This is a useful fact to learn! It follows from p. 19 (T2) together with Def 1.3-2.
Namely, if C1, C2 are two closed subsets of X then CC

1
= X −C1 and CC

2
are open,

hence by (T2), CC
1
∪CC

2
is open; hence C1 ∩C2 = (CC

1
∪CC

2
)C is closed. The same

type of argument shows that the intersection of any family of closed sets is closed.
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But ε was arbitrary; hence we have now proved that limn→∞ ηn = 0.
In other words, x = (η1, η2, η3, ...) ∈ c0.

Since this is true for every point x ∈ `∞ which is a limit point of
a sequence of points in c0, it follows from Theorem 1.4-6(b) that c0 is
closed.

4. Let X be a discrete metric space consisting of infinitely many points.
Since X is an infinite set there exists an infinite sequence of distinct

points x1, x2, x3, ... in X; that is, xj 6= xk whenever j 6= k.
Let xj1 , xj2, xj3 , ... be an arbitrary subsequence of the sequence x1, x2, x3, ...

(here 1 ≤ j1 < j2 < j3 < ...). Then xjn
6= xjk

for all n 6= k, and hence
d(xjn

, xjk
) = 1 for all n 6= k, by the definition of a discrete metric space

(Def 1.1-8). Hence we do not have d(xjn
, xjk

) → 0 as n, k → ∞, i.e.
the sequence xj1 , xj2, xj3, ... is not Cauchy. Hence by Theorem 1.4-5,
xj1, xj2 , xj3, ... is not a convergent sequence.

We have proved that the sequence x1, x2, x3, ... in X does not have
any convergent subsequence. Hence, by Def 2.5-1, X is not compact.

Alternative solution, not using the Cauchy criterion:
Let X be a discrete metric space consisting of infinitely many points.
Since X is an infinite set there exists an infinite sequence of distinct

points x1, x2, x3, ... in X; that is, xj 6= xk whenever j 6= k.
Let xj1 , xj2, xj3 , ... be an arbitrary subsequence of the sequence x1, x2, x3, ...

(here 1 ≤ j1 < j2 < j3 < ...), and let x be any point in X. Then there
is at most one index k such that xjk

= x, and hence for all sufficiently
large indices n we have d(xjn

, x) = 1. Hence the sequence xj1 , xj2, xj3, ...
does not converge to x.

Since this is true for every x ∈ X and every subsequence of x1, x2, x3, ...,
it follows that the sequence x1, x2, x3, ... in X does not have any con-
vergent subsequence. Hence, by Def 2.5-1, X is not compact.

5. We first solve problem 14 on p.57. Let Y be a subspace of a vector
space X. For every x ∈ X we define (as in the problem formulation)
the coset of x (with respect to Y ) to be the set

(∗) x + Y = {v | v = x + y, y ∈ Y } = {x + y | y ∈ Y }.
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We first have to prove that the distinct cosets form a partition2 of X,
i.e. that every element of X belongs to one coset and that distinct
cosets are disjoint.

Clearly, for every x ∈ X we have x ∈ x + Y , since x = x + 0 and
0 ∈ Y . Hence every element of X belongs to at least one coset.

Now let x1 + Y and x2 + Y be two arbitrary cosets which are not

disjoint, i.e. (x1 + Y ) ∩ (x2 + Y ) 6= ∅. Let v be any element in this
intersection; then by the definition (*) there is some y1 ∈ Y such that
x1 + y1 = v, and there is some y2 ∈ Y such that x2 + y2 = v. It
follows that x1 − x2 = y2 − y1 ∈ Y . Hence for every y ∈ Y we have
(x1 −x2)+ y ∈ Y and thus x1 + y = x2 +(x1 −x2)+ y ∈ x2 +Y . Thus:

x1 + Y ⊂ x2 + Y.

Similarly, using x2 − x1 = y1 − y2 ∈ Y , one proves

x2 + Y ⊂ x1 + Y.

Hence

x1 + Y = x2 + Y.

This proves that any two cosets which are not disjoint are in fact equal.
In other words, any two distinct cosets are disjoint.

This completes the proof that the distinct cosets form a partition of
X.

We next prove that addition and multiplication of cosets are well-

defined by the definitions in the problem formulation;

(w + Y ) + (x + Y ) := (w + x) + Y,

α(x + Y ) = αx + Y.

To show this, we assume α ∈ K and that w, x, w′, x′ are any elements
in X such that w + Y = w′ + Y and x + Y = x′ + Y ; we then want
to prove (w + x) + Y = (w′ + x′) + Y , and αx + Y = αx′ + Y . But
w + Y = w′ + Y and x + Y = x′ + Y imply that there exist vectors
y1, y2, y3, y4 ∈ Y such that w + y1 = w′ + y2 and x + y3 = x′ + y4. Now

w + x = (w′ + y2 − y1) + (x′ + y4 − y3)

= (w′ + x′) + (y2 − y1 + y4 − y3),

and y2 − y1 + y4 − y3 ∈ Y ; hence w + x lies both in (w + x) + Y and
in (w′ +x′)+Y ; hence these two cosets are not disjoint, and hence (by

2This statement is actually a well-known fact from group theory, if one notes
that 〈X, +〉 is an abelian group and Y is a subgroup; similarly it is well-known that
“+” is a well-defined operation on X/Y which makes X/Y into a group. However,
we will give direct proofs of all these facts.
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what we have proved earlier), (w + x) + Y = (w′ + x′) + Y . We also
have

αx = α(x′ + y4 − y3) = αx′ + α(y4 − y3),

and by the same type of argument as above, this leads to αx + Y =
αx′ + Y . Hence the addition and multiplication of cosets are indeed
well-defined by the given definitions.

Alternative proof that addition and multiplication of cosets are well-defined

by the given definitions: It is natural to define operations addition and multiplication
by scalar for any subsets A, B ⊂ X as follows (in the present discussion we will write
“+̃” and “ ·̃ ” in order to distinguish these operations from the operations given in the
problem):

A+̃B := {a + b | a ∈ A, b ∈ B};

α ·̃ A := {αa | a ∈ A} (α ∈ K).

These operations are obviously well-defined, and give subsets of X as results. Hence it
suffices to prove that the operations given in the problem are simply special cases of the
above operations (in particular it then follows that the +̃-sum of any two cosets is again
a coset). To prove this, note that for any vectors x,w ∈ X we have

(x + Y )+̃(w + Y ) = {a + b | a ∈ x + Y, b ∈ w + Y }

= {a + b | a = x + y1, b = w + y2, y1, y2 ∈ Y }

= {x + w + y1 + y2 | y1, y2 ∈ Y }

= {x + w + y | y ∈ Y }

= (x + w) + Y,

where in the next to last step we used {y1 + y2 | y1, y2 ∈ Y } = Y = {y | y ∈ Y } which
is true since Y is subspace of X. The above calculation shows that the operation “+” on
cosets as defined in the problem is well-defined, and is a special case of +̃. Similarly, for
any x ∈ X, α ∈ K we have, if α is non-zero:

α ·̃ (x + Y ) = {αa | a ∈ x + Y }

= {α(x + y) | y ∈ Y }

= {αx + αy | y ∈ Y }

= {αx + y | y ∈ Y }

= αx + Y,

where in the next to last step we used {αy | y ∈ Y } = Y which is true since α 6= 0
and Y is a vector space. The above calculation shows that if α 6= 0 then the operation
“multiplication by α” on cosets as defined in the problem is well-defined, and is a special
case of “ ·̃ -multiplication by α”.

Finally, to cover the case α = 0, note that the operation “multiplication by 0” as

defined in the problem is well-defined, since 0 · x + Y = Y for all x ∈ X. (But note that

0 ·̃ Y = {0} and hence 0 ·̃ Y 6= 0 + Y if Y 6= {0}, i.e. the two operations are in general not

the same in the special case α = 0!)

Now that we have proved that the two operations are well-defined, it
is very easy to prove that these operations satisfy all the vector space
laws; these are direct consequences of the corresponding laws for the
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vector space X. In precise terms, for all x, y, z ∈ X and all α, β ∈ K we
have (see p.50–51, and use the given definitions of the two operations
in X/Y ):

(V1) (x+Y )+(y+Y ) = (x+y)+Y = (y+x)+Y = (y+Y )+(x+Y ).
(V2) (x+Y )+((y+Y )+(z+Y )) = (x+(y+z))+Y = ((x+y)+z)+Y =

((x + Y ) + (y + Y )) + (z + Y ).
(V3) Set 0X/Y := 0+Y ; then (x+Y )+0X/Y = (x+0)+Y = x+Y .
(V4) The coset (−x)+Y satisfies (x+Y )+((−x)+Y ) = 0+Y = 0X/Y .
(V5) α(β(x + Y )) = (α(βx)) + Y = ((αβ)x) + Y = (αβ)(x + Y ).
(V6) 1(x + Y ) = (1x) + Y = x + Y .
(V7) α((x + Y ) + (y + Y )) = α((x + y) + Y ) = (α(x + y)) + Y =

(αx + Y ) + (αy + Y ) = α(x + Y ) + α(y + Y ).
(V8) (α + β)(x + Y ) = (α + β)x + Y = (αx + Y ) + (βx + Y ) =

α(x + Y ) + β(x + Y ).
This proves that the cosets indeed constitute the elements of a vec-

tor space under the given operations. This completes the solution of
problem 14 on p.57.

We now solve problem 14 on p.71. It is clear that || · ||0 is a well-
defined function X/Y → [0,∞) by the definition in the problem, since
each x̂ ∈ X/Y is a nonempty set, and ||x|| ∈ [0,∞) for all x ∈ x̂.
Hence the law (N1) is satisfied. We now prove that the three other
norm laws are satisfied as well:

(N2) If x̂ = 0X/Y then 0 ∈ x̂ and hence ||x̂||0 = ||0|| = 0. Conversely,
assume x̂ ∈ X/Y and ||x̂||0 = 0. Take x0 ∈ x̂; then x̂ = x0 + Y =
{x0 + y | y ∈ Y }. Now infx∈x̂ ||x|| = 0, i.e. infy∈Y ||x0 + y|| = 0. Hence
there is a sequence y1, y2, y3, ... in Y such that limn→∞ ||x0 + yn|| = 0,
and thus yn → −x0, by the definition of converging sequence (Def.
1.4-1). Since Y is closed, this implies −x0 ∈ Y (by Theorem 1.4-6(b)).
Hence x0 ∈ Y and x0 + Y = Y = 0X/Y , i.e. x̂ = 0X/Y .

(N3) Let x̂ ∈ X/Y and α ∈ K. Take x0 ∈ x̂, so that x̂ = x0 + Y . If
α 6= 0 then

αx̂ = αx0 + Y = {αx0 + y | y ∈ Y } = {α(x0 + y) | y ∈ Y }

(using y ∈ Y ⇐⇒ α−1y ∈ Y ), and thus

||αx̂||0 = inf
y∈Y

||α(x0 + y)|| = |α| inf
y∈Y

||x0 + y|| = |α| · ||x̂||0.

On the other hand, if α = 0 then ||αx̂||0 = ||0X/Y || = 0 = |α| · ||x̂||0,
i.e. (N3) holds in all cases.

(N4) Let x̂, ŵ ∈ X/Y . Take x0 ∈ x̂ and w0 ∈ ŵ, so that x̂ = x0 + Y
and ŵ = w0 + Y . Then if x ∈ x̂ and w ∈ ŵ, we have x = x0 + y1 and
w = w0+y2 for some y1, y2 ∈ Y , and thus x+w = (x0+w0)+(y1+y2) ∈
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(x0 + w0) + Y = x̂ + ŵ. Hence, for all x ∈ x̂, w ∈ ŵ,

||x̂ + ŵ||0 = inf
u∈x̂+ŵ

||u|| ≤ ||x + w||.

By the triangle inequality, this implies

||x̂ + ŵ||0 ≤ ||x|| + ||w||.

Since this is true for all x ∈ x̂ and all w ∈ ŵ, we have

||x̂ + ŵ||0 ≤ inf
x∈x̂

||x|| + inf
w∈ŵ

||w|| = ||x̂||0 + ||ŵ||0.

6. Let us assume that there does not exist such numbers γ1, γ2, .... In
other words, we assume that there is some k such that there does not

exist a number γk such that |ξk| 5 γk holds for all (ξ1, ξ2, ξ3, ...) ∈ M .
In other words, we assume that for every number c > 0 there is some
element (ξ1, ξ2, ξ3, ...) ∈ M such that |ξk| > c. In symbols:

(∗) ∀c > 0 : ∃(ξ1, ξ2, ξ3, ...) ∈ M : |ξk| > c.

Taking c = 1 in (*) we see that there is a sequence x1 = (ξ1,1, ξ2,1, ξ3,1, ...) ∈
M such that |ξk,1| > 1. Next we take c = |ξk,1| + 1 in (*) and
hence we see that there is a sequence x2 = (ξ1,2, ξ2,2, ξ3,2, ...) ∈ M
such that |ξk,2| > |ξk,1| + 1. This is repeated recursively; i.e., when
xn = (ξ1,n, ξ2,n, ξ3,n, ...) ∈ M has been chosen, we apply (*) with
c = |ξk,n| + 1 in (*) and hence we see that there is a sequence xn+1 =
(ξ1,n+1, ξ2,n+1, ξ3,n+1, ...) ∈ M such that |ξk,n+1| > |ξk,n| + 1.

In this way we obtain an infinite sequence x1, x2, x3, ... in M such
that xn = (ξ1,n, ξ2,n, ξ3,n, ...) with |ξk,n+1| > |ξk,n| + 1 for all n. Using
the last inequality repeatedly we see that |ξk,m| > |ξk,n| + (m − n) for
all m > n ≥ 1. Hence, for all m > n ≥ 1,

|ξk,m − ξk,n| ≥ |ξk,m| − |ξk,n| > m − n ≥ 1.

It follows that, for all m > n ≥ 1,

d(xm, xn) =
∞

∑

j=1

1

2j

|ξj,m − ξj,n|

1 + |ξj,m − ξj,n|
≥

1

2k

|ξk,m − ξk,n|

1 + |ξk,m − ξk,n|

>
1

2k
·
1

2
= 2−k−1.

(In the next to last step we used the fact that for r := |ξk,m − ξk,n| > 1
we have r

1+r
= 1 − 1

1+r
> 1 − 1

2
= 1

2
.)

Now we may continue as in the solution of Problem 4: Let xj1 , xj2, xj3 , ...
be an arbitrary subsequence of the sequence x1, x2, x3, ... (here 1 ≤ j1 <
j2 < j3 < ...). Then the above inequality implies that d(xjn

, xjm
) >
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2−k−1 for all n 6= m. Hence the sequence xj1 , xj2, xj3, ... is not Cauchy.
Hence by Theorem 1.4-5, xj1 , xj2 , xj3, ... is not a convergent sequence.

We have proved that the sequence x1, x2, x3, ... in M does not have
any convergent subsequence. Hence, by Def 2.5-1, M is not compact.

Extra information: The converse mentioned in problem 4,
p. 82: This is actually false! Example: Let

M = {(ξn) ∈ s | (ξ1, ξ2, ...) 6= 0 and ∀n : |ξn| ≤ 1}.

Then M is an infinite set and M satisfies the criterion in the prob-
lem (with γ1 = γ2 = ... = 1). However, consider the sequence xn =
( 1

n
, 1

n
, 1

n
, ...), n = 1, 2, 3, ... in M . This sequence converges to (0, 0, 0, ...)

in s, and hence every subsequence also converges to (0, 0, 0, ...). How-
ever, (0, 0, 0, ...) /∈ M ; hence no subsequence of x1, x2, x3, ... converges
to an element in M . Hence M is not compact.

However, the condition in the problem does imply that M is compact.
This is a very pleasant exercise to prove!


