Functional Analysis F3/F4/NVP (2005)
Homework assignment 2

All students should solve the following problems:

. Section 2.7: Problem 8.

. Let m1(t) = t2e7¥2, 2y(t) = te ¥/ and 3(t) = e7¥/2. Orthonormalize

T1, T, 3, in this order, in the Hilbert space L2[0, +00).

3. Section 3.9: Problem 6.

4.

Section 4.3: Problem 14.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5.

Let T': H — H be a linear operator on the Hilbert space H. Prove
that T is unitary if and only if 7'(M) is a total orthonormal set in H
for each total orthonormal set M in H.

. Let Y be a closed subspace of a normed space X and let

A: X'/Y* =Y’ be the operator defined by A(f +Y*) = fjy. Prove
that A is an isomorphism of normed spaces.

[Notation: f|y is the restriction of f to Y, see p.99 (middle). Y* is the annihilator of
Y as defined in Section 2.10, problem 13; furthermore, X’/Y* is a normed space as in
Section 2.3, problem 14.]

Solutions should be handed in by Wednesday, February 16,
18.00. (Either give the solutions to me directly or put them in my
mailbox, third floor, House 3, Polacksbacken.)
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Comments to homework assignment 2

1. Note that from the definition (p. 91) of “bounded”, our task in this
problem is to show that there does not exist a constant ¢ such that
|77 z|| < ¢||z|| holds for all z € D(T~'). Several students made the
mistake of playing with some vector x for which 7'z is not defined,
i.e. a vector outside the domain D(T~!') = R(T). For such vectors
“T~12” is nonsense, and we cannot conclude anything about 7! being
bounded or not bounded by studying such vectors. Note also that for
each individual vector x € D(T ') there will exist some constant ¢ such
that ||T~'x|| < ¢||x|| holds. Hence to prove that T~ is not bounded, we
have to make a clever choice of an infinite sequence of vectors xy, o, ...
in D(T~'), and prove that there is no constant ¢ which works for all
these vectors. (There are also alternative approaches; but the point is
that a no proof can work by studying just one explicit fixed vector x

in D(T1).)

4. Some students seem to have misunderstood the statement of Theo-
rem 4.3-3: Note that the function f: X — K given by f(xg) = ||zo]|
(Vzo € X) is not a linear functional; for instance it does not satisfy
fx+y) = f(z)+ f(y) for all z,y € X. What Theorem 4.3-3 says is
that given some fized vector zo € X (x¢ # 0), there exists a bounded
linear functional f : X — K such that ||f|| = 1 and f(z¢) = ||zoll.
Note that this functional will not satisty f(x) = ||z|| for all z € X.
The same thing expressed with symbols: Theorem 4.3-3 says

Voo e X —{0}: 3fe X't |Ifl[=1, fxo) = [laol|

Theorem 4.3-3 does not say:

"AfeX: VaeX—{0}: |Ifll=1 flzo) = llaol"

Here is a speculation on what might be the origin of this misconception: In Theorem
4.3-3 it says “...and let xo # 0 be any element of X.” This should be understood as “and

let o # 0 be a fized (arbitrary) vector in X.” However, some students might have read

«

it as something like “...and we use the letter xo to denote an arbitrary (varying) non-zero

element in X.” With this interpretation it actually looks as if the theorem claims (falsely)
that the function f(xzo) = ||zo|| (Vzo € X) is linear! However I think every professional
mathematician would find the statement of the theorem perfectly clear and would say

]

that the interpretation with “varying xo” is incorrect. Ultimately it is a convention;

”

mathematicians always read “let ... be any ...” as “let ... be a fized ...”. Unfortunately it
seems that eg. professional physicists do not always use the same convention, so I definitely

find the misconception understandable.
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5. Some students have referred to Theorem 3.10-6(f) to conclude that
T is unitary (after having proved that T' is isometric and surjective.
Unfortunately, Theorem 3.10-6(f) is only stated for complez Hilbert
spaces; hence it is not strong enough for us (since we did not say
anything about the ground field K in the problem formulation we wish
the proof to hold both for K =R and for K = C).

However, Theorem 3.10-6(f) is true also for real Hilbert spaces; this
can be proved by mimicking the last part of our solution to problem
5 below (in particular, one uses polarization to show that ||Tz|| =
||z||, Vo € H implies (Tz, Ty) = (z,y),Vx,y € H).

Here follows a discussion of some rather intricate issues in the prob-
lem. (The following matters did not affect the score by more than +1,
and you may safely consider the following discussion as extracurricu-
lar!) The hardest part of the problem is to give the proof in the direc-
tion [VM C H : M total orthonormal set = T'(M) total orthonormal
set| = [T" unitary]. Note that in the statement of the problem we did
not assume that T is bounded; this can be deduced from the assump-
tion. (The boundedness is not an issue in the opposite direction since
a unitary operator is bounded by definition.) Furthermore, note that
even if M is a total orthonormal set and T'(M) is a total orthonormal
set, we may, apriori, have T'(z) = T'(y) for some vectors z,y € M,
x #y. (Eg. assume H is separable so that there is a total orthonormal
sequence eq, g, ... in H; then M = {ey, eq, ...} is a total orthonormal set.
Assume T'(e1) = ey, T(es) = ey, T(e3) = es, T(ey) = ez, Tes) = es,
etc. Then T(M) = {e1,es,...}, a total orthonormal set!) This pos-
sibility can only be excluded by also considering some (appropriately
chosen) different total orthonormal set M’ in H (eg. if T'(z) = T(y)
for x,y € M, x # y, then apply the assumption to a total orthonormal
set which contains the unit vector 272 (z — )).

6. As part of a completely correct solution you must prove that A
is well-defined. In fact, this should be a reflex whenever a function
on a set of equivalence classes is defined in a way using a choice of
representatives for the equivalence classes! (In the present problem f
is a representative for the equivalence class f+ Y? and A(f +Y?) is
defined using this representative f. Cf. also problem 5 in Homework
no 1.) In the present problem it is fairly easy to see that A is indeed
well-defined, but this should be stated explicitly.
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1. As suggested in the hint we let T" be the operator T : (> — (>

defined by T'((&1,£2,&3,...)) = (£&1/1,&2/2,&5/3,...). This operator is
easily seen to be linear. We also have for all (¢;) € £>:

T UEDI = 11(61/1,62/2,85/3, )| = Sup 16/3] < Sgp\fﬂ = [I(€)1]-

Hence T is bounded and ||T'|| < 1. We note that the range of T is:

R(T) =A{T((&)) | (&) € €}
= {0, m2m3,..) | m; = &5/, SI;P €51 < oo}

- {(77177]277737 ) ‘ Sup |J7b| < OO}
J

(Note: Up to here this work has been done in class, in a problem session
where I solved problems 5.6 on p. 101.) Note that if (n,;) = T'((§;)) then
we must have & = jn; for all j, ie. (&) = (jn;). (This has already
been used in the above computation of R(7").) This shows that T
is injective, and that the inverse map T : R(T) — (> is given by
T-((n;)) = (jn;). We will prove that T~ is not bounded.

Given any n > 1, let e, be the vector e, = (0,0,...,0,0,1,0,0,...),
with the number 1 in position number n. We see from the above
formula for R(T) that e, € R(T). Also |le,|| = 1 and T '(e,) =
(0,0,...,0,0,n,0,0,...) = ne,, and hence ||[T!(e,)|| = ||ne.|| = n.
Now if T~! were bounded, then there would exist a constant ¢ > 0
such that

() 1T @)l < ellall, Vo eR(T).
But then choose n as an integer larger than ¢; we then have e, € R(T)

and [T~ (e,)|| = n > ¢ = cl|e,]||, which contradicts (*). Hence T is
not bounded.

Alternative solution. Some students have instead studied the
operator T' : C[0,1] — C0,1] defined by (T'z)(t) = fot x(s) ds. This
operator is linear, since for all 21,z € C[0, 1] and all o, f € K we have

(T(axy + Bx2))(t) = /0 (a1 (s) + Pra(s)) ds

t t
= a/ x1(s)ds + ﬁ/ xo(s)ds = aTxy + BT xs.
0 0



Furthermore, for each x € C[0, 1] we have:

t
||Tx||—max/ x(s) <max/|x )| ds
t€[0,1] t€[0,1]
<max/ s = mmac ¢ o] = o]
te[0,1]

Hence T is bounded with ||7'|| < 1.

NOW assume y = Tz for an arbitrary vector x € C[0, 1]. This means
that y(t fo s)ds. This relation implies that y(¢) is differentiable
with respect to t and that

y'(t) = %/0 z(s)ds = x(t).

(Here if t = 0 we interprete y'(t) as right derivative y'(0) := limyp, o w,
and if t = 1 we interprete y'(t) as left derivative y'(1) := limy_o— M};?’(l))

This shows that x is uniquely determined once y = Tz is known, i.e.
T is injective. Hence T~ exists, and the above formula shows that

(T 'y)(t) =y (1), for all y € R(T).

(With conventions for ¢t = 0, 1 as before.)

One may also prove that R(T') consists exactly of those functions
y € C0,1] such that y(0) = 0 and y'(¢) exists and is continuous for
all ¢ € [0,1] (with conventions as above for ¢ = 0,1). However, we do
not need this precise description of R(T") for the purpose of the present
problem.

Given any n € Z* we let x,(t) = t". Then z, € C[0,1] and ||x,|| =
maxte[m] |tn| =1. We let

t
yn(t) = T () = / §ds = (n+ 1)~
0

Then y, € R(T) and T™'y,, = z,,, and ||y, || = maxsep 1 [(n+1) 71" =
(n+1)~'. It now follows that 7! is not bounded, by the same argu-
ment as in the first solution: If T~! were bounded, then there would
exist a constant ¢ > 0 such that

(%) 177 @)l < cllzll, Vo e R(D).

But then choose n as an integer larger than ¢; we then have y,, € R(T)
and ||T7'(yn)|| = 1 > ¢(n+1)"" = ¢||yy||, which contradicts (*). Hence
T~ is not bounded.

2. Throughout this exercise we have to compute a lot of integrals of
the form J,, = fooo t"e~t, where n > 0 is an integer. This can be done
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by repeated integration by parts: Note that Jy = 1, and for n > 1 we
have

Jp = / thet = [t"(—e )] — / nt" ! (—e ") dt
0 0
=0+ n/ nt" e tdt=n-J, ;.
0

Hence for n > 1:
Jp=n-Jy1=nn—-1)-J, o= ..=nl-Jy=nl

This formula is also true for n = 0. From this we obtain the following
general formula in L2[0, 4+o0]:

(tme V2 tnemt?) = / tme 2 . tne=t/2 dt = / " e dt S = (M +n)!
0 0

We will use this repeatedly below.

Note that x1,x9,z3 are linearly independent. We now apply the
Gram-Schmidt orthonormalization process to xi,xo, x3, see pp. 157-
158 in Kreyszig’s book. First:

loalf? = (f2e12, 2e712) = 41 = 24,

and hence
1 [y
61 — . 'rl = . t e .
|4 V24
Next (xq,€1) = \/% {t2e~t teTV?) = \/% = /2, and hence, using

the same notation as in the book:

i B L e

V24124

1 1
[va)? = (g, 1) = (te™t/? — 2 et temt? — -t2e_t/2)

—t)2 1 20t/2.

vy = Toy — (Tg, €1)€1 = te = te

4
= (te‘t/Q,te‘W) _ %(te‘t/2,t26_t/2> + 1_16<t26—t/27t26—t/2> 9] _ %’ + % _ %;
1
€y = fvg \/_< _t/2——-t2e_t/2).
HvzH 4
Finally,

.<€—t/2 t2€_t/2> _ 2 _

1
1) = o7 e VTR

2 V2 1
— (72 /ot —t/2_£.t2 /2y — /o 11— Y2 91—
(aa,ea) = (7%, Vate™t = S5 BT = VR U= T 2= T



and hence:

U3 = T3 — <$3, 61>€1 - <$3,€2>62

L g L (m—m 2 .tze_m)

_ ot

1
V6 V21 V2

_ lt2€—t/2 e M2 4 6—t/2;

2

11
sl = fun, ) = [ ‘at%—tﬂ TP
0

< /1 1 4
= / (—t4e_t — — et —t2et —2te t + e_t) dt
0

36 3 3
4! 31 4.2! 1
=— 4+ ——241=—;
36 3 + 3 + 3’
es = —1 U3 = \/§ (1t26_t/2 — te M2 + e_t/2) .
||vs]] 6

Answer: The orthonormalized basis is

1 P2et/? — @t2e—t/2
V24 12 ’

1 2
es = V2 (te_t/2 ~ 1 -t2e_t/2) = %(415 — %) 2,

€1 =

1 3
es = V3 (ét%_m —te M2 4 e_t/2) = %(6 — 6t + t2)e 2.

Alternative solution. Just for fun, let us deduce the same result
from the facts given in §3.7 (this section is not part of the course
content, but I have recommended that you read it anyway). From
§3.7-3 we learn that the following vectors are orthonormal in L?[0, co]:

fi=e? fo= (1=t fy=(1-2t+ )
(In fact, we learn from §3.7-3 that f1, fo, f3 are obtained if our vectors
x1, Ty, x3 are orthonormalized in the order x3,xs,21.) Now we see by

inspection:

r1=2fi —4fo+2f5; w9 =fi— fo; x3=fi1.
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Now it is very easy to apply the Gram-Schmidt orthonormalization
process, using the fact that fi, fs, f3 are orthonormal:

l|lz1|] = V22 + 42 + 22 = V24,

||1lH 5 2f1 —Afa+2f3) = Jo(fi — 2o+ f3);

Vg = T3 — <$2,€1>€1
=(fi—f2) — <f1 — fo (i = 2f2 + f3)> (i =2f+ f3)

=fi—fo— s(L+2)(2fi —4fo+2f3) = 551 — 3 [3;
1 1
62=||U2||212= 12+l2(%f1_%f3)272(f1_f3)5
2 2
v3 = x3 — (I3, €1)e1 — (T3, €2)€2
:f1—<f1, - ( 2f2+f3)> % fi—2f2+ f3)
<.f17 D) (fl f3)> _(fl f3)

= i glfi =24 f3) = U~ f) = 5+ o+ o)
1 1

V3 =
||U3|| ‘/% + +_

Substituting the formulae for fi, fo, f3 we check that we have obtained
the same orthonormal vectors eq, es, €3 as in the first solution.

€1 =

[\DI»—t

%(fl + fot f3) = ?(fl + fo+ f3).

€3 —

3. (a) Take y € Hy. Take x € M;. Then (T*(y),x) = (y,Tz) =
(y,0) = 0 (the second equality holds because x € M; = N (T)). Hence
we have proved that (T*(y),z) = 0 for all z € M;; this means that
T*(y) € Mj-. This holds for all y € Hy, hence T*(H,) C Mj-.

(b) Take y € [T'(H;)]*. Then y € Hy and we wish to prove that
T*(y) = 0. Note that for all z € Hy we have

(T*(y),z) = (y, Tx) = 0,

where the last equality holds because y € [T(H,)]* and Tz € T'(H,).
Since (T*(y), x) = 0 holds for all x € Hy we have T*(y) = 0 (by Lemma
3.8-2). Hence y € N(T*). This holds for all y € [T'(H;)]*, hence we
have proved [T'(H,)]* C N (T*).

Remark: In fact we have [T'(H;)|* = N (T*) (cf. below).

(c) Take € M;. Take y € Hy. Then (x,7*(y)) = (Tx,y) =
(0,y) = 0. This is true for all y € Hy; in other words (z, z) = 0 for all
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z € [T*(Hy)]. Hence x € [T*(H,)]*. This is true for all x € M;. Hence
we have proved

(%) M, C [T*(Hy)]*.

Conversely, take z € [T*(Hs)]*. Then (x, T*(y)) = 0 for all y € H,.
Hence (T'z,y) = 0 for all y € Hy. Hence Tx = 0 (by Lemma 3.8-2).
Hence x € N(T) = M,. This is true for all z € [T*(H)]*. Hence we
have proved

(%) ([T (Ha)]* C M.
Together, (*) and (**) imply that M, = [T*(H,)]*.

Alternative solution. We do the three parts in opposite order:
(c) We have

[T*(Hy)|* = {ox € H, |Vz € T*(H,) : {zx,2) =0}
=?{z € Hy |Vy € Hy: (x,T*(y)) = 0}
=3 {x € H, |Vy € Hy: (Tx,y) =0}
=*{z e H |Tr =0}
=5 N(T) = M.

1. By definition of orthogonal complement.

2. By definition of T*(H2).

3. By definition of T™.

4. By Lemma 3.8-2 and the trivial fact that (0,y) =0 for all y € Ho.
5. By definition of N(T)

(b) In (c) we proved that [T*(Hy)]* = N (T') holds for every bounded
linear operator T : Hy — H,. If we apply this fact to the bounded linear
operator T* : Hy — H; we obtain [T**(H,)]* = N (T*). But T** =T,
hence [T'(H,)]* = N(T*). This is a stronger statement than what we
had to prove in (b)!

(a) Since [T*(Hy)]* = M; (as proved in (c)), we have [T*(Hy)]*+ =
Mj-. But we also know A C A+, for any subset A C H,. In particular,
T*(Hy) C [T*(Hy)]* = Mi-.

4. (We assume r > 0, since the sphere S(0;7) has only been defined
for such r in the book.) Take zy € S(0;7). Then ||zo|| = r > 0, and
thus xy # 0. Hence by Theorem 4.3-3 there exists some f € X' such
that || f|| = 1 and f(x¢) = [|xo|| = r. Let H be the hyperplane

H={xe X | f(x)=r}

Then clearly zo € H. Furthermore, for each x € B(0;7) we have
l|z|| <7 and hence f(z) < |f(z)] <||f||-|lz|]| < 1-r=r. (In the first
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inequality we used f(z) € R, since K = R in this problem.) Hence we
have proved:

B0;r)c{zre X | f(z) <r}.
This means that B(0;r) lies completely in the half space {z € X |
f(z) < r}, which is one of the two half spaces determined by H.

5. We first assume that T': H — H is a unitary operator. Let M
be an arbitrary total orthonormal subset in H. Take wy,ws € T'(M).
Then we have w; = Tv; and wy = Tvy for some vy, vy € H. Using the
fact that T is unitary and that M is an orthonormal set, we get:

(wy,wa) = (Twy, Tvg) = (v1, T*Tvge) = (v1, T Tw,)

—<U ’U>— 1 ifUlZUQ
B bR 0 ifvl#vg.

But T is a bijection since T is unitary; hence vy = vy <= Tv; =
Tvy <= w; = wo. Hence we have proved

<w w>_ 1 ifw1:w2
bR 0 ifwl#wg,

for all wy,wy € T(M). Hence T(M) is an orthonormal set.

Next we will use Theorem 3.6-2 to prove that T'(M) is total. Let
x € H be an arbitrary vector such that x L T'(M). Then (x,Tv) =0
for all v € M, and hence since T is unitary, (T 'z, v) = 0 for allv € M.
By Theorem 3.6-2(a) this implies that 7'z = 0, since M is total in H.
But T~ 'z = 0 implies z = 0 (since T~ is always injective if it exists).
Hence we have proved that

VeeH: xlT(M)=z=0.

Hence by Theorem 3.6-2(b) (which is applicable since H is a Hilbert
space), T'(M) is total in H.

Hence if T is unitary then for every total orthonormal set M in H
we have proved that T'(M) is a total orthonormal set in H.

Conversely, assume that T': H — H be a linear operator such that
T (M) is a total orthonormal set in H for each total orthonormal set M.
Let us first prove that T is bounded. Given a fixed vector x € H with
||z|]| = 1, let Y = Span{x}; this is a closed subspace of H by Theorem
2.4-3 and hence by Theorem 3.3-4 we have H =Y @ (Y1), Also Y+ is
closed subspace of H and hence Y+ is a Hilbert space in itself. Hence
by p.168 (middle) (cf. Theorem 4.1-8) there exists a total orthonormal
subset M; C Y+. Now let M = {z}UMj; this is clearly an orthonormal
set since ||z|| = 1 and M, is orthogonal to Y = Span{x} and hence to x.
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We also have Span(M) D Span(M;) = Y+ and Span(M) D Span{z} =
Y, and hence Span(M) contains every vector in Y @ (Y1) = H. Hence
M is a total orthonormal set in H. By our assumption, this implies
that T'(M) is a total orthonormal set in H, and since x € M we get in
particular ||T'(z)|| = 1.

We have thus proved that ||T'(x)|| = 1 for every x € H with ||z|| = 1.
Hence T is bounded and ||T|| = 1. It now also follows directly that

() NT@I=1lyll,  vyeH

(Proof: If y = 0 then trivially ||T(y)|| = ||0|| = 0. Now assume y # 0.
Then y = ||y|| - © where z = ||y||™' -y € H and ||z|| = 1, hence by
what we have showed, ||T(z)|| = 1, and thus ||T(y)|| = |T(||y|| - 2)|| =
Iyl 1T ()1| = [191l.)

From (*) one deduces directly that T is injective. (This is something
which I have pointed out in a lecture. The proof is as follows: Assume
T(y1) = T(y2). Then T'(y1 —y2) = 0, thus ||T(y2 —y1)|| = 0, and hence
by (*), [ly2 — y1|| = 0, i.e. y1 = yo. This shows that T is injective.)

We next prove that T' is surjective. Let M be an arbitrary to-
tal orthonormal set in H. By our assumption 7(M) is a total or-
thonormal set, and hence Span(7(M)) = H. But T(M) C T(H),
and T(H) is a subspace of H, and thus Span(T'(M)) C T(H) and
H = Span(T'(M)) C T(H). Hence T(H) = H. Now fix an arbi-
trary element y € H; we wish to construct a vector x € H such that
T(x) =y. Since y € H = T(H) there is a sequence yy,ys, ... in T(H)
such that y; — y. Since y; € T'(H) we may write y; = T'(z;) for some
x; € H. Using now (*) and then Theorem 1.4-5 we get

lj =@l = 1T (x; = z)ll = lly; — el = 0 as G,k — oo

Hence z1, x5, ... is a Cauchy sequence in H, and since H is a Hilbert
space (i.e. complete) there is a vector x € H such that z; — 2. Since
T is bounded (and hence continuous) we now have

T(z)=T(lim z;) = lim T(z;) = lim y; = y.
Hence for each y € H there is some z € H such that T'(xz) = y. This
proves that T' is surjective.

Next, by using polarization (p.134 (9), (10)), one deduces from (*)
that

(xx) (Tx, Ty) = (z,y), Vr,y € H.

(Explanation: Formulas p.134 (9), (10) show that the inner product
in H may be expressed completely in terms of the norm; hence since
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(*) shows that T" preserves the norm, 7" must also preserve the inner
product! If writes out the computation it it looks as follows. If K = R:

(Tz,Ty) = 1(|[Tx + Ty||> = |Tx — Tyl|]*) = 1([|IT(z + ) |I* = [|T(z — y)|?)

= Ulz+yll? = llz = yl*) = (z,9).

If K =C;:

Re (Tz,Ty) = 1(|[Tx + Ty||> — [Tz — Ty|]*) = 11T (z + p)|I* = [|T(z — y)|?)

= 1(llz + > = [|lz — y|[*) = Re (z,y)

and

Im (Tx,Ty) = 1(||[Tx + iTy||* — ||Tx — iTy||*) = $(||T(x +iy)|]> — ||T(z — iy)||*)
= 1(llz + iyl = |z —iyl*) = Im (z,y);

hence the numbers (T'z, T'y) and (z,y) have the same real part and the
same imaginary part; hence (T'z, Ty) = (x,y).)

Now note that (**) implies (T*Tx,y) = (Tx,Ty) = (z,y) for all
x,y € H, hence by Lemma 3.8-2, T*"Tx = x for all x € H. Since T is
bijective, this relation implies T = T™*.

6. In fact we do not have to assume that Y is closed; hence from now
on let Y be an arbitrary subspace of the normed space X.

We first check carefully that the various concepts introduced in the
problem are well-defined: The annihilator Y* is defined in problem
13, Section 2.10, and from that problem we know that Y is a closed
subspace of X'. Hence X'/Y* is a normed space by problem 14, Section
2.3. Finally we check that the map A : X'/Y* — Y is well-defined:
Take any f,g € X' such that f +Y® = g+ Y* We then have to prove
that A(f +Y*) and A(g + Y*) are defined to be the same thing, i.e.
that fy = gjy. But f+Y* = g+Y*implies f = g+h for some h € Y,
and hence for each y € Y we have f(y) = g(y)+h(y) = g(y)+0. Hence
fly = gjy, as desired.

We now start our proof that A is an isomorphism of normed spaces.
First of all, for any f,g € X’ and any «, 3 € K we have

Ala(f+Y") + B(g+Y")) = A(af + Bg) +Y) = (af + Bg)y
= afy +Bgy = cA(f+Y") + BA(g+Y).

(In the first equality we used the definition of addition and multipli-
cation in X’/Y*, see problem 14 in Section 2.1.) Hence A is a linear
operator.

Next, let f € X’ be given; we wish to prove || f+Y?|| = [|A(f+Y)]],
ie. |[f+Y?| = [|fiv]|, By the definition of the norm on X'/Y* (see
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problem 14, Section 2.3) we have
Y| = inf :
G F Y= gl
Take any g € f +Y*. Then g = f + h for some h € Y*, and hence for
all y € Y we have g(y) = f(y) + h(y) = f(y). Hence, using the fact
Y C X:

g(z gy f(y
ol = swp Ol g O VO 0,
vex—{o} 1zl T yev—qoy Wl yev—gop ll¥l|
Since this is true for all g € f + Y we have by (*):
(%) I[f+ YU = ([ fivll-

On the other hand, by Hahn-Banach’s Theorem 4.3-2 (applied to the
subspace Y C X and the bounded linear functional fjy on Y'), there
exists some g € X' such that gy = fjy (i.e. g is an extension of fy)
and ||g|| = ||fiv||. Let h = g— f € X’. Then for all y € Y we have
h(y) = g(y) — f(y) =0, since gy = fjy. Thus h € Y*. Hence we have
g=f+hand h € Y% hence g € f + Y Hence by (*):

(5 %) L+ Yol < lgll = [l
By (**) and (***) we have finally proved
LF+ Y = IACG + YU = [ fivll,

i.e. the linear operator A : X'/Y* — Y’ is norm preserving.

Since A is norm preserving A is injective (as we also mentioned in
problem 5). Finally, we prove that A is surjective: Let g be an arbitrary
element in Y’. Then by Hahn-Banach’s Theorem 4.3-2 there exists
some f € X' such that fy =g and ||f|| =]|g||. Now f+Y* e X'/Y*®
and A(f +Y*?) = fiy = g. This proves that A is surjective.

We have now proved that A is a bijective and norm preserving linear
map. In other words, A is an isomorphism of normed spaces.



