
Functional Analysis F3/F4/NVP (2005)

Homework assignment 2

All students should solve the following problems:

1. Section 2.7: Problem 8.

2. Let x1(t) = t2e−t/2, x2(t) = te−t/2 and x3(t) = e−t/2. Orthonormalize
x1, x2, x3, in this order, in the Hilbert space L2[0, +∞).

3. Section 3.9: Problem 6.

4. Section 4.3: Problem 14.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Let T : H → H be a linear operator on the Hilbert space H. Prove
that T is unitary if and only if T (M) is a total orthonormal set in H
for each total orthonormal set M in H.

6. Let Y be a closed subspace of a normed space X and let
A : X ′/Y a → Y ′ be the operator defined by A(f + Y a) = f|Y . Prove
that A is an isomorphism of normed spaces.
[Notation: f|Y is the restriction of f to Y , see p.99 (middle). Y a is the annihilator of

Y as defined in Section 2.10, problem 13; furthermore, X ′/Y a is a normed space as in

Section 2.3, problem 14.]

Solutions should be handed in by Wednesday, February 16,
18.00. (Either give the solutions to me directly or put them in my
mailbox, third floor, House 3, Polacksbacken.)
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Functional Analysis F3/F4/NVP

Comments to homework assignment 2

1. Note that from the definition (p. 91) of “bounded”, our task in this
problem is to show that there does not exist a constant c such that
||T−1x|| ≤ c||x|| holds for all x ∈ D(T−1). Several students made the
mistake of playing with some vector x for which T−1x is not defined,
i.e. a vector outside the domain D(T−1) = R(T ). For such vectors
“T−1x” is nonsense, and we cannot conclude anything about T−1 being
bounded or not bounded by studying such vectors. Note also that for
each individual vector x ∈ D(T−1) there will exist some constant c such
that ||T−1x|| ≤ c||x|| holds. Hence to prove that T−1 is not bounded, we
have to make a clever choice of an infinite sequence of vectors x1, x2, ...
in D(T−1), and prove that there is no constant c which works for all

these vectors. (There are also alternative approaches; but the point is
that a no proof can work by studying just one explicit fixed vector x
in D(T−1).)

4. Some students seem to have misunderstood the statement of Theo-
rem 4.3-3: Note that the function f : X → K given by f(x0) = ||x0||
(∀x0 ∈ X) is not a linear functional; for instance it does not satisfy
f(x + y) = f(x) + f(y) for all x, y ∈ X. What Theorem 4.3-3 says is
that given some fixed vector x0 ∈ X (x0 6= 0), there exists a bounded
linear functional f : X → K such that ||f || = 1 and f(x0) = ||x0||.
Note that this functional will not satisfy f(x) = ||x|| for all x ∈ X.

The same thing expressed with symbols: Theorem 4.3-3 says

∀x0 ∈ X − {0} : ∃f̃ ∈ X ′ : ||f̃ || = 1, f̃(x0) = ||x0||.

Theorem 4.3-3 does not say:

′′∃f̃ ∈ X ′ : ∀x0 ∈ X − {0} : ||f̃ || = 1, f̃(x0) = ||x0||.′′

Here is a speculation on what might be the origin of this misconception: In Theorem

4.3-3 it says “...and let x0 6= 0 be any element of X.” This should be understood as “and

let x0 6= 0 be a fixed (arbitrary) vector in X.” However, some students might have read

it as something like “...and we use the letter x0 to denote an arbitrary (varying) non-zero

element in X.” With this interpretation it actually looks as if the theorem claims (falsely)

that the function f(x0) = ||x0|| (∀x0 ∈ X) is linear! However I think every professional

mathematician would find the statement of the theorem perfectly clear and would say

that the interpretation with “varying x0” is incorrect. Ultimately it is a convention;

mathematicians always read “let ... be any ...” as “let ... be a fixed ...”. Unfortunately it

seems that eg. professional physicists do not always use the same convention, so I definitely

find the misconception understandable.
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5. Some students have referred to Theorem 3.10-6(f) to conclude that
T is unitary (after having proved that T is isometric and surjective.
Unfortunately, Theorem 3.10-6(f) is only stated for complex Hilbert
spaces; hence it is not strong enough for us (since we did not say
anything about the ground field K in the problem formulation we wish
the proof to hold both for K = R and for K = C).

However, Theorem 3.10-6(f) is true also for real Hilbert spaces; this
can be proved by mimicking the last part of our solution to problem
5 below (in particular, one uses polarization to show that ||Tx|| =
||x||, ∀x ∈ H implies 〈Tx, Ty〉 = 〈x, y〉, ∀x, y ∈ H).

Here follows a discussion of some rather intricate issues in the prob-
lem. (The following matters did not affect the score by more than ±1,
and you may safely consider the following discussion as extracurricu-
lar!) The hardest part of the problem is to give the proof in the direc-
tion [∀M ⊂ H : M total orthonormal set =⇒ T (M) total orthonormal
set] =⇒ [T unitary]. Note that in the statement of the problem we did

not assume that T is bounded ; this can be deduced from the assump-
tion. (The boundedness is not an issue in the opposite direction since
a unitary operator is bounded by definition.) Furthermore, note that
even if M is a total orthonormal set and T (M) is a total orthonormal
set, we may, apriori, have T (x) = T (y) for some vectors x, y ∈ M ,
x 6= y. (Eg. assume H is separable so that there is a total orthonormal
sequence e1, e2, ... in H; then M = {e1, e2, ...} is a total orthonormal set.
Assume T (e1) = e1, T (e2) = e1, T (e3) = e2, T (e4) = e2, T (e5) = e3,
etc. Then T (M) = {e1, e2, ...}, a total orthonormal set!) This pos-
sibility can only be excluded by also considering some (appropriately
chosen) different total orthonormal set M ′ in H (eg. if T (x) = T (y)
for x, y ∈ M , x 6= y, then apply the assumption to a total orthonormal
set which contains the unit vector 2− 1

2 (x − y)).

6. As part of a completely correct solution you must prove that A
is well-defined. In fact, this should be a reflex whenever a function
on a set of equivalence classes is defined in a way using a choice of
representatives for the equivalence classes! (In the present problem f
is a representative for the equivalence class f + Y a, and A(f + Y a) is
defined using this representative f . Cf. also problem 5 in Homework
no 1.) In the present problem it is fairly easy to see that A is indeed
well-defined, but this should be stated explicitly.
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Functional Analysis F3/F4/NVP

Solutions to homework assignment 2

1. As suggested in the hint we let T be the operator T : `∞ → `∞

defined by T ((ξ1, ξ2, ξ3, ...)) = (ξ1/1, ξ2/2, ξ3/3, ...). This operator is
easily seen to be linear. We also have for all (ξj) ∈ `∞:

||T ((ξj))|| = ||(ξ1/1, ξ2/2, ξ3/3, ...)|| = sup
j

|ξj/j| ≤ sup
j

|ξj| = ||(ξj)||.

Hence T is bounded and ||T || ≤ 1. We note that the range of T is:

R(T ) = {T ((ξj)) | (ξj) ∈ `∞}
= {(η1, η2, η3, ...) | ηj = ξj/j, sup

j
|ξj| < ∞}

= {(η1, η2, η3, ...) | sup
j

|jηj| < ∞}

(Note: Up to here this work has been done in class, in a problem session
where I solved problems 5,6 on p. 101.) Note that if (ηj) = T ((ξj)) then
we must have ξj = jηj for all j, i.e. (ξj) = (jηj). (This has already
been used in the above computation of R(T ).) This shows that T
is injective, and that the inverse map T−1 : R(T ) → `∞ is given by
T−1((ηj)) = (jηj). We will prove that T−1 is not bounded.

Given any n ≥ 1, let en be the vector en = (0, 0, ..., 0, 0, 1, 0, 0, ...),
with the number 1 in position number n. We see from the above
formula for R(T ) that en ∈ R(T ). Also ||en|| = 1 and T−1(en) =
(0, 0, ..., 0, 0, n, 0, 0, ...) = nen, and hence ||T−1(en)|| = ||nen|| = n.
Now if T−1 were bounded, then there would exist a constant c ≥ 0
such that

(∗) ||T−1(x)|| ≤ c||x||, ∀x ∈ R(T ).

But then choose n as an integer larger than c; we then have en ∈ R(T )
and ||T−1(en)|| = n > c = c||en||, which contradicts (*). Hence T−1 is
not bounded.

Alternative solution. Some students have instead studied the
operator T : C[0, 1] → C[0, 1] defined by (Tx)(t) =

∫ t

0
x(s) ds. This

operator is linear, since for all x1, x2 ∈ C[0, 1] and all α, β ∈ K we have

(T (αx1 + βx2))(t) =

∫ t

0

(αx1(s) + βx2(s)) ds

= α

∫ t

0

x1(s) ds + β

∫ t

0

x2(s) ds = αTx1 + βTx2.
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Furthermore, for each x ∈ C[0, 1] we have:

||Tx|| = max
t∈[0,1]

∣

∣

∣

∣

∫ t

0

x(s) ds

∣

∣

∣

∣

≤ max
t∈[0,1]

∫ t

0

|x(s)| ds

≤ max
t∈[0,1]

∫ t

0

||x|| ds = max
t∈[0,1]

t · ||x|| = ||x||.

Hence T is bounded with ||T || ≤ 1.
Now assume y = Tx for an arbitrary vector x ∈ C[0, 1]. This means

that y(t) =
∫ t

0
x(s) ds. This relation implies that y(t) is differentiable

with respect to t and that

y′(t) =
d

dt

∫ t

0

x(s) ds = x(t).

(Here if t = 0 we interprete y′(t) as right derivative y′(0) := limh→0+
y(0+h)−y(0)

h
,

and if t = 1 we interprete y′(t) as left derivative y′(1) := limh→0−
y(1+h)−y(1)

h
.)

This shows that x is uniquely determined once y = Tx is known, i.e.
T is injective. Hence T−1 exists, and the above formula shows that

(T−1y)(t) = y′(t), for all y ∈ R(T ).

(With conventions for t = 0, 1 as before.)
One may also prove that R(T ) consists exactly of those functions

y ∈ C[0, 1] such that y(0) = 0 and y′(t) exists and is continuous for
all t ∈ [0, 1] (with conventions as above for t = 0, 1). However, we do
not need this precise description of R(T ) for the purpose of the present
problem.

Given any n ∈ Z
+ we let xn(t) = tn. Then xn ∈ C[0, 1] and ||xn|| =

maxt∈[0,1] |tn| = 1. We let

yn(t) = Txn(t) =

∫ t

0

sn ds = (n + 1)−1tn+1.

Then yn ∈ R(T ) and T−1yn = xn, and ||yn|| = maxt∈[0,1] |(n+1)−1tn+1| =
(n + 1)−1. It now follows that T−1 is not bounded, by the same argu-
ment as in the first solution: If T−1 were bounded, then there would
exist a constant c ≥ 0 such that

(∗) ||T−1(x)|| ≤ c||x||, ∀x ∈ R(T ).

But then choose n as an integer larger than c; we then have yn ∈ R(T )
and ||T−1(yn)|| = 1 > c(n+1)−1 = c||yn||, which contradicts (*). Hence
T−1 is not bounded.

2. Throughout this exercise we have to compute a lot of integrals of
the form Jn =

∫∞
0

tne−t, where n ≥ 0 is an integer. This can be done
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by repeated integration by parts: Note that J0 = 1, and for n ≥ 1 we
have

Jn =

∫ ∞

0

tne−t =
[

tn(−e−t)
]∞
0
−
∫ ∞

0

ntn−1(−e−t) dt

= 0 + n

∫ ∞

0

ntn−1e−t dt = n · Jn−1.

Hence for n ≥ 1:

Jn = n · Jn−1 = n(n − 1) · Jn−2 = ... = n! · J0 = n!

This formula is also true for n = 0. From this we obtain the following
general formula in L2[0, +∞]:

〈tme−t/2, tne−t/2〉 =

∫ ∞

0

tme−t/2 · tne−t/2 dt =

∫ ∞

0

tm+ne−t dtJm+n = (m + n)!

We will use this repeatedly below.
Note that x1, x2, x3 are linearly independent. We now apply the

Gram-Schmidt orthonormalization process to x1, x2, x3, see pp. 157-
158 in Kreyszig’s book. First:

||x1||2 = 〈t2e−t/2, t2e−t/2〉 = 4! = 24,

and hence

e1 =
1

||x1||
· x1 =

1√
24

· t2e−t/2.

Next 〈x2, e1〉 = 1√
24

· 〈t2e−t, te−t/2〉 = 3!√
24

=
√

3
2
, and hence, using

the same notation as in the book:

v2 = x2 − 〈x2, e1〉e1 = te−t/2 − 3!√
24

1√
24

· t2e−t/2 = te−t/2 − 1

4
· t2e−t/2;

||v2||2 = 〈v2, v2〉 = 〈te−t/2 − 1

4
· t2e−t/2, te−t/2 − 1

4
· t2e−t/2〉

= 〈te−t/2, te−t/2〉 − 1

2
〈te−t/2, t2e−t/2〉 +

1

16
〈t2e−t/2, t2e−t/2〉 = 2! − 3!

2
+

4!

16
=

1

2
;

e2 =
1

||v2||
v2 =

√
2v2 =

√
2

(

te−t/2 − 1

4
· t2e−t/2

)

.

Finally,

〈x3, e1〉 =
1√
24

· 〈e−t/2, t2e−t/2〉 =
2√
24

=
1√
6
;

〈x3, e2〉 = 〈e−t/2,
√

2te−t/2 −
√

2

4
· t2e−t/2〉 =

√
2 · 1! −

√
2

4
· 2! =

1√
2
,
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and hence:

v3 = x3 − 〈x3, e1〉e1 − 〈x3, e2〉e2

= e−t/2 − 1√
6
· 1√

24
· t2e−t/2 − 1√

2
·
(

√
2te−t/2 −

√
2

4
· t2e−t/2

)

=
1

6
t2e−t/2 − te−t/2 + e−t/2;

||v3||2 = 〈v3, v3〉 =

∫ ∞

0

∣

∣

∣

∣

1

6
t2e−t/2 − te−t/2 + e−t/2

∣

∣

∣

∣

2

dt

=

∫ ∞

0

(

1

36
t4e−t − 1

3
t3e−t +

4

3
t2e−t − 2te−t + e−t

)

dt

=
4!

36
− 3!

3
+

4 · 2!

3
− 2 + 1 =

1

3
;

e3 =
1

||v3||
v3 =

√
3

(

1

6
t2e−t/2 − te−t/2 + e−t/2

)

.

Answer: The orthonormalized basis is

e1 =
1√
24

t2e−t/2 =

√
6

12
t2e−t/2,

e2 =
√

2

(

te−t/2 − 1

4
· t2e−t/2

)

=

√
2

4
(4t − t2)e−t/2,

e3 =
√

3

(

1

6
t2e−t/2 − te−t/2 + e−t/2

)

=

√
3

6
(6 − 6t + t2)e−t/2.

Alternative solution. Just for fun, let us deduce the same result
from the facts given in §3.7 (this section is not part of the course
content, but I have recommended that you read it anyway). From
§3.7-3 we learn that the following vectors are orthonormal in L2[0,∞]:

f1 = e−t/2; f2 = (1 − t)e−t/2; f3 = (1 − 2t + 1
2
)e−t/2.

(In fact, we learn from §3.7-3 that f1, f2, f3 are obtained if our vectors
x1, x2, x3 are orthonormalized in the order x3, x2, x1.) Now we see by
inspection:

x1 = 2f1 − 4f2 + 2f3; x2 = f1 − f2; x3 = f1.
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Now it is very easy to apply the Gram-Schmidt orthonormalization
process, using the fact that f1, f2, f3 are orthonormal:

||x1|| =
√

22 + 42 + 22 =
√

24;

e1 =
1

||x1||
x1 = 1√

24
(2f1 − 4f2 + 2f3) = 1√

6
(f1 − 2f2 + f3);

v2 = x2 − 〈x2, e1〉e1

= (f1 − f2) −
〈

f1 − f2,
1√
6
(f1 − 2f2 + f3)

〉

· 1√
6
(f1 − 2f2 + f3)

= f1 − f2 − 1
6
(1 + 2)(2f1 − 4f2 + 2f3) = 1

2
f1 − 1

2
f3;

e2 =
1

||v2||
v2 =

1
√

1
2

2
+ 1

2

2
(1

2
f1 − 1

2
f3) =

√
2

2
(f1 − f3);

v3 = x3 − 〈x3, e1〉e1 − 〈x3, e2〉e2

= f1 −
〈

f1,
1√
6
(f1 − 2f2 + f3)

〉

· 1√
6
(f1 − 2f2 + f3)

− 〈f1,
√

2
2

(f1 − f3)〉 ·
√

2
2

(f1 − f3)

= f1 −
1

6
(f1 − 2f2 + f3) −

1

2
(f1 − f3) =

1

3
(f1 + f2 + f3);

e3 =
1

||v3||
v3 =

1
√

1
3

2
+ 1

3

2
+ 1

3

2

1

3
(f1 + f2 + f3) =

√
3

3
(f1 + f2 + f3).

Substituting the formulae for f1, f2, f3 we check that we have obtained
the same orthonormal vectors e1, e2, e3 as in the first solution.

3. (a) Take y ∈ H2. Take x ∈ M1. Then 〈T ∗(y), x〉 = 〈y, Tx〉 =
〈y, 0〉 = 0 (the second equality holds because x ∈ M1 = N (T )). Hence
we have proved that 〈T ∗(y), x〉 = 0 for all x ∈ M1; this means that
T ∗(y) ∈ M⊥

1 . This holds for all y ∈ H2, hence T ∗(H2) ⊂ M⊥
1 .

(b) Take y ∈ [T (H1)]
⊥. Then y ∈ H2 and we wish to prove that

T ∗(y) = 0. Note that for all x ∈ H2 we have

〈T ∗(y), x〉 = 〈y, Tx〉 = 0,

where the last equality holds because y ∈ [T (H1)]
⊥ and Tx ∈ T (H1).

Since 〈T ∗(y), x〉 = 0 holds for all x ∈ H2 we have T ∗(y) = 0 (by Lemma
3.8-2). Hence y ∈ N (T ∗). This holds for all y ∈ [T (H1)]

⊥, hence we
have proved [T (H1)]

⊥ ⊂ N (T ∗).
Remark: In fact we have [T (H1)]

⊥ = N (T ∗) (cf. below).
(c) Take x ∈ M1. Take y ∈ H2. Then 〈x, T ∗(y)〉 = 〈Tx, y〉 =

〈0, y〉 = 0. This is true for all y ∈ H2; in other words 〈x, z〉 = 0 for all
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z ∈ [T ∗(H2)]. Hence x ∈ [T ∗(H2)]
⊥. This is true for all x ∈ M1. Hence

we have proved

(∗) M1 ⊂ [T ∗(H2)]
⊥.

Conversely, take x ∈ [T ∗(H2)]
⊥. Then 〈x, T ∗(y)〉 = 0 for all y ∈ H2.

Hence 〈Tx, y〉 = 0 for all y ∈ H2. Hence Tx = 0 (by Lemma 3.8-2).
Hence x ∈ N (T ) = M1. This is true for all x ∈ [T ∗(H2)]

⊥. Hence we
have proved

(∗∗) [T ∗(H2)]
⊥ ⊂ M1.

Together, (*) and (**) imply that M1 = [T ∗(H2)]
⊥.

Alternative solution. We do the three parts in opposite order:
(c) We have

[T ∗(H2)]
⊥ =1 {x ∈ H1 | ∀z ∈ T ∗(H2) : 〈x, z〉 = 0}

=2 {x ∈ H1 | ∀y ∈ H2 : 〈x, T ∗(y)〉 = 0}
=3 {x ∈ H1 | ∀y ∈ H2 : 〈Tx, y〉 = 0}
=4 {x ∈ H1 | Tx = 0}
=5 N (T ) = M1.

1. By definition of orthogonal complement.

2. By definition of T ∗(H2).

3. By definition of T ∗.

4. By Lemma 3.8-2 and the trivial fact that 〈0, y〉 = 0 for all y ∈ H2.

5. By definition of N (T )

(b) In (c) we proved that [T ∗(H2)]
⊥ = N (T ) holds for every bounded

linear operator T : H1 → H2. If we apply this fact to the bounded linear
operator T ∗ : H2 → H1 we obtain [T ∗∗(H1)]

⊥ = N (T ∗). But T ∗∗ = T ,
hence [T (H1)]

⊥ = N (T ∗). This is a stronger statement than what we
had to prove in (b)!

(a) Since [T ∗(H2)]
⊥ = M1 (as proved in (c)), we have [T ∗(H2)]

⊥⊥ =
M⊥

1 . But we also know A ⊂ A⊥⊥, for any subset A ⊂ H1. In particular,
T ∗(H2) ⊂ [T ∗(H2)]

⊥⊥ = M⊥
1 .

4. (We assume r > 0, since the sphere S(0; r) has only been defined
for such r in the book.) Take x0 ∈ S(0; r). Then ||x0|| = r > 0, and
thus x0 6= 0. Hence by Theorem 4.3-3 there exists some f ∈ X ′ such
that ||f || = 1 and f(x0) = ||x0|| = r. Let H be the hyperplane

H = {x ∈ X | f(x) = r}.
Then clearly x0 ∈ H. Furthermore, for each x ∈ B̃(0; r) we have
||x|| ≤ r and hence f(x) ≤ |f(x)| ≤ ||f || · ||x|| ≤ 1 · r = r. (In the first
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inequality we used f(x) ∈ R, since K = R in this problem.) Hence we
have proved:

B̃(0; r) ⊂ {x ∈ X | f(x) ≤ r}.
This means that B̃(0; r) lies completely in the half space {x ∈ X |
f(x) ≤ r}, which is one of the two half spaces determined by H.

5. We first assume that T : H → H is a unitary operator. Let M
be an arbitrary total orthonormal subset in H. Take w1, w2 ∈ T (M).
Then we have w1 = Tv1 and w2 = Tv2 for some v1, v2 ∈ H. Using the
fact that T is unitary and that M is an orthonormal set, we get:

〈w1, w2〉 = 〈Tv1, T v2〉 = 〈v1, T
∗Tv2〉 = 〈v1, T

−1Tv2〉

= 〈v1, v2〉 =

{

1 if v1 = v2

0 if v1 6= v2.

But T is a bijection since T is unitary; hence v1 = v2 ⇐⇒ Tv1 =
Tv2 ⇐⇒ w1 = w2. Hence we have proved

〈w1, w2〉 =

{

1 if w1 = w2

0 if w1 6= w2,

for all w1, w2 ∈ T (M). Hence T (M) is an orthonormal set.

Next we will use Theorem 3.6-2 to prove that T (M) is total. Let
x ∈ H be an arbitrary vector such that x ⊥ T (M). Then 〈x, Tv〉 = 0
for all v ∈ M , and hence since T is unitary, 〈T−1x, v〉 = 0 for all v ∈ M .
By Theorem 3.6-2(a) this implies that T−1x = 0, since M is total in H.
But T−1x = 0 implies x = 0 (since T−1 is always injective if it exists).
Hence we have proved that

∀x ∈ H : x ⊥ T (M) =⇒ x = 0.

Hence by Theorem 3.6-2(b) (which is applicable since H is a Hilbert
space), T (M) is total in H.

Hence if T is unitary then for every total orthonormal set M in H
we have proved that T (M) is a total orthonormal set in H.

Conversely, assume that T : H → H be a linear operator such that
T (M) is a total orthonormal set in H for each total orthonormal set M .
Let us first prove that T is bounded. Given a fixed vector x ∈ H with
||x|| = 1, let Y = Span{x}; this is a closed subspace of H by Theorem
2.4-3 and hence by Theorem 3.3-4 we have H = Y ⊕ (Y ⊥). Also Y ⊥ is
closed subspace of H and hence Y ⊥ is a Hilbert space in itself. Hence
by p.168 (middle) (cf. Theorem 4.1-8) there exists a total orthonormal
subset M1 ⊂ Y ⊥. Now let M = {x}∪M1; this is clearly an orthonormal
set since ||x|| = 1 and M1 is orthogonal to Y = Span{x} and hence to x.
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We also have Span(M) ⊃ Span(M1) = Y ⊥ and Span(M) ⊃ Span{x} =

Y , and hence Span(M) contains every vector in Y ⊕ (Y ⊥) = H. Hence
M is a total orthonormal set in H. By our assumption, this implies
that T (M) is a total orthonormal set in H, and since x ∈ M we get in
particular ||T (x)|| = 1.

We have thus proved that ||T (x)|| = 1 for every x ∈ H with ||x|| = 1.
Hence T is bounded and ||T || = 1. It now also follows directly that

(∗) ||T (y)|| = ||y||, ∀y ∈ H.

(Proof: If y = 0 then trivially ||T (y)|| = ||0|| = 0. Now assume y 6= 0.
Then y = ||y|| · x where x = ||y||−1 · y ∈ H and ||x|| = 1, hence by
what we have showed, ||T (x)|| = 1, and thus ||T (y)|| = ||T (||y|| ·x)|| =
||y|| · ||T (x)|| = ||y||.)

From (*) one deduces directly that T is injective. (This is something
which I have pointed out in a lecture. The proof is as follows: Assume
T (y1) = T (y2). Then T (y1−y2) = 0, thus ||T (y2−y1)|| = 0, and hence
by (*), ||y2 − y1|| = 0, i.e. y1 = y2. This shows that T is injective.)

We next prove that T is surjective. Let M be an arbitrary to-
tal orthonormal set in H. By our assumption T (M) is a total or-

thonormal set, and hence Span(T (M)) = H. But T (M) ⊂ T (H),
and T (H) is a subspace of H, and thus Span(T (M)) ⊂ T (H) and

H = Span(T (M)) ⊂ T (H). Hence T (H) = H. Now fix an arbi-
trary element y ∈ H; we wish to construct a vector x ∈ H such that
T (x) = y. Since y ∈ H = T (H) there is a sequence y1, y2, ... in T (H)
such that yj → y. Since yj ∈ T (H) we may write yj = T (xj) for some
xj ∈ H. Using now (*) and then Theorem 1.4-5 we get

||xj − xk|| = ||T (xj − xk)|| = ||yj − yk|| → 0 as j, k → ∞.

Hence x1, x2, ... is a Cauchy sequence in H, and since H is a Hilbert
space (i.e. complete) there is a vector x ∈ H such that xj → x. Since
T is bounded (and hence continuous) we now have

T (x) = T ( lim
j→∞

xj) = lim
j→∞

T (xj) = lim
j→∞

yj = y.

Hence for each y ∈ H there is some x ∈ H such that T (x) = y. This
proves that T is surjective.

Next, by using polarization (p.134 (9), (10)), one deduces from (*)
that

(∗∗) 〈Tx, Ty〉 = 〈x, y〉, ∀x, y ∈ H.

(Explanation: Formulas p.134 (9), (10) show that the inner product
in H may be expressed completely in terms of the norm; hence since
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(*) shows that T preserves the norm, T must also preserve the inner
product! If writes out the computation it it looks as follows. If K = R:

〈Tx, Ty〉 = 1
4
(||Tx + Ty||2 − ||Tx − Ty||2) = 1

4
(||T (x + y)||2 − ||T (x − y)||2)

= 1
4
(||x + y||2 − ||x − y||2) = 〈x, y〉.

If K = C:

Re 〈Tx, Ty〉 = 1
4
(||Tx + Ty||2 − ||Tx − Ty||2) = 1

4
(||T (x + y)||2 − ||T (x − y)||2)

= 1
4
(||x + y||2 − ||x − y||2) = Re 〈x, y〉

and

Im 〈Tx, Ty〉 = 1
4
(||Tx + iT y||2 − ||Tx − iT y||2) = 1

4
(||T (x + iy)||2 − ||T (x − iy)||2)

= 1
4
(||x + iy||2 − ||x − iy||2) = Im 〈x, y〉;

hence the numbers 〈Tx, Ty〉 and 〈x, y〉 have the same real part and the
same imaginary part; hence 〈Tx, Ty〉 = 〈x, y〉.)

Now note that (**) implies 〈T ∗Tx, y〉 = 〈Tx, Ty〉 = 〈x, y〉 for all
x, y ∈ H, hence by Lemma 3.8-2, T ∗Tx = x for all x ∈ H. Since T is
bijective, this relation implies T−1 = T ∗.

6. In fact we do not have to assume that Y is closed; hence from now
on let Y be an arbitrary subspace of the normed space X.

We first check carefully that the various concepts introduced in the
problem are well-defined: The annihilator Y a is defined in problem
13, Section 2.10, and from that problem we know that Y a is a closed

subspace of X ′. Hence X ′/Y a is a normed space by problem 14, Section
2.3. Finally we check that the map A : X ′/Y a → Y ′ is well-defined:
Take any f, g ∈ X ′ such that f + Y a = g + Y a. We then have to prove
that A(f + Y a) and A(g + Y a) are defined to be the same thing, i.e.
that f|Y = g|Y . But f +Y a = g+Y a implies f = g+h for some h ∈ Y a,
and hence for each y ∈ Y we have f(y) = g(y)+h(y) = g(y)+0. Hence
f|Y = g|Y , as desired.

We now start our proof that A is an isomorphism of normed spaces.
First of all, for any f, g ∈ X ′ and any α, β ∈ K we have

A(α(f + Y a) + β(g + Y a)) = A((αf + βg) + Y a) = (αf + βg)|Y

= αf|Y + βg|Y = αA(f + Y a) + βA(g + Y a).

(In the first equality we used the definition of addition and multipli-
cation in X ′/Y a, see problem 14 in Section 2.1.) Hence A is a linear

operator.

Next, let f ∈ X ′ be given; we wish to prove ||f+Y a|| = ||A(f+Y a)||,
i.e. ||f + Y a|| = ||f|Y ||, By the definition of the norm on X ′/Y a (see
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problem 14, Section 2.3) we have

(∗) ||f + Y a|| = inf
g∈f+Y a

||g||.

Take any g ∈ f + Y a. Then g = f + h for some h ∈ Y a, and hence for
all y ∈ Y we have g(y) = f(y) + h(y) = f(y). Hence, using the fact
Y ⊂ X:

||g|| = sup
x∈X−{0}

|g(x)|
||x|| ≥ sup

y∈Y −{0}

|g(y)|
||y|| = sup

y∈Y −{0}

|f(y)|
||y|| = ||f|Y ||.

Since this is true for all g ∈ f + Y a we have by (*):

(∗∗) ||f + Y a|| ≥ ||f|Y ||.
On the other hand, by Hahn-Banach’s Theorem 4.3-2 (applied to the
subspace Y ⊂ X and the bounded linear functional f|Y on Y ), there
exists some g ∈ X ′ such that g|Y = f|Y (i.e. g is an extension of f|Y )
and ||g|| = ||f|Y ||. Let h = g − f ∈ X ′. Then for all y ∈ Y we have
h(y) = g(y)− f(y) = 0, since g|Y = f|Y . Thus h ∈ Y a. Hence we have
g = f + h and h ∈ Y a; hence g ∈ f + Y a. Hence by (*):

(∗ ∗ ∗) ||f + Y a|| ≤ ||g|| = ||f|Y ||.
By (**) and (***) we have finally proved

||f + Y a|| = ||A(f + Y a)|| = ||f|Y ||,
i.e. the linear operator A : X ′/Y a → Y ′ is norm preserving.

Since A is norm preserving A is injective (as we also mentioned in
problem 5). Finally, we prove that A is surjective: Let g be an arbitrary
element in Y ′. Then by Hahn-Banach’s Theorem 4.3-2 there exists
some f ∈ X ′ such that f|Y = g and ||f || = ||g||. Now f + Y a ∈ X ′/Y a

and A(f + Y a) = f|Y = g. This proves that A is surjective.
We have now proved that A is a bijective and norm preserving linear

map. In other words, A is an isomorphism of normed spaces.


