
Functional Analysis F3/F4/NVP (2005)

Homework assignment 3

All students should solve the following problems:

1. Section 4.8: Problem 8.

2. Section 4.9: Problem 4.

3. Let T : `2 → `2 be the operator defined by

Tx =
(

ξ1 + ξ2, ξ2, ξ3 + ξ4, ξ4, ξ5 + ξ6, ξ6, ξ7 + ξ8, ...
)

, x = (ξj) ∈ `2.

Determine the four sets ρ(T ), σp(T ), σc(T ), σr(T ).

4. Prove the following (partial) converse to the spectral theorem for
compact, self-adjoint operators: If H is a Hilbert space, {en} is a total
orthonormal sequence in H, and {λn} is a sequence of real numbers
such that limn→∞ λn = 0, then there exists a unique bounded linear
operator T : H → H such that T (en) = λnen for all n. This operator
is compact and self-adjoint.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Section 8.2: Problem 8.

6. Let H be the Hilbert space L2(−∞,∞) and let T : H → H be
the multiplication operator Tx(t) = sin(t) · x(t). Verify that T is a
bounded self-adjoint operator, and find its spectral family.

Solutions should be handed in by Thursday, March 3, 16.00.
(Either give the solutions to me directly or put them in my mailbox,
third floor, House 3, Polacksbacken.)
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Functional Analysis F3/F4/NVP

Comments to homework assignment 3 (to be updated!)

1.Many students claim that if (xn) is a weak Cauchy sequence in X

then there must exist some x in X such that (xn) converges weakly to
x. This is not true (even if X is a Banach space).

Example: Let X = c0 (see p. 70, exercise 1) and let a1, a2, a3, ... be
any bounded sequence of complex numbers. Then the following is a
weak Cauchy sequence in X = c0:

x1 = (a1, 0, 0, 0, ...),

x2 = (a1, a2, 0, 0, 0, ...),

x3 = (a1, a2, a3, 0, 0, 0, ...),

x4 = (a1, a2, a3, a4, 0, 0, 0, ...).

(Proof: one uses the fact given in exercise 8 on p. 126. In explicit terms
this exercise tells us: For every f ∈ (c0)

′ there is some (bn) ∈ `1 such
that f((ξn)) =

∑∞

n=1 bnξn. It follows that if x1, x2, x3, ... is the sequence
in c0 given above then limj→∞ f(xj) =

∑∞

n=1 bnan. Hence x1, x2, x3, ...

is indeed weak Cauchy.)
However, for most choiches of numbers a1, a2, a3, ..., the above se-

quence (xn) does not converge weakly to an element x ∈ c0.
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Functional Analysis F3/F4/NVP

Solutions to homework assignment 3

1. Assume that (xn) is a weak Cauchy sequence in X. Take an arbi-
trary f ∈ X ′. Then (f(xn)) is a Cauchy sequence in K, and hence it
is a bounded sequence. Hence, for every f ∈ X ′ there exists some con-
stant cf such that |f(xn)| ≤ cf for all n. Now we imitate the argument
from p. 258 in the book (part (c)): For every x ∈ X we define gx ∈ X ′′

as usual by gx(f) = f(x) for all f ∈ X ′ (cf. p. 239 and Lemma 4.6-1).
We now have for all n,

|gxn
(f)| = |f(xn)| ≤ cf .

This tells us that the sequence (gxn
) in X ′′ = B(X ′, K) is pointwise

bounded. We also know that X ′ is a Banach space by Theorem 2.10-
4. Hence the Uniform Boundedness Theorem (Theorem 4.7-3) can be
applied, and this gives that there exists a constant c such that ||gxn

|| ≤ c

for all n. But ||xn|| = ||gxn
|| by Lemma 4.6-1; hence we have proved

that ||xn|| ≤ c for all n, i.e. the sequence (xn) is bounded.

2. Let X be an arbitrary normed space, and let (fn) be a sequence in
X ′.

Assume that (fn) converges weakly to f ∈ X ′. We wish to prove
that (fn) is weak* convergent to f . Let x be an arbitrary vector in X.
Let gx ∈ X ′′ be the image of x under the canonical mapping of X into
X ′′ (cf. p. 239–240), i.e.

gx(h) = h(x), ∀h ∈ X ′.

Since gx ∈ X ′′ and (fn) converges weakly to f ∈ X ′, we have limn→∞ gx(fn) =
gx(f). This means limn→∞ fn(x) = f(x). Since this holds for all x ∈ X,
(fn) is weak* convergent to f .

Now assume that X is reflexive. We wish to prove that weak* conver-
gence in X ′ implies weak convergence in X ′. Let (fn) be an arbitrary
sequence in X ′ which is weak* convergent to some f ∈ X ′. Let g be
an arbitrary element in X ′′. Then since X is reflexive, there is an ele-
ment x ∈ X such that gx = g. Since (fn) is weak* convergent to f we
have limn→∞ fn(x) = f(x). This can also be written: limn→∞ gx(fn) =
gx(f). But gx = g, hence we have limn→∞ g(fn) = g(f). But g ∈ X ′′

was arbitrary; hence (fn) is weakly convergent to f .
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3. T is a bounded linear operator `2 → `2, since, for all (ξn) ∈ `2,

||T ((ξn))||2 = |ξ1 + ξ2|2 + |ξ2|2 + |ξ3 + ξ4|2 + |ξ4|2 + ...

≤ (1 + 1) · (|ξ1|2 + |ξ2|2) + |ξ2|2 + (1 + 1) · (|ξ3|2 + |ξ4|2) + |ξ4|2 + ...

≤ 3
∞
∑

n=1

|ξn|2 = 3||(ξn)||2.

(This also shows ||T || ≤
√

3.)
In the computation above we used Schwarz inequality on C2, which

says the following:

(∗) |a1b1 + a2b2|2 ≤ (|a1|2 + |a2|2) · (|b1|2 + |b2|2), ∀a1, a2, b1, b2 ∈ C.

(We used this with a1 = a2 = 1 and b1 = ξ1, b2 = ξ2, etc.)
To get started, we investigate when Tλ = T − λI is injective. Let us

write x = (ξn) ∈ `2 and y = (T − λI)x = (ηn) ∈ `2. Then

(∗∗) y = (ηn) = ((1 − λ)ξ1 + ξ2, (1 − λ)ξ2, (1 − λ)ξ3 + ξ4, (1 − λ)ξ4, ...).

Now if λ = 1 then Tx = 0 for every vector x = (ξn) ∈ `2 with
ξ2 = ξ4 = ξ6 = ... = 0, and there exist many such vectors which are
6= 0, e.g. x = (1, 0, 0, 0, ...). This shows that if λ = 1 then T −λI is not
injective; hence 1 ∈ σp(T ).

From now on we assume λ 6= 1. Then for any x = (ξn) ∈ `2, formula
(**) implies:

(∗ ∗ ∗)































ξ1 = 1
1−λ

η1 − 1
(1−λ)2

η2

ξ2 = 1
1−λ

η2

ξ3 = 1
1−λ

η3 − 1
(1−λ)2

η4

ξ4 = 1
1−λ

η4

...

Now if some x′ = (ξ′n) ∈ `2 would give Tx′ = Tx = (ηn) then each
ξ′n is given by the same formula as ξn in (***), i.e. ξ′n = ξn for all n

and hence x = x′. This proves that T − λI is injective (under our
present assumption λ 6= 1). From the above computations we also
obtain explicit formulas for (T − λI)−1 and D ((T − λI)−1):

D
(

(T − λI)−1
)

=

{

(ηn) ∈ `2 | if ξn is computed using (***) then
∞
∑

n=1

|ξn|2 < ∞
}

and

(T − λI)−1
(

(ηn)
)

= (ξn), ∀(ηn) ∈ D
(

(T − λI)−1
)

.
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To decide whether λ belongs to σc(T ) or σr(T ) or ρ(T ) we must
determine whether D ((T − λI)−1) is dense in `2 and whether (T−λI)−1

is bounded. In the present problem it turns out to be easiest to consider
the first question first. This means trying to bound ||(ξn)|| in terms of
||(ηn)|| in (***). For every (ηn) ∈ `2 we have, if (ξn) is computed using
(***):

∞
∑

n=1

|ξn|2 =
∣

∣

∣

1
1−λ

η1 − 1
(1−λ)2

η2

∣

∣

∣

2

+
∣

∣

1
1−λ

η2

∣

∣

2
+
∣

∣

∣

1
1−λ

η3 − 1
(1−λ)2

η4

∣

∣

∣

4

+
∣

∣

1
1−λ

η4

∣

∣

2
+ ...

≤
(

∣

∣

1
1−λ

∣

∣

2
+
∣

∣

∣

1
(1−λ)2

∣

∣

∣

2
)

· (|η1|2 + |η2|2) +
∣

∣

1
1−λ

∣

∣

2 · |η2|2

+

(

∣

∣

1
1−λ

∣

∣

2
+
∣

∣

∣

1
(1−λ)2

∣

∣

∣

2
)

· (|η3|2 + |η4|2) +
∣

∣

1
1−λ

∣

∣

2 · |η4|2 + · · ·

Here we used again the inequality (*) above. It follows from the above
that if we let Cλ be the constant

Cλ =
∣

∣

1
1−λ

∣

∣

2
+
∣

∣

∣

1
(1−λ)2

∣

∣

∣

2

+
∣

∣

1
1−λ

∣

∣

2
,

then
∞
∑

n=1

|ξn|2 ≤ Cλ ·
∞
∑

n=1

|ηn|2.

In particular, for every (ηn) ∈ `2 we have
∑∞

n=1 |ξn|2 < ∞, i.e. (ξn) ∈ `2.
In view of our earlier formular for D ((T − λI)−1), this proves that

D
(

(T − λI)−1
)

= `2,

i.e. D ((T − λI)−1) is dense in `2 in the trivial way that it is equal to
`2. The above computation also proves that

||(T − λI)−1((ηn))|| =

√

√

√

√

∞
∑

n=1

|ξn|2 ≤
√

Cλ · ||(ηn)||

for all (ηn) ∈ `2, i.e. the operator (T − λI)−1 is bounded, with norm
≤

√
Cλ. Together, this implies that λ ∈ ρ(T ). This is true for all

λ 6= 1.
Hence we have proved:

σp(T ) = {1}; σc(T ) = ∅; σr(T ) = ∅; ρ(T ) = C \ {1}.

4. Let {en} be a total sequence in H, and {λn} is a sequence of real
numbers such that limn→∞ λn = 0. By the main Theorem 3.5-2 (in the
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version I proved in class), we know that

H = {
∞
∑

n=1

αnen | αn ∈ K,

∞
∑

n=1

|αn|2 < ∞}

Now if T is a bounded linear operator T : H → H with T (en) = λnen

for all n, we have for all sequences (αn) in K with
∑∞

n=1 |αn|2 < ∞:

T

(

∞
∑

n=1

αnen

)

= T

(

lim
N→∞

N
∑

n=1

αnen

)

= lim
N→∞

T

(

N
∑

n=1

αnen

)

= lim
N→∞

N
∑

n=1

αnλnen =
∞
∑

n=1

αnλnen.

The last sum converges since
∑∞

n=1 |αnλn|2 ≤
(

supn |λn|
)

·∑∞

n=1 |αn|2 <

∞ (here supn |λn| < ∞ since limn→∞ λn = 0). This proves unique-

ness, i.e. that there is only one possible bounded linear operator T :
H → H with T (en) = λnen for all n. On the other hand, the formula
T (
∑∞

n=1 αnen) =
∑∞

n=1 αnλnen truly defines a bounded linear operator
T : H → H. (Proof: Linearity is checked by a straightforward compu-
tation. Furthermore, we have ||T (

∑∞

n=1 αnen) || = ||∑∞

n=1 αnλnen|| =
√

∑∞

n=1 |αnλn|2 ≤ (supn |λn|)·
√

∑∞

n=1 |αn|2 = (supn |λn|)·||
∑∞

n=1 αnen||.
Hence T is bounded with norm ||T || ≤ supn |λn|.)

We now prove that T is self-adjoint. Let x, y be two arbitrary vec-
tors in H. Then we have x =

∑∞

n=1 αnen and y =
∑∞

n=1 βnen for
some αn, βn ∈ K with

∑∞

n=1 |αn|2 < ∞,
∑∞

n=1 |βn|2 < ∞. Now, by a
generalization of the Parseval relation which I have mentioned in class
(compare p.175, exercise 4),

〈Tx, y〉 = 〈
∞
∑

n=1

λnαnen,

∞
∑

n=1

βnen〉 =

∞
∑

n=1

λnαnβn

and

〈x, Ty〉 = 〈
∞
∑

n=1

αnen,

∞
∑

n=1

λnβnen〉 =

∞
∑

n=1

αnλnβn

But all numbers λn are assumed to be real; hence 〈Tx, y〉 = 〈x, Ty〉.
Since x, y were arbitrary this proves that T is self-adjoint.

Finally, we now prove that T is compact, by imitating the argument
in Example 8.1-6, p.409 in the book. For each m ∈ Z

+ we define the
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operator Tm : H → H by

Tm

(

∞
∑

n=1

αnen

)

=

m
∑

n=1

λnαnen.

This operator is clearly linear, and it is bounded since
∥

∥

∥

∥

∥

Tm

(

∞
∑

n=1

αnen

)
∥

∥

∥

∥

∥

2

=

m
∑

n=1

|λnαn|2 ≤
(

sup
1≤n≤m

|λn|2
)

·
m
∑

n=1

|αn|2

≤
(

sup
1≤n≤m

|λn|2
)

·
∥

∥

∥

∥

∥

∞
∑

n=1

αnen

∥

∥

∥

∥

∥

2

,

for all vectors x =
∑∞

n=1 αnen ∈ H. (This shows that ||Tm|| ≤
√

sup1≤n≤m |λn|2 = sup1≤n≤m |λn|.) Furthermore the range R(Tm) ⊂
Span{e1, e2, ..., em} is finite dimensional, hence by Theorem 8.1-4(a),
Tm is compact.

For each m and each x =
∑∞

n=1 αnen ∈ H we have
∥

∥

∥

∥

∥

(T − Tm)

(

∞
∑

n=1

αnen

)
∥

∥

∥

∥

∥

2

=
∞
∑

n=m+1

|λnαn|2 ≤
(

sup
n≥m+1

|λn|2
)

·
∞
∑

n=m+1

|αn|2

≤
(

sup
n≥m+1

|λn|2
)

·
∥

∥

∥

∥

∥

∞
∑

n=1

αnen

∥

∥

∥

∥

∥

2

,

hence

‖T − Tm‖ ≤
√

sup
n≥m+1

|λn|2 = sup
n≥m+1

|λn|.

This number tends to 0 as m → ∞, since limn→∞ λn = 0. Hence

‖T − Tm‖ → 0 as m → ∞.

Hence by Theorem 8.1-5, the operator T is compact.


