UPPSALA UNIVERSITET
Matematiska institutionen
M. Klimek

Prov i matematik
Funktionalanalys
Kurs: F3B, F4Sy, 1MA283
2001-03-02

Skrivtid: 9-14.

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.

LYCKA TILL! - GOOD LUCK!

Problems $1-8$ should be solved by all students. Problems 9 and 10 are only for those who take Functional Analysis as a 6 point course.

1. Let

$$
c_{00}=\left\{x=\left(\xi_{j}\right) \in l^{2}: \text { at most finitely many } \xi_{j} \neq 0\right\} .
$$

Show that c_{00} is not complete.
2. Let X be a real inner product space. For any $z \in X$, let $f_{z} \in X^{\prime}$ be defined by the formula $f_{z}(x)=\langle x, z\rangle$ for all $x \in X$. Show that the operator $T: X \longrightarrow X^{\prime}$ given by the formula $T(z)=f_{z}$ for $z \in X$ is a linear isometry. Why do we have to assume that X is a real vector space?
3. Let H_{1} and H_{2} be Hilbert spaces and let $A \in B\left(H_{1}, H_{2}\right)$. Show that

$$
\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{*}\right) \text { and } \overline{\mathcal{R}(A)}=\mathcal{N}\left(A^{*}\right)^{\perp} .
$$

4. Let u, v be two linearly independent vectors in a Hilbert space H. Define

$$
P x=\langle x, u\rangle u+\langle x, v\rangle v
$$

for all $x \in H$. Show that if P is an orthogonal projection, then $\|u\|=\|v\|=1$ and u is orthogonal to v.
5. Let X be a normed space and let $S \subset X$ be "weakly bounded" in the sense that $f(S)$ is bounded for each functional $f \in X^{\prime}$. Use the Banach-Steinhaus theorem to show that S is a bounded set.
6. Suppose that a vector space X has two norms $\left\|\|_{1}\right.$ and $\| \|_{2}$, such that there is a constant $M>0$ for which $\|x\|_{2} \leq M\|x\|_{1}$ for all $x \in X$. Suppose that X is complete with respect to both norms. Use the Open Mapping Theorem to show that there exist a constant $m>0$ such that $m\|x\|_{1} \leq\|x\|_{2}$ for all $x \in X$.
7. Let $\left(e_{n}\right)$ be an orthonormal basis for a Hilbert space H. Define the operator T by the formula:

$$
T(x)=\sum_{n=1}^{\infty} \frac{\left\langle x, e_{n+1}\right\rangle}{n+1} e_{n}, \quad x \in H .
$$

Show that T is compact and find T^{*}.
8. Let $K: L^{2}[0,1] \longrightarrow L^{2}[0,1]$ be given by the formula

$$
y=K x \text { if and only if } y(t)=\int_{0}^{1} t s x(s) d s
$$

for $x \in L^{2}[0,1]$. Show that $\mathcal{R}(K)$ is one-dimensional. Deduce from this that K has only one non-zero eigenvalue and find it.

Problems 9 and 10 are only for those who take Functional Analysis as a 6 point course.

9. Let $\left(e_{n}\right)$ be an orthonormal basis for a Hilbert space H. Define the left-shift operator by the formula:

$$
L(x)=\sum_{n=1}^{\infty}\left\langle x, e_{n+1}\right\rangle e_{n}, \quad x \in H
$$

Find $\|L\|$. Find the spectrum of L.
10. Let $A: c_{0} \longrightarrow l^{\infty}$ be a bounded linear operator. Prove that there exists an infinite matrix $\left(\alpha_{i j}\right)_{i, j \geq 1}$ of numbers, such that $y=A x$ if and only if

$$
\eta_{i}=\sum_{j=1}^{\infty} \alpha_{i j} \xi_{j}
$$

where $x=\left(\xi_{j}\right) \in c_{0}$ and $y=\left(\eta_{i}\right) \in l^{\infty}$. Show that

$$
\|A\|=\sup _{i \geq 1} \sum_{j=1}^{\infty}\left|\alpha_{i j}\right| .
$$

