UPPSALA UNIVERSITET

Matematiska institutionen M. Klimek

Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 1998-03-09

Skrivtid: 9-15.

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.

LYCKA TILL!

Problems 1 — 8 should be attempted by all students.

Graduate students should also try to solve Problems 9 and 10

1. Let \mathcal{P}_4 be the space of the polynomials of one complex variable of degree at most 4. Define

$$||p|| = \sum_{j=0}^{4} |p(j)|, \qquad p \in \mathcal{P}_4.$$

Show that this is a norm on \mathcal{P}_4 , but that there is no inner product such that $\langle p, p \rangle = ||p||^2$ for all $p \in \mathcal{P}_4$. Is the space \mathcal{P}_4 complete?

2. Let $S: X \longrightarrow Y$ be a bijective linear operator between normed spaces X, Y. Show that the inverse S^{-1} is continuous if and only if

$$\inf_{\|x\|=1} \|Sx\| > 0.$$

- **3.** Let X and Y be normed spaces and let $T \in B(X,Y)$. Show that if $x \in X$, $y \in Y$, and (x_n) is a sequence in X such that $x_n \xrightarrow{w} x$ and $Tx_n \longrightarrow y$, then Tx = y.
- **4.** Show that if Y is a closed subspace of a normed space X and $a \in X \setminus Y$, then there exists $f \in X'$ such that f(a) = 1 and Y is contained in the null space of f.
- **5.** Suppose that α_{jk} are numbers such that

$$A = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |\alpha_{jk}|^2 < \infty.$$

Define

$$S(\xi_1, \xi_2, \xi_3, \xi_4, \dots) = (\sum_{k=1}^{\infty} \alpha_{1k} \xi_k, \sum_{k=1}^{\infty} \alpha_{2k} \xi_k, \sum_{k=1}^{\infty} \alpha_{3k} \xi_k, \dots), \qquad \xi = (\xi_j) \in l^2.$$

Show that $S: l^2 \to l^2$ is a bounded linear operator and that $||S|| \leq \sqrt{A}$.

6. Let Y be a closed subspace of a Hilbert space H and let P_Y denote the orthogonal projection onto Y. Show that

$$Y = \{x \in H : ||P_Y(x)|| = ||x||\}.$$

- 7. Let H be a Hilbert space and let $T: H \longrightarrow H$ be a bounded linear operator. Show that $||T|| = |\lambda|$ for some eigenvalue λ if and only if $|\langle Tx, x \rangle| = ||T||$ for some vector $x \in H$ such that ||x|| = 1.
- **8.** Assume that the space $C[0,\pi]$ is equipped with the norm

$$||x|| = \sup_{t \in [0,\pi]} |x(t)|.$$

Consider the linear operator

$$K: \mathcal{C}[0,\pi] \longrightarrow \mathcal{C}[0,\pi]$$

given by the formula

$$(Kx)(s) = \int_0^{\pi} (\sin s + \cos t) x(t) dt, \qquad x \in \mathcal{C}[0, \pi].$$

Is this operator compact? Find the ranges of K and KK. Show that K has only one non-zero eigenvalue.

Additional problems for graduate students:

9. Let $T: H \longrightarrow H$ be a bounded linear operator on a Hilbert space H. We define the approximative spectrum $\sigma_a(T)$ of T by the formula

$$\sigma_a(T) = \left\{ \lambda \in \mathbf{C} : \inf_{\|x\|=1} \|Tx - \lambda x\| = 0
ight\}.$$

Show that

$$\sigma_p(T) \cup \sigma_c(T) \subset \sigma_a(T) \subset \sigma(T).$$

Hint: See Problem 2.

10. Let X be a separable Banach space. Prove the so-called Banach-Alaoglu Theorem: Every bounded subset M of X' is relatively weak* compact, that is every sequence of elements of M contains a subsequence which is weak* convergent to an element of X'.

GOOD LUCK!