UPPSALA UNIVERSITET

Matematiska institutionen M. Klimek

Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 2000-06-07

Skrivtid: 15-21.

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.

LYCKA TILL!

Problems 1 — 8 should be attempted by all students. Graduate students should also try to solve Problems 9 and 10

- 1. Let x and y be two vectors in a complex inner product space, satisfying $||x + y||^2 = ||x||^2 + ||y||^2$. Is it possible that x is not orthogonal to y?
- **2.** Let $X = \mathcal{C}([a,b])$ be equipped with the usual norm

$$||x|| = \sup_{t \in [a,b]} |x(t)|, \qquad x \in X.$$

Let Y denote the subspace of X given by

 $Y = \{x \in X : x \text{ is continuously differentiable and } x(a) = 0\}.$

Consider the operator $T: X \longrightarrow Y$ given by the formula

$$(Tx)(t) = \int_a^t x(s)ds, \qquad t \in [a,b], x \in X.$$

Show that T is bounded and find its norm. Find T^{-1} and show that it is not bounded.

- **3.** Let X, Y be normed spaces and let $T : \mathcal{D}(T) \longrightarrow Y$ be a closed operator. Show that if K is a compact subset of X, then T(K) is a closed subset of Y.
- **4.** Let M be a closed subspace of a Hilbert space H and let $T: H \longrightarrow H$ be a linear operator. Denote by P and Q the orthogonal projections onto M and M^{\perp} , respectively. Show that we have PT = TP and QT = TQ if and only if both $T(M) \subset M$ and $T(M^{\perp}) \subset M^{\perp}$.
- **5.** Consider the sequence of vectors

$$e_n = (0, \dots, 0, 1, 0, 0, \dots), \qquad n = 1, 2, \dots,$$

where 1 is placed on the *n*-th position. Explain why the sequence $(e_n)_{n\geq 1}$ is weakly convergent in l^2 but not in l^1 .

6. Let (e_n) be an orthonormal basis in a Hilbert space H and let (λ_n) be a sequence of numbers. Define the operator $T: H \longrightarrow H$ by the formula

$$Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n, \qquad x \in H.$$

Show that if $\lim_{n\to\infty} \lambda_n = 0$, then T is a compact operator.

7. Let T be the operator from Problem 6. Show that if $\lim_{n\to\infty} \lambda_n = 1$, then T is not a compact operator.

8. Let $T: X \longrightarrow X$ be a bounded operator on a normed space X such that $T \neq 0$ but $T^N = 0$ for some integer N > 1. Show that if $\lambda \in \mathbb{C} \setminus \{0\}$, then

$$(T - \lambda I)^{-1} = -\sum_{n=0}^{N-1} \frac{T^n}{\lambda^{n+1}}.$$

Show also that $\sigma(T) = \sigma_p(T) = \{0\}.$

Additional problems for graduate students:

- **9.** Show that the dual space of c_0 is l^1 .
- 10. Let (f_n) be a sequence in the dual X' of a normed space X. Show that if (f_n) is weakly convergent, then it is also weak* convergent.

GOOD LUCK!