UPPSALA UNIVERSITET
Matematiska institutionen
Bo Styf

Prov i matematik
Funktionalanalys
Kurs: F3B, F4Sy, 1MA283
2002-03-01

Skrivtid: 9-14.

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.

LYCKA TILL!

1. Let K be an arbitrary, non-empty and compact set in \mathbb{C}. Give an example of a continuous linear operator T such that $\sigma(T)=K$.
2. Let $Y=\left\{x=\left(\xi_{j}\right) \in l^{2} \mid \xi_{1}-\xi_{2}=0, \xi_{3}=0, \xi_{2}+\xi_{3}+\xi_{4}=0\right\}$ and let P be the orthogonal projection onto Y^{\perp}. Determine P.
3. Let X be a normed space and let $f, g \in X^{\prime}$. First show that if $\mathcal{N}(f) \neq X$ and $x_{0} \notin \mathcal{N}(f)$ then every vector $x \in X$ has a unique representation $x=\alpha x_{0}+y$, where α is a scalar and $y \in \mathcal{N}(f)$. Then show that $\mathcal{N}(f)=\mathcal{N}(g)$ if and only if $f=\lambda g$ for some scalar $\lambda \neq 0$.
4. Use the result of the previous problem to prove the Riesz' theorem: If H is a Hilbert space and $f \in H^{\prime}$ then there exists a unique $z \in H$ such that $\|f\|=\|z\|$ and $f(x)=\langle x, z\rangle, x \in H$. (Please don't give the proof in the book!)
5. Consider l^{1} as the dual of c_{0}. Show that the sequence of vectors

$$
e_{n}=(0, \ldots, 0,1,0,0, \ldots), \quad n=1,2, \ldots,
$$

where 1 is placed on the n-th position, is not weakly convergent in l^{1}, but converges in the weak*-sense.
6. Let c be the Banach space of all sequences $y=\left(\eta_{j}\right)_{1}^{\infty}$ such that $\lim _{j \rightarrow \infty} \eta_{j}$ exists. The norm on c is given by $\|y\|=\sup _{j}\left|\eta_{j}\right|$. Consider the operator $T: l^{2} \longrightarrow c$ defined by

$$
T x=\left(\xi_{1}, \xi_{1}+\frac{1}{2} \xi_{2}, \xi_{1}+\frac{1}{2} \xi_{2}+\frac{1}{3} \xi_{3}, \ldots\right), \quad x=\left(\xi_{j}\right) \in l^{2} .
$$

(a) Show that T is bounded and find it's norm.
(b) Show that T is invertible and determine T^{-1}.
(c) Show that $\mathcal{R}(T)$ is dense but not closed in c.
(Hint: It might be useful to know that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$)
7. Let $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ be complex sequences such that $\left|\alpha_{n-1}\right|>\left|\alpha_{n}\right| \rightarrow 0$ and $\left|\beta_{n-1}\right|>$ $\left|\beta_{n}\right| \rightarrow 0 . T: l^{2} \longrightarrow l^{2}$ is defined by

$$
T x=\left(\alpha_{1} \xi_{1}, \alpha_{2} \xi_{2}+\beta_{1} \xi_{1}, \alpha_{3} \xi_{3}+\beta_{2} \xi_{2}, \ldots\right), \quad x=\left(\xi_{j}\right) \in l^{2} .
$$

(a) Show that T is compact.
(b) Find all eigenvalues and eigenvectors of T.

You 6-pointers: Don't forget to contact me for further examination!

GOOD LUCK!

