SOLUTIONS:

1. Let $\left\{\lambda_{n}\right\}_{1}^{\infty}$ be a dense sequence in K. Such a sequence exists because any subset of the separable space \mathbb{C} is separable. Define $T: l^{1} \rightarrow l^{1}$ by $T x=\left(\lambda_{1} \xi_{1}, \lambda_{2} \xi_{2}, \lambda_{3} \xi_{3}, \ldots\right)$, $x=\left(\xi_{j}\right)$. As all λ_{n} are eigenvalues $\left(T e_{n}=\lambda_{n} e_{n}\right), \overline{\left\{\lambda_{n}\right\}}=K$ and $\sigma(T)$ is closed we draw the conclusion that $K \subset \sigma(T)$.
If, on the other hand, $\lambda \notin K$ then there exists $\delta>0$ such that $|\lambda-\mu| \geq \delta$ for all $\mu \in K$. It follows that $\left\|(T-\lambda I)^{-1}\right\| \leq \frac{1}{\delta}$, so $\lambda \in \rho(T)$ and consequently $\sigma(T) \subset \bar{K}$.
2. From the definition we see that

$$
Y=\left\{e_{1}-e_{2}, e_{3}, e_{2}+e_{3}+e_{4}\right\}^{\perp}=\left\{e_{1}-e_{2}, e_{3}, e_{2}+e_{4}\right\}^{\perp}
$$

Consequently $Y^{\perp}=\operatorname{span}\left\{e_{1}-e_{2}, e_{3}, e_{2}+e_{4}\right\}$. Using Gram-Schmidt we find an orthogonal basis $f_{1}=e_{1}-e_{2}, f_{2}=e_{3}, f_{3}=e_{1}+e_{2}+2 e_{4}$ in Y^{\perp}. The orthogonal projection P onto Y^{\perp} is then given by

$$
\begin{gathered}
P x=\frac{\left\langle x, f_{1}\right\rangle}{\left\langle f_{1}, f_{1}\right\rangle} f_{1}+\frac{\left\langle x, f_{2}\right\rangle}{\left\langle f_{2}, f_{2}\right\rangle} f_{2}+\frac{\left\langle x, f_{3}\right\rangle}{\left\langle f_{3}, f_{3}\right\rangle} f_{3}= \\
=\frac{1}{3}\left(2 \xi_{1}-\xi_{2}+\xi_{4},-\xi_{1}+2 \xi_{2}+\xi_{4}, 3 \xi_{3}, \xi_{1}+\xi_{2}+2 \xi_{4}, 0,0, \ldots\right) .
\end{gathered}
$$

3. (i) Let $x=\alpha x_{0}+y$. Then $f(y)=f(x)-\alpha f\left(x_{0}\right)=0$ iff $\alpha=f(x) / f\left(x_{0}\right)$, so $y \in \mathcal{N}(f)$ iff $\alpha=f(x) / f\left(x_{0}\right)$. Existence and uniqueness of the representation follows.
(ii) If $f=\lambda g, \lambda \neq 0$ it is clear that $f(x)=0$ iff $g(x)=0$ so $\mathcal{N}(f)=\mathcal{N}(g)$. Suppose conversely that $\mathcal{N}(f)=\mathcal{N}(g)$. If $\mathcal{N}(f)=X=\mathcal{N}(g)$ then $f=0=g=1 \cdot g$. If $\mathcal{N}(g) \neq X$ take $x_{0} \in X \backslash \mathcal{N}(g)$. Any $x \in X$ then has the representation $x=\left(g(x) / g\left(x_{0}\right)\right) x_{0}+y$, where $y \in \mathcal{N}(g)=\mathcal{N}(f) . \Rightarrow f(x)=\left(g(x) / g\left(x_{0}\right)\right) f\left(x_{0}\right)+f(y)=\left(f\left(x_{0}\right) / g\left(x_{0}\right)\right) g(x)$ ie $f=\lambda g$, where $\lambda=f\left(x_{0}\right) / g\left(x_{0}\right)$.
4. If $f=0$ then $z=0$ works. If $f \neq 0$ then $\mathcal{N}(f)$ is a proper closed subspace of X, which implies that we can find $z_{0} \perp \mathcal{N}(f)$ with $\left\|z_{0}\right\|=1$. By the conclusions of the previous problem $\mathcal{N}(f)^{\perp}$ is one-dimensional and hence spanned by z_{0}, which means that $z_{0}^{\perp}=\mathcal{N}(f)$. Consequently the linear form $g(x)=\left\langle x, z_{0}\right\rangle, x \in X$, fulfils $\mathcal{N}(g)=\mathcal{N}(f)$. By the previous problem there exists $\lambda \neq 0$ such that $f=\lambda g$ ie $f(x)=\lambda\left\langle x, z_{0}\right\rangle=\left\langle x, \bar{\lambda} z_{0}\right\rangle=\langle x, z\rangle$, where $z=\bar{\lambda} z_{0}$. For proof of uniqueness see Kreyszig.
5. For $f \in\left(l^{1}\right)^{\prime}$ given by

$$
f\left(\xi_{1}, \xi_{2}, \ldots\right)=\sum_{n=1}^{\infty}(-1)^{n} \xi_{n}
$$

we have $f\left(e_{n}\right)=(-1)^{n}$, so $\left(f\left(e_{n}\right)\right)$ has no limit. Hence $\left(e_{n}\right)$ has no weak limit. On the other hand, for $x=\left(\xi_{j}\right) \in c_{0}$ we have $e_{n}(x)=\xi_{n} \rightarrow 0=0(x)$, so e_{n} tends to 0 in the weak*-sense.
6. (a) $\left(\eta_{n}\right)=y=T x, x=\left(\xi_{j}\right) \Leftrightarrow \eta_{n}=\xi_{1}+\frac{1}{2} \xi_{2}+\cdots+\frac{1}{n} \xi_{n}, n=1,2,3, \ldots \Rightarrow$

$$
\begin{aligned}
\left|\eta_{n}\right| & \leq\left|\xi_{1}\right|+\frac{1}{2}\left|\xi_{2}\right|+\cdots+\frac{1}{n}\left|\xi_{n}\right| \\
& \leq\left(1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}\right)^{\frac{1}{2}}\left(\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}+\cdots+\left|\xi_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{k=1}^{\infty} \frac{1}{k^{2}}\right)^{\frac{1}{2}}\|x\| \\
& =\frac{\pi}{\sqrt{6}}\|x\|
\end{aligned}
$$

$\Rightarrow\|T x\|=\|y\| \leq \frac{\pi}{\sqrt{6}}\|x\| . \Rightarrow\|T\| \leq \frac{\pi}{\sqrt{6}}$. For the converse inequality we let $x=\left(\frac{1}{j}\right)$. Then $\|x\|=\frac{\pi}{\sqrt{6}}$ and $\|T\|\|x\| \geq\|T x\| \geq \lim _{n \rightarrow \infty} \eta_{n}=\|x\|^{2} . \Rightarrow\|T\| \geq\|x\|=\frac{\pi}{\sqrt{6}}$. Hence $\|T\|=\frac{\pi}{\sqrt{6}}$.
(b) $y=T x \Leftrightarrow \eta_{k}=\xi_{1}+\frac{1}{2} \xi_{2}+\cdots+\frac{1}{k} \xi_{k}=\eta_{k-1}+\frac{1}{k} \xi_{k}$. $\Leftrightarrow \xi_{1}=\eta_{1}$ and $\xi_{k}=k\left(\eta_{k}-\eta_{k-1}\right)$ ($k>1$). So T is invertible and $x=T^{-1} y$ iff $\xi_{1}=\eta_{1}$ and $\xi_{k}=k\left(\eta_{k}-\eta_{k-1}\right)(k>1)$.
(c) If $y \in c$ has the form $y=\left(\eta_{1}, \ldots, \eta_{n-1}, L, L, L, \ldots\right)$ (we say that y stabilizes) then for $x=T^{-1} y$ we have $\xi_{k}=k\left(\eta_{k}-\eta_{k-1}\right)=0, k>n$, ie $x=\left(\xi_{1}, \ldots, \xi_{n}, 0,0,0, \ldots\right) \in l^{2}$. As the subspace of all stabilizing sequences is dense in c we conclude that $\mathcal{R}(T)$ is dense in c. It follows that if $\mathcal{R}(T)$ is closed then $\mathcal{R}(T)=c$, which implies that $T^{-1} y \in l^{2}$ for all $y \in c$, which is not true, as the following counterexample shows: Let $\eta_{k}=1+\frac{1}{2 \sqrt{2}}+\cdots+\frac{1}{k \sqrt{k}}$. Then $y=\left(\eta_{k}\right) \in c$ but for $x=T^{-1} y$ we have $\xi_{k}=\frac{1}{\sqrt{k}}$, so $x \notin l^{2}$. This contradiction proves that $\mathcal{R}(T)$ cannot be closed.
7. (a) Let the sequence of operators $T_{n}: l^{2} \longrightarrow l^{2}, n=1,2,3, \ldots$, be defined by $\left(T_{n} x\right)_{j}=(T x)_{j}$, if $1 \leq j \leq n$, and $\left(T_{n} x\right)_{j}=0$, if $j>n\left(x \in l^{2}\right.$ is arbitrary). All the T_{n} 's are operators of finite range and hence compact. For an arbitrary $x \in l^{2}$ we have the estimate $\left\|T x-T_{n} x\right\| \leq\left(\left|\alpha_{n+1}\right|+\left|\beta_{n}\right|\right)\|x\|$, which implies that $\left\|T-T_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. But a uniform limit of a sequence of compact operators is compact. Hence T is compact.
(b) Suppose that $\lambda \in \mathbb{C}$ is an eigenvalue of T and that $x \neq 0$ is an eigenvector belonging to λ. Then we have

$$
0=T x-\lambda x=\left(\left(\alpha_{1}-\lambda\right) \xi_{1},\left(\alpha_{2}-\lambda\right) \xi_{2}+\beta_{1} \xi_{1}, \ldots,\left(\alpha_{n}-\lambda\right) \xi_{n}+\beta_{n-1} \xi_{n-1}, \ldots\right)
$$

If λ coincides with none of the α_{n} 's it is easy to see that $x=0$ is the only solution. So it is neccessary that $\lambda=\alpha_{n}$, for some n. In that case ξ_{n} can be choosen arbitrary, $0=\xi_{1}=\cdots=\xi_{n-1}$ and for $k=1,2,3, \ldots$ we have $0=\left(\alpha_{n+k}-\lambda\right) \xi_{n+k}+\beta_{n+k-1} \xi_{n+k-1}$. If we choose $\xi_{n}=1$ we get

$$
\xi_{n+k}=\frac{\beta_{n+k-1}}{\lambda-\alpha_{n+k}} \frac{\beta_{n+k-2}}{\lambda-\alpha_{n+k-1}} \cdots \frac{\beta_{n}}{\lambda-\alpha_{n+1}}
$$

$k=1,2,3, \ldots$ Thus, for any $n, \lambda=\alpha_{n}$ is a simple eigenvalue.

