UPPSALA UNIVERSITET

Matematiska institutionen Bo Styf Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 2002-03-01

SOLUTIONS:

1. Let $\{\lambda_n\}_1^\infty$ be a dense sequence in K. Such a sequence exists because any subset of the separable space \mathbb{C} is separable. Define $T: l^1 \to l^1$ by $Tx = (\lambda_1\xi_1, \lambda_2\xi_2, \lambda_3\xi_3, \ldots), x = (\xi_j)$. As all λ_n are eigenvalues $(Te_n = \lambda_n e_n), \overline{\{\lambda_n\}} = K$ and $\sigma(T)$ is closed we draw the conclusion that $K \subset \sigma(T)$.

If, on the other hand, $\lambda \notin K$ then there exists $\delta > 0$ such that $|\lambda - \mu| \ge \delta$ for all $\mu \in K$. It follows that $||(T - \lambda I)^{-1}|| \le \frac{1}{\delta}$, so $\lambda \in \rho(T)$ and consequently $\sigma(T) \subset K$.

2. From the definition we see that

$$Y = \{e_1 - e_2, e_3, e_2 + e_3 + e_4\}^{\perp} = \{e_1 - e_2, e_3, e_2 + e_4\}^{\perp}$$

Consequently $Y^{\perp} = \text{span}\{e_1 - e_2, e_3, e_2 + e_4\}$. Using Gram-Schmidt we find an orthogonal basis $f_1 = e_1 - e_2, f_2 = e_3, f_3 = e_1 + e_2 + 2e_4$ in Y^{\perp} . The orthogonal projection P onto Y^{\perp} is then given by

$$Px = \frac{\langle x, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 + \frac{\langle x, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2 + \frac{\langle x, f_3 \rangle}{\langle f_3, f_3 \rangle} f_3 =$$

= $\frac{1}{3} (2\xi_1 - \xi_2 + \xi_4, -\xi_1 + 2\xi_2 + \xi_4, 3\xi_3, \xi_1 + \xi_2 + 2\xi_4, 0, 0, \dots)$

3. (i) Let $x = \alpha x_0 + y$. Then $f(y) = f(x) - \alpha f(x_0) = 0$ iff $\alpha = f(x)/f(x_0)$, so $y \in \mathcal{N}(f)$ iff $\alpha = f(x)/f(x_0)$. Existence and uniqueness of the representation follows. (ii) If $f = \lambda g$, $\lambda \neq 0$ it is clear that f(x) = 0 iff g(x) = 0 so $\mathcal{N}(f) = \mathcal{N}(g)$. Suppose conversely that $\mathcal{N}(f) = \mathcal{N}(g)$. If $\mathcal{N}(f) = X = \mathcal{N}(g)$ then $f = 0 = g = 1 \cdot g$. If $\mathcal{N}(g) \neq X$ take $x_0 \in X \setminus \mathcal{N}(g)$. Any $x \in X$ then has the representation $x = (g(x)/g(x_0))x_0 + y$, where $y \in \mathcal{N}(g) = \mathcal{N}(f)$. $\Rightarrow f(x) = (g(x)/g(x_0))f(x_0) + f(y) = (f(x_0)/g(x_0))g(x)$ ie $f = \lambda g$, where $\lambda = f(x_0)/g(x_0)$.

4. If f = 0 then z = 0 works. If $f \neq 0$ then $\mathcal{N}(f)$ is a proper closed subspace of X, which implies that we can find $z_0 \perp \mathcal{N}(f)$ with $||z_0|| = 1$. By the conclusions of the previous problem $\mathcal{N}(f)^{\perp}$ is one-dimensional and hence spanned by z_0 , which means that $z_0^{\perp} = \mathcal{N}(f)$. Consequently the linear form $g(x) = \langle x, z_0 \rangle$, $x \in X$, fulfils $\mathcal{N}(g) = \mathcal{N}(f)$. By the previous problem there exists $\lambda \neq 0$ such that $f = \lambda g$ ie $f(x) = \lambda \langle x, z_0 \rangle = \langle x, \overline{\lambda} z_0 \rangle = \langle x, z \rangle$, where $z = \overline{\lambda} z_0$. For proof of uniqueness see Kreyszig.

5. For $f \in (l^1)'$ given by

$$f(\xi_1, \xi_2, \ldots) = \sum_{n=1}^{\infty} (-1)^n \xi_n,$$

we have $f(e_n) = (-1)^n$, so $(f(e_n))$ has no limit. Hence (e_n) has no weak limit. On the other hand, for $x = (\xi_j) \in c_0$ we have $e_n(x) = \xi_n \to 0 = 0(x)$, so e_n tends to 0 in the weak*-sense.

$$\begin{aligned} \mathbf{6.} \ (\mathbf{a}) \ (\eta_n) &= y = Tx, \, x = (\xi_j) \Leftrightarrow \eta_n = \xi_1 + \frac{1}{2}\xi_2 + \dots + \frac{1}{n}\xi_n, \, n = 1, \, 2, \, 3, \, \dots \Rightarrow \\ & |\eta_n| \leq |\xi_1| + \frac{1}{2}|\xi_2| + \dots + \frac{1}{n}|\xi_n| \\ & \leq \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right)^{\frac{1}{2}} \left(|\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_n|^2\right)^{\frac{1}{2}} \\ & \leq \left(\sum_{k=1}^{\infty} \frac{1}{k^2}\right)^{\frac{1}{2}} \|x\| \\ & = \frac{\pi}{\sqrt{6}} \|x\| \end{aligned}$$

 $\Rightarrow \|Tx\| = \|y\| \leq \frac{\pi}{\sqrt{6}} \|x\|. \Rightarrow \|T\| \leq \frac{\pi}{\sqrt{6}}.$ For the converse inequality we let $x = (\frac{1}{j}).$ Then $\|x\| = \frac{\pi}{\sqrt{6}}$ and $\|T\| \|x\| \geq \|Tx\| \geq \lim_{n \to \infty} \eta_n = \|x\|^2. \Rightarrow \|T\| \geq \|x\| = \frac{\pi}{\sqrt{6}}.$ Hence $\|T\| = \frac{\pi}{\sqrt{6}}.$

(b) $y = Tx \Leftrightarrow \eta_k = \xi_1 + \frac{1}{2}\xi_2 + \dots + \frac{1}{k}\xi_k = \eta_{k-1} + \frac{1}{k}\xi_k. \Leftrightarrow \xi_1 = \eta_1 \text{ and } \xi_k = k(\eta_k - \eta_{k-1})$ (k > 1). So T is invertible and $x = T^{-1}y$ iff $\xi_1 = \eta_1$ and $\xi_k = k(\eta_k - \eta_{k-1})$ (k > 1).

(c) If $y \in c$ has the form $y = (\eta_1, \ldots, \eta_{n-1}, L, L, L, \ldots)$ (we say that y stabilizes) then for $x = T^{-1}y$ we have $\xi_k = k(\eta_k - \eta_{k-1}) = 0$, k > n, ie $x = (\xi_1, \ldots, \xi_n, 0, 0, 0, \ldots) \in l^2$. As the subspace of all stabilizing sequences is dense in c we conclude that $\mathcal{R}(T)$ is dense in c. It follows that if $\mathcal{R}(T)$ is closed then $\mathcal{R}(T) = c$, which implies that $T^{-1}y \in l^2$ for all $y \in c$, which is not true, as the following counterexample shows: Let $\eta_k = 1 + \frac{1}{2\sqrt{2}} + \cdots + \frac{1}{k\sqrt{k}}$. Then $y = (\eta_k) \in c$ but for $x = T^{-1}y$ we have $\xi_k = \frac{1}{\sqrt{k}}$, so $x \notin l^2$. This contradiction proves that $\mathcal{R}(T)$ cannot be closed.

7. (a) Let the sequence of operators $T_n : l^2 \longrightarrow l^2$, $n = 1, 2, 3, \ldots$, be defined by $(T_n x)_j = (Tx)_j$, if $1 \le j \le n$, and $(T_n x)_j = 0$, if j > n ($x \in l^2$ is arbitrary). All the T_n 's are operators of finite range and hence compact. For an arbitrary $x \in l^2$ we have the estimate $||Tx - T_n x|| \le (|\alpha_{n+1}| + |\beta_n|)||x||$, which implies that $||T - T_n|| \to 0$ as $n \to \infty$. But a uniform limit of a sequence of compact operators is compact. Hence T is compact.

(b) Suppose that $\lambda \in \mathbb{C}$ is an eigenvalue of T and that $x \neq 0$ is an eigenvector belonging to λ . Then we have

$$0 = Tx - \lambda x = ((\alpha_1 - \lambda)\xi_1, (\alpha_2 - \lambda)\xi_2 + \beta_1\xi_1, \dots, (\alpha_n - \lambda)\xi_n + \beta_{n-1}\xi_{n-1}, \dots)$$

If λ coincides with none of the α_n 's it is easy to see that x = 0 is the only solution. So it is neccessary that $\lambda = \alpha_n$, for some n. In that case ξ_n can be chosen arbitrary, $0 = \xi_1 = \cdots = \xi_{n-1}$ and for $k = 1, 2, 3, \ldots$ we have $0 = (\alpha_{n+k} - \lambda)\xi_{n+k} + \beta_{n+k-1}\xi_{n+k-1}$. If we choose $\xi_n = 1$ we get

$$\xi_{n+k} = \frac{\beta_{n+k-1}}{\lambda - \alpha_{n+k}} \frac{\beta_{n+k-2}}{\lambda - \alpha_{n+k-1}} \cdots \frac{\beta_n}{\lambda - \alpha_{n+1}}$$

 $k = 1, 2, 3, \ldots$ Thus, for any $n, \lambda = \alpha_n$ is a simple eigenvalue.