UPPSALA UNIVERSITET
Matematiska institutionen
Bo Styf

Prov i matematik
Funktionalanalys
Kurs: F3B, F4Sy, 1MA283
2004-03-08

Skrivtid: 8-13.

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.

LYCKA TILL!

1. Let $c=\left\{x=\left(\xi_{j}\right) \in l^{\infty}: \lim \xi_{j}\right.$ exists (and is finite) $\}$. In Kreyszig's book it is shown that c is a closed subspace of l^{∞} and hence a Banach space. Define $f: c \rightarrow \mathbb{C}$ by $f(x)=\lim \xi_{j}, x=\left(\xi_{j}\right) \in c$. Show that f is a continuous linear functional on c and calculate it's norm $\|f\|$.
2. Use the linear functional f defined in the previous problem to prove that

$$
c_{0}=\left\{x=\left(\xi_{j}\right): \lim \xi_{j}=0\right\}
$$

(normed as a subspace of l^{∞}) is a Banach space.
3. Define a linear functional $g: C[-1,1] \rightarrow \mathbb{C}$ by

$$
g(x)=\int_{-1}^{1} x(t) \sin \pi t d t
$$

$\left(C[-1,1]\right.$ is equipped with it's usual norm $\left.\|x\|=\max _{-1 \leq t \leq 1}|x(t)|\right)$. Show that g is continuous with norm $\|g\|=4 / \pi$.
4. Let X, Y be two Banach spaces and let $0 \neq T \in B(X, Y)$. A vector $x \in X$ is said to be maximal for T if $x \neq 0$ and $\|T x\|=\|T\|\|x\|$. Show that it is impossible for the linear functional g defined in the previous problem to have a maximal vector.
5. Let $\left(\lambda_{n}\right)$ be a sequence of non-zero scalars and let

$$
\mathcal{D}=\left\{x=\left(\xi_{j}\right) \in l^{2}: \sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}\left|\xi_{j}\right|^{2}<\infty\right\}
$$

Show that \mathcal{D} is a dense subspace of l^{2}. Also show that the linear operator $T: \mathcal{D} \rightarrow l^{2}$ defined by $T x=\left(\lambda_{j} \xi_{j}\right), x=\left(\xi_{j}\right) \in \mathcal{D}=\mathcal{D}(T)$ is invertible with range $\mathcal{R}(T)$ dense in l^{2}.
6. Let g be the linear functional defined in problem 3 and let $z(t)=\sin \pi t$. Find the distance from z to the nullspace \mathcal{N}_{g} of g, i.e. calculate

$$
D\left(z, \mathcal{N}_{g}\right)=\inf \left\{\|z-y\|: y \in \mathcal{N}_{g}\right\}
$$

7. Let T be the operator defined in problem 5. Show that T and T^{-1} are closed (but not neccessarily continuous) linear operators. Also calculate the norms $\|T\|$ and $\left\|T^{-1}\right\|$.

You 6-pointers: Don't forget to contact me for further examination!

GOOD LUCK!

