UPPSALA UNIVERSITET

Matematiska institutionen Bo Styf Prov i matematik Funktionalanalys Kurs: 1MA283 2004-04-02

Skrivtid: 09.15-12.15

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.

8. Let T be the linear operator on $L^{2}[-1,1]$ given by

$$y = Tx$$
 if and only if $y(t) = \int_{-1}^{1} \left(e^{t-s} + e^{s-t}\right) x(s) ds$

- (a) Show that T is self-adjoint and compact. Find all eigenvalues and eigenvectors of T.
- (b) Find the spectral decomposition of T, i.e. find orthogonal projections P_k and scalars λ_k such that $I = \sum_k P_k$, $T = \sum_k \lambda_k P_k$ and $P_j P_k = 0$ $(j \neq k)$.
- (c) Find the spectral decomposition of $(\lambda I T)^{-1}$ when λ is not an eigenvalue of T.

9. Let X be a separable Banach space. Prove, for example by using the diagonal method (see p. 408), the so-called Banach-Alaoglu theorem: Every bounded subset M of X' is relatively weak*-compact, i.e. every sequence in M contains a subsequence which is weak*-convergent to an element of X'.

10. A vector $x_0 \in X$, where X is a normed space, is said to be *g*-orthogonal (a temporary concept invented for this problem!) to a subspace Y if

 $||x_0|| \le ||x_0 - y|| \quad \text{for all} \quad y \in Y$

- (a) Prove that x_0 ($x_0 \neq 0$) is g-orthogonal to Y if and only if there exists $f \in X'$ such that ||f|| = 1, $Y \subset \mathcal{N}_f$ and $f(x_0) = ||x_0||$.
- (b) Prove that if X is an inner product space then x_0 is g-orthogonal to Y if and only if x_0 is orthogonal to Y.
- (c) Let $X = l^1$ and $Y = \mathcal{N}_g$, where $g \in l^\infty$ is given by g = (1, 1, 1, ...). Find all unit vectors which are g-orthogonal to Y.