UPPSALA UNIVERSITET
Prov i matematik
Matematiska institutionen
Bo Styf

Skrivtid: 09.15-12.15

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.
8. Let T be the linear operator on $L^{2}[-1,1]$ given by

$$
y=T x \quad \text { if and only if } \quad y(t)=\int_{-1}^{1}\left(e^{t-s}+e^{s-t}\right) x(s) d s
$$

(a) Show that T is self-adjoint and compact. Find all eigenvalues and eigenvectors of T.
(b) Find the spectral decomposition of T, i.e. find orthogonal projections P_{k} and scalars λ_{k} such that $I=\sum_{k} P_{k}, T=\sum_{k} \lambda_{k} P_{k}$ and $P_{j} P_{k}=0(j \neq k)$.
(c) Find the spectral decomposition of $(\lambda I-T)^{-1}$ when λ is not an eigenvalue of T.
9. Let X be a separable Banach space. Prove, for example by using the diagonal method (see p. 408), the so-called Banach-Alaoglu theorem: Every bounded subset M of X^{\prime} is relatively weak*-compact, i.e. every sequence in M contains a subsequence which is weak*-convergent to an element of X^{\prime}.
10. A vector $x_{0} \in X$, where X is a normed space, is said to be g-orthogonal (a temporary concept invented for this problem!) to a subspace Y if

$$
\left\|x_{0}\right\| \leq\left\|x_{0}-y\right\| \quad \text { for all } \quad y \in Y
$$

(a) Prove that $x_{0}\left(x_{0} \neq 0\right)$ is g-orthogonal to Y if and only if there exists $f \in X^{\prime}$ such that $\|f\|=1, Y \subset \mathcal{N}_{f}$ and $f\left(x_{0}\right)=\left\|x_{0}\right\|$.
(b) Prove that if X is an inner product space then x_{0} is g-orthogonal to Y if and only if x_{0} is orthogonal to Y.
(c) Let $X=l^{1}$ and $Y=\mathcal{N}_{g}$, where $g \in l^{\infty}$ is given by $g=(1,1,1, \ldots)$. Find all unit vectors which are g-orthogonal to Y.

