UPPSALA UNIVERSITET

Matematiska institutionen
M. Klimek

Prov i matematik
Funktionalanalys
Kurs: F3B, F4Sy, 1MA283
2001-03-02

SOLUTIONS:

1. If $x=(1 / n)_{n \geq 1}$ and $x_{N}=(1,1 / 2, \ldots, 1 / N, 0,0, \ldots)$, then $x \in l^{2} \backslash c_{00}, x_{N} \in c_{00}$ for all N and $x_{N} \longrightarrow x$ as $N \rightarrow \infty$. Thus c_{00} is not a closed subset of l^{2} and hence it is not complete.
2. Linearity of T follows from the linearity of real inner products with respect to the second variable. By the Cauchy-Schwarz inequality $\left\|f_{z}\right\| \leq\|z\|$. But $\left|f_{z}(z /\|z\|)\right|=\|z\|$. Hence $\left\|f_{z}\right\|=\|z\|$. Therefore T is an isometry. If X was complex, T would not be linear. For example we would have $T(i x)=-i T(x)$.
3. $y \perp \mathcal{R}(A) \Leftrightarrow\langle A x, y\rangle=0$ for all $x \in H_{1}$. The last condition is equivalent to saying that $\left\langle x, A^{*} y\right\rangle=0$ for all x. This is the same as to say that $y \in \mathcal{N}\left(A^{*}\right)$. The second conclusion follows from the first one because for any subspace $S \subset H_{2}$, we have $\bar{S}=S^{\perp \perp}$.
4. We know that, the coefficients $\langle x, u\rangle$ and $\langle x, v\rangle$ should satisfy the equations

$$
\langle x, u\rangle=\frac{\left|\begin{array}{cc}
\langle x, u\rangle & \langle v, u\rangle \\
\langle x, v\rangle & \langle v, v\rangle
\end{array}\right|}{\left|\begin{array}{cc}
\langle u, u\rangle & \langle v, u\rangle \\
\langle u, v\rangle & \langle v, v\rangle
\end{array}\right|} \text { and }\langle x, v\rangle=\frac{\left|\begin{array}{cc}
\langle u, u\rangle & \langle x, u\rangle \\
\langle u, v\rangle & \langle x, v\rangle
\end{array}\right|}{\left|\begin{array}{ll}
\langle u, u\rangle & \langle v, u\rangle \\
\langle u, v\rangle & \langle v, v\rangle
\end{array}\right|}
$$

for all x. In particular, by substituting x equal to u (resp. v), we conclude that $\|u\|=\|v\|=1$. Since $u-P u$ must be orthogonal to v, we have

$$
\langle u-\langle u, u\rangle u+\langle u, v\rangle v, v\rangle=\langle u, v\rangle-\langle u, v\rangle-\langle u, v\rangle=0
$$

and so $u \perp v$.
5. Suppose that S is not bounded. Then there exists a sequence $\left(x_{n}\right) \subset S$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\infty$. Define $\delta_{n} \in X^{\prime \prime}$ by the formula $\delta_{n}(f)=f\left(x_{n}\right)$. Then $\left\|\delta_{n}\right\|=\left\|x_{n}\right\|$ and for each $f \in X^{\prime}$ the sequence $\left(\delta_{n}(f)\right)$ is bounded. This contradicts the Banach-Steinhaus Theorem.
6. The identity mapping $I:\left(X,\| \|_{1}\right) \longrightarrow\left(X,\| \|_{2}\right)$ is bounded (with the operator norm $\left.\|I\|_{1,2} \leq M\right)$. By the Open Mapping Theorem its inverse (which is also I) is continuous as a mapping $I:\left(X,\| \|_{2}\right) \longrightarrow\left(X,\| \|_{1}\right)$. It is enough to take $m=1 /\|I\|_{2,1}$.
7. Let $T_{N}(x)=\sum_{n=1}^{N} \frac{\left\langle x, e_{n+1}\right\rangle}{n+1} e_{n}$. Then by Bessel's inequality $\left\|T x-T_{N} x\right\|^{2} \leq\|x\|^{2} /(N+1)^{2}$ and hence $\left\|T-T_{N}\right\| \leq 1 /(N+1)$. Thus T is compact as a limit of a sequence of bounded operators with finite dimensional range. Furthermore

$$
\langle T x, y\rangle=\sum_{n=1}^{\infty} \frac{\left\langle x, e_{n+1}\right\rangle}{n+1}\left\langle e_{n}, y\right\rangle=\left\langle x, \sum_{n=1}^{\infty} \frac{\left\langle y, e_{n}\right\rangle}{n+1} e_{n+1}\right\rangle .
$$

Hence

$$
T^{*} y=\sum_{n=1}^{\infty} \frac{\left\langle y, e_{n}\right\rangle}{n+1} e_{n+1}
$$

8. Note that $(K x)(t)=c t$, where the constant c depends on x. Hence $\mathcal{R}(K)=\operatorname{span}\{t\}$. Consequently. if K has a non-zero eigenvalue λ it must correspond to the eigenvector $x(t)=t$. Thus $(K x)(t)=t / 3=\lambda x=\lambda t$ and so $\lambda=1 / 3$.
9. By comparing the Fourier coefficients of $L x$ and λx we conclude that λ is an eigenvalue only with an eigenvector of the form $x_{\lambda}=\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right)$ (or its multiple) provided that $x_{\lambda} \in l^{2}$. The latter is true only if $|\lambda|<1$. Hence $\sigma_{p}(L)=\{\lambda \in \mathbf{C}:|\lambda|<1\}$. Since $\sigma(L)$ is closed and contained in the disc $|\lambda| \leq\|L\|=1$, we must have $\sigma(L)=\{\lambda \in \mathbf{C}:|\lambda| \leq 1\}$.
10. Let $p_{i} \in\left(l^{\infty}\right)^{\prime}$ be given by the formula $p_{i}(x)=\xi_{i}$, where $x=\left(\xi_{i}\right) \in l^{\infty}$. Then $p_{i} \circ A \in$ $\left(c_{0}\right)^{\prime}=l^{1}$. Therefore p_{i} corresponds to a vector $\left(\alpha_{i j}\right)_{j \geq 1} \in l^{1}$ and $\left\|p_{i}\right\|=\sum_{j=1}^{\infty}\left|\alpha_{i j}\right|$. Hence, in calculation of the norm " \leq " is obvious. The equality is approximated on elements of c_{0} with only finitely non-zero entries of the form $\left|\alpha_{i j}\right| / \alpha_{i j}$
