Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 2001-03-02

SOLUTIONS:

1. If $x = (1/n)_{n \ge 1}$ and $x_N = (1, 1/2, \ldots, 1/N, 0, 0, \ldots)$, then $x \in l^2 \setminus c_{00}$, $x_N \in c_{00}$ for all N and $x_N \longrightarrow x$ as $N \to \infty$. Thus c_{00} is not a closed subset of l^2 and hence it is not complete.

2. Linearity of T follows from the linearity of real inner products with respect to the second variable. By the Cauchy-Schwarz inequality $||f_z|| \leq ||z||$. But $|f_z(z/||z||)| = ||z||$. Hence $||f_z|| = ||z||$. Therefore T is an isometry. If X was complex, T would not be linear. For example we would have T(ix) = -iT(x).

3. $y \perp \mathcal{R}(A) \Leftrightarrow \langle Ax, y \rangle = 0$ for all $x \in H_1$. The last condition is equivalent to saying that $\langle x, A^*y \rangle = 0$ for all x. This is the same as to say that $y \in \mathcal{N}(A^*)$. The second conclusion follows from the first one because for any subspace $S \subset H_2$, we have $\overline{S} = S^{\perp \perp}$.

4. We know that, the coefficients $\langle x, u \rangle$ and $\langle x, v \rangle$ should satisfy the equations

$$\langle x, u \rangle = \frac{\begin{vmatrix} \langle x, u \rangle & \langle v, u \rangle \\ \langle x, v \rangle & \langle v, v \rangle \end{vmatrix}}{\begin{vmatrix} \langle u, u \rangle & \langle v, u \rangle \\ \langle u, v \rangle & \langle v, v \rangle \end{vmatrix}} \text{ and } \langle x, v \rangle = \frac{\begin{vmatrix} \langle u, u \rangle & \langle x, u \rangle \\ \langle u, v \rangle & \langle x, v \rangle \end{vmatrix}}{\begin{vmatrix} \langle u, u \rangle & \langle v, u \rangle \\ \langle u, v \rangle & \langle v, v \rangle \end{vmatrix}}$$

for all x. In particular, by substituting x equal to u (resp. v), we conclude that ||u|| = ||v|| = 1. Since u - Pu must be orthogonal to v, we have

$$\langle u - \langle u, u \rangle u + \langle u, v \rangle v, v \rangle = \langle u, v \rangle - \langle u, v \rangle - \langle u, v \rangle = 0$$

and so $u \perp v$.

5. Suppose that S is not bounded. Then there exists a sequence $(x_n) \subset S$ such that $\lim_{n\to\infty} ||x_n|| = \infty$. Define $\delta_n \in X''$ by the formula $\delta_n(f) = f(x_n)$. Then $||\delta_n|| = ||x_n||$ and for each $f \in X'$ the sequence $(\delta_n(f))$ is bounded. This contradicts the Banach-Steinhaus Theorem.

6. The identity mapping $I : (X, \| \|_1) \longrightarrow (X, \| \|_2)$ is bounded (with the operator norm $\|I\|_{1,2} \le M$). By the Open Mapping Theorem its inverse (which is also I) is continuous as a mapping $I : (X, \| \|_2) \longrightarrow (X, \| \|_1)$. It is enough to take $m = 1/\|I\|_{2,1}$.

7. Let $T_N(x) = \sum_{n=1}^N \frac{\langle x, e_{n+1} \rangle}{n+1} e_n$. Then by Bessel's inequality $||Tx - T_N x||^2 \le ||x||^2/(N+1)^2$ and hence $||T - T_N|| \le 1/(N+1)$. Thus T is compact as a limit of a sequence of bounded operators with finite dimensional range. Furthermore

$$\langle Tx, y \rangle = \sum_{n=1}^{\infty} \frac{\langle x, e_{n+1} \rangle}{n+1} \langle e_n, y \rangle = \left\langle x, \sum_{n=1}^{\infty} \frac{\langle y, e_n \rangle}{n+1} e_{n+1} \right\rangle.$$

Hence

$$T^*y = \sum_{n=1}^{\infty} \frac{\langle y, e_n \rangle}{n+1} e_{n+1}$$

8. Note that (Kx)(t) = ct, where the constant c depends on x. Hence $\mathcal{R}(K) = \operatorname{span}\{t\}$. Consequently. if K has a non-zero eigenvalue λ it must correspond to the eigenvector x(t) = t. Thus $(Kx)(t) = t/3 = \lambda x = \lambda t$ and so $\lambda = 1/3$.

9. By comparing the Fourier coefficients of Lx and λx we conclude that λ is an eigenvalue only with an eigenvector of the form $x_{\lambda} = (1, \lambda, \lambda^2, \lambda^3, ...)$ (or its multiple) provided that $x_{\lambda} \in l^2$. The latter is true only if $|\lambda| < 1$. Hence $\sigma_p(L) = \{\lambda \in \mathbf{C} : |\lambda| < 1\}$. Since $\sigma(L)$ is closed and contained in the disc $|\lambda| \leq ||L|| = 1$, we must have $\sigma(L) = \{\lambda \in \mathbf{C} : |\lambda| \leq 1\}$.

10. Let $p_i \in (l^{\infty})'$ be given by the formula $p_i(x) = \xi_i$, where $x = (\xi_i) \in l^{\infty}$. Then $p_i \circ A \in (c_0)' = l^1$. Therefore p_i corresponds to a vector $(\alpha_{ij})_{j\geq 1} \in l^1$ and $||p_i|| = \sum_{j=1}^{\infty} |\alpha_{ij}|$. Hence, in calculation of the norm " \leq " is obvious. The equality is approximated on elements of c_0 with only finitely non-zero entries of the form $|\alpha_{ij}|/\alpha_{ij}$