UPPSALA UNIVERSITET
Matematiska institutionen
M. Klimek

Prov i matematik
Funktionalanalys
Kurs: F3B, F4Sy, 1MA283
1998-03-09

SOLUTIONS:

1. The norm axioms are easy to verify. In particular, if $\|p\|=0$, then p has five roots (at $0,1,2,3,4$) and hence is identically zero. To check the second statement, it suffices to show that the parallelogram identity is not satisfied. Consider, for instance, the polynomials $p_{1}(z)=1$ and $p_{2}(z)=z$. Then

$$
\left\|p_{1}+p_{2}\right\|^{2}+\left\|p_{1}-p_{2}\right\|^{2}=225+49 \neq 2(25+100)=2\left(\left\|p_{1}\right\|^{2}+\left\|p_{2}\right\|^{2}\right) .
$$

The space is complete, because it is finite dimensional.
2. Let

$$
\alpha=\inf _{\|x\|=1}\|S x\|>0
$$

Then for $x \neq 0$

$$
\|S(x)\|=\|x\|\left\|S\left(\frac{x}{\|x\|}\right)\right\| \geq \alpha\|x\| .
$$

Hence $\|S(x)\| \geq \alpha\|x\|$ for all x. Consequently, if $y=S(x)$,

$$
\left\|S^{-1}(y)\right\|=\|x\| \leq \frac{1}{\alpha}\|S(x)\|=\alpha\|y\| .
$$

3. Since $x_{n} \xrightarrow{w} x$, we have $f\left(T\left(x_{n}\right)\right) \longrightarrow f(T(x))$ for any $f \in Y^{\prime}$. This means that $T\left(x_{n}\right) \xrightarrow{w} T(x)$. But since $\left(T\left(x_{n}\right)\right)$ is also strongly convergent, the strong and weak limits must coincide.
4. Since Y is closed, $\delta=\operatorname{dist}(a, Y)>0$. Let $Z=Y+\operatorname{Span}(a)$. Define $g: Z \longrightarrow \mathbf{K}$ by the formula $g(y+\lambda a)=\lambda$ for $y \in Y$ and $\lambda \in \mathbf{K}$. Clearly g is linear and $g(a)=1$. Moreover g is bounded because

$$
|g(y+\lambda a)|=|\lambda| \leq \frac{|\lambda|}{\delta}\left\|a-\left(\frac{-y}{\lambda}\right)\right\|=\frac{1}{\delta}\|y+\lambda a\|, \quad \lambda \neq 0 .
$$

So the required statement follows directly from the Hahn-Banach theorem.
5. If $x=\left(\xi_{k}\right) \in l^{2}$, then - in view of the Cauchy-Schwarz inequality - we have:

$$
\|S(x)\|^{2}=\sum_{j=1}^{\infty}\left|\sum_{k=1}^{\infty} \alpha_{j k} \xi_{k}\right|^{2} \leq \sum_{j=1}^{\infty}\left(\sum_{k=1}^{\infty}\left|\alpha_{j k}\right|^{2}\right)\left(\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{2}\right)=A\|x\|^{2} .
$$

6. If $x \in Y$, then $P_{Y}(x)=x$ and hence $\left\|P_{Y}(x)\right\|=\|x\|$. Conversely, suppose that $\left\|P_{Y}(x)\right\|=\|x\|$. By the Pythgorean theorem

$$
\|x\|^{2}=\left\|x-P_{Y}(x)\right\|^{2}+\left\|P_{Y}(x)\right\|^{2},
$$

and so $P_{Y}(x)=x$.
7. If $\|T\|=|\lambda|$ for some eigenvalue λ, then take an eigenvector x corresponding to λ. We have

$$
|\langle T x, x\rangle|=|\langle\lambda x, x\rangle|=|\lambda|\|x\|^{2} .
$$

Therefore

$$
\left|\left\langle T\left(\frac{x}{\|x\|}\right), \frac{x}{\|x\|}\right\rangle\right|=|\lambda|=\|T\| .
$$

Now, let us assume that $|\langle T x, x\rangle|=\|T\|$ for some vector $x \in H$ such that $\|x\|=1$. Then

$$
\|T\|=|\langle T x, x\rangle| \leq\|T x\|\|x\| \leq\|T\|,
$$

by the Schwarz inequality and the definition of the operator norm. So $|\langle T x, x\rangle|=$ $\|T x\|\|x\|$, which implies that $T x=\lambda x$ for some scalar λ.
8. It follows from the definition of K, that $\|K x\| \leq 2 \pi\|x\|$ and thus K is a bounded operator. Moreover $(K x)(s)=a \sin (s)+b$ (for some numbers a, b) and hence $\mathcal{R}(K) \subset$ $\operatorname{Span}(\sin , 1)$. Therefore K is compact. Since $(K(a \sin t+b))(s)=(2 a+b \pi) \sin s$, the range of $K K$ is one dimensional and consists of multiples if the sine function. In particular, this implies that K can have only one non-zero eigenvalue and that - if this is the case - the sine function must be an eigenvector. Indeed, $(K(\sin t))(s)=2 \sin s$. Since $K(\cos)$ is a constant function, the range of K is equal to the span of sin and the constant function 1.
9. If $\lambda \notin \sigma(T)$, then $(T-\lambda I)^{-1}$ is well-defined on a dense subset of H and is bounded. But then, in view of Problem 2, $\lambda \notin \sigma_{a}(T)$. Hence $\sigma_{a}(T) \subset \sigma(T)$. It is obvious that $\sigma_{p}(T) \subset \sigma_{a}(T)$. If $\lambda \in \sigma_{c}(T)$, then $(T-\lambda I)^{-1}$ is well-defined on a dense subset of H but is not bounded. In view of Problem $2, \lambda \in \sigma_{a}(T)$.
10. Let $\left(a_{j}\right)_{j \geq 1}$ be a sequence of points in X which, as a set, is dense in the closed unit ball in X. Let $\left(x_{i}\right)_{i \geq 1}$ be a bounded sequence in the dual space X^{\prime}. It suffices to show that a subsequence of $\left(x_{i}\right)$ is convergent at all points of the sequence $\left(a_{j}\right)$. Since the sequence of numbers $\left(x_{i}\left(a_{j}\right)\right)_{i \geq 1}$ is bounded, it has a convergent subsequence for any fixed value of j. As a consequence, the required property follows from the standard diagonal selection process.

