UPPSALA UNIVERSITET

Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 1999-03-05

SOLUTIONS:

1. The space \mathcal{P} can be identified with the following subspace of l^2 :

$$\mathcal{P} = \{x = (\xi_n)_{n \ge 1} : \xi_n \ne 0 \text{ for only finitely many } n\}.$$

The norm is therefore induced by the inner product in l^2 . Since \mathcal{P} is not a closed subspace of l^2 , it is not complete.

2. Let $a \in X \setminus \mathcal{N}(g) = X \setminus \mathcal{N}(f)$. Note that if $x \in X$, then

$$x - \frac{f(x)}{f(a)}a \in \mathcal{N}(f) = \mathcal{N}(g).$$

Hence

$$g(x) = g\left(\frac{f(x)}{f(a)}a + \left(x - \frac{f(x)}{f(a)}a\right)\right) = g\left(\frac{f(x)}{f(a)}a\right) = \frac{g(a)}{f(a)}f(x).$$

3. The series is convergent because

$$\left\| \sum_{n=m}^{m+k} \lambda_n \langle x, u_n \rangle v_n \right\|^2 = \sum_{n=m}^{m+k} |\lambda_n|^2 |\langle x, u_n \rangle|^2 \le M^2 \sum_{n=m}^{m+k} |\langle x, u_n \rangle|^2 \longrightarrow 0,$$

as $m, k \to \infty$, where $M = \sup_{n \ge 1} |\lambda_n|$. Similarly

$$||Tx||^2 \le M^2 \sum_{n=m}^{\infty} |\langle x, u_n \rangle|^2 = M^2 ||x||^2.$$

Therefore

$$||T|| \le M = \sup_{n \ge 1} ||Tu_n|| \le ||T||,$$

because $||Tu_n|| = |\lambda_n|$.

4. We have that

$$\langle x, T^*x \rangle = \langle Tx, x \rangle = \sum_n \lambda_n \langle x, u_n \rangle \langle v_n, x \rangle = \left\langle x, \sum_n \bar{\lambda}_n \langle x, v_n \rangle u_n \right\rangle.$$

Therefore

$$T^*x = \sum_{n} \bar{\lambda}_n \langle x, v_n \rangle u_n, \qquad x \in H.$$

Consequently

$$T^*Tx = \sum_{n} |\lambda_n|^2 \langle x, u_n \rangle u_n$$

and

$$TT^*x = \sum_{n} |\lambda_n|^2 \langle x, v_n \rangle v_n.$$

This implies the required property.

- **5.** If $a \not\in \overline{\operatorname{span}(M)}$, define $Z = \overline{\operatorname{span}\{M, a\}}$ and $g: Z \longrightarrow \mathbf{K}$ as $g(\lambda a + v) = \lambda$ for $\lambda \in \mathbf{K}$ and $v \in \overline{\operatorname{span}(M)}$. By the Hahn-Banach theorem there exists $f \in X'$ such that f = g on Z. In particular, f(a) = g(a) = 1 and $\mathcal{N}(f) \supset \overline{\operatorname{span}(M)}$. The converse follows from the definition of the closure of a set and continuity.
- **6.** It suffices to check that PP = P and that P is self-adjoint.
- 7. In view of the Open Mapping Theorem, T has a continuous inverse. Hence $I = T^{-1}T$ is a compact operator. Consequently, the closed unit ball of X is compact and so X has to be finite dimensional.
- **8.** Let $T_{\lambda} = T \lambda I$. By comparing $(T_{\lambda}x)(t)$ with $(T_{\lambda}x)(1-t)$ we see that

$$(1 - \lambda^2)x(t) = \lambda y(t) + y(1 - t),$$

where $y = T_{\lambda}x$. Hence, if $\lambda^2 \neq 1$, then

$$(R_{\lambda}y)(t) = \frac{1}{1-\lambda^2}(\lambda y(t) + y(1-t)), \qquad y \in X, t \in [0,1].$$

The eigenspace corresponding to $\lambda = 1$ consists of all $x \in X$ such that x(t) = x(1-t) for each $t \in [0,1]$. The eigenspace corresponding to $\lambda = -1$ consists of all $x \in X$ such that x(t) = -x(1-t) for each $t \in [0,1]$. Consequently $\sigma(T) = \{1,-1\}$.

9. The inequality $||P_{E_n}|| \le 1$ implies (a). Property (b) is true because $P_{E_n}P_{E_m} = P_{E_n}$ if m > n. To get (c) note that since $x_n \in E_n$ we have

$$\langle x_{n+k}, x_n \rangle = \langle P_{E_n}(x_{n+k}), x_n \rangle = ||x_n||^2.$$

Let $c = \lim_{n \to \infty} ||x_n||$. Then

$$||x_{n+k} - x_n||^2 = ||x_{n+k}||^2 - ||x_n||^2 \longrightarrow c - c = 0$$

as $n, k \to \infty$. Finally, if $y = \lim x_n$, then by (b) and continuity of projections, $y = \lim_{k \to \infty} P_{E_n}(x_{n+k}) = P_{E_n}(y)$.

10. Note that part of the second sentence in Problem 10 was missing in the exam paper. Nevertheless, marks were awarded for attempts at solving of the incomplete problem. Here is a solution of the complete formulation of the problem (which was meant to check if the graduate students taking the course have read the proof of the Banach-Steinhaus theorem). Let $[a_1,b_1] \subset]a,b[$, where $a_1 < b_1$. Define $F_m = \{t \in [a_1,b_1]: \sup_{n\geq 1} |f_n(t)| \leq m\}$ for $m=1,2,\ldots$ Then F_m is closed and $[a_1,b_1]$ is the union of the sets F_m . By Baire's theorem at least one of the sets F_m has non-empty interior. The latter must contain an interval $[\alpha,\beta]$ as required.