Uppsala Universitet
Matematiska Institutionen
Andreas Strömbergsson

Prov i matematik
Funktionalanalys
Kurs: F3B, F4Sy, NVP
2005-03-08

Skrivtid: 9-14
Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok Introductory Functional Analysis with Applications och Strömbergssons häfte Spectral theorem for compact, self-adjoint operators.

1. Let X and Y be normed spaces and fix some elements $f_{1}, f_{2} \in X^{\prime}$ and $y_{1}, y_{2} \in Y$. For each $x \in X$ we define

$$
T(x)=f_{1}(x) \cdot y_{1}+f_{2}(x) \cdot y_{2}
$$

Prove that T is a bounded linear operator from X to Y.
2. Let H_{1} and H_{2} be Hilbert spaces and let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Prove that

$$
\begin{equation*}
\left[T\left(H_{1}\right)\right]^{\perp}=\mathcal{N}\left(T^{*}\right) \tag{6p}
\end{equation*}
$$

3. (a). Prove that the set $M=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$ is not total in ℓ^{2} if

$$
\begin{aligned}
& y_{1}=(1,1,0,0,0, \ldots) \\
& y_{2}=(1,1,1,0,0,0, \ldots) \\
& y_{3}=(1,1,1,1,0,0,0, \ldots) \\
& y_{4}=(1,1,1,1,1,0,0,0, \ldots)
\end{aligned}
$$

(b). Prove that the set $M=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is total in ℓ^{2} if

$$
\begin{aligned}
& x_{1}=(1,-1,0,0,0, \ldots) \\
& x_{2}=(1,1,-1,0,0,0, \ldots) \\
& x_{3}=(1,1,1,-1,0,0,0, \ldots) \\
& x_{4}=(1,1,1,1,-1,0,0,0, \ldots)
\end{aligned}
$$

(Hint: One may eg. use Theorem 3.6-2.)
4. Define $T: \ell^{1} \rightarrow \ell^{\infty}$ by

$$
T\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(\sum_{j=1}^{\infty} \xi_{j}, \sum_{j=2}^{\infty} \xi_{j}, \sum_{j=3}^{\infty} \xi_{j}, \sum_{j=4}^{\infty} \xi_{j}, \ldots\right)
$$

Prove that T is a bounded linear operator $T: \ell^{1} \rightarrow \ell^{\infty}$ and compute the norm $\|T\|$.
5. Let $\alpha_{n, m}$ be complex numbers with $\left|\alpha_{n, m}\right| \leq 1$ for all $n, m \geq 1$, and assume that the limit

$$
\alpha_{m}=\lim _{n \rightarrow \infty} \alpha_{n, m}
$$

exists for all $m \geq 1$. For each $n \geq 1$ we let $T_{n}: \ell^{1} \rightarrow \ell^{1}$ be the bounded linear operator given by

$$
T_{n}\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(\alpha_{n, 1} \xi_{1}, \alpha_{n, 2} \xi_{2}, \alpha_{n, 3} \xi_{3}, \ldots\right) .
$$

Prove that the sequence $\left(T_{n}\right)$ is strongly operator convergent. Also give an example to show that $\left(T_{n}\right)$ is not necessarily uniformly operator convergent.
6. Let X be the normed space given by

$$
\begin{aligned}
& X=\left\{\left(\xi_{n}\right) \mid \xi_{n} \in \mathbb{C}, \text { and } \exists N \in \mathbb{Z}^{+}: \forall n \geq N: \xi_{n}=0\right\}, \\
& \left\|\left(\xi_{n}\right)\right\|:=\sqrt{\sum_{n=1}^{\infty}\left|\xi_{n}\right|^{2}}
\end{aligned}
$$

Prove that X is meager in itself.
7. Define $T: \ell^{\infty} \rightarrow \ell^{\infty}$ by

$$
T\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(0, \xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)
$$

Prove that $\frac{1}{2} \in \sigma_{r}(T)$, i.e. prove that $\lambda=\frac{1}{2}$ belongs to the residual spectrum of T.

GOOD LUCK!

Solutions

1. T is linear since for all $x_{1}, x_{2} \in X$ and all $\alpha_{1}, \alpha_{2} \in K$ we have

$$
\begin{aligned}
& T\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=f_{1}\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right) \cdot y_{1}+f_{2}\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right) \cdot y_{2} \\
& =\left(\alpha_{1} f_{1}\left(x_{1}\right)+\alpha_{2} f_{1}\left(x_{2}\right)\right) \cdot y_{1}+\left(\alpha_{1} f_{2}\left(x_{1}\right)+\alpha_{2} f_{2}\left(x_{2}\right)\right) \cdot y_{2} \\
& =\alpha_{1} \cdot\left(f_{1}\left(x_{1}\right) \cdot y_{1}+f_{2}\left(x_{1}\right) \cdot y_{2}\right)+\alpha_{2} \cdot\left(f_{1}\left(x_{2}\right) \cdot y_{1}+f_{2}\left(x_{2}\right) \cdot y_{2}\right) \\
& =\alpha_{1} T\left(x_{1}\right)+\alpha_{2} T\left(x_{2}\right) .
\end{aligned}
$$

T is bounded since for all $x \in X$ we have

$$
\begin{aligned}
\|T(x)\| & =\left\|f_{1}(x) \cdot y_{1}+f_{2}(x) \cdot y_{2}\right\| \leq\left\|f_{1}(x) \cdot y_{1}\right\|+\left\|f_{2}(x) \cdot y_{2}\right\| \\
& =\left|f_{1}(x)\right| \cdot\left\|y_{1}\right\|+\left|f_{2}(x)\right| \cdot\left\|y_{2}\right\| \\
& \leq\left\|f_{1}\right\| \cdot\|x\| \cdot\left\|y_{1}\right\|+\left\|f_{2}\right\| \cdot\|x\| \cdot\left\|y_{2}\right\| \\
& =\left(\left\|f_{1}\right\| \cdot\left\|y_{1}\right\|+\left\|f_{2}\right\| \cdot\left\|y_{2}\right\|\right) \cdot\|x\| .
\end{aligned}
$$

2.

$$
\begin{aligned}
{\left[T\left(H_{1}\right)\right]^{\perp} } & ={ }^{1}\left\{y \in H_{2} \mid \forall z \in T\left(H_{1}\right):\langle y, z\rangle=0\right\} \\
& ={ }^{2}\left\{y \in H_{2} \mid \forall x \in H_{1}:\langle y, T x\rangle=0\right\} \\
& ={ }^{3}\left\{y \in H_{2} \mid \forall x \in H_{1}:\left\langle T^{*} y, x\right\rangle=0\right\} \\
& ={ }^{4}\left\{y \in H_{2} \mid T^{*} y=0\right\} \\
& ={ }^{5} \mathcal{N}\left(T^{*}\right) .
\end{aligned}
$$

1. By definition of orthogonal complement.
2. By definition of $T\left(H_{1}\right)$.
3. By definition of T^{*}.
4. By Lemma 3.8-2 and the trivial fact that $\langle 0, x\rangle=0$ for all $x \in H_{1}$.
5. By definition of $\mathcal{N}\left(T^{*}\right)$
6. Note that $y_{n} \perp(1,-1,0,0,0, \ldots)$ for all $n \geq 1$. Hence by Theorem 3.6-2(a), $M=\left\{y_{1}, y_{2}, \ldots\right\}$ is not total in ℓ^{2}.
(b). Let $x=\left(\xi_{n}\right) \in \ell^{2}$ be an arbitrary vector which is orthogonal to $M=\left\{x_{1}, x_{2}, \ldots\right\}$. Then

$$
\begin{aligned}
& \left(\xi_{n}\right) \perp x_{1} \Longrightarrow \xi_{1}-\xi_{2}=0 \\
& \left(\xi_{n}\right) \perp x_{2} \Longrightarrow \xi_{1}+\xi_{2}-\xi_{3}=0 \\
& \left(\xi_{n}\right) \perp x_{3} \Longrightarrow \xi_{1}+\xi_{2}+\xi_{3}-\xi_{4}=0, \\
& \ldots \\
& \left(\xi_{n}\right) \perp x_{j} \Longrightarrow\left(\sum_{n=1}^{j} \xi_{n}\right)-\xi_{j+1}=0,
\end{aligned}
$$

etc. It follows that

$$
\begin{aligned}
& \xi_{2}=\xi_{1} \\
& \xi_{3}=\xi_{1}+\xi_{2}=2 \xi_{1} \\
& \xi_{4}=\xi_{1}+\xi_{2}+\xi_{3}=4 \xi_{1} \\
& \xi_{5}=\xi_{1}+\xi_{2}+\xi_{3}+\xi_{4}=8 \xi_{1}
\end{aligned}
$$

We get by induction: $\xi_{n}=2^{n-2} \xi_{1}$ for $n \geq 2$. Hence if $\xi_{1} \neq 0$ then

$$
\sum_{n=1}^{\infty}\left|\xi_{n}\right|^{2}=\left|\xi_{1}\right|\left(1+\sum_{n=2}^{\infty} 2^{2(n-2)}\right)=\infty
$$

This is impossible since $\left(\xi_{n}\right) \in \ell^{2}$. Hence $\xi_{1}=0$, and thus $\xi_{n}=$ $2^{n-2} \xi_{1}=0$ for all $n \geq 2$. Hence there does not exist any nonzero vector $x \in \ell^{2}$ which is orthogonal to every element in M. By Theorem $3.6-2(\mathrm{~b})$, this proves that M is total in ℓ^{2}.
4. Note that if $\left(\xi_{j}\right) \in \ell^{1}$ then $\sum_{j=1}^{\infty} \xi_{j}$ is absolutely convergent, and hence all series $\sum_{j=n}^{\infty} \xi_{j}(n=1,2,3, \ldots)$ are also absolutely convergent.
Hence also $\left|\sum_{j=n}^{\infty} \xi_{j}\right| \leq \sum_{j=n}^{\infty}\left|\xi_{j}\right| \leq \sum_{j=1}^{\infty}\left|\xi_{j}\right|=\left\|\left(\xi_{j}\right)\right\|$, so that $T\left(\left(\xi_{j}\right)\right)$ is indeed a well-defined element in ℓ^{∞}.
T is linear, for if $\left(\xi_{n}\right),\left(\eta_{n}\right) \in \ell^{1}$ and $\alpha, \beta \in K$ then

$$
T\left(\alpha\left(\xi_{n}\right)+\beta\left(\eta_{n}\right)\right)=\left(\nu_{n}\right),
$$

where

$$
\nu_{n}=\sum_{j=n}^{\infty}\left(\alpha \xi_{j}+\beta \eta_{j}\right)=\alpha \sum_{j=n}^{\infty} \xi_{j}+\beta \sum_{j=n}^{\infty} \eta_{j},
$$

and thus

$$
T\left(\alpha\left(\xi_{n}\right)+\beta\left(\eta_{n}\right)\right)=\left(\nu_{n}\right)=\alpha T\left(\left(\xi_{n}\right)\right)+\beta T\left(\left(\eta_{n}\right)\right) .
$$

(The manipulations are permitted since all sums involved are absolutely convergent.)
T is bounded since

$$
\left\|T\left(\left(\xi_{n}\right)\right)\right\|=\sup _{n \geq 1}\left|\sum_{j=n}^{\infty} \xi_{j}\right| \leq \sup _{n \geq 1} \sum_{j=n}^{\infty}\left|\xi_{j}\right|=\sum_{j=1}^{\infty}\left|\xi_{j}\right|=\left\|\left(\xi_{n}\right)\right\|
$$

for all $\left(\xi_{n}\right) \in \ell^{1}$. This also proves $\|T\| \leq 1$. Let $e_{1}=(1,0,0,0, \ldots)$ (vector in ℓ^{1} or in ℓ^{∞}). Then $T\left(e_{1}\right)=e_{1}$, and $\left\|e_{1}\right\|=1$ both in ℓ^{1} and in ℓ^{∞}. Hence $\|T\|=1$.
5. Let $T: \ell^{1} \rightarrow \ell^{1}$ be the bounded linear operator given by

$$
T\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(\alpha_{1} \xi_{1}, \alpha_{2} \xi_{2}, \alpha_{3} \xi_{3}, \ldots\right)
$$

We claim that $\left(T_{n}\right)$ is strongly operator convergent to T. Let $x=\left(\xi_{m}\right)$ be an arbitrary vector in ℓ^{1}. Then

$$
\begin{aligned}
\left\|T_{n} x-T x\right\| & =\left\|\left(\left(\alpha_{n, 1}-\alpha_{1}\right) \xi_{1},\left(\alpha_{n, 2}-\alpha_{2}\right) \xi_{2},\left(\alpha_{n, 3}-\alpha_{3}\right) \xi_{3}, \ldots\right)\right\| \\
& =\sum_{m=1}^{\infty}\left|\alpha_{n, m}-\alpha_{m}\right| \cdot\left|\xi_{m}\right| .
\end{aligned}
$$

Let $\varepsilon>0$. Then since $\left(\xi_{m}\right) \in \ell^{1}$ there is some M such that $\sum_{m=M+1}^{\infty}\left|\xi_{m}\right|<$ $\frac{\varepsilon}{10}$. Furthermore, for each m there is some $N_{m} \geq 1$ such that $\mid \alpha_{n, m}-$ $\alpha_{m} \left\lvert\,<\frac{\varepsilon}{10 M\left(1+\left|\xi_{m}\right|\right)}\right.$ for all $n \geq N_{m}$, since $\lim _{n \rightarrow \infty} \alpha_{n, m}=\alpha_{m}$. Hence, for all $n \geq \max \left(N_{1}, N_{2}, \ldots, N_{M}\right)$ we have:

$$
\begin{aligned}
\left\|T_{n} x-T x\right\| & =\sum_{m=1}^{M}\left|\alpha_{n, m}-\alpha_{m}\right| \cdot\left|\xi_{m}\right|+\sum_{m=M+1}^{\infty}\left|\alpha_{n, m}-\alpha_{m}\right| \cdot\left|\xi_{m}\right| \\
& \leq \sum_{m=1}^{M} \frac{\varepsilon}{10 M\left(1+\left|\xi_{m}\right|\right)} \cdot\left|\xi_{m}\right|+\sum_{m=M+1}^{\infty} 2 \cdot\left|\xi_{m}\right| \\
& \leq \sum_{m=1}^{M} \frac{\varepsilon}{10 M}+2 \frac{\varepsilon}{10}<\varepsilon .
\end{aligned}
$$

This proves that $\left(T_{n}\right)$ is strongly operator convergent to T.
We now give an example to show that $\left(T_{n}\right)$ is not necessarily uniformly operator convergent to T. Let

$$
\alpha_{n, m}= \begin{cases}1 & \text { if } n \leq m \\ 0 & \text { if } n>m\end{cases}
$$

Then $\alpha_{m}=\lim _{n \rightarrow \infty} \alpha_{n, m}=0$ for all $m \geq 1$. Hence $T=0$ above. Hence if $\left(T_{n}\right)$ is uniformly operator convergent then the limit must be $T=0$,
since $\left(T_{n}\right)$ is strongly operator convergent with limit $T=0$. We would then have $\left\|T_{n}-0\right\| \rightarrow 0$. However,

$$
T_{n}\left(\left(\xi_{m}\right)\right)=\left(0,0, \ldots, 0, \xi_{n}, \xi_{n+1}, \xi_{n+2}, \ldots\right),
$$

and in particular, for $e_{n}=(0, \ldots, 0,1,0, \ldots)$ (the " 1 " in the nth position), $T_{n}\left(e_{n}\right)=e_{n}$, and thus

$$
\left\|T_{n}\right\| \geq \frac{\left\|T_{n}\left(e_{n}\right)\right\|}{\left\|e_{n}\right\|}=1
$$

This shows that $\left\|T_{n}\right\| \rightarrow 0$ does not hold! Hence $\left(T_{n}\right)$ is not uniformly operator convergent in this case.
6. Let $U_{N}=\left\{\left(\xi_{n}\right) \in X \mid \forall n \geq N: \xi_{n}=0\right\}$. Then by definition, $X=\cup_{N=1}^{\infty} U_{N}$. Hence it suffices to prove that each U_{N} is rare in X. But U_{N} is finite dimensional, hence U_{N} is closed in X (Theorem 2.4-3). Hence it only remains to prove that U_{N} has no interior points. Let $x=\left(\xi_{n}\right) \in U_{N}$ and $r>0$. Then the vector

$$
v \in\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}, r / 2,0,0,0, \ldots\right) \in X
$$

has distance $r / 2$ from $\left(\xi_{n}\right)$ (since $\xi_{n}=0$ for all $n>N$), and thus $v \in B(x, r)$. We also have $v \notin U_{N}$. Hence $B(x, r) \not \subset U_{N}$. This is true for every $x \in U_{N}$ and every $r>0$. Hence U_{N} has no interior points.
7. Let $\lambda=\frac{1}{2}$. Note that

$$
T_{\lambda}\left(\left(\xi_{n}\right)\right)=\left(-\lambda \xi_{1}, \xi_{1}-\lambda \xi_{2}, \xi_{2}-\lambda \xi_{3}, \ldots\right)=\left(-\frac{1}{2} \xi_{1}, \xi_{1}-\frac{1}{2} \xi_{2}, \xi_{2}-\frac{1}{2} \xi_{3}, \ldots\right)
$$

Hence if $\left(\eta_{n}\right)=T_{\lambda}\left(\left(\xi_{n}\right)\right)$ for $\left(\xi_{n}\right) \in \ell^{\infty}$ then

$$
\left\{\begin{array}{l}
\xi_{1}=-2 \eta_{1} \\
\xi_{2}=-2 \eta_{2}-4 \eta_{1} \\
\xi_{3}=-2 \eta_{3}-4 \eta_{2}-8 \eta_{1} \\
\cdots \\
\xi_{n}=-\sum_{j=1}^{n} 2^{j} \eta_{n+1-j} \\
\ldots
\end{array}\right.
$$

This proves that T_{λ} is injective, i.e. T_{λ}^{-1} exists. It follows from the above computation that

$$
\begin{equation*}
\mathcal{D}\left(T_{\lambda}^{-1}\right) \subset\left\{\left(\eta_{n}\right) \in \ell^{\infty} \mid\left(\xi_{n}\right) \in \ell^{\infty} \text { for } \xi_{n}=-\sum_{j=1}^{n} 2^{j} \eta_{n+1-j}\right\} \tag{*}
\end{equation*}
$$

(In fact we have

$$
\mathcal{D}\left(T_{\lambda}^{-1}\right)=\left\{\left(\eta_{n}\right) \in \ell^{\infty} \mid\left(\xi_{n}\right) \in \ell^{\infty} \text { for } \xi_{n}=-\sum_{j=1}^{n} 2^{j} \eta_{n+1-j}\right\}
$$

for if $\left(\eta_{n}\right) \in \ell^{\infty}$ and $\xi_{n}=-\sum_{j=1}^{n} 2^{j} \eta_{n+1-j}$ then one checks $T_{\lambda}\left(\left(\xi_{n}\right)\right)=$ $\left(\eta_{n}\right)$, and hence if $\left(\xi_{n}\right) \in \ell^{\infty}$ then $\left(\eta_{n}\right) \in \mathcal{D}\left(T_{\lambda}^{-1}\right)$. However, we only need $\left({ }^{*}\right)$ for our discussion.)

We prove that $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is not dense in ℓ^{∞} by proving $e_{1}=(1,0,0, \ldots) \notin$ $\overline{\mathcal{D}\left(T_{\lambda}^{-1}\right)}$. Assume to the contrary that $e_{1}=(1,0,0, \ldots) \in \overline{\mathcal{D}\left(T_{\lambda}^{-1}\right)}$. Then there is some $\left(\eta_{n}\right) \in \mathcal{D}\left(T_{\lambda}^{-1}\right)$ such that $\left\|\left(\eta_{n}\right)-e_{1}\right\|<\frac{1}{10}$. Define $\xi_{n}=-\sum_{j=1}^{n} 2^{j} \eta_{n+1-j}$; then since $\left(\eta_{n}\right) \in \mathcal{D}\left(T_{\lambda}^{-1}\right)$ we have $\left(\xi_{n}\right) \in \ell^{\infty}$, by $\left({ }^{*}\right)$ above. But $\left|\eta_{1}-1\right|<\frac{1}{10}$ and $\left|\eta_{n}\right|<\frac{1}{10}$ for all $n \geq 1$ and hence, for each $n \geq 2$,

$$
\begin{aligned}
\left|\xi_{n}\right| & =\left|-\sum_{j=1}^{n} 2^{j} \eta_{n+1-j}\right|=\left|2^{n} \eta_{1}+\sum_{j=1}^{n-1} 2^{j} \eta_{n+1-j}\right| \\
& \geq 2^{n}\left|\eta_{1}\right|-\sum_{j=1}^{n-1} 2^{j}\left|\eta_{n+1-j}\right|>2^{n}\left(1-\frac{1}{10}\right)-\sum_{j=1}^{n-1} 2^{j} \frac{1}{10} \\
& =2^{n}\left(1-\frac{1}{10}\right)-\frac{1}{10} \cdot\left(2^{n}-2\right)>2^{n}\left(1-\frac{1}{5}\right)>2^{n-1}
\end{aligned}
$$

This proves that $\left(\xi_{n}\right) \notin \ell^{\infty}$, a contradiction.

Alternative (inspired by the solution of Patrik Thunström):

 We prove that $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is not dense in ℓ^{∞} by proving $(1,1,1, \ldots) \notin$ $\overline{\mathcal{D}\left(T_{\lambda}^{-1}\right)}$. Assume to the contrary that $(1,1,1, \ldots) \in \overline{\mathcal{D}\left(T_{\lambda}^{-1}\right)}$. Then there is some $\left(\eta_{n}\right) \in \mathcal{D}\left(T_{\lambda}^{-1}\right)$ such that $\left\|\left(\eta_{n}\right)-(1,1,1, \ldots)\right\|<1$, i.e. $\left|\eta_{n}-1\right|<1$ for all n. Then Re $\eta_{n}>0$ for all n, and hence defining $\xi_{n}=-\sum_{j=1}^{n} 2^{j} \eta_{n+1-j}$ we have$$
\operatorname{Re} \xi_{n}=-\sum_{j=1}^{n} 2^{j} \operatorname{Re} \eta_{n+1-j}<-2^{n} \operatorname{Re} \eta_{1}
$$

Since $\operatorname{Re} \eta_{1}>0$ this implies that $\operatorname{Re} \xi_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. It follows that $\left(\xi_{n}\right) \notin \ell^{\infty}$, a contradiction.

Alternative approach, also proving that $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is closed. (Inspired by the solution of Martin Linder.)

Note that if $\left(\eta_{n}\right)=T_{\lambda}\left(\left(\xi_{n}\right)\right)$, then for each $k \geq 2$:

$$
\begin{aligned}
\sum_{j=0}^{\infty} 2^{-j} \eta_{j+k} & =\sum_{j=0}^{\infty} 2^{-j}\left(\xi_{j+k-1}-\frac{1}{2} \xi_{j+k}\right) \\
& =\sum_{j=0}^{\infty} 2^{-j} \xi_{j+k-1}-\sum_{j=0}^{\infty} 2^{-(j+1)} \xi_{j+k}=\xi_{k-1}
\end{aligned}
$$

(All sums above are clearly absolutely convergent, since $\left(\eta_{n}\right) \in \ell^{\infty}$ and $\left(\xi_{n}\right) \in \ell^{\infty}$. Hence the above manipulations are permitted.) In particular, using the above for $k=2$ it follows that

$$
\begin{equation*}
\eta_{1}=-\frac{1}{2} \xi_{1}=-\frac{1}{2} \sum_{j=0}^{\infty} 2^{-j} \eta_{j+2}=-\sum_{j=2}^{\infty} 2^{1-j} \eta_{j} \tag{*}
\end{equation*}
$$

Conversely, let $\left(\eta_{n}\right)$ be any vector in ℓ^{∞} satisfying $(*)$. Then define $\left(\xi_{k}\right)$ through

$$
\xi_{k}=\sum_{j=0}^{\infty} 2^{-j} \eta_{j+k+1}
$$

Then

$$
\left|\xi_{k}\right| \leq \sum_{j=0}^{\infty} 2^{-j}\left|\eta_{j+k+1}\right| \leq\left\|\left(\eta_{n}\right)\right\| \sum_{j=0}^{\infty} 2^{-j}=2 \cdot\left\|\left(\eta_{n}\right)\right\| .
$$

Hence $\left(\xi_{k}\right) \in \ell^{\infty}$. We now look at $T_{\lambda}\left(\left(\xi_{k}\right)\right)$. The first entry in $T_{\lambda}\left(\left(\xi_{k}\right)\right)$ is

$$
-\frac{1}{2} \xi_{1}=-\frac{1}{2} \sum_{j=0}^{\infty} 2^{-j} \eta_{j+2}=-\sum_{j=2}^{\infty} 2^{1-j} \eta_{j}=\eta_{1}
$$

because of $\left({ }^{*}\right)$. The n :th entry in $T_{\lambda}\left(\left(\xi_{k}\right)\right)$ is, for $n \geq 2$:

$$
\begin{aligned}
\xi_{n-1}-\frac{1}{2} \xi_{n} & =\sum_{j=0}^{\infty} 2^{-j} \eta_{j+n}-\frac{1}{2} \sum_{j=0}^{\infty} 2^{-j} \eta_{j+n+1} \\
& =\eta_{n}+\sum_{j=1}^{\infty} 2^{-j} \eta_{j+n}-\sum_{j=0}^{\infty} 2^{-(j+1)} \eta_{(j+1)+n}=\eta_{n} .
\end{aligned}
$$

Hence $T_{\lambda}\left(\left(\xi_{k}\right)\right)=\left(\eta_{n}\right)$, and thus $\left(\eta_{n}\right) \in \mathcal{R}\left(T_{\lambda}\right)$. We have proved that $\left(\eta_{n}\right) \in \ell^{\infty}$ belongs to $\mathcal{R}\left(T_{\lambda}\right)$ if and only if $\left(^{*}\right)$ holds, i.e.

$$
\mathcal{D}\left(T_{\lambda}^{-1}\right)=\mathcal{R}\left(T_{\lambda}\right)=\left\{\left(\eta_{n}\right) \in \ell^{\infty} \mid \eta_{1}=-\sum_{j=2}^{\infty} 2^{1-j} \eta_{j}\right\} .
$$

But note that $f\left(\left(\eta_{n}\right)\right):=\sum_{n=1}^{\infty} 2^{1-n} \eta_{n}$ is a bounded linear functional $f \in\left(\ell^{\infty}\right)^{\prime}$, and by the above formula,

$$
\mathcal{D}\left(T_{\lambda}^{-1}\right)=\left\{\left(\eta_{n}\right) \in \ell^{\infty} \mid f\left(\left(\eta_{n}\right)\right)=0\right\}=\mathcal{N}(f)
$$

Hence $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is closed in $\ell^{\infty}\left(\right.$ cf. Cor. 2.7-10), and $\overline{\mathcal{D}\left(T_{\lambda}^{-1}\right)}=\mathcal{N}(f) \neq$ ℓ^{∞}, since (e.g.) $f((1,0,0,0, \ldots))=1 \neq 0$. Hence $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is not dense in ℓ^{∞}.

