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Spectral theorem for compact, self-adjoint operators.

1. Let X and Y be normed spaces and let T ∈ B(X, Y ).

(a) Prove that if T is surjective then T× is injective.
(3p)

(b) Prove that T× is surjective if and only if T is injective and T−1 ∈
B(R(T ), X).

(4p)

2. Let n ≥ 2 be an integer and let A : H → H be a bounded positive

self-adjoint operator on the Hilbert space H.
(a) Prove that there exists a bounded positive self-adjoint operator
S : H → H such that Sn = A.

(4p)

(b) Prove that S in (a) is unique, i.e. if S1, S2 ∈ B(H, H) are both
positive and self-adjoint and Sn

1
= Sn

2
= A, then S1 = S2. (3p)

(Hints: In Part (a) you may eg. use the theory in §9.9 and §9.10. Part (b) is difficult

and gives few scores, hence skip it unless you quickly see an approach, or you have

finished the other problems. You may use the fact which I have stated in class,

that given T as in Thm. 9.9-1, there exists only one spectral family (Eλ) such that

the formula T =
∫

∞

−∞
λdEλ holds.)

3. (a) Prove that there exists an f ∈ (`∞)′ such that f((ξn)) =
limn→∞ ξn holds for every (ξn) ∈ c.
(Recall that c = {(ξn) ∈ `∞ | limn→∞ ξn exists}).

(2p)

(b) Let en = (0, 0, ..., 1, 0, ...) ∈ `∞, with 1 in the nth place, and vk =
∑k

n=1
en. Prove that the sequence v1, v2, v3, ... is not weakly convergent

in `∞. (2p)

(Hint: You may want to use f ∈ (`∞)′ from (a), and also, for j = 1, 2, 3, ..., use

fj ∈ (`∞)′ defined by fj((ξn)) = ξj .)

(c) Prove that the sequence e1, e2, e3, ... is weakly convergent in `∞

to (0, 0, 0, ...).
(2p)

GOOD LUCK!
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Solutions

1.(a) Assume that T is surjective. Let f ∈ Y ′ and assume T×f = 0.
Then for all x ∈ X we have T×f(x) = 0, that is, f(Tx) = 0. Since T
is surjective this implies f(y) = 0 for all y ∈ Y . Hence f = 0. This
proves that T× is injective.

(b) Assume that T is injective and T−1 ∈ B(R(T ), X). Let g ∈ X ′.
Then g ◦T−1 ∈ B(R(T ), K), i.e. g ◦T−1 is a bounded linear functional
on R(T ). Hence by the Hahn-Banach Theorem 4.3-2, there exists some
f ∈ Y ′ such that f(y) = g◦T−1(y) for all y ∈ R(T ). Now, for all x ∈ X
we have Tx ∈ R(T ), and hence

T×f(x) = f(Tx) = g(T−1(Tx)) = g(x).

Hence T×f = g. This proves that T× is surjective.
Conversely, assume that T× : Y ′ → X ′ is surjective. We know that

Y ′ and X ′ are Banach spaces (cf. Thm. 2.10-4), hence by the Open
Mapping Theorem (more precisely the Open unit ball Lemma 4.12-3),
there is a constant r > 0 such that BX′(0, r) ⊂ T×(BY ′(0, 1)), i.e.

∀f ∈ X ′ : ||f || < r =⇒ ∃g ∈ Y ′ : ||g|| < 1 and T×g = f.

Scaling all the vectors in this statement with a factor 2/r we obtain:

(∗) ∀f ∈ X ′ : ||f || < 2 =⇒ ∃g ∈ Y ′ : ||g|| < 2/r and T×g = f.

Now take x ∈ X, x 6= 0 arbitrary. By Theorem 4.3-3 there is some
f ∈ X ′ such that ||f || = 1 and f(x) = ||x||. Hence, by (*), there is
some g ∈ Y ′ with ||g|| < 2/r such that T×g = f . Now

(∗∗) ||x|| = f(x) = T×g(x) = g(Tx) ≤ ||g|| · ||Tx|| < (2/r)||Tx||.

In particular, since x 6= 0 and ||x|| > 0 we have ||Tx|| > 0 and Tx 6= 0;
this proves that T is injective so that T−1 : R(T ) → X exists. Also
note that y = Tx runs through all of R(T ) when x runs through X;
hence (**) gives ||T−1y|| < (2/r)||y||, for all nonzero y ∈ R(T ). Hence
T−1 ∈ B(R(T ), X).
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2. (a) By the Spectral Theorem 9.9-1 there exists a spectral family
(Eλ) such that

A =

∫ ∞

−∞

λ dEλ.

In fact, by that theorem, (Eλ) is a spectral family on [m, M ], and

A =
∫ M

m−0
λ dEλ, where

m = inf
||x||=1

〈Tx, x〉, M = sup
||x||=1

〈Tx, x〉.

Here m ≥ 0, since A is positive (see definition on p. 470). Set f(λ) =
λ1/n; this is a well-defined, continuous and real-valued function on
the interval [0,∞), and in particular on [m, M ]. Now S = f(A)
is a bounded self-adjoint operator on H which is defined on p. 513
(and a formula for f(A) is given in Theorem 9.10-1). Using Theo-
rem 9.10-2(c) repeatedly we find that Sn = f(T )n = g(T ), where
g(λ) = f(λ)n = (λ1/n)n = λ on [m, M ], hence g(T ) = T , i.e. we have

Sn = A.

Finally, note that λ1/n ≥ 0 for all λ ∈ [m, M ]; hence by Theorem
9.10-2(d) we have S = f(A) = 0.

(b) Assume that S has all the properties as stated in (a). By the
Spectral Theorem 9.9-1 there exists a spectral family (Fλ) such that

S =

∫ ∞

−∞

λ dFλ.

Arguing as in (a) we see that (Fλ) is in fact a spectral family on a finite

interval [m1, M1] where m1 ≥ 0, and S =
∫ M1

m1−0
λ dFλ. By Theorem

9.9-1,

A = Sn =

∫ M1

m1−0

λn dFλ.

Now let (Gλ) be the spectral family which is defined by

Gλ =

{

Fλ1/n if λ ≥ 0

0 if λ < 0

(It follows by direct inspection in the definition on p. 495 that (Gλ) is
indeed a spectral family.) It follows from the definition of the Riemann-
Stieltjes integral over a spectral family that

A = Sn =

∫ M1

m1−0

λn dFλ =

∫ Mn
1

mn
1
−0

λ dGλ.
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[Proof: If P is any partition of [m1, M1], say m1 = t0 < t1 < · · · < tv =
M1 then we let Q be the partition mn

1
= tn

0
< tn

1
< · · · < tnv = Mn

1
of

[mn
1
, Mn

1
]. Then by the definition of Gλ,

(∗) s1(P ) = tn
0
Ft0 +

v
∑

j=1

tnj (Ftj − Ftj−1
) = tn

0
Gtn

0
+

v
∑

j=1

tnj (Gtnj
− Gtnj−1

) = s2(Q),

that is, the P -Riemann sum s1(P ) for the integral
∫ M1

m1−0
λn dFλ equals

the Q-Riemann sum s2(Q) for the integral
∫ Mn

1

mn
1
−0

λ dGλ. Note also that

η(Q) = max
1≤j≤v

(tnj − tnj−1
) = max

1≤j≤v

∫ tj

tj−1

nxn−1 dx ≤ max
1≤j≤v

n

∫ tj

tj−1

Mn−1

1
dx

= nMn−1

1
max
1≤j≤v

(tj − tj−1) = nMn−1

1
η(P ).

Hence if P runs through a sequence of partitions such that η(P ) →

0, then η(Q) → 0, and hence s2(Q) →
∫ Mn

1

mn
1
−0

λ dGλ and s1(P ) →
∫ M1

m1−0
λn dFλ. Using (*) this proves the claim.]

By an almost identical argument, one also proves

(∗∗) S =

∫ M1

m1−0

λ dFλ =

∫ M1

m1−0

λ1/n dGλ.

But we have proved A =
∫ Mn

1

mn
1
−0

λ dGλ, and by the uniqueness of the

spectral family in Theorem 9.9-1, (Gλ) is the unique spectral family
associated with A, i.e. equal to the family (Eλ) which we used in
(a). Hence Gλ = Eλ for all λ ∈ R. Hence by (**), we have S =
∫ M1

m1−0
λ1/n dEλ =

∫ ∞

−∞
λ1/n dEλ.

Hence we have proved that there is only one operator S which has
all the properties stated in (a).

3. (a) We know that c is a subspace of `∞. We define a bounded
linear functional g ∈ c′ by

g((ξn)) = lim
n→∞

ξn.

(g is easily checked to be bounded and linerar.) By the Hahn-Banach
theorem there exists a bounded linear functional f ∈ (`∞)′ such that
f((ξn)) = g((ξn)) for all (ξn) ∈ c. In other words, we now have
f((ξn)) = limn→∞ ξn for all (ξn) ∈ c.

(b) For each n we define fj ∈ (`∞)′ by fj((ξn)) = ξj. Now assume
that (vk) is weakly convergent in `∞ to v = (ηn) ∈ `∞. Then for each j
we have limk→∞ fj(vk) = fj(v). But note that fj(vk) = 1 for all k ≥ j,
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and fj(v) = ηj; hence limk→∞ 1 = ηj, i.e. ηj = 1. Hence v = (1, 1, 1, ...).
However, let f ∈ (`∞)′ be as in (a). Then f(vk) = 0 for each k, whereas
f(v) = 1. Hence limk→∞ f(vk) 6= f(v). This contradicts the fact that
vk is weakly convergent to v.

(c) Assume the contrary, i.e. that (en) is not weakly convergent to
(0, 0, 0, ...) in `∞. Then there is some f ∈ (`∞)′ such that we do not

have limn→∞ f(en) = f((0, 0, 0, ...)) = 0. Hence there is some ε > 0
and a sequence 1 ≤ n1 < n2 < ... such that |f(enj

)| > ε for all j. Now
define for each k ≥ 1:

wk =

k
∑

j=1

|f(enj
)|

f(enj
)
· enj

∈ `∞.

Then ||wk|| = 1, and

f(wk) =
k

∑

j=1

|f(enj
)|

f(enj
)

f(enj
) =

k
∑

j=1

|f(enj
)| > kε.

This implies ||f || > kε. But this cannot be true for all k ≥ 1, i.e. we
have arrived at a contradiction.

Hence (en) is weakly convergent to (0, 0, 0, ...).


