Uppsala Universitet
Matematiska Institutionen
Andreas Strömbergsson

Prov i matematik
Funktionalanalys
Kurs: NVP, Frist. 2005-03-14

Skrivtid: 9-11.30
Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok Introductory Functional Analysis with Applications och Strömbergssons häfte Spectral theorem for compact, self-adjoint operators.

1. Let X and Y be normed spaces and let $T \in B(X, Y)$.
(a) Prove that if T is surjective then T^{\times}is injective.
(b) Prove that T^{\times}is surjective if and only if T is injective and $T^{-1} \in$ $B(\mathcal{R}(T), X)$.
2. Let $n \geq 2$ be an integer and let $A: H \rightarrow H$ be a bounded positive self-adjoint operator on the Hilbert space H.
(a) Prove that there exists a bounded positive self-adjoint operator $S: H \rightarrow H$ such that $S^{n}=A$.
(b) Prove that S in (a) is unique, i.e. if $S_{1}, S_{2} \in B(H, H)$ are both positive and self-adjoint and $S_{1}^{n}=S_{2}^{n}=A$, then $S_{1}=S_{2}$.
(Hints: In Part (a) you may eg. use the theory in $\S 9.9$ and $\S 9.10$. Part (b) is difficult and gives few scores, hence skip it unless you quickly see an approach, or you have finished the other problems. You may use the fact which I have stated in class, that given T as in Thm. 9.9-1, there exists only one spectral family $\left(E_{\lambda}\right)$ such that the formula $T=\int_{-\infty}^{\infty} \lambda d E_{\lambda}$ holds.)
3. (a) Prove that there exists an $f \in\left(\ell^{\infty}\right)^{\prime}$ such that $f\left(\left(\xi_{n}\right)\right)=$ $\lim _{n \rightarrow \infty} \xi_{n}$ holds for every $\left(\xi_{n}\right) \in c$.
(Recall that $c=\left\{\left(\xi_{n}\right) \in \ell^{\infty} \mid \lim _{n \rightarrow \infty} \xi_{n}\right.$ exists $\}$).
(b) Let $e_{n}=(0,0, \ldots, 1,0, \ldots) \in \ell^{\infty}$, with 1 in the nth place, and $v_{k}=$ $\sum_{n=1}^{k} e_{n}$. Prove that the sequence $v_{1}, v_{2}, v_{3}, \ldots$ is not weakly convergent in ℓ^{∞}.
(Hint: You may want to use $f \in\left(\ell^{\infty}\right)^{\prime}$ from (a), and also, for $j=1,2,3, \ldots$, use $f_{j} \in\left(\ell^{\infty}\right)^{\prime}$ defined by $f_{j}\left(\left(\xi_{n}\right)\right)=\xi_{j}$.
(c) Prove that the sequence $e_{1}, e_{2}, e_{3}, \ldots$ is weakly convergent in ℓ^{∞} to $(0,0,0, \ldots)$.

GOOD LUCK!

Solutions

1.(a) Assume that T is surjective. Let $f \in Y^{\prime}$ and assume $T^{\times} f=0$. Then for all $x \in X$ we have $T^{\times} f(x)=0$, that is, $f(T x)=0$. Since T is surjective this implies $f(y)=0$ for all $y \in Y$. Hence $f=0$. This proves that T^{\times}is injective.
(b) Assume that T is injective and $T^{-1} \in B(\mathcal{R}(T), X)$. Let $g \in X^{\prime}$. Then $g \circ T^{-1} \in B(\mathcal{R}(T), K)$, i.e. $g \circ T^{-1}$ is a bounded linear functional on $\mathcal{R}(T)$. Hence by the Hahn-Banach Theorem 4.3-2, there exists some $f \in Y^{\prime}$ such that $f(y)=g \circ T^{-1}(y)$ for all $y \in \mathcal{R}(T)$. Now, for all $x \in X$ we have $T x \in \mathcal{R}(T)$, and hence

$$
T^{\times} f(x)=f(T x)=g\left(T^{-1}(T x)\right)=g(x) .
$$

Hence $T^{\times} f=g$. This proves that T^{\times}is surjective.
Conversely, assume that $T^{\times}: Y^{\prime} \rightarrow X^{\prime}$ is surjective. We know that Y^{\prime} and X^{\prime} are Banach spaces (cf. Thm. 2.10-4), hence by the Open Mapping Theorem (more precisely the Open unit ball Lemma 4.12-3), there is a constant $r>0$ such that $B_{X^{\prime}}(0, r) \subset T^{\times}\left(B_{Y^{\prime}}(0,1)\right)$, i.e.

$$
\forall f \in X^{\prime}:\|f\|<r \Longrightarrow \exists g \in Y^{\prime}:\|g\|<1 \text { and } T^{\times} g=f
$$

Scaling all the vectors in this statement with a factor $2 / r$ we obtain:

$$
\begin{equation*}
\forall f \in X^{\prime}:\|f\|<2 \Longrightarrow \exists g \in Y^{\prime}:\|g\|<2 / r \text { and } T^{\times} g=f \tag{*}
\end{equation*}
$$

Now take $x \in X, x \neq 0$ arbitrary. By Theorem 4.3-3 there is some $f \in X^{\prime}$ such that $\|f\|=1$ and $f(x)=\|x\|$. Hence, by $\left(^{*}\right)$, there is some $g \in Y^{\prime}$ with $\|g\|<2 / r$ such that $T^{\times} g=f$. Now
$(* *) \quad\|x\|=f(x)=T^{\times} g(x)=g(T x) \leq\|g\| \cdot\|T x\|<(2 / r)\|T x\|$.
In particular, since $x \neq 0$ and $\|x\|>0$ we have $\|T x\|>0$ and $T x \neq 0$; this proves that T is injective so that $T^{-1}: \mathcal{R}(T) \rightarrow X$ exists. Also note that $y=T x$ runs through all of $\mathcal{R}(T)$ when x runs through X; hence $\left(^{* *}\right)$ gives $\left\|T^{-1} y\right\|<(2 / r)\|y\|$, for all nonzero $y \in \mathcal{R}(T)$. Hence $T^{-1} \in B(\mathcal{R}(T), X)$.
2. (a) By the Spectral Theorem 9.9-1 there exists a spectral family $\left(E_{\lambda}\right)$ such that

$$
A=\int_{-\infty}^{\infty} \lambda d E_{\lambda} .
$$

In fact, by that theorem, $\left(E_{\lambda}\right)$ is a spectral family on $[m, M]$, and $A=\int_{m-0}^{M} \lambda d E_{\lambda}$, where

$$
m=\inf _{\|x\|=1}\langle T x, x\rangle, \quad M=\sup _{\|x\|=1}\langle T x, x\rangle .
$$

Here $m \geq 0$, since A is positive (see definition on p. 470). Set $f(\lambda)=$ $\lambda^{1 / n}$; this is a well-defined, continuous and real-valued function on the interval $[0, \infty)$, and in particular on $[m, M]$. Now $S=f(A)$ is a bounded self-adjoint operator on H which is defined on p. 513 (and a formula for $f(A)$ is given in Theorem 9.10-1). Using Theorem $9.10-2(\mathrm{c})$ repeatedly we find that $S^{n}=f(T)^{n}=g(T)$, where $g(\lambda)=f(\lambda)^{n}=\left(\lambda^{1 / n}\right)^{n}=\lambda$ on $[m, M]$, hence $g(T)=T$, i.e. we have

$$
S^{n}=A
$$

Finally, note that $\lambda^{1 / n} \geq 0$ for all $\lambda \in[m, M]$; hence by Theorem 9.10-2(d) we have $S=f(A) \geqq 0$.
(b) Assume that S has all the properties as stated in (a). By the Spectral Theorem 9.9-1 there exists a spectral family $\left(F_{\lambda}\right)$ such that

$$
S=\int_{-\infty}^{\infty} \lambda d F_{\lambda}
$$

Arguing as in (a) we see that $\left(F_{\lambda}\right)$ is in fact a spectral family on a finite interval $\left[m_{1}, M_{1}\right]$ where $m_{1} \geq 0$, and $S=\int_{m_{1}-0}^{M_{1}} \lambda d F_{\lambda}$. By Theorem 9.9-1,

$$
A=S^{n}=\int_{m_{1}-0}^{M_{1}} \lambda^{n} d F_{\lambda}
$$

Now let $\left(G_{\lambda}\right)$ be the spectral family which is defined by

$$
G_{\lambda}= \begin{cases}F_{\lambda^{1 / n}} & \text { if } \lambda \geq 0 \\ 0 & \text { if } \lambda<0\end{cases}
$$

(It follows by direct inspection in the definition on p. 495 that $\left(G_{\lambda}\right)$ is indeed a spectral family.) It follows from the definition of the RiemannStieltjes integral over a spectral family that

$$
A=S^{n}=\int_{m_{1}-0}^{M_{1}} \lambda^{n} d F_{\lambda}=\int_{m_{1}^{n}-0}^{M_{1}^{n}} \lambda d G_{\lambda}
$$

[Proof: If P is any partition of $\left[m_{1}, M_{1}\right.$], say $m_{1}=t_{0}<t_{1}<\cdots<t_{v}=$ M_{1} then we let Q be the partition $m_{1}^{n}=t_{0}^{n}<t_{1}^{n}<\cdots<t_{v}^{n}=M_{1}^{n}$ of [m_{1}^{n}, M_{1}^{n}]. Then by the definition of G_{λ},

$$
\begin{equation*}
s_{1}(P)=t_{0}^{n} F_{t_{0}}+\sum_{j=1}^{v} t_{j}^{n}\left(F_{t_{j}}-F_{t_{j-1}}\right)=t_{0}^{n} G_{t_{0}^{n}}+\sum_{j=1}^{v} t_{j}^{n}\left(G_{t_{j}^{n}}-G_{t_{j-1}^{n}}\right)=s_{2}(Q), \tag{*}
\end{equation*}
$$

that is, the P-Riemann sum $s_{1}(P)$ for the integral $\int_{m_{1}-0}^{M_{1}} \lambda^{n} d F_{\lambda}$ equals the Q-Riemann sum $s_{2}(Q)$ for the integral $\int_{m_{1}^{n}-0}^{M_{n}^{n}} \lambda d G_{\lambda}$. Note also that

$$
\begin{aligned}
\eta(Q) & =\max _{1 \leq j \leq v}\left(t_{j}^{n}-t_{j-1}^{n}\right)=\max _{1 \leq j \leq v} \int_{t_{j-1}}^{t_{j}} n x^{n-1} d x \leq \max _{1 \leq j \leq v} n \int_{t_{j-1}}^{t_{j}} M_{1}^{n-1} d x \\
& =n M_{1}^{n-1} \max _{1 \leq j \leq v}\left(t_{j}-t_{j-1}\right)=n M_{1}^{n-1} \eta(P) .
\end{aligned}
$$

Hence if P runs through a sequence of partitions such that $\eta(P) \rightarrow$ 0 , then $\eta(Q) \rightarrow 0$, and hence $s_{2}(Q) \rightarrow \int_{m_{1}^{n}-0}^{M_{1}^{n}} \lambda d G_{\lambda}$ and $s_{1}(P) \rightarrow$ $\int_{m_{1}-0}^{M_{1}} \lambda^{n} d F_{\lambda}$. Using $\left(^{*}\right)$ this proves the claim.]

By an almost identical argument, one also proves

$$
(* *) \quad S=\int_{m_{1}-0}^{M_{1}} \lambda d F_{\lambda}=\int_{m_{1}-0}^{M_{1}} \lambda^{1 / n} d G_{\lambda} .
$$

But we have proved $A=\int_{m_{1}^{n}-0}^{M_{n}^{n}} \lambda d G_{\lambda}$, and by the uniqueness of the spectral family in Theorem 9.9-1, $\left(G_{\lambda}\right)$ is the unique spectral family associated with A, i.e. equal to the family $\left(E_{\lambda}\right)$ which we used in (a). Hence $G_{\lambda}=E_{\lambda}$ for all $\lambda \in \mathbb{R}$. Hence by $\left({ }^{* *}\right)$, we have $S=$ $\int_{m_{1}-0}^{M_{1}} \lambda^{1 / n} d E_{\lambda}=\int_{-\infty}^{\infty} \lambda^{1 / n} d E_{\lambda}$.

Hence we have proved that there is only one operator S which has all the properties stated in (a).
3. (a) We know that c is a subspace of ℓ^{∞}. We define a bounded linear functional $g \in c^{\prime}$ by

$$
g\left(\left(\xi_{n}\right)\right)=\lim _{n \rightarrow \infty} \xi_{n} .
$$

(g is easily checked to be bounded and linerar.) By the Hahn-Banach theorem there exists a bounded linear functional $f \in\left(\ell^{\infty}\right)^{\prime}$ such that $f\left(\left(\xi_{n}\right)\right)=g\left(\left(\xi_{n}\right)\right)$ for all $\left(\xi_{n}\right) \in c$. In other words, we now have $f\left(\left(\xi_{n}\right)\right)=\lim _{n \rightarrow \infty} \xi_{n}$ for all $\left(\xi_{n}\right) \in c$.
(b) For each n we define $f_{j} \in\left(\ell^{\infty}\right)^{\prime}$ by $f_{j}\left(\left(\xi_{n}\right)\right)=\xi_{j}$. Now assume that $\left(v_{k}\right)$ is weakly convergent in ℓ^{∞} to $v=\left(\eta_{n}\right) \in \ell^{\infty}$. Then for each j we have $\lim _{k \rightarrow \infty} f_{j}\left(v_{k}\right)=f_{j}(v)$. But note that $f_{j}\left(v_{k}\right)=1$ for all $k \geq j$,
and $f_{j}(v)=\eta_{j}$; hence $\lim _{k \rightarrow \infty} 1=\eta_{j}$, i.e. $\eta_{j}=1$. Hence $v=(1,1,1, \ldots)$. However, let $f \in\left(\ell^{\infty}\right)^{\prime}$ be as in (a). Then $f\left(v_{k}\right)=0$ for each k, whereas $f(v)=1$. Hence $\lim _{k \rightarrow \infty} f\left(v_{k}\right) \neq f(v)$. This contradicts the fact that v_{k} is weakly convergent to v.
(c) Assume the contrary, i.e. that $\left(e_{n}\right)$ is not weakly convergent to $(0,0,0, \ldots)$ in ℓ^{∞}. Then there is some $f \in\left(\ell^{\infty}\right)^{\prime}$ such that we do not have $\lim _{n \rightarrow \infty} f\left(e_{n}\right)=f((0,0,0, \ldots))=0$. Hence there is some $\varepsilon>0$ and a sequence $1 \leq n_{1}<n_{2}<\ldots$ such that $\left|f\left(e_{n_{j}}\right)\right|>\varepsilon$ for all j. Now define for each $k \geq 1$:

$$
w_{k}=\sum_{j=1}^{k} \frac{\left|f\left(e_{n_{j}}\right)\right|}{f\left(e_{n_{j}}\right)} \cdot e_{n_{j}} \in \ell^{\infty} .
$$

Then $\left\|w_{k}\right\|=1$, and

$$
f\left(w_{k}\right)=\sum_{j=1}^{k} \frac{\left|f\left(e_{n_{j}}\right)\right|}{f\left(e_{n_{j}}\right)} f\left(e_{n_{j}}\right)=\sum_{j=1}^{k}\left|f\left(e_{n_{j}}\right)\right|>k \varepsilon .
$$

This implies $\|f\|>k \varepsilon$. But this cannot be true for all $k \geq 1$, i.e. we have arrived at a contradiction.

Hence $\left(e_{n}\right)$ is weakly convergent to $(0,0,0, \ldots)$.

