Uppsala Universitet
 Matematiska Institutionen

Andreas Strömbergsson

Prov i matematik
Funktionalanalys
Kurs: F3B, F4Sy, NVP
2005-06-15

Skrivtid: 9-14
Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok Introductory Functional Analysis with Applications och Strömbergssons häfte Spectral theorem for compact, self-adjoint operators.

1. Let \mathcal{P} be the space of all polynomials (of one real variable and with real coefficients) with the norm

$$
\|p\|=\sup \{|p(t)|:-1 \leqq t \leqq 1\}
$$

Define $f: \mathcal{P} \rightarrow \mathbb{R}$ by $f(p)=p(2)$. Prove that f is an unbounded linear functional. Also define $T: \mathcal{P} \rightarrow \mathcal{P}$ by $T(p)=p^{\prime}$ (the derivative of p) and prove that T is an unbounded linear operator.
2. Let $Y=\left\{x=\left(\xi_{j}\right) \in \ell^{2} \mid \xi_{1}=0, \xi_{2}+\xi_{3}=0, \xi_{1}+\xi_{3}+\xi_{4}=0\right\}$ and let $P: \ell^{2} \rightarrow \ell^{2}$ be the orthogonal projection onto Y^{\perp}. Determine P.
3. Let

$$
Y=\left\{\left(\xi_{j}\right) \in \ell^{1} \mid \text { at most finitely many } \xi_{j} \neq 0\right\}
$$

Show that Y is not complete. Determine the closure of Y in ℓ^{1}.
4. Define $T: \ell^{\infty} \rightarrow \ell^{1}$ by

$$
T\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)\right)=\left(2^{-1} \xi_{1}, 2^{-2}\left(\xi_{1}+\xi_{2}\right), 2^{-3}\left(\xi_{1}+\xi_{2}+\xi_{3}\right), \cdots\right)
$$

Prove that T is a bounded linear operator $T: \ell^{\infty} \rightarrow \ell^{1}$ and compute the norm $\|T\|$.
5. Let H be a Hilbert space and let $f_{1}, f_{2} \in H^{\prime}, f_{1} \neq 0$ and $f_{2} \neq 0$. Assume that the following condition holds:

$$
\begin{equation*}
\forall x \in H: \quad\left|f_{1}(x)\right|=\left\|f_{1}\right\| \cdot\|x\| \Longrightarrow f_{2}(x)=0 \tag{A}
\end{equation*}
$$

Prove that then the following is also true:

$$
\begin{equation*}
\forall x \in H: \quad\left|f_{2}(x)\right|=\left\|f_{2}\right\| \cdot\|x\| \Longrightarrow f_{1}(x)=0 \tag{B}
\end{equation*}
$$

(Hint: Apply Riesz's Theorem both to f_{1} and f_{2} and then try to interpret the condition (A).)
6. Let X be a normed space and let $x_{1}, x_{2}, x_{3}, \cdots \subset X$ be a sequence of points in X. Assume that for each $f \in X^{\prime}$ the sequence of numbers $f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \cdots$ is bounded. Prove that the sequence $x_{1}, x_{2}, x_{3}, \cdots$ is bounded.
7. Let $T: \ell^{2} \rightarrow \ell^{2}$ be the operator given by

$$
\left(\eta_{j}\right)=T\left(\left(\xi_{k}\right)\right), \quad \text { where } \quad \eta_{j}=\sum_{k=1}^{\infty} 2^{-j-k} \xi_{k} .
$$

Prove that T is compact and self-adjoint. Find all the eigenvalues and eigenvectors of T.

GOOD LUCK!

Note: If you are taking the 6 p -course, please contact me to decide a date for further examination.

Solutions

1. If $a, b \in \mathbb{R}$ and $p, q \in \mathcal{P}$ then $f(a p+b q)=[a p+b q](2)=a p(2)+$ $b q(2)=a f(p)+b f(q)$, and $T(a p+b q)=(a p+b q)^{\prime}=a\left(p^{\prime}\right)+b\left(q^{\prime}\right)=$ $a T(p)+b T(q)$. This proves that f and T are linear.

Given an integer $n \geqq 1$ we consider the polynomial $p(t)=t^{n}$. Note that $\|p\|=1$. Furthermore we have $f(p)=p(2)=2^{n}$. Hence f is unbounded, since there is no constant C such that $\left|2^{n}\right| \leqq C \cdot 1$ holds for all $n \geqq 1$. We also note $T(p)(t)=n t^{n-1}$ and thus $\|T(p)\|=n$. Hence T is unbounded, since there is no constant C such that $n \leqq C \cdot 1$ holds for all $n \geqq 1$.
2. (Very similar to exam 2002-03-01:2.) Note that for $x=\left(\xi_{j}\right) \in \ell^{2}$ we have $\xi_{1}=\left\langle x, e_{1}\right\rangle, \xi_{2}+\xi_{3}=\left\langle x, e_{2}+e_{3}\right\rangle$ and $\xi_{1}+\xi_{3}+\xi_{4}=\left\langle x, e_{1}+e_{3}+e_{4}\right\rangle$. Hence $x=\left(\xi_{j}\right)$ belongs to Y if and only if x is orthogonal to $e_{1}, e_{2}+e_{3}$ and $e_{1}+e_{3}+e_{4}$. That is:

$$
Y=\left\{e_{1}, e_{2}+e_{3}, e_{1}+e_{3}+e_{4}\right\}^{\perp}
$$

This can be rewritten as:
$Y=\left(\operatorname{Span}\left\{e_{1}, e_{2}+e_{3}, e_{1}+e_{3}+e_{4}\right\}\right)^{\perp}=\left(\operatorname{Span}\left\{e_{1}, e_{2}+e_{3}, e_{3}+e_{4}\right\}\right)^{\perp}$.
But $\operatorname{Span}\left\{e_{1}, e_{2}+e_{3}, e_{3}+e_{4}\right\}$ is a closed subspace of ℓ^{2} since it is finite dimensional (Theorem 2.4-3), and hence by Lemma 3.3-6,

$$
Y^{\perp}=\left(\operatorname{Span}\left\{e_{1}, e_{2}+e_{3}, e_{3}+e_{4}\right\}\right)^{\perp \perp}=\operatorname{Span}\left\{e_{1}, e_{2}+e_{3}, e_{3}+e_{4}\right\}
$$

Using Gram-Schmidt we find an orthogonal basis $f_{1}=e_{1}, f_{2}=e_{2}+e_{3}$, $f_{3}=-e_{2}+e_{3}+2 e_{4}$ in Y^{\perp}. The orthogonal projection P onto Y^{\perp} is then given by

$$
\begin{aligned}
& P\left(\left(\xi_{j}\right)\right)=\frac{\left\langle\left(\xi_{j}\right), f_{1}\right\rangle}{\left\langle f_{1}, f_{1}\right\rangle} f_{1}+\frac{\left\langle\left(\xi_{j}\right), f_{2}\right\rangle}{\left\langle f_{2}, f_{2}\right\rangle} f_{2}+\frac{\left\langle\left(\xi_{j}\right), f_{3}\right\rangle}{\left\langle f_{3}, f_{3}\right\rangle} f_{3} \\
& \quad=\frac{1}{3}\left(3 \xi_{1}, 2 \xi_{2}+\xi_{3}-\xi_{4}, \xi_{2}+2 \xi_{3}+\xi_{4},-\xi_{2}+\xi_{3}+2 \xi_{4}, 0,0,0, \cdots\right)
\end{aligned}
$$

3. Let

$$
x_{n}=\left(2^{-1}, 2^{-2}, 2^{-3}, \cdots, 2^{-n}, 0,0,0, \cdots\right)
$$

Then $x_{1}, x_{2}, \ldots \in Y$. We also define

$$
x=\left(2^{-1}, 2^{-2}, 2^{-3}, \cdots\right) \in \ell^{1} .
$$

(The fact that $x \in \ell^{1}$ follows from $\sum_{k=1}^{\infty} 2^{-k}=1<\infty$.) We now claim that $x_{n} \rightarrow x$ as $n \rightarrow \infty$; this follows from

$$
\begin{aligned}
\left\|x-x_{n}\right\| & =\left\|\left(0,0, \cdots, 0,2^{-n-1}, 2^{-n-2}, \cdots\right)\right\| \\
& =\sum_{k=n+1}^{\infty} 2^{-k}=2^{-n} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Note that $x \notin Y$, by the definition of Y. Hence by Theorem 1.4-6(b), Y is not closed (as a subspace of ℓ^{1}). Hence by Theorem 1.4-7, Y is not complete.

We claim that the closure of Y is all of ℓ^{1}, i.e. $\bar{Y}=\ell^{1}$. To prove this, let us fix an arbitrary vector $x=\left(\xi_{1}, \xi_{2}, \cdots\right) \in \ell^{1}$. Then form the sequence x_{1}, x_{2}, \ldots where

$$
x_{n}=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}, 0,0,0, \cdots\right)
$$

Then $x_{1}, x_{2}, \cdots \in Y$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, since

$$
\left\|x-x_{n}\right\|=\sum_{k=n+1}^{\infty}\left|\xi_{k}\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(Detailed proof of the last statement: Let $S_{n}=\sum_{k=1}^{n}\left|\xi_{k}\right|$. Then $S=$ $\lim _{n \rightarrow \infty} S_{n}=\sum_{k=1}^{\infty}\left|\xi_{k}\right|$ exists as a real number, since $x=\left(\xi_{n}\right) \in \ell^{1}$. Hence $\left(S_{n}\right)$ is a Cauchy sequence, and thus for any $\varepsilon>0$ there is N such that $\left|S_{m}-S_{n}\right| \leqq \varepsilon$ whenever $m \geqq n \geqq N$, that is, $\sum_{k=n+1}^{m}\left|\xi_{k}\right| \leqq \varepsilon$ whenever $m \geqq n \geqq N$. For fixed n we may let $m \rightarrow \infty$ in the last statement to obtain $\sum_{k=n+1}^{\infty}\left|\xi_{k}\right| \leqq \varepsilon$ whenever $n \geqq N$. But such $\varepsilon>0$ was arbitrary; hence we have proved $\lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty}\left|\xi_{k}\right|=0$.)

Hence by Theorem 1.4-6(a), $x \in \bar{Y}$. This is true for every $x \in \ell^{1}$. Hence $\bar{Y}=\ell^{1}$.
4. T is obviously a linear operator. We have, for all $\left(\xi_{k}\right) \in \ell^{\infty}$, if $\left(\eta_{k}\right)=T\left(\left(\xi_{k}\right)\right)$,

$$
\begin{aligned}
\left\|\left(\eta_{j}\right)\right\|_{\ell^{1}} & =\sum_{j=1}^{\infty}\left|\eta_{j}\right|=\sum_{j=1}^{\infty}\left|2^{-j} \sum_{k=1}^{j} \xi_{k}\right| \leqq \sum_{j=1}^{\infty} 2^{-j} \sum_{k=1}^{j}\left|\xi_{k}\right|=\sum_{k=1}^{\infty}\left|\xi_{k}\right| \cdot \sum_{j=k}^{\infty} 2^{-j} \\
& =\sum_{k=1}^{\infty}\left|\xi_{k}\right| \cdot 2^{1-k} \leqq\left\|\left(\xi_{k}\right)\right\|_{\ell \infty} \sum_{k=1}^{\infty} 2^{1-k}=2 \cdot\left\|\left(\xi_{k}\right)\right\|_{\ell \infty}
\end{aligned}
$$

Hence T is a bounded, and $\|T\| \leqq 2$.
On the other hand, taking $\left(\xi_{j}\right)=(1,1,1, \cdots)$ we clearly obtain equality in each step in the above computation, hence $\|T((1,1,1, \cdots))\|=2$, and this shows that $\|T\|=2$.

Answer: $\|T\|=2$.
5. By Riesz's Theorem (Theorem 3.8-1 in the book) there are vectors $z_{1}, z_{2} \in H$ such that $f_{1}(x)=\left\langle x, z_{1}\right\rangle$ and $f_{2}(x)=\left\langle x, z_{2}\right\rangle$ for all $x \in H$. Since $f_{1}, f_{2} \neq 0$ we must have $z_{1}, z_{2} \neq 0$. We also see in that theorem that $\left\|f_{1}\right\|=\left\|z_{1}\right\|$ and $\left\|f_{2}\right\|=\left\|z_{2}\right\|$. Now the condition (A) can be written:

$$
\begin{equation*}
\forall x \in H: \quad\left|\left\langle x, z_{1}\right\rangle\right|=\left\|z_{1}\right\| \cdot\|x\| \Longrightarrow\left\langle x, z_{2}\right\rangle=0 \tag{A}
\end{equation*}
$$

However we know from Schwarz inequality (Lemma 3.2-1(a)) that $\left|\left\langle x, z_{1}\right\rangle\right|=$ $\left\|z_{1}\right\| \cdot\|x\|$ holds if and only if x and z_{1} are linearly independent, i.e. if and only if $x=c z_{1}$ for some $c \in \mathbb{C}$ (here we used the fact $z_{1} \neq 0$). Hence condition (A) can be rewritten as:

$$
\begin{equation*}
\forall x \in H: \quad\left[x=c z_{1} \text { for some } c \in \mathbb{C}\right] \Longrightarrow\left\langle x, z_{2}\right\rangle=0 \tag{A}
\end{equation*}
$$

This can also be written as:

$$
\begin{equation*}
\forall c \in \mathbb{C}: \quad\left\langle c z_{1}, z_{2}\right\rangle=0 \tag{A}
\end{equation*}
$$

Clearly this holds if and only if $\left\langle z_{1}, z_{2}\right\rangle=0$.
Similarly one proves that condition (B) is equivalent to $\left\langle z_{2}, z_{1}\right\rangle=0$. Hence condition (A) indeed implies condition (B).
6. Define $g_{n} \in X^{\prime \prime}$ by $g_{n}(f)=f\left(x_{n}\right)$ for all $f \in X^{\prime}$. It follows from Lemma 4.6-1 that each g_{n} is indeed a bounded linear functional on X^{\prime}, and $\left\|g_{n}\right\|=\left\|x_{n}\right\|$. Now the assumption in the problem says that for each $f \in X^{\prime}$ the sequence $g_{1}(f), g_{2}(f), g_{3}(f), \cdots$ is bounded. Now X^{\prime} is a Banach space by Theorem 2.10-4, and $g_{1}, g_{2}, g_{3}, \cdots$ is a sequence of bounded linear operators $X^{\prime} \rightarrow \mathbb{C}$. Hence by the Uniform Boundedness Theorem (Theorem 4.7-3), there is a constant c such that $\left\|g_{n}\right\| \leqq c$ for all n. By what we have noted above, this means $\left\|x_{n}\right\| \leqq c$ for all n. In other words, the sequence $x_{1}, x_{2}, x_{3}, \cdots$ is bounded.
7. The quickest solution is probably to compute the spectral decomposition of T on a scratch paper and then use this result to "prove everything at once". But we first have to prove that T is a bounded
linear operator: T is clearly linear. If $\left(\eta_{j}\right)=T\left(\left(\xi_{k}\right)\right)$ then

$$
\begin{aligned}
\left\|\left(\eta_{j}\right)\right\|^{2} & =\sum_{j=1}^{\infty}\left|\eta_{j}\right|^{2}=\sum_{j=1}^{\infty}\left|\sum_{k=1}^{\infty} 2^{-j-k} \xi_{k}\right|^{2}=\sum_{j=1}^{\infty} 2^{-2 j}\left|\sum_{k=1}^{\infty} 2^{-k} \xi_{k}\right|^{2} \\
& =\left(\sum_{j=1}^{\infty} 2^{-2 j}\right)\left|\sum_{k=1}^{\infty} 2^{-k} \xi_{k}\right|^{2}=\frac{1}{3}\left|\sum_{k=1}^{\infty} 2^{-k} \xi_{k}\right|^{2} \\
& \leqq \frac{1}{3}\left(\sum_{k=1}^{\infty} 2^{-2 k}\right) \sum_{k=1}^{\infty}\left|\xi_{k}\right|^{2} \leqq \frac{1}{9}\left\|\left(\xi_{k}\right)\right\|^{2}
\end{aligned}
$$

Hence T is bounded and $\|T\| \leqq \frac{1}{3}$. Let $f_{1}=\sqrt{3} \cdot\left(2^{-1}, 2^{-2}, 2^{-3}, \cdots\right) \in$ ℓ^{2}. Note that $\left\|f_{1}\right\|=1$, since

$$
\left\|f_{1}\right\|^{2}=3 \sum_{j=1}^{\infty} 2^{2 j}=3 \cdot \frac{1}{4} \cdot \frac{1}{1-1 / 4}=1
$$

By the Gram-Schmidt process (recall that ℓ^{2} is separable) we can now extend f_{1} to a total orthonormal set $f_{1}, f_{2}, f_{3}, \ldots$ in ℓ^{2}.

We compute $\left(\eta_{j}\right)=T\left(f_{1}\right)$:

$$
\eta_{j}=2^{-j} \sum_{k=1}^{\infty} 2^{-k} \xi_{k}=\sqrt{3} \cdot 2^{-j} \sum_{k=1}^{\infty} 2^{-2 k}=\frac{\sqrt{3}}{3} \cdot 2^{-j}
$$

Hence

$$
T\left(f_{1}\right)=\frac{1}{3} \cdot f_{1} .
$$

Note also that for $n \geqq 2$, writing $f_{n}=\left(\xi_{j}\right)$, the fact $\left\langle f_{n}, f_{1}\right\rangle=0$ implies

$$
\sum_{k=1}^{\infty} 2^{-k} \xi_{k}=0
$$

Hence $T\left(f_{n}\right)=0$ for all $n \geqq 2$.
Now we have exactly the situation from Homework assignment 3, problem 4: T is a bounded linear operator on $\ell^{2},\left\{f_{1}\right\}$ is a total orthonormal sequence in ℓ^{2}, and $T\left(f_{n}\right)=\lambda_{n} f_{n}$ with $\lambda_{1}=\frac{1}{3}$ and $\lambda_{2}=$ $\lambda_{3}=\cdots=0$ (thus $\lim _{n \rightarrow \infty} \lambda_{n}=0$). Hence by that problem, T is compact and self-adjoint. [Note that in the present case the fact that T is compact can also be seen directly using Theorem 8.1-4(a), for by the above formulas we have $T(H)=\operatorname{Span}\left\{f_{1}\right\}$, i.e. the range of T is finite dimensional.]

We also see that the eigenvalues of T are $\frac{1}{3}$ (with eigenspace $=$ $\left.\operatorname{Span}\left\{f_{1}\right\}\right)$ and $0\left(\right.$ with eigenspace $\left.=\operatorname{Span}\left\{f_{2}, f_{3}, \cdots\right\}=\left\{f_{1}\right\}^{\perp}\right)$.
[Proof that there are no other eigenvectors and eigenvalues: Assume that $x=\sum_{n=1}^{\infty} a_{n} f_{n} \in \ell^{2}$ is an eigenvector of T with eigenvalue λ. Then $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty$ and $\lambda x=T x=\frac{1}{3} a_{1} f_{1}+0 a_{2} f_{2}+0 a_{3} f_{3}+\cdots=\frac{1}{3} a_{1} f_{1}$, hence $\lambda a_{1}=\frac{1}{3} a_{1}$ and for each $n \geqq 2, \lambda a_{n}=0$. We also know that $x \neq 0$, i.e. there is at least one n for which $a_{n} \neq 0$. It follows that either $\lambda=\frac{1}{3}$ and $x=a_{1} f_{1}$ or else $\lambda=0$ and $x=a_{2} f_{2}+a_{3} f_{3}+\cdots \in \operatorname{Span}\left\{f_{2}, f_{3}, \cdots\right\}$, as claimed.]

