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1. Let P be the space of all polynomials (of one real variable and with
real coefficients) with the norm

||p|| = sup
{

|p(t)| : −1 5 t 5 1
}

.

Define f : P → R by f(p) = p(2). Prove that f is an unbounded linear
functional. Also define T : P → P by T (p) = p′ (the derivative of p)
and prove that T is an unbounded linear operator.

(6p)

2. Let Y = {x = (ξj) ∈ `2 | ξ1 = 0, ξ2 + ξ3 = 0, ξ1 + ξ3 + ξ4 = 0} and
let P : `2 → `2 be the orthogonal projection onto Y ⊥. Determine P .

(6p)

3. Let

Y =
{

(ξj) ∈ `1 | at most finitely many ξj 6= 0
}

.

Show that Y is not complete. Determine the closure of Y in `1.

(5p)

4. Define T : `∞ → `1 by

T ((ξ1, ξ2, ξ3, · · · )) =
(

2−1ξ1, 2−2(ξ1 + ξ2), 2−3(ξ1 + ξ2 + ξ3), · · ·
)

.

Prove that T is a bounded linear operator T : `∞ → `1 and compute
the norm ||T ||.

(6p)
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5. Let H be a Hilbert space and let f1, f2 ∈ H ′, f1 6= 0 and f2 6= 0.
Assume that the following condition holds:

(A) ∀x ∈ H : |f1(x)| = ||f1|| · ||x|| =⇒ f2(x) = 0.

Prove that then the following is also true:

(B) ∀x ∈ H : |f2(x)| = ||f2|| · ||x|| =⇒ f1(x) = 0.

(Hint: Apply Riesz’s Theorem both to f1 and f2 and then try to in-
terpret the condition (A).)

(6p)

6. Let X be a normed space and let x1, x2, x3, · · · ⊂ X be a se-
quence of points in X. Assume that for each f ∈ X ′ the sequence of
numbers f(x1), f(x2), f(x3), · · · is bounded. Prove that the sequence
x1, x2, x3, · · · is bounded.

(5p)

7. Let T : `2 → `2 be the operator given by

(ηj) = T ((ξk)), where ηj =

∞
∑

k=1

2−j−kξk.

Prove that T is compact and self-adjoint. Find all the eigenvalues and
eigenvectors of T .

(6p)

GOOD LUCK!

Note: If you are taking the 6p-course, please contact me to decide a
date for further examination.
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Solutions

1. If a, b ∈ R and p, q ∈ P then f(ap + bq) = [ap + bq](2) = ap(2) +
bq(2) = af(p) + bf(q), and T (ap + bq) = (ap + bq)′ = a(p′) + b(q′) =
aT (p) + bT (q). This proves that f and T are linear.

Given an integer n = 1 we consider the polynomial p(t) = tn. Note
that ||p|| = 1. Furthermore we have f(p) = p(2) = 2n. Hence f is
unbounded, since there is no constant C such that |2n| 5 C · 1 holds
for all n = 1. We also note T (p)(t) = ntn−1 and thus ||T (p)|| = n.
Hence T is unbounded, since there is no constant C such that n 5 C ·1
holds for all n = 1.

2. (Very similar to exam 2002-03-01:2.) Note that for x = (ξj) ∈ `2 we
have ξ1 = 〈x, e1〉, ξ2+ξ3 = 〈x, e2+e3〉 and ξ1+ξ3+ξ4 = 〈x, e1+e3 +e4〉.
Hence x = (ξj) belongs to Y if and only if x is orthogonal to e1, e2 + e3

and e1 + e3 + e4. That is:

Y = {e1, e2 + e3, e1 + e3 + e4}⊥.

This can be rewritten as:

Y =
(

Span{e1, e2 + e3, e1 + e3 + e4}
)⊥

=
(

Span{e1, e2 + e3, e3 + e4}
)⊥

.

But Span{e1, e2 + e3, e3 + e4} is a closed subspace of `2 since it is finite
dimensional (Theorem 2.4-3), and hence by Lemma 3.3-6,

Y ⊥ =
(

Span{e1, e2 + e3, e3 + e4}
)⊥⊥

= Span{e1, e2 + e3, e3 + e4}.

Using Gram-Schmidt we find an orthogonal basis f1 = e1, f2 = e2 + e3,
f3 = −e2 + e3 + 2e4 in Y ⊥. The orthogonal projection P onto Y ⊥ is
then given by

P ((ξj)) =
〈(ξj), f1〉
〈f1, f1〉

f1 +
〈(ξj), f2〉
〈f2, f2〉

f2 +
〈(ξj), f3〉
〈f3, f3〉

f3

=
1

3

(

3ξ1, 2ξ2 + ξ3 − ξ4, ξ2 + 2ξ3 + ξ4, −ξ2 + ξ3 + 2ξ4, 0, 0, 0, · · ·
)

.

3. Let

xn = (2−1, 2−2, 2−3, · · · , 2−n, 0, 0, 0, · · · ).

Then x1, x2, ... ∈ Y . We also define

x = (2−1, 2−2, 2−3, · · · ) ∈ `1.
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(The fact that x ∈ `1 follows from
∑

∞

k=1
2−k = 1 < ∞.) We now claim

that xn → x as n → ∞; this follows from

||x − xn|| = ||(0, 0, · · · , 0, 2−n−1, 2−n−2, · · · )||

=
∞
∑

k=n+1

2−k = 2−n → 0 as n → ∞.

Note that x /∈ Y , by the definition of Y . Hence by Theorem 1.4-6(b),
Y is not closed (as a subspace of `1). Hence by Theorem 1.4-7, Y is
not complete.

We claim that the closure of Y is all of `1, i.e. Y = `1. To prove
this, let us fix an arbitrary vector x = (ξ1, ξ2, · · · ) ∈ `1. Then form the
sequence x1, x2, ... where

xn = (ξ1, ξ2, · · · , ξn, 0, 0, 0, · · · ).
Then x1, x2, · · · ∈ Y and xn → x as n → ∞, since

||x − xn|| =
∞
∑

k=n+1

|ξk| → 0 as n → ∞.

(Detailed proof of the last statement: Let Sn =
∑n

k=1
|ξk|. Then S =

limn→∞ Sn =
∑

∞

k=1
|ξk| exists as a real number, since x = (ξn) ∈ `1.

Hence (Sn) is a Cauchy sequence, and thus for any ε > 0 there is N
such that |Sm−Sn| 5 ε whenever m = n = N , that is,

∑m

k=n+1
|ξk| 5 ε

whenever m = n = N . For fixed n we may let m → ∞ in the last
statement to obtain

∑

∞

k=n+1
|ξk| 5 ε whenever n = N . But such ε > 0

was arbitrary; hence we have proved limn→∞

∑

∞

k=n+1
|ξk| = 0.)

Hence by Theorem 1.4-6(a), x ∈ Y . This is true for every x ∈ `1.
Hence Y = `1.

4. T is obviously a linear operator. We have, for all (ξk) ∈ `∞, if
(ηk) = T ((ξk)),

||(ηj)||`1 =

∞
∑

j=1

|ηj| =

∞
∑

j=1

∣

∣

∣

∣

∣

2−j

j
∑

k=1

ξk

∣

∣

∣

∣

∣

5

∞
∑

j=1

2−j

j
∑

k=1

|ξk| =

∞
∑

k=1

|ξk| ·
∞
∑

j=k

2−j

=

∞
∑

k=1

|ξk| · 21−k 5 ||(ξk)||`∞
∞
∑

k=1

21−k = 2 · ||(ξk)||`∞

Hence T is a bounded, and ||T || 5 2.
On the other hand, taking (ξj) = (1, 1, 1, · · · ) we clearly obtain equal-

ity in each step in the above computation, hence ||T ((1, 1, 1, · · · ))|| = 2,
and this shows that ||T || = 2.

Answer: ||T || = 2.
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5. By Riesz’s Theorem (Theorem 3.8-1 in the book) there are vectors
z1, z2 ∈ H such that f1(x) = 〈x, z1〉 and f2(x) = 〈x, z2〉 for all x ∈ H.
Since f1, f2 6= 0 we must have z1, z2 6= 0. We also see in that theorem
that ||f1|| = ||z1|| and ||f2|| = ||z2||. Now the condition (A) can be
written:

(A) ∀x ∈ H : |〈x, z1〉| = ||z1|| · ||x|| =⇒ 〈x, z2〉 = 0.

However we know from Schwarz inequality (Lemma 3.2-1(a)) that |〈x, z1〉| =
||z1|| · ||x|| holds if and only if x and z1 are linearly independent, i.e.
if and only if x = cz1 for some c ∈ C (here we used the fact z1 6= 0).
Hence condition (A) can be rewritten as:

(A) ∀x ∈ H :
[

x = cz1 for some c ∈ C
]

=⇒ 〈x, z2〉 = 0.

This can also be written as:

(A) ∀c ∈ C : 〈cz1, z2〉 = 0.

Clearly this holds if and only if 〈z1, z2〉 = 0.
Similarly one proves that condition (B) is equivalent to 〈z2, z1〉 = 0.

Hence condition (A) indeed implies condition (B).

6. Define gn ∈ X ′′ by gn(f) = f(xn) for all f ∈ X ′. It follows from
Lemma 4.6-1 that each gn is indeed a bounded linear functional on X ′,
and ||gn|| = ||xn||. Now the assumption in the problem says that for
each f ∈ X ′ the sequence g1(f), g2(f), g3(f), · · · is bounded. Now X ′

is a Banach space by Theorem 2.10-4, and g1, g2, g3, · · · is a sequence of
bounded linear operators X ′ → C. Hence by the Uniform Boundedness
Theorem (Theorem 4.7-3), there is a constant c such that ||gn|| 5 c for
all n. By what we have noted above, this means ||xn|| 5 c for all n. In
other words, the sequence x1, x2, x3, · · · is bounded.

7. The quickest solution is probably to compute the spectral decom-
position of T on a scratch paper and then use this result to “prove
everything at once”. But we first have to prove that T is a bounded
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linear operator: T is clearly linear. If (ηj) = T ((ξk)) then

||(ηj)||2 =

∞
∑

j=1

|ηj|2 =

∞
∑

j=1

∣

∣

∣

∣

∣

∞
∑

k=1

2−j−kξk

∣

∣

∣

∣

∣

2

=

∞
∑

j=1

2−2j

∣

∣

∣

∣

∣

∞
∑

k=1

2−kξk

∣

∣

∣

∣

∣

2

=

(

∞
∑

j=1

2−2j

)
∣

∣

∣

∣

∣

∞
∑

k=1

2−kξk

∣

∣

∣

∣

∣

2

=
1

3

∣

∣

∣

∣

∣

∞
∑

k=1

2−kξk

∣

∣

∣

∣

∣

2

5
1

3

(

∞
∑

k=1

2−2k

)

∞
∑

k=1

|ξk|2 5
1

9
||(ξk)||2.

Hence T is bounded and ||T || 5 1

3
. Let f1 =

√
3 · (2−1, 2−2, 2−3, · · · ) ∈

`2. Note that ||f1|| = 1, since

||f1||2 = 3
∞
∑

j=1

22j = 3 · 1

4
· 1

1 − 1/4
= 1.

By the Gram-Schmidt process (recall that `2 is separable) we can now
extend f1 to a total orthonormal set f1, f2, f3, ... in `2.

We compute (ηj) = T (f1):

ηj = 2−j

∞
∑

k=1

2−kξk =
√

3 · 2−j

∞
∑

k=1

2−2k =

√
3

3
· 2−j.

Hence

T (f1) = 1

3
· f1.

Note also that for n = 2, writing fn = (ξj), the fact 〈fn, f1〉 = 0 implies

∞
∑

k=1

2−kξk = 0

Hence T (fn) = 0 for all n = 2.
Now we have exactly the situation from Homework assignment 3,

problem 4: T is a bounded linear operator on `2, {f1} is a total or-
thonormal sequence in `2, and T (fn) = λnfn with λ1 = 1

3
and λ2 =

λ3 = · · · = 0 (thus limn→∞ λn = 0). Hence by that problem, T is
compact and self-adjoint. [Note that in the present case the fact that
T is compact can also be seen directly using Theorem 8.1-4(a), for by
the above formulas we have T (H) = Span{f1}, i.e. the range of T is
finite dimensional.]

We also see that the eigenvalues of T are 1

3
(with eigenspace =

Span{f1}) and 0 (with eigenspace = Span{f2, f3, · · · } = {f1}⊥).
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[Proof that there are no other eigenvectors and eigenvalues: Assume
that x =

∑

∞

n=1
anfn ∈ `2 is an eigenvector of T with eigenvalue λ. Then

∑

∞

n=1
|an|2 < ∞ and λx = Tx = 1

3
a1f1 + 0a2f2 + 0a3f3 + · · · = 1

3
a1f1,

hence λa1 = 1

3
a1 and for each n = 2, λan = 0. We also know that x 6= 0,

i.e. there is at least one n for which an 6= 0. It follows that either λ = 1

3

and x = a1f1 or else λ = 0 and x = a2f2+a3f3+· · · ∈ Span{f2, f3, · · · },
as claimed.]


