
Functional Analysis (2006)

Homework assignment 1

All students should solve the following problems:

1. (Part of Problem 6, §1.4.) Let (xn) and (yn) be Cauchy sequences in
a metric space (X, d), and let an = d(xn, yn). Show that the sequence
(an) converges.

2. Let a < b and let C[a, b] be the metric space of real valued continuous
functions from [a, b] to R, with metric d(x, y) = maxt∈[a,b] |x(t)−y(t)|
(as in §1.1-7 in the book). Let

D = {x ∈ C[a, b] | x is increasing}.
(We say that x ∈ C[a, b] is increasing if and only if x(t1) 5 x(t2)
holds for all t1 < t2 in [a, b].) Prove that D is closed but not open.

3. Let X be the vector space of all sequences of complex numbers with
only finitely many nonzero terms. Consider the following two norms
|| · ||1 and || · ||2 on X:

||(ξj)||1 :=
∞
∑

j=1

|ξj|; ||(ξj)||2 :=

√

√

√

√

∞
∑

j=1

|ξj|2.

Prove that || · ||1 and || · ||2 are not equivalent.

4. Let B̃(0; 1) = {x ∈ `1 | ||x|| 5 1} be the closed unit ball in `1, and
let M be the subset

M = {(ξj) ∈ B̃(0; 1) | |ξj| 5 j−1 for all j = 1, 2, 3, ...}.
Prove that M is not compact.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Let X be a normed space and let r be any number r > 1. Assume
that it is possible to cover the open ball B(0; r) by a finite number of
translates of the open unit ball B(0; 1). (By a translate of a subset
M ⊂ X we mean any set of the form v +M := {v + w | w ∈ M} for
some v ∈ X.) Prove that X is finite dimensional.
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6. Let t1 = 0, t2 = 1 and let t3, t4, ... be any pairwise distinct points in
the open interval (0, 1) such that the set {t1, t2, t3, t4, ...} is dense in
[0, 1]. Let x1 ∈ C[0, 1] be the constant function x1(t) = 1, and for
j = 2 let xj ∈ C[0, 1] be the piecewise linear function which satisfies
xj(t1) = xj(t2) = ... = xj(tj−1) = 0 and xj(tj) = 1 (and is linear at
all points t /∈ {t1, t2, ..., tj}). Prove that x1, x2, x3, ... is a Schauder
basis for C[0, 1]!

Solutions should be handed in by Friday, February 10. (Either
give the solutions to me directly or put them in my mailbox, third
floor, House 3, Polacksbacken.)
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Functional Analysis F3/F4/NVP

Solutions to homework assignment 1

1. We first prove that (an) is a Cauchy sequence on the real line (with
respect to its usual metric “|x − y|”). Let ε > 0 be given. Then since
(xn) is Cauchy there is some integer N1 such that d(xm, xn) < ε

2
for all

m, n > N1. Also, since (yn) is Cauchy there is some integer N2 such
that d(ym, yn) < ε

2
for all m, n > N2. Let N = max(N1, N2).

Now let m, n be any integers with m, n > N . Then both m, n > N1

and m, n > N2, and hence d(xm, xn) < ε
2

and d(ym, yn) < ε
2
. Hence by

the generalized triangle inequality, see p.4(1):

d(xn, yn) 5 d(xn, xm) + d(xm, ym) + d(ym, yn) <
ε

2
+ d(xm, ym) +

ε

2
= d(xm, ym) + ε

and also

d(xm, ym) 5 d(xm, xn) + d(xn, yn) + d(yn, ym) <
ε

2
+ d(xn, yn) +

ε

2
= d(xn, yn) + ε.

In other words we have proved

an < am + ε and am < an + ε.

Together these two inequalities imply −ε < an − am < ε, i.e.

|an − am| < ε.

In conclusion, we have proved that for all m, n > N we have |an − am| < ε.
The above argument works for any ε > 0; hence for any ε > 0 there

exists an integer N such that m, n > N implies |an − am| < ε. Hence
(an) is a Cauchy sequence of real numbers! Hence by Theorem 1.4-4,
the sequence (an) is convergent, Q.E.D.

2. We first prove that D is closed, i.e. (by def 1.3-2) that DC is open.
Let x ∈ DC . Then x is not increasing, i.e. there exist some numbers

t1 < t2 (with t1, t2 ∈ [a, b]) such that x(t1) > x(t2). Let r = x(t1)−x(t2)
3

.
(Of course, r > 0.) We then claim that DC contains the ball B(x; r),
i.e. B(x; r) ⊂ DC . To prove this, let y be an arbitrary element in
B(x; r). Then d(x, y) < r, and in particular |x(t1) − y(t1)| < r and
|x(t2)−y(t2)| < r. It follows that y(t1) > x(t1)−r and y(t2) < x(t2)+r.
But by our definition of r we have x(t1) = x(t2) + 3r. Using all these
facts we obtain:

y(t1) > x(t1) − r = x(t2) + 2r > x(t2) + r > y(t2).
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But remember here t1 < t2; hence y is not an increasing function.
Hence y ∈ DC . This is true for every y ∈ B(x; r); hence we have
proved B(x; r) ⊂ DC . But x ∈ DC was arbitrary; hence for every
x ∈ DC there is some r > 0 such that B(x; r) ⊂ DC . This proves that
DC is open. Hence D is closed, Q.E.D.

Next we prove that D is not open. Let us choose x as the constant
function x(t) = 0 for all t ∈ [a, b]. Clearly x is an increasing continuous
function, i.e. x ∈ D. Let r > 0 be arbitrary and consider the ball
B(x; r). Clearly there is a continuous function y ∈ B(x; r) which is not
increasing, for example we may take y(t) = r

2
· b−x

b−a
. (This is the linear

function with y(a) = r
2
, y(b) = 0.) Hence, we have found a function

y ∈ B(x; r) with y /∈ D. It follows that B(x; r) is not contained in D.
The above argument works for each r > 0, hence D does not contain
any ball about the point x ∈ D. Hence D is not open, Q.E.D.

3. Assume that || · ||1 and || · ||2 are equivalent (this will be shown to
lead to a contradiction). Then there are some numbers a, b > 0 such
that a||x||1 5 ||x||2 5 b||x||1 for all x ∈ X.

We then let n be any integer which is greater than a−2, and let
x ∈ X be the sequence whose first n entries equal n−1 and all the other
entries equal 0. In other words, x = (ξ1, ξ2, ξ3, · · · ) where ξj = n−1 for
j = 1, 2, · · · , n and ξj = 0 for all j > n. We now compute:

||x||1 =

n
∑

j=1

n−1 = 1

and

||x||2 =

√

√

√

√

n
∑

j=1

n−2 =
√

n−1 = n−
1

2 .

Hence since we are assuming a||x||1 5 ||x||2 it follows that a 5 n−
1

2 ,
i.e. n 5 a−2. This contradicts our original choice of n, where we took
n so that n > a−2.

Hence we have seen that the assumption that || · ||1 and || · ||2 are
equivalent leads to a contradiction. Hence || · ||1 and || · ||2 are not

equivalent.
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Remark: However, the other inequality, ||x||2 5 b||x||1 is actually
true, with constant b = 1! Proof: For every x = (ξj) ∈ X we have

||(ξj)||2 =

√

√

√

√

∞
∑

j=1

|ξj|2 5

√

√

√

√

(

∞
∑

j=1

|ξj|
)2

=
∞
∑

j=1

|ξj| = ||(ξj)||1.

4. For each n = 1, 2, 3, · · · we define xn as the sequence xn =
(2−n, 2−n, · · · , 2−n, 0, 0, · · · ), where the entries 2−n start at position 1
and end at position 2n. In other words:

x1 = (1
2
, 1

2
, 0, 0, 0, · · · );

x2 = (1
4
, 1

4
, 1

4
, 1

4
, 0, 0, 0, · · · );

x3 = (1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 0, 0, 0, · · · );

· · ·

The `1 norm of xn is ||xn|| = 2n · 2−n = 1, hence xn ∈ B̃(0; 1). We also

see that xn ∈ M , for if we write xn = (ξ
(n)
j ) then we have for all j 5 2n:

|ξ(n)
j | = |2−n| = 2−n 5 j−1, and for all j > 2n: |ξ(n)

j | = 0 5 j−1. Hence
(x1, x2, x3, · · · ) is a sequence of points in M .

However, the distance between any two points in the sequence (x1, x2, x3, · · · )
is = 1. [Proof: For any 1 5 n < m we have

||xn − xm|| =
2n

∑

j=1

|2−n − 2−m| +
2m

∑

j=2n+1

|0 − 2−m| +
∞
∑

j=2m+1

|0 − 0|

= 2n(2−n − 2−m) + (2m − 2n)2−m + 0

= 1 − 2n−m + 1 − 2n−m = 2(1 − 2n−m) = 2 · (1 − 1
2
) = 1,

since 2n−m 5 1
2

because n < m.]
Since any two points in the sequence (x1, x2, x3, · · · ) have distance

= 1, it follows that no subsequence of (x1, x2, x3, · · · ) can be Cauchy;
hence our sequence does not contain any convergent subsequence! Hence
we have seen that there is a sequence in M which does not have any
convergent subsequence; this means that M is not compact.

5. Assume that B(0; r) is covered by the translates

v1 + B(0; 1), v2 + B(0; 1), · · · , vn + B(0; 1),

for some vectors v1, · · · , vn ∈ X. Let Y = Span{v1, · · · , vn}. Note that
Y is a closed subset of X, by Theorem 2.4-3 on p. 74.
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Let us assume that Y is a proper subset of X, i.e. Y 6= X. Let
θ and r1 be any numbers with 1 < θ−1 < r1 < r. Then by Riesz’
Lemma (2.5-4 on p. 78), applied with Z = X, there is a vector x ∈ X
with ||x|| = 1 and ||x − y|| = θ for all y ∈ Y . Multiplying by r1

we then obtain ||r1x|| = r1 < r, i.e. r1x ∈ B(0; r). We also obtain
||r1x−r1y|| = r1θ > 1 for all y ∈ Y . In particular, taking y = r−1

1 vj ∈ Y
we see that ||r1x − vj|| > 1 for each j = 1, 2, · · · , n. This means that
r1x /∈ vj +B(0; 1), for each j = 1, 2, · · · , n. Hence the sets v1 +B(0; 1),
v2 + B(0; 1),· · · , vn + B(0; 1) do not cover B(0; r), a contradiction to
our assumption above.

Hence the assumption Y 6= X must be false; thus Y = X! In
other words, X = Span{v1, · · · , vn}, and this proves that X is finite
dimensional, dim X 5 n.

6. Let y ∈ C[0, 1] and assume that there are numbers α1, α2, · · · ∈ R

such that

||y − (α1x1 + · · · + αnxn)|| → 0 as n → ∞.

Fix some j ∈ {1, 2, · · · }. Note that xj(tj) = 1 and xk(tj) = 0 for
all k > j, hence for all n = j we have (α1x1 + · · · + αnxn)(tj) =

αj +
∑j−1

k=1 αkxk(tj). Now by the definition of the norm || · || in C[0, 1],
||y − (α1x1 + · · · + αnxn)|| → 0 implies that

lim
n→∞

|y(tj) − (α1x1 + · · ·+ αnxn)(tj)| = 0,

i.e. limn→∞

∣

∣

∣
y(tj) −

(

αj +
∑j−1

k=1 αkxk(tj)
)
∣

∣

∣
= 0. Since the expression

here does not depend on n, this implies αj = y(tj) −
∑j−1

k=1 αkxk(tj).
This is true for each j = 1, 2, · · · , i.e.:

(∗)







































α1 = y(t1);

α2 = y(t2) − α1x1(t2);

α3 = y(t3) − α1x1(t3) − α2x2(t3);

· · ·
αj = y(tj) − α1x1(tj) − α2x2(tj) − · · · − αj−1xj−1(tj);

· · ·

This proves that for any y ∈ C[0, 1] there is at most one choice of
scalars α1, α2, · · · ∈ R such that limn→∞ ||y− (α1x1 + · · ·+αnxn)|| = 0.

We now prove that the choice of scalars in (*) above really works,
i.e. that if we choose α1, α2, · · · ∈ R as in (*) then we indeed have
limn→∞ ||y − (α1x1 + · · · + αnxn)|| = 0.
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Fix any n = 3, and let Sn = α1x1 + · · · + αnxn ∈ C[0, 1]. Then
Sn(t1) = α1 · 1 + 0 + · · ·+ 0 = α1 = y(t1) and Sn(t2) = α1x1(t2) + α2 +
0 + · · ·+ 0 = y(t2), and for all 3 5 k 5 n:

Sn(tk) =

k−1
∑

j=1

αjxj(tk) + αk · 1 + 0 + · · ·+ 0

=

k−1
∑

j=1

αjxj(tk) +
(

y(tk) − α1x1(tk) − α2x2(tk) − · · · − αk−1xk−1(tk)
)

= y(tk).

In conclusion, we have Sn(tk) = y(tk) for all k ∈ {1, 2, · · · , n}. Fur-
thermore, since each function x1, x2, · · · , xn is linear at all points t /∈
{t1, · · · , tn}, so is the function Sn(t). Hence: Sn(t) is in fact the

piecewise linear function which satisfies Sn(tk) = y(tk) for all k ∈
{1, 2, · · · , n} and which is linear at all points t /∈ {t1, · · · , tn}.

From this, we can now prove that limn→∞ ||y−Sn|| = 0: Since y(t) is
continuous and [0, 1] is compact, y(t) is actually uniformly continuous
over [0, 1]. Hence, given ε > 0 there is some integer M ∈ Z

+ such that
for all t, t′ ∈ [0, 1] with |t − t′| < M−1 we have |y(t) − y(t′)| < ε. Since
the set {t1, t2, · · · } is dense in [0, 1] there is some number N ∈ Z

+ such
that each of the intervals

[0, 1
3M

], [ 1
3M

, 2
3M

], [ 2
3M

, 3
3M

], · · · , [3M−1
3M

, 1]

contains some point in {t1, t2, ..., tN}.
Let n be any number n = N . Then for any t ∈ [0, 1], if we let tj be

the point in {t1, t2, ..., tn} which lies closest below t, and let tk be the
point in {t1, t2, ..., tn} which lies closest above t, we have tj 5 t 5 tk
and |tk − tj| < M−1. [Proof: t belongs to some interval [ a

3M
, a+1

3M
],

a ∈ {0, 1, · · · , 3M − 1} and we know that both [ a+1
3M

, a+2
3M

] and [a−1
3M

, a
3M

]
contain some points from {t1, · · · , tn} (exceptional cases: If a = 0, use
t1 = 0. If a = 3M − 1, use t2 = 1.); hence we certainly have a−1

3M
5 tj

and tk 5 a+1
3M

; thus 0 5 tk − tj 5 2
3M

< M−1.]
It follows that |y(t) − y(tj)| < ε and |y(t) − y(tk)| < ε. Now

Sn(tj) = y(tj) and Sn(tk) = y(tk), and the function Sn is linear in the
interval [tj, tk], since by construction there are no other points from
{t1, t2, ..., tn} in [tj, tk]. Thus:

Sn(t) =
tk − t

tk − tj
Sn(tj) +

t − tj
tk − tj

Sn(tk).
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Hence:

|Sn(t) − y(t)| =

∣

∣

∣

∣

tk − t

tk − tj
(Sn(tj) − y(t)) +

t − tj
tk − tj

(Sn(tk) − y(t))

∣

∣

∣

∣

=

∣

∣

∣

∣

tk − t

tk − tj
(y(tj) − y(t)) +

t − tj
tk − tj

(y(tk) − y(t))

∣

∣

∣

∣

5
tk − t

tk − tj
· ε +

t − tj
tk − tj

· ε = ε.

The above argument works for any t ∈ [0, 1]. Hence |Sn(t) − y(t)| 5 ε
for any t ∈ [0, 1]. Hence ||Sn − y|| 5 ε. This is true for any n = N .

We have proved that for any ε > 0 there is some N ∈ Z
+ such that

||Sn − y|| 5 ε for all n = N . Hence limn→∞ ||y − Sn|| = 0. In other
words: limn→∞ ||y − (α1x1 + · · ·+ αnxn)|| = 0.

Hence we have proved that for every y ∈ C[0, 1] there is a unique
choice of scalars α1, α2, · · · ∈ R such that

lim
n→∞

||y − (α1x1 + · · ·+ αnxn)|| = 0.

This proves that x1, x2, x3, · · · is a Schauder basis for C[0, 1].


