Functional Analysis (2006)

Homework assignment 1

All students should solve the following problems:

1. (Part of Problem 6, §1.4.) Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be Cauchy sequences in a metric space (X, d), and let $a_{n}=d\left(x_{n}, y_{n}\right)$. Show that the sequence $\left(a_{n}\right)$ converges.
2. Let $a<b$ and let $C[a, b]$ be the metric space of real valued continuous functions from $[a, b]$ to \mathbb{R}, with metric $d(x, y)=\max _{t \in[a, b]}|x(t)-y(t)|$ (as in §1.1-7 in the book). Let

$$
D=\{x \in C[a, b] \mid x \text { is increasing }\} .
$$

(We say that $x \in C[a, b]$ is increasing if and only if $x\left(t_{1}\right) \leqq x\left(t_{2}\right)$ holds for all $t_{1}<t_{2}$ in $[a, b]$.) Prove that D is closed but not open.
3. Let X be the vector space of all sequences of complex numbers with only finitely many nonzero terms. Consider the following two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on X :

$$
\left\|\left(\xi_{j}\right)\right\|_{1}:=\sum_{j=1}^{\infty}\left|\xi_{j}\right| ; \quad\left\|\left(\xi_{j}\right)\right\|_{2}:=\sqrt{\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{2}}
$$

Prove that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are not equivalent.
4. Let $\tilde{B}(0 ; 1)=\left\{x \in \ell^{1} \mid\|x\| \leqq 1\right\}$ be the closed unit ball in ℓ^{1}, and let M be the subset

$$
M=\left\{\left(\xi_{j}\right) \in \tilde{B}(0 ; 1)| | \xi_{j} \mid \leqq j^{-1} \text { for all } j=1,2,3, \ldots\right\}
$$

Prove that M is not compact.
Students taking Functional Analysis as a 6 point course should also solve the following problems:
5. Let X be a normed space and let r be any number $r>1$. Assume that it is possible to cover the open ball $B(0 ; r)$ by a finite number of translates of the open unit ball $B(0 ; 1)$. (By a translate of a subset $M \subset X$ we mean any set of the form $v+M:=\{v+w \mid w \in M\}$ for some $v \in X$.) Prove that X is finite dimensional.
6. Let $t_{1}=0, t_{2}=1$ and let t_{3}, t_{4}, \ldots be any pairwise distinct points in the open interval $(0,1)$ such that the set $\left\{t_{1}, t_{2}, t_{3}, t_{4}, \ldots\right\}$ is dense in $[0,1]$. Let $x_{1} \in C[0,1]$ be the constant function $x_{1}(t)=1$, and for $j \geqq 2$ let $x_{j} \in C[0,1]$ be the piecewise linear function which satisfies $x_{j}\left(t_{1}\right)=x_{j}\left(t_{2}\right)=\ldots=x_{j}\left(t_{j-1}\right)=0$ and $x_{j}\left(t_{j}\right)=1$ (and is linear at all points $\left.t \notin\left\{t_{1}, t_{2}, \ldots, t_{j}\right\}\right)$. Prove that $x_{1}, x_{2}, x_{3}, \ldots$ is a Schauder basis for $C[0,1]$!

Solutions should be handed in by Friday, February 10. (Either give the solutions to me directly or put them in my mailbox, third floor, House 3, Polacksbacken.)

Functional Analysis F3/F4/NVP
 Solutions to homework assignment 1

1. We first prove that $\left(a_{n}\right)$ is a Cauchy sequence on the real line (with respect to its usual metric " $|x-y|$ "). Let $\varepsilon>0$ be given. Then since $\left(x_{n}\right)$ is Cauchy there is some integer N_{1} such that $d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}$ for all $m, n>N_{1}$. Also, since $\left(y_{n}\right)$ is Cauchy there is some integer N_{2} such that $d\left(y_{m}, y_{n}\right)<\frac{\varepsilon}{2}$ for all $m, n>N_{2}$. Let $N=\max \left(N_{1}, N_{2}\right)$.

Now let m, n be any integers with $m, n>N$. Then both $m, n>N_{1}$ and $m, n>N_{2}$, and hence $d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}$ and $d\left(y_{m}, y_{n}\right)<\frac{\varepsilon}{2}$. Hence by the generalized triangle inequality, see p.4(1):
$d\left(x_{n}, y_{n}\right) \leqq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)<\frac{\varepsilon}{2}+d\left(x_{m}, y_{m}\right)+\frac{\varepsilon}{2}=d\left(x_{m}, y_{m}\right)+\varepsilon$
and also
$d\left(x_{m}, y_{m}\right) \leqq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right)<\frac{\varepsilon}{2}+d\left(x_{n}, y_{n}\right)+\frac{\varepsilon}{2}=d\left(x_{n}, y_{n}\right)+\varepsilon$.
In other words we have proved

$$
a_{n}<a_{m}+\varepsilon \quad \text { and } \quad a_{m}<a_{n}+\varepsilon .
$$

Together these two inequalities imply $-\varepsilon<a_{n}-a_{m}<\varepsilon$, i.e.

$$
\left|a_{n}-a_{m}\right|<\varepsilon .
$$

In conclusion, we have proved that for all $m, n>N$ we have $\left|a_{n}-a_{m}\right|<\varepsilon$.
The above argument works for any $\varepsilon>0$; hence for any $\varepsilon>0$ there exists an integer N such that $m, n>N$ implies $\left|a_{n}-a_{m}\right|<\varepsilon$. Hence $\left(a_{n}\right)$ is a Cauchy sequence of real numbers! Hence by Theorem 1.4-4, the sequence $\left(a_{n}\right)$ is convergent, Q.E.D.
2. We first prove that D is closed, i.e. (by def 1.3-2) that D^{C} is open. Let $x \in D^{C}$. Then x is not increasing, i.e. there exist some numbers $t_{1}<t_{2}$ (with $\left.t_{1}, t_{2} \in[a, b]\right)$ such that $x\left(t_{1}\right)>x\left(t_{2}\right)$. Let $r=\frac{x\left(t_{1}\right)-x\left(t_{2}\right)}{3}$. (Of course, $r>0$.) We then claim that D^{C} contains the ball $B(x ; r)$, i.e. $B(x ; r) \subset D^{C}$. To prove this, let y be an arbitrary element in $B(x ; r)$. Then $d(x, y)<r$, and in particular $\left|x\left(t_{1}\right)-y\left(t_{1}\right)\right|<r$ and $\left|x\left(t_{2}\right)-y\left(t_{2}\right)\right|<r$. It follows that $y\left(t_{1}\right)>x\left(t_{1}\right)-r$ and $y\left(t_{2}\right)<x\left(t_{2}\right)+r$. But by our definition of r we have $x\left(t_{1}\right)=x\left(t_{2}\right)+3 r$. Using all these facts we obtain:

$$
y\left(t_{1}\right)>x\left(t_{1}\right)-r=x\left(t_{2}\right)+2 r>x\left(t_{2}\right)+r>y\left(t_{2}\right) .
$$

But remember here $t_{1}<t_{2}$; hence y is not an increasing function. Hence $y \in D^{C}$. This is true for every $y \in B(x ; r)$; hence we have proved $B(x ; r) \subset D^{C}$. But $x \in D^{C}$ was arbitrary; hence for every $x \in D^{C}$ there is some $r>0$ such that $B(x ; r) \subset D^{C}$. This proves that D^{C} is open. Hence D is closed, Q.E.D.

Next we prove that D is not open. Let us choose x as the constant function $x(t)=0$ for all $t \in[a, b]$. Clearly x is an increasing continuous function, i.e. $x \in D$. Let $r>0$ be arbitrary and consider the ball $B(x ; r)$. Clearly there is a continuous function $y \in B(x ; r)$ which is not increasing, for example we may take $y(t)=\frac{r}{2} \cdot \frac{b-x}{b-a}$. (This is the linear function with $y(a)=\frac{r}{2}, y(b)=0$.) Hence, we have found a function $y \in B(x ; r)$ with $y \notin D$. It follows that $B(x ; r)$ is not contained in D. The above argument works for each $r>0$, hence D does not contain any ball about the point $x \in D$. Hence D is not open, Q.E.D.
3. Assume that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent (this will be shown to lead to a contradiction). Then there are some numbers $a, b>0$ such that $a\|x\|_{1} \leqq\|x\|_{2} \leqq b\|x\|_{1}$ for all $x \in X$.

We then let n be any integer which is greater than a^{-2}, and let $x \in X$ be the sequence whose first n entries equal n^{-1} and all the other entries equal 0 . In other words, $x=\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)$ where $\xi_{j}=n^{-1}$ for $j=1,2, \cdots, n$ and $\xi_{j}=0$ for all $j>n$. We now compute:

$$
\|x\|_{1}=\sum_{j=1}^{n} n^{-1}=1
$$

and

$$
\|x\|_{2}=\sqrt{\sum_{j=1}^{n} n^{-2}}=\sqrt{n^{-1}}=n^{-\frac{1}{2}} .
$$

Hence since we are assuming $a\|x\|_{1} \leqq\|x\|_{2}$ it follows that $a \leqq n^{-\frac{1}{2}}$, i.e. $n \leqq a^{-2}$. This contradicts our original choice of n, where we took n so that $n>a^{-2}$.

Hence we have seen that the assumption that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent leads to a contradiction. Hence $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are not equivalent.

Remark: However, the other inequality, $\|x\|_{2} \leqq b\|x\|_{1}$ is actually true, with constant $b=1$! Proof: For every $x=\left(\xi_{j}\right) \in X$ we have

$$
\left\|\left(\xi_{j}\right)\right\|_{2}=\sqrt{\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{2}} \leqq \sqrt{\left(\sum_{j=1}^{\infty}\left|\xi_{j}\right|\right)^{2}}=\sum_{j=1}^{\infty}\left|\xi_{j}\right|=\left\|\left(\xi_{j}\right)\right\|_{1}
$$

4. For each $n=1,2,3, \cdots$ we define x_{n} as the sequence $x_{n}=$ $\left(2^{-n}, 2^{-n}, \cdots, 2^{-n}, 0,0, \cdots\right)$, where the entries 2^{-n} start at position 1 and end at position 2^{n}. In other words:

$$
\begin{aligned}
& x_{1}=\left(\frac{1}{2}, \frac{1}{2}, 0,0,0, \cdots\right) ; \\
& x_{2}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0,0,0, \cdots\right) ; \\
& x_{3}=\left(\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, 0,0,0, \cdots\right) ;
\end{aligned}
$$

The ℓ^{1} norm of x_{n} is $\left\|x_{n}\right\|=2^{n} \cdot 2^{-n}=1$, hence $x_{n} \in \tilde{B}(0 ; 1)$. We also see that $x_{n} \in M$, for if we write $x_{n}=\left(\xi_{j}^{(n)}\right)$ then we have for all $j \leqq 2^{n}$: $\left|\xi_{j}^{(n)}\right|=\left|2^{-n}\right|=2^{-n} \leqq j^{-1}$, and for all $j>2^{n}:\left|\xi_{j}^{(n)}\right|=0 \leqq j^{-1}$. Hence $\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ is a sequence of points in M.

However, the distance between any two points in the sequence $\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ is $\geqq 1$. [Proof: For any $1 \leqq n<m$ we have

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\| & =\sum_{j=1}^{2^{n}}\left|2^{-n}-2^{-m}\right|+\sum_{j=2^{n}+1}^{2^{m}}\left|0-2^{-m}\right|+\sum_{j=2^{m}+1}^{\infty}|0-0| \\
& =2^{n}\left(2^{-n}-2^{-m}\right)+\left(2^{m}-2^{n}\right) 2^{-m}+0 \\
& =1-2^{n-m}+1-2^{n-m}=2\left(1-2^{n-m}\right) \geqq 2 \cdot\left(1-\frac{1}{2}\right)=1
\end{aligned}
$$

since $2^{n-m} \leqq \frac{1}{2}$ because $n<m$.]
Since any two points in the sequence $\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ have distance $\geqq 1$, it follows that no subsequence of $\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ can be Cauchy; hence our sequence does not contain any convergent subsequence! Hence we have seen that there is a sequence in M which does not have any convergent subsequence; this means that M is not compact.
5. Assume that $B(0 ; r)$ is covered by the translates

$$
v_{1}+B(0 ; 1), v_{2}+B(0 ; 1), \cdots, v_{n}+B(0 ; 1)
$$

for some vectors $v_{1}, \cdots, v_{n} \in X$. Let $Y=\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}$. Note that Y is a closed subset of X, by Theorem 2.4-3 on p. 74 .

Let us assume that Y is a proper subset of X, i.e. $Y \neq X$. Let θ and r_{1} be any numbers with $1<\theta^{-1}<r_{1}<r$. Then by Riesz' Lemma (2.5-4 on p. 78), applied with $Z=X$, there is a vector $x \in X$ with $\|x\|=1$ and $\|x-y\| \geqq \theta$ for all $y \in Y$. Multiplying by r_{1} we then obtain $\left\|r_{1} x\right\|=r_{1}<r$, i.e. $r_{1} x \in B(0 ; r)$. We also obtain $\left\|r_{1} x-r_{1} y\right\| \geqq r_{1} \theta>1$ for all $y \in Y$. In particular, taking $y=r_{1}^{-1} v_{j} \in Y$ we see that $\left\|r_{1} x-v_{j}\right\|>1$ for each $j=1,2, \cdots, n$. This means that $r_{1} x \notin v_{j}+B(0 ; 1)$, for each $j=1,2, \cdots, n$. Hence the sets $v_{1}+B(0 ; 1)$, $v_{2}+B(0 ; 1), \cdots, v_{n}+B(0 ; 1)$ do not cover $B(0 ; r)$, a contradiction to our assumption above.

Hence the assumption $Y \neq X$ must be false; thus $Y=X$! In other words, $X=\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}$, and this proves that X is finite dimensional, $\operatorname{dim} X \leqq n$.
6. Let $y \in C[0,1]$ and assume that there are numbers $\alpha_{1}, \alpha_{2}, \cdots \in \mathbb{R}$ such that

$$
\left\|y-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Fix some $j \in\{1,2, \cdots\}$. Note that $x_{j}\left(t_{j}\right)=1$ and $x_{k}\left(t_{j}\right)=0$ for all $k>j$, hence for all $n \geqq j$ we have $\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\left(t_{j}\right)=$ $\alpha_{j}+\sum_{k=1}^{j-1} \alpha_{k} x_{k}\left(t_{j}\right)$. Now by the definition of the norm $\|\cdot\|$ in $C[0,1]$, $\left\|y-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\right\| \rightarrow 0$ implies that

$$
\lim _{n \rightarrow \infty}\left|y\left(t_{j}\right)-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\left(t_{j}\right)\right|=0
$$

i.e. $\lim _{n \rightarrow \infty}\left|y\left(t_{j}\right)-\left(\alpha_{j}+\sum_{k=1}^{j-1} \alpha_{k} x_{k}\left(t_{j}\right)\right)\right|=0$. Since the expression here does not depend on n, this implies $\alpha_{j}=y\left(t_{j}\right)-\sum_{k=1}^{j-1} \alpha_{k} x_{k}\left(t_{j}\right)$. This is true for each $j=1,2, \cdots$, i.e.:

$$
\left\{\begin{array}{l}
\alpha_{1}=y\left(t_{1}\right) ; \tag{*}\\
\alpha_{2}=y\left(t_{2}\right)-\alpha_{1} x_{1}\left(t_{2}\right) \\
\alpha_{3}=y\left(t_{3}\right)-\alpha_{1} x_{1}\left(t_{3}\right)-\alpha_{2} x_{2}\left(t_{3}\right) \\
\cdots \\
\alpha_{j}=y\left(t_{j}\right)-\alpha_{1} x_{1}\left(t_{j}\right)-\alpha_{2} x_{2}\left(t_{j}\right)-\cdots-\alpha_{j-1} x_{j-1}\left(t_{j}\right) \\
\cdots
\end{array}\right.
$$

This proves that for any $y \in C[0,1]$ there is at most one choice of scalars $\alpha_{1}, \alpha_{2}, \cdots \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty}\left\|y-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\right\|=0$.

We now prove that the choice of scalars in $\left(^{*}\right)$ above really works, i.e. that if we choose $\alpha_{1}, \alpha_{2}, \cdots \in \mathbb{R}$ as in $\left(^{*}\right)$ then we indeed have $\lim _{n \rightarrow \infty}\left\|y-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\right\|=0$.

Fix any $n \geqq 3$, and let $S_{n}=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n} \in C[0,1]$. Then $S_{n}\left(t_{1}\right)=\alpha_{1} \cdot 1+0+\cdots+0=\alpha_{1}=y\left(t_{1}\right)$ and $S_{n}\left(t_{2}\right)=\alpha_{1} x_{1}\left(t_{2}\right)+\alpha_{2}+$ $0+\cdots+0=y\left(t_{2}\right)$, and for all $3 \leqq k \leqq n$:

$$
\begin{aligned}
& S_{n}\left(t_{k}\right)=\sum_{j=1}^{k-1} \alpha_{j} x_{j}\left(t_{k}\right)+\alpha_{k} \cdot 1+0+\cdots+0 \\
& =\sum_{j=1}^{k-1} \alpha_{j} x_{j}\left(t_{k}\right)+\left(y\left(t_{k}\right)-\alpha_{1} x_{1}\left(t_{k}\right)-\alpha_{2} x_{2}\left(t_{k}\right)-\cdots-\alpha_{k-1} x_{k-1}\left(t_{k}\right)\right)=y\left(t_{k}\right)
\end{aligned}
$$

In conclusion, we have $S_{n}\left(t_{k}\right)=y\left(t_{k}\right)$ for all $k \in\{1,2, \cdots, n\}$. Furthermore, since each function $x_{1}, x_{2}, \cdots, x_{n}$ is linear at all points $t \notin$ $\left\{t_{1}, \cdots, t_{n}\right\}$, so is the function $S_{n}(t)$. Hence: $S_{n}(t)$ is in fact the piecewise linear function which satisfies $S_{n}\left(t_{k}\right)=y\left(t_{k}\right)$ for all $k \in$ $\{1,2, \cdots, n\}$ and which is linear at all points $t \notin\left\{t_{1}, \cdots, t_{n}\right\}$.

From this, we can now prove that $\lim _{n \rightarrow \infty}\left\|y-S_{n}\right\|=0$: Since $y(t)$ is continuous and $[0,1]$ is compact, $y(t)$ is actually uniformly continuous over $[0,1]$. Hence, given $\varepsilon>0$ there is some integer $M \in \mathbb{Z}^{+}$such that for all $t, t^{\prime} \in[0,1]$ with $\left|t-t^{\prime}\right|<M^{-1}$ we have $\left|y(t)-y\left(t^{\prime}\right)\right|<\varepsilon$. Since the set $\left\{t_{1}, t_{2}, \cdots\right\}$ is dense in $[0,1]$ there is some number $N \in \mathbb{Z}^{+}$such that each of the intervals

$$
\left[0, \frac{1}{3 M}\right],\left[\frac{1}{3 M}, \frac{2}{3 M}\right],\left[\frac{2}{3 M}, \frac{3}{3 M}\right], \cdots,\left[\frac{3 M-1}{3 M}, 1\right]
$$

contains some point in $\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$.
Let n be any number $n \geqq N$. Then for any $t \in[0,1]$, if we let t_{j} be the point in $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ which lies closest below t, and let t_{k} be the point in $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ which lies closest above t, we have $t_{j} \leqq t \leqq t_{k}$ and $\left|t_{k}-t_{j}\right|<M^{-1}$. [Proof: t belongs to some interval $\left[\frac{a}{3 M}, \frac{a+1}{3 M}\right]$, $a \in\{0,1, \cdots, 3 M-1\}$ and we know that both $\left[\frac{a+1}{3 M}, \frac{a+2}{3 M}\right]$ and $\left[\frac{a-1}{3 M}, \frac{a}{3 M}\right]$ contain some points from $\left\{t_{1}, \cdots, t_{n}\right\}$ (exceptional cases: If $a=0$, use $t_{1}=0$. If $a=3 M-1$, use $t_{2}=1$.); hence we certainly have $\frac{a-1}{3 M} \leqq t_{j}$ and $t_{k} \leqq \frac{a+1}{3 M}$; thus $0 \leqq t_{k}-t_{j} \leqq \frac{2}{3 M}<M^{-1}$.]

It follows that $\left|y(t)-y\left(t_{j}\right)\right|<\varepsilon$ and $\left|y(t)-y\left(t_{k}\right)\right|<\varepsilon$. Now $S_{n}\left(t_{j}\right)=y\left(t_{j}\right)$ and $S_{n}\left(t_{k}\right)=y\left(t_{k}\right)$, and the function S_{n} is linear in the interval $\left[t_{j}, t_{k}\right]$, since by construction there are no other points from $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ in $\left[t_{j}, t_{k}\right]$. Thus:

$$
S_{n}(t)=\frac{t_{k}-t}{t_{k}-t_{j}} S_{n}\left(t_{j}\right)+\frac{t-t_{j}}{t_{k}-t_{j}} S_{n}\left(t_{k}\right)
$$

Hence:

$$
\begin{aligned}
\left|S_{n}(t)-y(t)\right| & =\left|\frac{t_{k}-t}{t_{k}-t_{j}}\left(S_{n}\left(t_{j}\right)-y(t)\right)+\frac{t-t_{j}}{t_{k}-t_{j}}\left(S_{n}\left(t_{k}\right)-y(t)\right)\right| \\
& =\left|\frac{t_{k}-t}{t_{k}-t_{j}}\left(y\left(t_{j}\right)-y(t)\right)+\frac{t-t_{j}}{t_{k}-t_{j}}\left(y\left(t_{k}\right)-y(t)\right)\right| \\
& \leqq \frac{t_{k}-t}{t_{k}-t_{j}} \cdot \varepsilon+\frac{t-t_{j}}{t_{k}-t_{j}} \cdot \varepsilon=\varepsilon .
\end{aligned}
$$

The above argument works for any $t \in[0,1]$. Hence $\left|S_{n}(t)-y(t)\right| \leqq \varepsilon$ for any $t \in[0,1]$. Hence $\left\|S_{n}-y\right\| \leqq \varepsilon$. This is true for any $n \geqq N$.

We have proved that for any $\varepsilon>0$ there is some $N \in \mathbb{Z}^{+}$such that $\left\|S_{n}-y\right\| \leqq \varepsilon$ for all $n \geqq N$. Hence $\lim _{n \rightarrow \infty}\left\|y-S_{n}\right\|=0$. In other words: $\lim _{n \rightarrow \infty}\left\|y-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\right\|=0$.

Hence we have proved that for every $y \in C[0,1]$ there is a unique choice of scalars $\alpha_{1}, \alpha_{2}, \cdots \in \mathbb{R}$ such that

$$
\lim _{n \rightarrow \infty}\left\|y-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\right\|=0
$$

This proves that $x_{1}, x_{2}, x_{3}, \cdots$ is a Schauder basis for $C[0,1]$.

