
Functional Analysis (2006)

Homework assignment 2

All students should solve the following problems:

1. Define T : C[0, 1] → C[0, 1] by (Tx)(t) = t
∫ t

0
x(s) ds. Prove that this

is a bounded linear operator, and compute ||T ||. Also prove that the
inverse T−1 : R(T ) → C[0, 1] exists but is not bounded.

2. Let

M =
{

x ∈ L2[0, 1] :

∫ 1

0

x(t) dt = 0,

∫ 1

0

tx(t) dt = 0,

∫ 1

0

t2x(t) dt = 0
}

.

Given x ∈ L2[0, 1], find a formula for the vector in M which lies
closest to x (in the L2[0, 1]-norm).

3. (Problem §3.9: 4). Let H1 and H2 be two Hilbert spaces and let
T : H1 → H2 be a bounded linear operator. Suppose that we are
given subsets M1 ⊂ H1 and M2 ⊂ H2 such that T (M1) ⊂ M2. Prove
that M⊥

1 ⊃ T ∗(M⊥
2 ).

4. Let a, b be two positive real numbers. Let x be a vector in a normed
space X and assume that |f(x)| 5 a holds for all f ∈ X ′ with
||f || 5 b. Prove that ||x|| 5 a/b.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Let Y1, Y2, Y3, · · · be closed linear subspaces of the Hilbert space H,
such that Yj ⊥ Yk for all 1 5 j < k, and

⋂∞
j=1 Y ⊥

j = {0}. Prove that
for every vector v ∈ H there is a unique choice of vectors y1 ∈ Y1,
y2 ∈ Y2, y3 ∈ Y3, · · · such that

∑∞
j=1 yj = v in H.

6. Let Y be a subspace of a Banach space X. The annihilator Y a is
defined as the subspace Y a := {f ∈ X ′ : f(y) = 0, ∀y ∈ Y } of X ′

(cf. §2.10, problem 13). Hence Y aa = (Y a)a is a subspace of X ′′. Let
C : X → X ′′ be the canonical map. Prove that C(Y ) ⊂ Y aa. Also
prove that if X is reflexive and Y is closed then C(Y ) = Y aa.

Solutions to problems 1-4 should be handed in by Friday, Feb-
ruary 24. Solutions to problems 5-6 should be handed in by
Monday, March 13. (Either give the solutions to me directly or put
them in my mailbox, third floor, House 3, Polacksbacken.)
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Functional Analysis

Solutions to homework assignment 2

1. For all x1, x2 ∈ C[0, 1] and all α, β ∈ R and all t ∈ [0, 1] we have

(T (αx1 + βx2))(t) = t

∫ t

0

(αx1 + βx2)(s) ds

= αt

∫ t

0

x1(s) ds + βt

∫ t

0

x2(s) ds

= αTx1(t) + βTx2(t)

= (αTx1 + βTx2)(t);

hence

T (αx1 + βx2) = αTx1 + βTx2,

and this shows that T is linear.
Furthermore, for each x ∈ C[0, 1] we have:

||Tx|| = max
t∈[0,1]

∣

∣

∣

∣

t

∫ t

0

x(s) ds

∣

∣

∣

∣

5 max
t∈[0,1]

|t|
∫ t

0

|x(s)| ds

5 max
t∈[0,1]

t

∫ t

0

||x|| ds = max
t∈[0,1]

t2 · ||x|| = ||x||.

Hence T is bounded with ||T || 5 1. In fact if we take x as the constant

function x(t) = 1 then ||x|| = 1 and (Tx)(t) = t
∫ t

0
x(s) ds = t2, hence

||Tx|| = maxt∈[0,1] |t2| = 1. But ||Tx|| 5 ||T ||·||x||, i.e. 1 5 ||T ||. Hence
we have proved both ||T || 5 1 and ||T || = 1. It follows that ||T || = 1.

Now assume that x ∈ C[0, 1] satisfies Tx = 0, i.e. t
∫ t

0
x(s) ds = 0

for all t ∈ [0, 1]. It then follows that
∫ t

0
x(s) ds = 0 for all t ∈ (0, 1],

and thus by differentiation with respect to t we get x(t) = 0 for all
t ∈ (0, 1]. Since x(t) is continuous we then also have x(0) = 0. Hence
x = 0. We have thus proved

∀x ∈ C[0, 1] :
(

Tx = 0 =⇒ x = 0
)

.

Hence by Theorem 2.6-10(a), T−1 exists.
Given any n ∈ Z

+ we let xn(t) = tn. Then xn ∈ C[0, 1] and ||xn|| =
maxt∈[0,1] |tn| = 1. We let

yn(t) = Txn(t) = t

∫ t

0

sn ds = (n + 1)−1tn+2.



3

Then ||yn|| = maxt∈[0,1] |(n + 1)−1tn+2| = (n + 1)−1. Also, by construc-
tion, yn ∈ R(T ) and T−1yn = xn; thus ||T−1yn|| = ||xn|| = 1. This
shows that T−1 cannot be bounded. (For if T−1 were bounded then we
would have ||T−1yn|| 5 ||T−1|| · ||yn||, i.e. 1 5 ||T−1|| · (n + 1)−1, for all
n ∈ Z+. This is impossible.)

2. Let f1, f2, f3 ∈ L2[0, 1] be given by f1(t) = 1, f2(t) = t, f3(t) = t2.
The definition of M says that x ∈ L2[0, 1] belongs to M if and only if
x is orthogonal to f1, f2, f3. That is:

M = {f1, f2, f3}⊥ = (Span{f1, f2, f3})⊥.

(The last identity holds since 〈x, f1〉 = 〈x, f2〉 = 〈x, f3〉 = 0 implies
〈x, c1f1 + c2f2 + c3f3〉 = 0, for all c1, c2, c3 ∈ C.) Let

Y = Span{f1, f2, f3} (so that M = Y ⊥).

This is a closed subspace of L2[0, 1] since it is finite dimensional (The-
orem 2.4-3), and hence by Theorem 3.3-4, L2[0, 1] decomposes as a
direct sum

L2[0, 1] = Y ⊕ Y ⊥ = Y ⊕ M.

This means that given any x ∈ L2[0, 1] there exist unique vectors y ∈ Y
and z ∈ M such that x = y+z. It is easy to see that in this situation z is

the vector in M which lies closest to x,1 i.e. ∀v ∈ M : ||v−x|| = ||z−x||.
[Proof: If v is an arbitrary vector in M then also v−z ∈ M = Y ⊥, and
since y ∈ Y we then have 〈v − z, y〉 = 0; hence we may use Pythagoras
theorem: ||v−x||2 = ||v−z+z−x||2 = ||v−z−y||2 = ||v−z||2+||y||2 =

||y||2 = ||z − x||2, and the proof is complete.]

1This is also, in principle, seen in the book in the proof of Theorem 3.3-4. Note

that y is the orthogonal projection of x on Y , and z is the orthogonal projection of

x on M ; this concept is discussed in the book on p. 147.
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To determine a formula for z as a function of x we first use Gram-
Schmidt to find an orthonormal basis in Y = Span{f1, f2, f3}:
ẽ1 = f1 = 1;

e1 =
ẽ1

||ẽ1||
= 1;

ẽ2 = f2 − 〈f2, e1〉e1 = t − 1
2
· 1 = t − 1

2
;

e2 =
ẽ2

||ẽ2||
=

√
3(2t − 1);

ẽ3 = f3 − 〈f3, e1〉e1 − 〈f3, e2〉e2 = t2 − 1
3
· 1 −

√
3

6
·
√

3(2t − 1) = t2 − t + 1
6

e3 =
ẽ3

||ẽ3||
=

√
5(6t2 − 6t + 1).

Now since y ∈ Y we must have y = c1e1 +c2e2+c3e3 for some constants
c1, c2, c3 ∈ C. We also have x − y = z ∈ M = Y ⊥ and hence for each
j = 1, 2, 3, since ej ∈ Y , we have:

0 = 〈x − y, ej〉 = 〈x, ej〉 − 〈c1e1 + c2e2 + c3e3, ej〉 = 〈x, ej〉 − cj.

Hence cj = 〈x, ej〉. It follows that

z = x − y = x − (c1e1 + c2e2 + c3e3)

= x − 〈x, e1〉e1 − 〈x, e2〉e2 − 〈x, e3〉e3.

Answer: The vector z ∈ M which lies closest to x is

z = x − 〈x, e1〉e1 − 〈x, e2〉e2 − 〈x, e3〉e3,

i.e.

z(t) = x(t) −
∫ 1

0

x(s) ds − 3(2t − 1) ·
∫ 1

0

x(s)(2s − 1) ds

− 5(6t2 − 6t + 1) ·
∫ 1

0

x(s)(6s2 − 6s + 1) ds.

3. Let v be an arbitrary vector in T ∗(M⊥
2 ). Then there is some w ∈ M⊥

2

such that v = T ∗(w). Since w ∈ M⊥
2 we know that 〈w, x〉 = 0 for every

vector x ∈ M2.
Now let y be an arbitrary vector in M1. Then

〈v, y〉 = 〈T ∗(w), y〉 = 〈w, T (y)〉.
But we have T (y) ∈ M2, since y ∈ M1 and T (M1) ⊂ M2. Also recall
w ∈ M⊥

2 . From these two facts T (y) ∈ M2 and w ∈ M⊥
2 it follows that
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〈w, T (y)〉 = 0. Hence from the above computation we see:

〈v, y〉 = 0.

This is true for every y ∈ M1. Hence v ∈ M⊥
1 .

We have proved that for every v ∈ T ∗(M⊥
2 ) we have v ∈ M⊥

1 . Hence
T ∗(M⊥

2 ) ⊂ M⊥
1 , Q.E.D.

4. By Theorem 4.3-3 there exists an f0 ∈ X ′ such that ||f0|| = 1 and
f0(x) = ||x||. Let f = bf0; then ||f || = b||f0|| = b. In particular ||f || 5

b and hence by the assumption in the problem we have |f(x)| 5 a.
On the other hand |f(x)| = |bf0(x)| = b · |f0(x)| = b · ||x||. Hence
b · ||x|| 5 a, i.e. ||x|| 5 a/b, Q.E.D.

Alternative solution:2

By Corollary 4.3-4 we have

(∗) ||x|| = sup
f∈X′−{0}

|f(x)|
||f || .

Now let f be an arbitrary element in X ′ − {0}, as in the above supre-
mum. Set c = ||f ||; then c > 0 since f 6= 0. Set f0 = (b/c)f ∈ X ′;
then ||f0|| = (b/c)||f || = (b/c) · c = b. Hence by the assumption

in the problem text we have |f0(x)| 5 a. But f = (c/b)f0, hence
|f(x)| = (c/b)|f0(x)| 5 (c/b)a = ca/b, and

|f(x)|
||f || =

|f(x)|
c

5
ca/b

c
=

a

b
.

We have proved that this is true for every f ∈ X ′ − {0}. Hence the
supremum in (∗) is 5 a/b, i.e. we have proved

||x|| 5
a

b
,

Q.E.D.

2In some sense this is actually exactly the same solution as the first one, but in

a different language.
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5. We first prove uniqueness. Let v ∈ H be given. Assume that the
vectors y1 ∈ Y1, y2 ∈ Y2, y3 ∈ Y3, · · · are such that

∑∞
j=1 yj = v,

i.e. limN→∞

∑N

j=1 yj = v. Take any k ∈ {1, 2, 3, . · · · } and any vector

w ∈ Yk; we then have (using Lemma 3.2-2)

〈v, w〉 = 〈 lim
N→∞

N
∑

j=1

yj, w〉 = lim
N→∞

〈
N

∑

j=1

yj, w〉 = lim
N→∞

N
∑

j=1

〈yj, w〉.

But for each j 6= k we have 〈yj, w〉 = 0 since yj ∈ Yj, w ∈ Yk and
Yj ⊥ Yk. Hence we can continue the computation:

= lim
N→∞

〈yk, w〉 = 〈yk, w〉.

Hence we have proved 〈v, w〉 = 〈yk, w〉, i.e. 〈v−yk, w〉 = 0. This is true
for every w ∈ Yk. Hence v− yk ∈ Y ⊥

k . But Theorem 3.3-4 says that we
have a direct sum H = Yk ⊕ Y ⊥

k , and now from yk ∈ Yk, v − yk ∈ Y ⊥
k

we see that v = yk + (v − yk) is the unique decomposition of v in this
direct sum. Hence yk is the orthogonal projection of v on Yk (cf. p.
147). This proves that yk is uniquely determined from v. This is true
for every k ∈ {1, 2, 3, · · · }.

We next prove that every vector can actually be expressed as a sum
in the stated way. Let v ∈ H be given. For each k ∈ {1, 2, 3, · · · }
we let yk be the orthogonal projection of v on Yk (this construction is
of course suggested by the uniqueness proof above). We now wish to
prove

∑∞
j=1 yj = v.

For each j with yj 6= 0 we let ej = ||yj||−1 · yj; then these vec-
tors ej (where we throw away those indices j for which yj = 0) form
an orthonormal sequence, and hence by part (c) of the “main theo-
rem about Hilbert bases” as I formulated it in my lecture, we have
∑∞

j=1 |〈v, ej〉|2 5 ||v||2 (this is Bessel’s inequality, Theorem 3.4-6 in

the book), and (hence)
∑∞

j=1〈v, ej〉 · ej is a convergent sum (cf. Theo-

rem 3.5-2(a) in the book). But by definition of orthogonal projection
we have v − yj ∈ Y ⊥

j for each j, and in particular v − yj ⊥ yj, thus
〈v−yj, yj〉 = 0. This gives 〈v, yj〉 = 〈yj, yj〉 = ||yj||2 and thus if yj 6= 0:

〈v, ej〉 · ej = ||yj||−1 · 〈v, yj〉 · ej = ||yj||−1 · ||yj||2 · ej = yj.

Hence what we have proved is that the sum
∑∞

j=1 yj is convergent!
Let us write

v0 =
∞

∑

j=1

yj ∈ H.
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We now have for every k = 1 and every w ∈ Yk, by arguing as in
the first part of this solution: 〈v0, w〉 = 〈yk, w〉. Hence 〈v − v0, w〉 =
〈v−yk, w〉 = 0, since v−yk ⊥ Yk because yk is the orthogonal projection
of v on Yk. This is true for every w ∈ Yk, hence

v − v0 ∈ Y ⊥
k .

This is true for every k = 1, hence

v − v0 ∈ ∩∞
k=1Y

⊥
k = {0}.

Hence

v = v0 =

∞
∑

j=1

yj,

Q.E.D.

6. Take an arbitrary vector y ∈ Y . Then for every f ∈ Y a we have
(C(y))(f) = f(y) = 0. Hence C(y) ∈ Y aa. This proves that C(Y ) ⊂
Y aa.

Next assume that X is reflexive and Y is closed. Take an arbitrary
vector y0 ∈ Y aa. (Thus y0 ∈ X ′′.) Since X is reflexive C is surjective,
hence there is some vector x ∈ X such that y0 = C(x). Since y0 ∈ Y aa

we have, for all f ∈ Y a:

0 = y0(f) = (C(x))(f) = f(x).

Now assume x /∈ Y . Then (since Y is closed!) by Lemma 4.6-7 there
exists a g ∈ X ′ such that ||g|| = 1, g(y) = 0 for all y ∈ Y (i.e. g ∈ Y a),
and g(x) = δ = infy∈Y ||y − x|| > 0. Hence we have both g ∈ Y a and
g(x) > 0; this contradicts the fact from above that f(x) = 0, ∀f ∈ Y a!
Hence the assumption x /∈ Y must be discarded. Thus x ∈ Y . Hence
from y0 = C(x) we see y0 ⊂ C(Y ).

This is true for every y0 ∈ Y aa. This proves Y aa ⊂ C(Y ).
Together with C(Y ) ⊂ Y aa this proves C(Y ) = Y aa.


