Functional Analysis (2006)

Homework assignment 3

All students should solve the following problems:

1. (§4.8: Problem 4.) Show that if the sequence $\left(x_{n}\right)$ in a normed space X is weakly convergent to $x_{0} \in X$, then $\liminf _{n \rightarrow \infty}\left\|x_{n}\right\| \geqq\left\|x_{0}\right\|$. (Hint: You may find Theorem 4.3-3 useful.)
2. Let $T_{1}, T_{2}, T_{3}, \cdots$ be the following bounded linear operators $\ell^{1} \rightarrow \ell^{\infty}$:

$$
\begin{aligned}
& T_{1}\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)\right)=\left(\xi_{1}, \xi_{1}, \xi_{1}, \xi_{1}, \xi_{1}, \cdots\right) ; \\
& T_{2}\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)\right)=\left(\xi_{1}, \xi_{2}, \xi_{2}, \xi_{2}, \xi_{2}, \cdots\right) ; \\
& T_{3}\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)\right)=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{3}, \xi_{3}, \cdots\right) ; \\
& \text { etc. }
\end{aligned}
$$

Prove that the sequence $\left(T_{n}\right)$ is strongly operator convergent. Also prove that $\left(T_{n}\right)$ is not uniformly operator convergent.
3. Define $T: \ell^{1} \rightarrow \ell^{1}$ by

$$
T\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(\xi_{2}, \xi_{3}, \ldots\right)
$$

Determine the four sets $\rho(T), \sigma_{p}(T), \sigma_{c}(T), \sigma_{r}(T)$.
4. Let $T: H \rightarrow H$ be a compact and self-adjoint operator on a Hilbert space H. We say that T is positive if $\langle T x, x\rangle \geqq 0$ holds for every $x \in H$. Prove that T is positive if and only if each eigenvalue λ of T satisfies $\lambda \geqq 0$.

Students taking Functional Analysis as a 6 point course should also solve the following problems:
5. Let S and T be bounded self-adjoint operators on a Hilbert space H. Let $\mathcal{E}=\left(E_{\lambda}\right)$ be the spectral family associated with T and let $\mathcal{F}=\left(F_{\mu}\right)$ be the spectral family associated with S. Prove that $T S=S T$ holds if and only if $E_{\lambda} F_{\mu}=F_{\mu} E_{\lambda}$ for all $\lambda, \mu \in \mathbb{R}$.
6. Let T be a (possibly unbounded) symmetric operator on a Hilbert space H. Prove that the following three statements are equivalent:
(a) T is self-adjoint.
(b) T is closed and $\mathcal{N}\left(T^{*}-i\right)=\mathcal{N}\left(T^{*}+i\right)=\{0\}$.
(c) $\mathcal{R}(T-i)=\mathcal{R}(T+i)=H$.
[Hints. (Partial score is given for proof of any fact mentioned in the following hints.) To prove $(\mathrm{b}) \Rightarrow(\mathrm{c})$ one may first prove that $\mathcal{N}\left(T^{*}-i\right)=\{0\}$ implies $\mathcal{R}(T-i)^{\perp}=\{0\}$ so that $\mathcal{R}(T-i)$ is dense in H. To prove $\mathcal{R}(T-i)=H$ it then suffices to prove that $\mathcal{R}(T-i)$ is closed; to do this it may be useful to note $\|(T+i) w\|^{2}=$ $\|T w\|^{2}+\|w\|^{2}, \forall w \in \mathcal{D}(T)$ (proof?), and use the fact ((b)) that T is closed.
To prove $(\mathrm{c}) \Rightarrow(\mathrm{a})$ one may first prove that $\mathcal{R}(T-i)=H$ implies $\mathcal{N}\left(T^{*}+i\right)=\{0\}$. One then uses this (plus other observations!) to prove $\mathcal{D}\left(T^{*}\right) \subset \mathcal{D}(T)$, which implies (a).]

Solutions to problems 1-4 should be handed in by Monday, March 13. Solutions to problems 5-6 should be handed in by Tuesday, April 18. (Either give the solutions to me directly or put them in my mailbox, third floor, House 3, Polacksbacken.)

Functional Analysis

Solutions to homework assignment 3

1. If $x_{0}=0$ then $\left\|x_{0}\right\|=0$ and the statement is obviously true. Now assume $x_{0} \neq 0$. Then by Theorem 4.3-3 there is some $f \in X^{\prime}$ such that $\|f\|=1$ and $f\left(x_{0}\right)=\left\|x_{0}\right\|$. Since $\left(x_{n}\right)$ is weakly convergent to x_{0} we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)=\left\|x_{0}\right\|$. But $f\left(x_{n}\right) \leqq\left|f\left(x_{n}\right)\right| \leqq$ $\|f\| \cdot\left\|x_{n}\right\|=\left\|x_{n}\right\|$. Hence $\liminf _{n \rightarrow \infty}\left\|x_{n}\right\| \geqq \lim _{n \rightarrow \infty} f\left(x_{n}\right)=\left\|x_{0}\right\|$, Q.E.D.
2. Let $T: \ell^{1} \rightarrow \ell^{\infty}$ be the bounded linear operator given by

$$
T\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)\right)=\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)
$$

(T is obviously linear, and it is bounded with norm $\|T\| \leqq 1$, for if $\left(\xi_{j}\right) \in \ell^{1}$ then $\sum_{k=1}^{\infty}\left|\xi_{k}\right|=\left\|\left(\xi_{j}\right)\right\|_{\ell^{1}}<\infty$ and hence $\left|\xi_{k}\right| \leqq\left\|\left(\xi_{j}\right)\right\|_{\ell^{1}}$ for all k; hence $\left\|\left(\xi_{j}\right)\right\|_{\ell \infty} \leqq\left\|\left(\xi_{j}\right)\right\|_{\ell^{1}}$.) We claim that $\left(T_{n}\right)$ is strongly operator convergent to T.

Let $x=\left(\xi_{j}\right)$ be an arbitrary vector in ℓ^{1}. Then

$$
\begin{aligned}
\left\|T_{n} x-T x\right\|_{\ell \infty}=\|\left(0,0, \cdots, 0, \xi_{n}-\xi_{n+1}, \xi_{n}-\xi_{n+2},\right. & \left.\xi_{n}-\xi_{n+3}, \cdots\right) \|_{\ell \infty} \\
& =\sup _{j \geqq 1}\left|\xi_{n}-\xi_{n+j}\right|
\end{aligned}
$$

But since $x=\left(\xi_{j}\right) \in \ell^{1}$ the sum $\sum_{k=1}^{\infty}\left|\xi_{k}\right|$ is convergent. In particular the individual terms tend to 0 , i.e. $\lim _{k \rightarrow \infty}\left|\xi_{k}\right|=0$. Hence, given any $\varepsilon>0$ there is some $K \in \mathbb{Z}^{+}$such that $\left|\xi_{k}\right| \leqq \varepsilon$ for all $k \geqq K$. Then if $n \geqq K$ we have for all $j \geqq 1: n+j \geqq K$, hence $\left|\xi_{n}\right| \leqq \varepsilon$ and $\left|\xi_{n+j}\right| \leqq \varepsilon$, and thus

$$
\left|\xi_{n}-\xi_{n+j}\right| \leqq\left|\xi_{n}\right|+\left|\xi_{n+j}\right| \leqq \varepsilon+\varepsilon=2 \varepsilon .
$$

This is true for all $j \geqq 1$. Hence

$$
\left\|T_{n} x-T x\right\|_{\ell^{\infty}}=\sup _{j \geqq 1}\left|\xi_{n}-\xi_{n+j}\right| \leqq 2 \varepsilon
$$

This is true for all $n \geqq K$. Also, we have shown above that such a K can be found for any given $\varepsilon>0$. Hence:

$$
\lim _{n \rightarrow \infty}\left\|T_{n} x-T x\right\|_{\ell \infty}=0 . \quad\left(\text { That is, } T_{n} x \rightarrow T x \text { in } \ell^{\infty} .\right)
$$

This is true for every vector $x \in \ell^{1}$. Hence $\left(T_{n}\right)$ is strongly operator convergent to T.

It follows from this that if $\left(T_{n}\right)$ would be uniformly operator convergent, then the limit must be equal to T ! Hence to prove that $\left(T_{n}\right)$ is not uniformly operator convergent, it suffices to prove that $\left(T_{n}\right)$ is not uniformly operator convergent to T. Now note that $T_{n}-T$ is the following operator:
$\left(T_{n}-T\right)\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)\right)=\left(0,0, \cdots, 0, \xi_{n}-\xi_{n+1}, \xi_{n}-\xi_{n+2}, \xi_{n}-\xi_{n+3}, \cdots\right)$.
In particular if $x=(0,0, \cdots, 0,1,0,0,0, \cdots)$ (with the " 1 " in the nth position) then

$$
\left(T_{n}-T\right)(x)=(0,0, \cdots, 0,1,1,1, \cdots)
$$

Here $\|x\|_{\ell^{1}}=1$ and $\|(0,0, \cdots, 0,1,1,1, \cdots)\|_{\ell^{\infty}}=1$. Hence $\left\|T_{n}-T\right\| \geqq 1$. This is true for all n, and hence we do not have $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$. Hence $\left(T_{n}\right)$ is not uniformly operator convergent to T, and hence, by our remarks above, $\left(T_{n}\right)$ is not uniformly operator convergent.
3. Solution: Note that $\|T\|=1$, and hence by Theorem 7.3-4 the spectrum $\sigma(T)$ is contained in the disk given by $|\lambda| \leqq 1$. In other words we now know that every $\lambda \in \mathbb{C}$ with $|\lambda|>1$ belongs to the resolvent set, $\lambda \in \rho(T)$. Hence it only remains to analyze arbitary $\lambda \in \mathbb{C}$ with $|\lambda| \leqq 1$.

It is easy to determine the point spectrum $\sigma_{p}(T)$: Suppose that $\lambda \in \mathbb{C}$ is an eigenvalue of T; then $T x=\lambda x$ for some vector $x=\left(\xi_{j}\right) \in \ell^{1}$, thus

$$
\left(\xi_{2}, \xi_{3}, \xi_{4}, \cdots\right)=\lambda\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)
$$

This implies $\xi_{2}=\lambda \xi_{1}, \xi_{3}=\lambda \xi_{2}=\lambda^{2} \xi_{1}$, etc, thus $\xi_{n}=\lambda^{n-1} \xi_{1}$ for all $n=2,3, \cdots$, i.e.

$$
x=\xi_{1}\left(1, \lambda, \lambda^{2}, \lambda^{3}, \cdots\right)
$$

But if $|\lambda| \geqq 1$ then $\left(1, \lambda, \lambda^{2}, \lambda^{3}, \cdots\right) \notin \ell^{1}$, hence the above equation forces $\xi_{1}=0$ and $x=0$. Hence no λ with $|\lambda| \geqq 1$ belongs to $\sigma_{p}(T)$. On the other hand, if $|\lambda|<1$ then $\left(1, \lambda, \lambda^{2}, \lambda^{3}, \cdots\right) \notin \ell^{1}$, since $\sum_{j=1}^{\infty}\left|\lambda^{j}\right|<\infty$, and this vector $\left(1, \lambda, \lambda^{2}, \lambda^{3}, \cdots\right)$ is an eigenvector of T with eigenvalue λ. Hence

$$
\sigma_{p}(T)=\{\lambda \in \mathbb{C}:|\lambda|<1\} .
$$

It now remains to analyze the case $|\lambda|=1$. Let us fix an arbitrary $\lambda \in \mathbb{C}$ with $|\lambda|=1$. We then know that T_{λ}^{-1} exists, since $\lambda \notin \sigma_{p}(T)$. Note that

$$
T_{\lambda}\left(\left(\xi_{n}\right)\right)=\left(\xi_{2}-\lambda \xi_{1}, \xi_{3}-\lambda \xi_{2}, \xi_{4}-\lambda \xi_{3}, \ldots\right) .
$$

Hence if $\left(\eta_{n}\right)=T_{\lambda}\left(\left(\xi_{n}\right)\right)$ for some $\left(\xi_{n}\right) \in \ell^{1},\left(\eta_{n}\right) \in \ell^{1}$ then

$$
(*)\left\{\begin{array}{l}
\xi_{2}=\eta_{1}+\lambda \xi_{1} \\
\xi_{3}=\eta_{2}+\lambda \eta_{1}+\lambda^{2} \xi_{1} \\
\xi_{4}=\eta_{3}+\lambda \eta_{2}+\lambda^{2} \eta_{1}+\lambda^{3} \xi_{1} \\
\cdots \\
\xi_{n}=\sum_{j=1}^{n-1} \lambda^{n-1-j} \eta_{j}+\lambda^{n-1} \xi_{1} \\
\cdots
\end{array}\right.
$$

Here it follows from $\left(\xi_{n}\right) \in \ell^{1}$ that $\lim _{n \rightarrow \infty} \xi_{n}=0$, hence also $\lim _{n \rightarrow \infty} \lambda^{1-n} \xi_{n}=$ 0 (since $|\lambda|=1$). Using the above equations this gives:

$$
\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n-1} \lambda^{-j} \eta_{j}+\xi_{1}\right)=0
$$

i.e.

$$
\xi_{1}=-\lim _{n \rightarrow \infty} \sum_{j=1}^{n-1} \lambda^{-j} \eta_{j}=-\sum_{j=1}^{\infty} \lambda^{-j} \eta_{j}
$$

(Note that this sum is absolutely convergent, since $\sum_{j=1}^{\infty}\left|\lambda^{-j} \eta_{j}\right|=$ $\sum_{j=1}^{\infty}\left|\eta_{j}\right|<\infty$.) Using this together with $\left(^{*}\right)$ we now see, for each $n \geqq 2$:

$$
\begin{aligned}
\xi_{n}=\sum_{j=1}^{n-1} \lambda^{n-1-j} \eta_{j}+\lambda^{n-1}\left(-\sum_{j=1}^{\infty} \lambda^{-j} \eta_{j}\right) & =\sum_{j=1}^{n-1} \lambda^{n-1-j} \eta_{j}-\sum_{j=1}^{\infty} \lambda^{n-1-j} \eta_{j} \\
& =-\sum_{j=n}^{\infty} \lambda^{n-1-j} \eta_{j}
\end{aligned}
$$

(Clearly this is also true for $n=1$.) Conversely, let us note that if $\left(\xi_{n}\right) \in \ell^{1},\left(\eta_{n}\right) \in \ell^{1}$ and $\xi_{n}=-\sum_{j=n}^{\infty} \lambda^{n-1-j} \eta_{j}$ holds for all $n \geqq 1$, then $\left(\eta_{n}\right)=T_{\lambda}\left(\left(\xi_{n}\right)\right)$. [Proof: Under the stated assumptions, the nth entry in $T_{\lambda}\left(\left(\xi_{n}\right)\right)$ is: $\xi_{n+1}-\lambda \xi_{n}=-\sum_{j=n+1}^{\infty} \lambda^{n-j} \eta_{j}+\lambda \sum_{j=n}^{\infty} \lambda^{n-1-j} \eta_{j}=$ $\left.-\sum_{j=n+1}^{\infty} \lambda^{n-j} \eta_{j}+\sum_{j=n}^{\infty} \lambda^{n-j} \eta_{j}=\eta_{n}.\right]$

Let M be the set of those $\left(\eta_{n}\right) \in \ell^{1}$ which have only finitely many nonzero entries. We then have $M \subset \mathcal{D}\left(T_{\lambda}^{-1}\right)$. Proof: If $\left(\eta_{n}\right) \in M$ then there is some $N \in \mathbb{Z}^{+}$such that $\eta_{n}=0$ for all $n \geqq N$, and then if we define ξ_{n} by $\xi_{n}=-\sum_{j=n}^{\infty} \lambda^{n-1-j} \eta_{j}$, we get $\xi_{n}=0$ for all $n \geqq N$. Hence $\left(\xi_{n}\right) \in \ell^{1}$, and by assumption $\left(\eta_{n}\right) \in M \subset \ell^{1}$; hence $T_{\lambda}\left(\left(\xi_{n}\right)\right)=\left(\eta_{n}\right)$ and $\left(\eta_{n}\right) \in \mathcal{D}\left(T_{\lambda}^{-1}\right)$. This is true for all $\left(\eta_{n}\right) \in M$, hence we have proved the claim, $M \subset \mathcal{D}\left(T_{\lambda}^{-1}\right)$.

But M is dense in ℓ^{1} ! (Proof: Given $x=\left(\xi_{j}\right) \in \ell^{1}$ we may define the sequence $v_{1}, v_{2}, v_{3}, \cdots \in M$ by $v_{n}=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}, 0,0,0 \cdots\right)$. Then $\left\|v_{n}-x\right\|=\sum_{j=n+1}^{\infty}\left|\xi_{j}\right| \rightarrow 0$ as $n \rightarrow \infty$. Hence x is a limit point of M. This is true for all $x \in \ell^{1}$. Hence $\bar{M}=\ell^{1}$, as claimed.) From the facts $M \subset \mathcal{D}\left(T_{\lambda}^{-1}\right)$ and M dense in ℓ^{1} it follows that $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is dense in ℓ^{1}.

We can now complete the solution using only general principles: We have seen above that the spectrum $\sigma(T)$ contains the set $\sigma_{p}(T)=\{\lambda \in$ $\mathbb{C}:|\lambda|<1\}$, i.e. the open unit disk. But we know from Theorem 7.3-4 that $\sigma(T)$ is compact; hence $\sigma(T)$ must also contain every boundary point of the unit disk, i.e. every λ with $|\lambda|=1$ belongs to $\sigma(T)$. We have also seen that for these λ we have $\lambda \notin \sigma_{p}(T)$ and $\lambda \notin \sigma_{r}(T)$ (since T_{λ}^{-1} exists and $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is dense in ℓ^{1}). Hence the only remaining possibility is $\lambda \in \sigma_{c}(T)$.

Answer: $\rho(T)=\{\lambda \in \mathbb{C}:|\lambda|>1\}, \sigma_{p}(T)=\{\lambda \in \mathbb{C}:|\lambda|<1\}$, $\sigma_{c}(T)=\{\lambda \in \mathbb{C}:|\lambda|=1\}, \sigma_{r}(T)=\emptyset$.

Alternative proof that every λ with $|\lambda|=1$ belongs to $\sigma_{c}(T)$. Fix an arbitrary $\lambda \in \mathbb{C}$ with $|\lambda|=1$. We have proved that T_{λ}^{-1} exists and that $\mathcal{D}\left(T_{\lambda}^{-1}\right)$ is dense in ℓ^{1}. Hence it remains to prove that T_{λ}^{-1} is unbounded. To do this we let $v_{n}=\left(n \lambda^{0},(n-1) \lambda^{1},(n-\right.$ 2) $\left.\lambda^{2}, \cdots, 1 \cdot \lambda^{n-1}, 0,0,0, \cdots\right) \in \ell^{1}$, for each $n \geqq 1$. We then compute $w_{n}=T_{\lambda}\left(v_{n}\right)=\left(-\lambda^{1},-\lambda^{2},-\lambda^{3}, \cdots,-\lambda^{n}, 0,0,0, \cdots\right)$. Here $\left\|v_{n}\right\|=$ $\sum_{j=1}^{n}|n+1-j|\left|\lambda^{j-1}\right|=\sum_{j=1}^{n}(n+1-j)=\sum_{k=0}^{n-1} k=\frac{n(n-1)}{2}$, and $\left\|w_{n}\right\|=\sum_{j=1}^{n}\left|-\lambda^{j}\right|=\sum_{j=1}^{n} 1=n$. But $v_{n}=T_{\lambda}^{-1}\left(w_{n}\right)$; hence if T_{λ}^{-1} were bounded then we would have $\left\|v_{n}\right\| \leqq\left\|T_{\lambda}^{-1}\right\| \cdot\left\|w_{n}\right\|$, i.e. $\frac{n(n-1)}{2} \leqq\left\|T_{\lambda}^{-1}\right\| \cdot n$, i.e. $\left\|T_{\lambda}^{-1}\right\| \geqq \frac{n-1}{2}$. This would be true for every $n \in \mathbb{Z}^{+}$. This is a contradiction, since no real number can be larger than $\frac{n-1}{2}$ for all $n \in \mathbb{Z}^{+}$. Hence T_{λ}^{-1} is unbounded, Q.E.D.
4. Since T is self-adjoint we know that each eigenvalue λ is real. Suppose there is some negative eigenvalue; $T v=\lambda v$ with $\lambda<0, v \neq 0$. Then $\langle T v, v\rangle=\langle\lambda v, v\rangle=\lambda\|v\|^{2}<0$, i.e. T is not positive.

Conversely, assume that all eigenvalues of T are $\geqq 0$. Let $\left\{\lambda_{n}\right\}_{n=1}^{N}$ be the nonzero eigenvalues of T, and $\left\{e_{n}\right\}_{n=1}^{N}$ the corresponding orthonormal sequence of eigenvectors, as in Theorem 1 in the text about compact self-adjoint operators. (Here $N \in \mathbb{Z}^{+}$or $N=\infty$.) Then our assumption says that $\lambda_{n}>0$ for all n. We will prove that T is positive. Let $x \in H$ be an arbitrary vector. We may then write $x=\left(\sum_{n=1}^{N} \alpha_{n} e_{n}\right)+z$ for some $\alpha_{n} \in \mathbb{C}$ with $\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2}<\infty$ and
$z \in \mathcal{N}(T)$. Now

$$
\langle T x, x\rangle=\left\langle\sum_{n=1}^{N} \lambda_{n} \alpha_{n} e_{n}, \sum_{n=1}^{N} \alpha_{n} e_{n}+z\right\rangle=\sum_{n=1}^{N} \lambda_{n}\left|\alpha_{n}\right|^{2} \geqq 0
$$

since all $\lambda_{n} \geqq 0$. Hence we have proved $\langle T x, x\rangle \geqq 0$ for all $x \in H$. Hence T is positive.

Alternative proof using Theorems from $\S 9.2$ in the book. (Mainly of interest for students taking the 6 p course.)

We will use the following fact, which we prove below: If T is an arbitrary compact self-adjoint operator T with spectral decomposition as in Theorem 1 in the text about compact self-adjoint operators, then we have
$(*) \quad \sigma(T)=\bar{E} \quad$ where $\quad E= \begin{cases}\left\{\lambda_{n}\right\}_{n=1}^{N} & \text { if } \mathcal{N}(T)=\{0\} \\ \{0\} \cup\left\{\lambda_{n}\right\}_{n=1}^{N} & \text { if } \mathcal{N}(T) \neq\{0\} .\end{cases}$
(The splitting in two cases is rather natural, for note that $\mathcal{N}(T) \neq\{0\}$ holds if and only if 0 is an eigenvalue of T.)

Using $\left(^{*}\right)$, we may now solve the given problem using Theorem 9.2-1 and Theorem 9.2-3 in the book. First, if T is positive then $m \geqq 0$ in Theorem 9.2-1, and hence that theorem implies that $\sigma(T) \subset[0, \infty)$, and in particular $\sigma_{p}(T) \subset[0, \infty)$, i.e. each eigenvalue of T is $\geqq 0$. Conversely, if T is not positive then $m<0$ in Theorem 9.2-1, and Theorem 9.2-3 says that $m \in \sigma(T)$. Then by $\left(^{*}\right)$ there exists some λ_{n} which is <0, i.e. T has a negative eigenvalue.

Finally, we give a proof of $\left(^{*}\right.$) (see Theorem 8.4-4 in the book for an alternative proof in a more general case): Note that each $\lambda \in E$ is an eigenvalue of T, i.e. $E \subset \sigma_{p}(T)$. Hence $E \subset \sigma(T)$, and since $\sigma(T)$ is a closed set (Theorem 7.3-4) it follows that $\bar{E} \subset \sigma(T)$.

Conversely, let μ be any complex number which does not belong to \bar{E}. Then there is some $r>0$ such that $|\mu-\lambda|>r$ for all $\lambda \in E$. Recall from the text about compact self-adjoint operators that every vector $v \in H$ can be uniquely written $v=\left(\sum_{n=1}^{N} \alpha_{n} e_{n}\right)+z$, where $\alpha_{n} \in \mathbb{C}, \sum_{n=1}^{N}\left|\alpha_{n}\right|^{2}<\infty$ and $z \in \mathcal{N}(T)$. We now define a linear operator $A: H \rightarrow H$ by defining [we here assume $\mathcal{N}(T) \neq\{0\}$, and thus in particular $|\mu|>r]$:

$$
A(v)=A\left(\left(\sum_{n=1}^{N} \alpha_{n} e_{n}\right)+z\right):=\left(\sum_{n=1}^{N}\left(\lambda_{n}-\mu\right)^{-1} \alpha_{n} e_{n}\right)-\mu^{-1} z .
$$

This is in fact a bounded linear operator on H, since

$$
\begin{aligned}
\|A(v)\|^{2} & =\left(\sum_{n=1}^{N}\left|\lambda_{n}-\mu\right|^{-2}\left|\alpha_{n}\right|^{2}\right)+|\mu|^{-2}\|z\|^{2} \\
& \leqq r^{-2}\left(\left(\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2}\right)+\|z\|^{2}\right)=r^{-2}\|v\|^{2} .
\end{aligned}
$$

(Thus $\|A\| \leqq r^{-2}$.) We compute that for all $v \in H$ represented as above we have

$$
A T_{\mu}(v)=A\left(\left(\sum_{n=1}^{N}\left(\lambda_{n}-\mu\right) \alpha_{n} e_{n}\right)-\mu z\right)=\left(\sum_{n=1}^{N} \alpha_{n} e_{n}\right)+z=v
$$

and

$$
T_{\mu} A(v)=T_{\mu}\left(\left(\sum_{n=1}^{N}\left(\lambda_{n}-\mu\right)^{-1} \alpha_{n} e_{n}\right)-\mu^{-1} z\right)=\left(\sum_{n=1}^{N} \alpha_{n} e_{n}\right)+z=v .
$$

Hence $A T_{\mu}=T_{\mu} A=I$, the identity operator, and thus $A=T_{\mu}^{-1}$. Hence T_{μ}^{-1} exists and is defined on all H, and is bounded. This proves $\mu \in \rho(T)$, i.e. $\mu \notin \sigma(T)$. [In the case $\mathcal{N}(T)=\{0\}$ the proof is simply modified by removing the z-term in all sums above.] This is true for all $\mu \notin \bar{E}$. Hence $\sigma(T) \subset \bar{E}$, and in total we have proved $\sigma(T)=\bar{E}$, i.e. $(*)$!
5. First assume $T S=S T$. Then by Lemma 9.8-2 (carrying over Lemma 9.8-1(b)) we have $E_{\lambda} S=S E_{\lambda}$ for all $\lambda \in \mathbb{R}$. Fixing any $\lambda \in \mathbb{R}$ and again applying Lemma 9.8-2 (carrying over Lemma 9.81 (b)), but this time applied to the operator S in place of T, we obtain $E_{\lambda} F_{\mu}=F_{\mu} E_{\lambda}$ for all $\mu \in \mathbb{R}$.

Conversely, assume that $E_{\lambda} F_{\mu}=F_{\mu} E_{\lambda}$ holds for all $\lambda, \mu \in \mathbb{R}$. We know that $T=\int_{-\infty}^{\infty} \lambda d E_{\lambda}$ and $S=\int_{-\infty}^{\infty} \mu d F_{\mu}$, and in fact there is a number $A>0$ such that $T=\int_{-A}^{A} \lambda d E_{\lambda}$ and $S=\int_{-A}^{A} \mu d F_{\mu}$ (for example we may take $A=1+\max (\|T\|,\|S\|))$. This means that T is obtained as the uniform limit of a sequence of operator sums of the form (for a given partition $-A=t_{0}<t_{1}<\cdots<t_{n}=A$)

$$
T^{\prime}=\sum_{j=1}^{n} t_{j}\left(E_{t_{j}}-E_{t_{j-1}}\right),
$$

and similarly for S. Hence, given $\varepsilon>0$ there exists a partition $-A=$ $t_{0}<t_{1}<\cdots<t_{n}=A$ such that if

$$
\begin{aligned}
T^{\prime} & =\sum_{j=1}^{n} t_{j}\left(E_{t_{j}}-E_{t_{j-1}}\right) \\
\text { and } S^{\prime} & =\sum_{j=1}^{n} t_{j}\left(F_{t_{j}}-F_{t_{j-1}}\right),
\end{aligned}
$$

then

$$
\left\|T^{\prime}-T\right\|<\varepsilon \quad \text { and } \quad\left\|S^{\prime}-S\right\|<\varepsilon
$$

The point now is that it follows from our assumption $E_{\lambda} F_{\mu}=F_{\mu} E_{\lambda}$, $\forall \lambda, \mu \in \mathbb{R}$, that $T^{\prime} S^{\prime}=S^{\prime} T^{\prime}$! Proof:

$$
\begin{aligned}
T^{\prime} S^{\prime} & =\left(\sum_{j=1}^{n} t_{j}\left(E_{t_{j}}-E_{t_{j-1}}\right)\right)\left(\sum_{k=1}^{n} t_{k}\left(F_{t_{k}}-F_{t_{k-1}}\right)\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} t_{j}\left(E_{t_{j}}-E_{t_{j-1}}\right) t_{k}\left(F_{t_{k}}-F_{t_{k-1}}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} t_{k}\left(F_{t_{k}}-F_{t_{k-1}}\right) t_{j}\left(E_{t_{j}}-E_{t_{j-1}}\right) \\
& =\left(\sum_{k=1}^{n} t_{k}\left(F_{t_{k}}-F_{t_{k-1}}\right)\right)\left(\sum_{j=1}^{n} t_{j}\left(E_{t_{j}}-E_{t_{j-1}}\right)\right)=S^{\prime} T^{\prime} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \left\|T S-T^{\prime} S^{\prime}\right\| \leqq\left\|T\left(S-S^{\prime}\right)\right\|+\left\|\left(T-T^{\prime}\right) S^{\prime}\right\| \\
& \leqq\|T\| \cdot\left\|S-S^{\prime}\right\|+\left\|T-T^{\prime}\right\| \cdot\left\|S^{\prime}\right\| \\
& <\|T\| \varepsilon+\left\|S^{\prime}\right\| \varepsilon \leqq\|T\| \varepsilon+\left(\|S\|+\left\|S^{\prime}-S\right\|\right) \varepsilon \\
& <\|T\| \varepsilon+\|S\| \varepsilon+\varepsilon^{2},
\end{aligned}
$$

and similarly

$$
\left\|S^{\prime} T^{\prime}-S T\right\|<\|T\| \varepsilon+\|S\| \varepsilon+\varepsilon^{2} .
$$

Hence

$$
\begin{aligned}
\|T S-S T\| & =\left\|T S-T^{\prime} S^{\prime}+S^{\prime} T^{\prime}-S T\right\| \\
& \leqq\left\|T S-T^{\prime} S^{\prime}\right\|+\left\|S^{\prime} T^{\prime}-S T\right\| \\
& <2\left(\|T\| \varepsilon+\|S\| \varepsilon+\varepsilon^{2}\right) .
\end{aligned}
$$

But here $\varepsilon>0$ is arbitrary, and by taking ε small we can make the right hand side arbitrarily small. Hence $\|T S-S T\|=0$, i.e. $T S=S T$, Q.E.D.
6.
$\mathbf{(a)} \Longrightarrow(\mathbf{b})$. Assume (a), i.e. that T is self-adjoint. Then $T^{*}=T$ and T is closed (Theorem 10.3-3). Assume $v \in \mathcal{N}\left(T^{*}-i\right)$. Then $v \in \mathcal{D}\left(T^{*}\right)=\mathcal{D}(T)$ and $\left(T^{*}-i\right) v=0$, hence $(T-i) v=0$, hence $T v=i v$, and this implies:

$$
i\langle v, v\rangle=\langle i v, v\rangle=\langle T v, v\rangle=\left\langle v, T^{*} v\right\rangle=\langle v, T v\rangle=\langle v, i v\rangle=-i\langle v, v\rangle
$$

Hence $\langle v, v\rangle=0$, i.e. $v=0$. This prove that $\mathcal{N}\left(T^{*}-i\right)=\{0\}$. Similarly one proves $\mathcal{N}\left(T^{*}+i\right)=\{0\}$. Hence (b) holds.
$(\mathbf{b}) \Longrightarrow(\mathbf{c})$. Assume (b), i.e. that T is closed and $\mathcal{N}\left(T^{*}-i\right)=$ $\mathcal{N}\left(T^{*}+i\right)=\{0\}$. We first prove $\mathcal{R}(T+i)^{\perp}=\{0\}$: Let v be an arbitrary vector in $\mathcal{R}(T+i)^{\perp}$. Then $\langle w, v\rangle=0$ for all $w \in \mathcal{R}(T+i)$, i.e. $\langle(T+i) x, v\rangle=0$ for all $x \in \mathcal{D}(T)$. Hence $\langle T x, v\rangle=-\langle i x, v\rangle=\langle x, i v\rangle$ for all $x \in \mathcal{D}(T)$. This implies that $v \in \mathcal{D}\left(T^{*}\right)$ and $T^{*} v=i v$, i.e. $\left(T^{*}-i\right) v=0$, i.e. $v \in \mathcal{N}\left(T^{*}-i\right)$. By our assumption (b), this implies $v=0$. Hence we have proved $\mathcal{R}(T+i)^{\perp}=\{0\}$.

We next prove that $\mathcal{R}(T+i)$ is closed in H : Let $v_{1}, v_{2}, v_{3}, \cdots$ be an arbitrary sequence of points in $\mathcal{R}(T+i)$ such that $v=\lim _{n \rightarrow \infty} v_{n}$ exists in H. We have to prove $v \in \mathcal{R}(T+i)$. By definition there are vectors $w_{1}, w_{2}, w_{3}, \cdots \in \mathcal{D}(T)$ such that $v_{n}=(T+i) w_{n}$. Since T is symmetric we have for every $w \in \mathcal{D}(T)$:

$$
\begin{aligned}
& \|(T+i) w\|^{2}=\langle(T+i) w,(T+i) w\rangle=\|T w\|^{2}+i\langle w, T w\rangle-i\langle T w, w\rangle+\|i w\|^{2} \\
& =\|T w\|^{2}+i\left(\left\langle T^{*} w, w\right\rangle-\langle T w, w\rangle\right)+\|w\|^{2}=\|T w\|^{2}+\|w\|^{2} .
\end{aligned}
$$

In particular

$$
\left\|v_{n}-v_{m}\right\|^{2}=\left\|(T+i)\left(w_{n}-w_{m}\right)\right\|^{2}=\left\|T\left(w_{n}-w_{m}\right)\right\|^{2}+\left\|w_{n}-w_{m}\right\|^{2} .
$$

Now $\left(v_{n}\right)$ is a Cauchy sequence, i.e. $\left\|v_{n}-v_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$, and the above equality shows $\left\|w_{n}-w_{m}\right\|^{2} \leqq\left\|v_{n}-v_{m}\right\|^{2}$; hence also $\left\|w_{n}-w_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$, i.e. $\left(w_{n}\right)$ is a Cauchy sequence. Since H is complete it follows that $w=\lim _{n \rightarrow \infty} w_{n} \in H$ exists. Similarly, the above equality also shows that $u=\lim _{n \rightarrow \infty} T w_{n} \in H$ exists. Since T is closed (by assumption (b)) it follows that $w \in \mathcal{D}(T)$ and $T w=u$,
and thus

$$
\begin{aligned}
& (T+i) w=u+i w=\left(\lim _{n \rightarrow \infty} T w_{n}\right)+\left(\lim _{n \rightarrow \infty} i w_{n}\right)=\lim _{n \rightarrow \infty}\left(T w_{n}+i w_{n}\right) \\
& =\lim _{n \rightarrow \infty}(T+i) w_{n}=\lim _{n \rightarrow \infty} v_{n}=v
\end{aligned}
$$

Hence $v \in \mathcal{R}(T+i)$. This proves that $\mathcal{R}(T+i)$ is closed in H.
Since $\mathcal{R}(T+i)$ is both dense and closed in H it follows that $\mathcal{R}(T+i)=$ H. Similarly one proves $\mathcal{R}(T-i)=H$. Hence (c) holds.
$\mathbf{(c)} \Longrightarrow \mathbf{(a)}$. Assume (c), i.e. that $\mathcal{R}(T-i)=\mathcal{R}(T+i)=H$. Let us first prove $\mathcal{N}\left(T^{*}+i\right)=\{0\}$: Assume $v \in \mathcal{N}\left(T^{*}+i\right)$, i.e. $v \in \mathcal{D}\left(T^{*}\right)$ and $\left(T^{*}+i\right) v=0$. Then for all $w \in \mathcal{D}(T)$ we have
$0=\left\langle\left(T^{*}+i\right) v, w\right\rangle=\left\langle T^{*} v, w\right\rangle+i\langle v, w\rangle=\langle v, T w\rangle-\langle v, i w\rangle=\langle v,(T-i) w\rangle$.
But every vector in H can be expressed as $(T-i) w$, since $\mathcal{R}(T-i)=H$ (assumption (c)). Hence v is orthogonal to all H, and hence $v=0$. This completes the proof that $\mathcal{N}\left(T^{*}+i\right)=\{0\}$.

Now let v be an arbitrary vector in $\mathcal{D}\left(T^{*}\right)$. Since $\mathcal{R}(T+i)=H$ there exists a vector $w \in \mathcal{D}(T)$ such that $(T+i) w=\left(T^{*}+i\right) v$. Now since T is symmetric we have $w \in \mathcal{D}\left(T^{*}\right)$ and $T^{*} w=T w$. Hence also $v-w \in \mathcal{D}\left(T^{*}\right)$, and

$$
\left(T^{*}+i\right)(v-w)=\left(T^{*}+i\right) v-\left(T^{*}+i\right) w=0
$$

Hence $v-w \in \mathcal{N}\left(T^{*}+i\right)$. But we have seen above that $\mathcal{N}\left(T^{*}+i\right)=\{0\}$. Hence $v-w=0$, i.e. $v=w \in \mathcal{D}(T)$. But v was an arbitrary vector in $\mathcal{D}\left(T^{*}\right)$; hence we have proved $\mathcal{D}\left(T^{*}\right) \subset \mathcal{D}(T)$. On the other hand we have $T \subset T^{*}$ since T is symmetric. Hence we actually have $T=T^{*}$, i.e. T is self-adjoint. Hence (a) holds.

