
End of lecture 5 April 2006

These are the things I had planned to say today but didn’t get time
to. [I include some more proofs here than I had planned to do in my
lecture.] Please don’t hesitate to email me if you have any questions
on this material!

The following two facts are the last things I wrote on the board; they
contain the definition 10.3-4 (p.537) in the book, and give some extra
information.

Fact 1. Given T : D(T ) → H, there exists a closed linear extension

of T if and only if G(T ) is the graph of an operator (i.e., if and only if

∀x ∈ H : ]{y ∈ H | (x, y) ∈ G(T )} 5 1).
Fact/def 2. If T : D(T ) → H has some closed linear extension,

then there exists a unique minimal 1 closed linear extension of T ; this
operator is called T : D(T ) → H, the closuse of T . Furthermore in

this situation we have G(T ) = G(T ).

Proof of fact 1. Assume that T has a closed linear extension T1.
Thus T ⊂ T1 and T1 is closed. It follows that G(T ) ⊂ G(T1) and

that G(T1) is closed. Hence G(T ) ⊂ G(T1). But by definition we have

G(T1) = {(x, T1x) | x ∈ D(T1)}, and hence from G(T ) ⊂ G(T1) it
follows that

G(T ) = {(x, T1x) | x ∈ M}

for some subset M ⊂ D(T1). Note that G(T ) is a linear subspace of

H × H; thus also G(T ) is a linear subspace of H × H (by exercise 6
on p. 70). Hence M must be a linear subspace of D(T1), and (T1)|M is

a linear operator with graph G((T1)|M) = {(x, T1x) | x ∈ M} = G(T ).

Hence G(T ) is the graph of an operator!

Conversely, suppose that G(T ) is the graph of an operator, i.e. G(T ) =
G(T2) for some operator T2 : D(T2) → H. Then T2 is closed, since

G(T2) = G(T ) is closed by definition. [Note that T2 is automatically a
linear operator, since G(T2) is a linear subset of H ×H.] Also T ⊂ T2,

since G(T ) ⊂ G(T ) = G(T2). Hence T2 is a closed linear extension of
T , i.e. T has a closed linear extension.

�

Proof of fact 2. Assume that T has some closed linear extension.
Then by our fact 1 above, G(T ) is the graph of an operator T2 (we

1The precise meaning of “T is a minimal closed linear extension of T” is the
following: T is a closed linear extension of T , and for every closed linear extension
T1 of T we have T ⊂ T1.

1



2

use the same name as above), and as in the last paragraph of the
above proof of fact 1, we see that T2 is actually linear and closed, and
T ⊂ T2. We claim that T2 is a minimal closed linear extension of T ,
i.e. that T2 is the closure of T ! Indeed, assume that T1 is any closed
linear extension of T . Then G(T ) ⊂ G(T1), and since G(T1) is closed it

follows that G(T ) ⊂ G(T1), i.e. G(T2) ⊂ G(T1). This implies T2 ⊂ T1,
and the minimality of T2 is proved!

To prove the uniqueness of the closure, let us assume that T3 is also

a minimal closed linear extension of T . Then since T2 ⊂ T3 (by the
minimality of T2) and T3 ⊂ T2 (by the minimality of T3), and this
clearly implies T3 = T2.

Finally, note that the last claim in our fact/def 2, G(T ) = G(T ),
is already contained in our construction, for we constructed T as the
operator T = T2 with graph G(T2) = G(T ).

�

Theorem 10.3-5. Assume that T : D(T ) → H is symmetric (and
thus densely defined). Then the closure T exists.

The proof of this theorem in the book is very detailed, and well worth
studying! We here give an alternative, much shorter proof, using our
Fact 1 and Fact 2 from above!

[Actually, our argument is the same thing as on p.538(a) in the book,
but using a language involving the graph G(T ) much more explicitly.]

Proof of Theorem 10.3-5. By our Fact 2 it suffices to prove that
T has some closed linear extension, and by Fact 1 this will follow if we
can show that

(∗) ∀x ∈ H : ]{y ∈ H | (x, y) ∈ G(T )} 5 1.

To prove this, let us assume that we have (x, y) ∈ G(T ) and (x, ỹ) ∈

G(T ) for some x, y, ỹ ∈ H. We then wish to prove y = ỹ.

Since (x, y) ∈ G(T ) there is a sequence (x1, y1), (x2, y2), (x3, y3), . . . of
vectors in G(T ) with (xn, yn) → (x, y) in H × H. Note that (xn, yn) ∈
G(T ) implies xn ∈ D(T ), yn = Txn, and (xn, yn) → (x, y) implies
(using the definition of the norm in H × H) that xn → x (in H) and

Txn = yn → y (in H) as n → ∞. Similarly, since (x, ỹ) ∈ G(T )
there is a sequence (x̃1, ỹ1), (x̃2, ỹ2), (x̃3, ỹ3), . . . of vectors in G(T ) with
(x̃n, ỹn) → (x, ỹ) in H × H, and this implies x̃n ∈ D(T ), ỹn = T x̃n,
x̃n → x (in H) and T x̃n = ỹn → ỹ (in H) as n → ∞.
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Now for every v ∈ D(T ) we have

〈v, y − ỹ〉 = 〈v, lim
n→∞

(yn − ỹn)〉 = lim
n→∞

〈v, yn − ỹn〉 = lim
n→∞

〈v, T (xn − x̃n)〉 =
[

Use that T is symmetric and v ∈ D(T )
]

= lim
n→∞

〈Tv, xn − x̃n〉 = 〈Tv, lim
n→∞

(xn − x̃n)〉 = 〈Tv, x − x〉 = 0.

Hence y − ỹ ∈ D(T )⊥ = D(T )
⊥

= H⊥ = {0}, i.e. y − ỹ = 0, Q.E.D.

Fact 3. If T : D(T ) → H is a densely defined operator which has a
closed linear extension (so that T exists), then (T )∗ = T ∗. 2

Remark: This Fact 3 is a stronger statement than Theorem 10.3-6 in
the book, which says that if T is a symmetric operator, then (T )∗ = T ∗.
(This follows from Fact 3 for if T is symmetric then T exists by Theorem
10.3-5 above.)

Proof of Fact 3. Since T ⊂ T we have (T )∗ ⊂ T ∗, by Theorem
10.2-1.

Conversely, take any x ∈ D(T ∗); we wish to prove that x ∈ D((T )∗)
and (T )∗x = T ∗x. Note that x ∈ D(T ∗) implies, by the definition of
D(T ∗), that

∀v ∈ D(T ) : 〈Tv, x〉 = 〈v, T ∗x〉.

Now take an arbitrary w ∈ D(T ). Then (w, Tw) ∈ G(T ) = G(T )
and thus there is a sequence (w1, u1), (w2, u2), (w3, u3), . . . in G(T ) with
(wn, un) → (w, Tw) in H × H. Hence wn ∈ D(T ), un = Twn, wn → w

in H and Twn = un → Tw in H. Hence

〈Tw, x〉 = 〈 lim
n→∞

Twn, x〉 = lim
n→∞

〈Twn, x〉 =
[

use x ∈ D(T ∗)
]

= lim
n→∞

〈wn, T ∗x〉 = 〈 lim
n→∞

wn, T ∗x〉 = 〈w, T ∗x〉.

We have thus proved that

〈Tw, x〉 = 〈w, T ∗x〉

holds for every w ∈ D(T ), and this means that x ∈ D((T )∗) and
(T )∗x = T ∗x. Since this holds for every x ∈ D(T ∗) we have proved
that T ∗ ⊂ (T )∗. Since we have also noted (T )∗ ⊂ T ∗, it follows that
(T )∗ = T ∗, Q.E.D.

�

2Note that (T )∗ certainly exists, for T is densely defined since T is densely
defined.
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As I said in class, a very important and often difficult problem is to
prove that a given symmetric operator T is in fact self-adjoint. The
reason is that it is only for self-adjoint operators that we have access
to really good theorems about spectral decomposition (cf. Chapter 9
and also Theorem 10.6-3).

More generally, given a symmetric operator T , one often wants to
prove that T has some self-adjoint extension. One of the most im-
portant lessons which we learn from our results above (i.e., the results
of §10.3 in the book) is that when we study this question, we can al-
ways start by replacing T with the closed operator T , for we have the
following:

Fact 4. If T is a symmetric operator then T is also symmetric, and

T and T have exactly the same self-adjoint extensions!

Proof. Note that T exists by Theorem 10.3-5, and (T )∗ = T ∗ by
Fact 3 (or Theorem 10.3-6). Since T is symmetric we have T ⊂ T ∗,
i.e. T ⊂ (T )∗. But (T )∗ is closed by Theorem 10.3-3, hence T ⊂ (T )∗.
This means that T is symmetric!

Next, to see that T and T have exactly the same self-adjoint exten-
sions, suppose that T1 is a self-adjoint extension of T . Then T1 is closed
(by Theorem 10.3-3), hence T ⊂ T1, i.e. T1 is also an extension of T .

�


