End of lecture 5 April 2006

These are the things I had planned to say today but didn't get time to. [I include some more proofs here than I had planned to do in my lecture.] Please don't hesitate to email me if you have any questions on this material!

The following two facts are the last things I wrote on the board; they contain the definition 10.3-4 (p.537) in the book, and give some extra information.

Fact 1. Given $T: \mathcal{D}(T) \rightarrow H$, there exists a closed linear extension of T if and only if $\overline{\mathcal{G}(T)}$ is the graph of an operator (i.e., if and only if $\forall x \in H: \sharp\{y \in H \mid(x, y) \in \overline{\mathcal{G}(T)}\} \leqq 1)$.

Fact/def 2. If $T: \mathcal{D}(T) \rightarrow H$ has some closed linear extension, then there exists a unique minimal ${ }^{1}$ closed linear extension of T; this operator is called $\bar{T}: \mathcal{D}(\bar{T}) \rightarrow H$, the closuse of T. Furthermore in this situation we have $\mathcal{G}(\bar{T})=\overline{\mathcal{G}(T)}$.

Proof of fact 1. Assume that T has a closed linear extension T_{1}. Thus $T \subset T_{1}$ and T_{1} is closed. It follows that $\mathcal{G}(T) \subset \mathcal{G}\left(T_{1}\right)$ and that $\mathcal{G}\left(T_{1}\right)$ is closed. Hence $\overline{\mathcal{G}(T)} \subset \mathcal{G}\left(T_{1}\right)$. But by definition we have $\mathcal{G}\left(T_{1}\right)=\left\{\left(x, T_{1} x\right) \mid x \in \mathcal{D}\left(T_{1}\right)\right\}$, and hence from $\overline{\mathcal{G}(T)} \subset \mathcal{G}\left(T_{1}\right)$ it follows that

$$
\overline{\mathcal{G}(T)}=\left\{\left(x, T_{1} x\right) \mid x \in M\right\}
$$

for some subset $M \subset \mathcal{D}\left(T_{1}\right)$. Note that $\mathcal{G}(T)$ is a linear subspace of $H \times H$; thus also $\overline{\mathcal{G}(T)}$ is a linear subspace of $H \times H$ (by exercise 6 on p. 70). Hence M must be a linear subspace of $\mathcal{D}\left(T_{1}\right)$, and $\left(T_{1}\right)_{\mid M}$ is a linear operator with graph $\mathcal{G}\left(\left(T_{1}\right)_{\mid M}\right)=\left\{\left(x, T_{1} x\right) \mid x \in M\right\}=\overline{\mathcal{G}(T)}$. Hence $\overline{\mathcal{G}(T)}$ is the graph of an operator!

Conversely, suppose that $\overline{\mathcal{G}(T)}$ is the graph of an operator, i.e. $\overline{\mathcal{G}(T)}=$ $\mathcal{G}\left(T_{2}\right)$ for some operator $T_{2}: \mathcal{D}\left(T_{2}\right) \rightarrow H$. Then T_{2} is closed, since $\mathcal{G}\left(T_{2}\right)=\overline{\mathcal{G}(T)}$ is closed by definition. [Note that T_{2} is automatically a linear operator, since $\mathcal{G}\left(T_{2}\right)$ is a linear subset of $H \times H$.] Also $T \subset T_{2}$, since $\mathcal{G}(T) \subset \overline{\mathcal{G}(T)}=\mathcal{G}\left(T_{2}\right)$. Hence T_{2} is a closed linear extension of T, i.e. T has a closed linear extension.

Proof of fact 2. Assume that T has some closed linear extension. Then by our fact 1 above, $\overline{\mathcal{G}(T)}$ is the graph of an operator T_{2} (we

[^0]use the same name as above), and as in the last paragraph of the above proof of fact 1 , we see that T_{2} is actually linear and closed, and $T \subset T_{2}$. We claim that T_{2} is a minimal closed linear extension of T, i.e. that T_{2} is the closure of T ! Indeed, assume that T_{1} is any closed linear extension of T. Then $\mathcal{G}(T) \subset \mathcal{G}\left(T_{1}\right)$, and since $\mathcal{G}\left(T_{1}\right)$ is closed it follows that $\overline{\mathcal{G}(T)} \subset \mathcal{G}\left(T_{1}\right)$, i.e. $\mathcal{G}\left(T_{2}\right) \subset \mathcal{G}\left(T_{1}\right)$. This implies $T_{2} \subset T_{1}$, and the minimality of T_{2} is proved!

To prove the uniqueness of the closure, let us assume that T_{3} is also a minimal closed linear extension of T. Then since $T_{2} \subset T_{3}$ (by the minimality of T_{2}) and $T_{3} \subset T_{2}$ (by the minimality of T_{3}), and this clearly implies $T_{3}=T_{2}$.

Finally, note that the last claim in our fact/def $2, \mathcal{G}(\bar{T})=\overline{\mathcal{G}(T)}$, is already contained in our construction, for we constructed \bar{T} as the operator $\bar{T}=T_{2}$ with graph $\mathcal{G}\left(T_{2}\right)=\overline{\mathcal{G}(T)}$.

Theorem 10.3-5. Assume that $T: \mathcal{D}(T) \rightarrow H$ is symmetric (and thus densely defined). Then the closure \bar{T} exists.

The proof of this theorem in the book is very detailed, and well worth studying! We here give an alternative, much shorter proof, using our Fact 1 and Fact 2 from above!
[Actually, our argument is the same thing as on p.538(a) in the book, but using a language involving the graph $\mathcal{G}(T)$ much more explicitly.]

Proof of Theorem 10.3-5. By our Fact 2 it suffices to prove that T has some closed linear extension, and by Fact 1 this will follow if we can show that

$$
(*) \quad \forall x \in H: \sharp\{y \in H \mid(x, y) \in \overline{\mathcal{G}(T)}\} \leqq 1 .
$$

To prove this, let us assume that we have $(x, y) \in \overline{\mathcal{G}(T)}$ and $(x, \tilde{y}) \in$ $\overline{\mathcal{G}(T)}$ for some $x, y, \tilde{y} \in H$. We then wish to prove $y=\tilde{y}$.

Since $(x, y) \in \overline{\mathcal{G}(T)}$ there is a sequence $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots$ of vectors in $\mathcal{G}(T)$ with $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ in $H \times H$. Note that $\left(x_{n}, y_{n}\right) \in$ $\mathcal{G}(T)$ implies $x_{n} \in \mathcal{D}(T), y_{n}=T x_{n}$, and $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ implies (using the definition of the norm in $H \times H$) that $x_{n} \rightarrow x$ (in H) and $T x_{n}=y_{n} \rightarrow y$ (in H) as $n \rightarrow \infty$. Similarly, since $(x, \tilde{y}) \in \overline{\mathcal{G}(T)}$ there is a sequence $\left(\tilde{x}_{1}, \tilde{y}_{1}\right),\left(\tilde{x}_{2}, \tilde{y}_{2}\right),\left(\tilde{x}_{3}, \tilde{y}_{3}\right), \ldots$ of vectors in $\mathcal{G}(T)$ with $\left(\tilde{x}_{n}, \tilde{y}_{n}\right) \rightarrow(x, \tilde{y})$ in $H \times H$, and this implies $\tilde{x}_{n} \in \mathcal{D}(T), \tilde{y}_{n}=T \tilde{x}_{n}$, $\tilde{x}_{n} \rightarrow x$ (in H) and $T \tilde{x}_{n}=\tilde{y}_{n} \rightarrow \tilde{y}($ in $H)$ as $n \rightarrow \infty$.

Now for every $v \in \mathcal{D}(T)$ we have
$\langle v, y-\tilde{y}\rangle=\left\langle v, \lim _{n \rightarrow \infty}\left(y_{n}-\tilde{y}_{n}\right)\right\rangle=\lim _{n \rightarrow \infty}\left\langle v, y_{n}-\tilde{y}_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle v, T\left(x_{n}-\tilde{x}_{n}\right)\right\rangle=$
$[$ Use that T is symmetric and $v \in \mathcal{D}(T)]$
$=\lim _{n \rightarrow \infty}\left\langle T v, x_{n}-\tilde{x}_{n}\right\rangle=\left\langle T v, \lim _{n \rightarrow \infty}\left(x_{n}-\tilde{x}_{n}\right)\right\rangle=\langle T v, x-x\rangle=0$.
Hence $y-\tilde{y} \in \mathcal{D}(T)^{\perp}=\overline{\mathcal{D}(T)}{ }^{\perp}=H^{\perp}=\{0\}$, i.e. $y-\tilde{y}=0$, Q.E.D.

Fact 3. If $T: \mathcal{D}(T) \rightarrow H$ is a densely defined operator which has a closed linear extension (so that \bar{T} exists), then $(\bar{T})^{*}=T^{*} .{ }^{2}$

Remark: This Fact 3 is a stronger statement than Theorem 10.3-6 in the book, which says that if T is a symmetric operator, then $(\bar{T})^{*}=T^{*}$. (This follows from Fact 3 for if T is symmetric then \bar{T} exists by Theorem 10.3-5 above.)

Proof of Fact 3. Since $T \subset \bar{T}$ we have $(\bar{T})^{*} \subset T^{*}$, by Theorem 10.2-1.

Conversely, take any $x \in \mathcal{D}\left(T^{*}\right)$; we wish to prove that $x \in \mathcal{D}\left((\bar{T})^{*}\right)$ and $(\bar{T})^{*} x=T^{*} x$. Note that $x \in \mathcal{D}\left(T^{*}\right)$ implies, by the definition of $\mathcal{D}\left(T^{*}\right)$, that

$$
\forall v \in \mathcal{D}(T):\langle T v, x\rangle=\left\langle v, T^{*} x\right\rangle
$$

Now take an arbitrary $w \in \mathcal{D}(\bar{T})$. Then $(w, \bar{T} w) \in \mathcal{G}(\bar{T})=\overline{\mathcal{G}(T)}$ and thus there is a sequence $\left(w_{1}, u_{1}\right),\left(w_{2}, u_{2}\right),\left(w_{3}, u_{3}\right), \ldots$ in $\mathcal{G}(T)$ with $\left(w_{n}, u_{n}\right) \rightarrow(w, \bar{T} w)$ in $H \times H$. Hence $w_{n} \in \mathcal{D}(T), u_{n}=T w_{n}, w_{n} \rightarrow w$ in H and $T w_{n}=u_{n} \rightarrow \bar{T} w$ in H. Hence

$$
\begin{array}{ll}
\langle\bar{T} w, x\rangle=\left\langle\lim _{n \rightarrow \infty} T w_{n}, x\right\rangle=\lim _{n \rightarrow \infty}\left\langle T w_{n}, x\right\rangle= & {\left[\text { use } x \in \mathcal{D}\left(T^{*}\right)\right]} \\
=\lim _{n \rightarrow \infty}\left\langle w_{n}, T^{*} x\right\rangle=\left\langle\lim _{n \rightarrow \infty} w_{n}, T^{*} x\right\rangle=\left\langle w, T^{*} x\right\rangle . &
\end{array}
$$

We have thus proved that

$$
\langle\bar{T} w, x\rangle=\left\langle w, T^{*} x\right\rangle
$$

holds for every $w \in \mathcal{D}(\bar{T})$, and this means that $x \in \mathcal{D}\left((\bar{T})^{*}\right)$ and $(\bar{T})^{*} x=T^{*} x$. Since this holds for every $x \in \mathcal{D}\left(T^{*}\right)$ we have proved that $T^{*} \subset(\bar{T})^{*}$. Since we have also noted $(\bar{T})^{*} \subset T^{*}$, it follows that $(\bar{T})^{*}=T^{*}$, Q.E.D.

[^1]As I said in class, a very important and often difficult problem is to prove that a given symmetric operator T is in fact self-adjoint. The reason is that it is only for self-adjoint operators that we have access to really good theorems about spectral decomposition (cf. Chapter 9 and also Theorem 10.6-3).

More generally, given a symmetric operator T, one often wants to prove that T has some self-adjoint extension. One of the most important lessons which we learn from our results above (i.e., the results of $\S 10.3$ in the book) is that when we study this question, we can always start by replacing T with the closed operator \bar{T}, for we have the following:

Fact 4. If T is a symmetric operator then \bar{T} is also symmetric, and T and \bar{T} have exactly the same self-adjoint extensions!

Proof. Note that \bar{T} exists by Theorem 10.3-5, and $(\bar{T})^{*}=T^{*}$ by Fact 3 (or Theorem 10.3-6). Since T is symmetric we have $T \subset T^{*}$, i.e. $T \subset(\bar{T})^{*}$. But $(\bar{T})^{*}$ is closed by Theorem 10.3-3, hence $\bar{T} \subset(\bar{T})^{*}$. This means that \bar{T} is symmetric!

Next, to see that T and \bar{T} have exactly the same self-adjoint extensions, suppose that T_{1} is a self-adjoint extension of T. Then T_{1} is closed (by Theorem 10.3-3), hence $\bar{T} \subset T_{1}$, i.e. T_{1} is also an extension of \bar{T}.

[^0]: ${ }^{1}$ The precise meaning of " \bar{T} is a minimal closed linear extension of T " is the following: \bar{T} is a closed linear extension of T, and for every closed linear extension T_{1} of T we have $\bar{T} \subset T_{1}$.

[^1]: ${ }^{2}$ Note that $(\bar{T})^{*}$ certainly exists, for \bar{T} is densely defined since T is densely defined.

