Uppsala Universitet
Matematiska Institutionen
Andreas Strömbergsson

Prov i matematik
Funktionalanalys
Kurs: NVP 6p-delen
2006-04-21
Skrivtid: 9.00-11.30
Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok Introductory Functional Analysis with Applications och Strömbergssons häften Spectral theorem for compact, self-adjoint operators and Mathematical statements and proofs.

1. Let $T: \mathcal{D}(T) \rightarrow H$ be a (possibly unbounded) densely defined linear operator in a complex Hilbert space H. Recall the definition of the Hilbert-adjoint operator $T^{*}: \mathcal{D}\left(T^{*}\right) \rightarrow H$ (Definition 10.1-2). Give a careful proof that $\mathcal{D}\left(T^{*}\right)$ is a vector subspace of H and that T^{*} is a linear operator.
2. Let $T: \mathcal{D}(T) \rightarrow Y$ be a closed linear operator, where $\mathcal{D}(T) \subset X$ and X and Y are normed spaces. Let $C \subset \mathcal{D}(T)$ be a compact set. Prove that the image $T(C)=\{T(x) \mid x \in C\}$ is a closed subset of Y.
3. Let $T: \ell^{2} \rightarrow \ell^{2}$ be the self-adjoint bounded linear operator

$$
T\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(\xi_{1}, \frac{1}{2} \xi_{2}, \xi_{3}, \frac{1}{4} \xi_{4}, \xi_{5}, \frac{1}{6} \xi_{6}, \xi_{7}, \ldots\right)
$$

What is the spectral family $\left(E_{\lambda}\right)$ associated with T ?
(You get several points for giving the correct formula for E_{λ} for each $\lambda \in \mathbb{R}$, even if found by an intuitive (non-rigorous) argument. However, for full score, please give a careful verification of the fact $T=\int_{-\infty}^{\infty} \lambda d E_{\lambda}$ for your family $\left(E_{\lambda}\right)$.)

GOOD LUCK!

Solutions

1. By Definition 10.1-2 we have

$$
D\left(T^{*}\right)=\left\{y \in H \mid \exists y^{*} \in H: \forall x \in D(T):\langle T x, y\rangle=\left\langle x, y^{*}\right\rangle\right\}
$$

and for each $y \in D\left(T^{*}\right)$ we define $T^{*} y:=y^{*}$ where $y^{*} \in H$ is the vector as above, i.e. the vector which has the property $\forall x \in D(T):\langle T x, y\rangle=$ $\left\langle x, y^{*}\right\rangle$ (this vector y^{*} is unique since $D(T)$ is dense in H).

Now let y_{1}, y_{2} be arbitrary vectors in $D\left(T^{*}\right)$ and let α, β be arbitrary complex numbers. Then by the definition of $D\left(T^{*}\right)$ there exist vectors y_{1}^{*}, y_{2}^{*} such that

$$
\forall x \in D(T):\left\langle T x, y_{1}\right\rangle=\left\langle x, y_{1}^{*}\right\rangle \text { and }\left\langle T x, y_{2}\right\rangle=\left\langle x, y_{2}^{*}\right\rangle
$$

Now note that for all $x \in D(T)$ we have

$$
\left\langle T x, \alpha y_{1}+\beta y_{2}\right\rangle=\bar{\alpha}\left\langle T x, y_{1}\right\rangle+\bar{\beta}\left\langle T x, y_{2}\right\rangle=\bar{\alpha}\left\langle x, y_{1}^{*}\right\rangle+\bar{\beta}\left\langle x, y_{2}^{*}\right\rangle=\left\langle x, \alpha y_{1}^{*}+\beta y_{2}^{*}\right\rangle .
$$

This proves that $\alpha y_{1}+\beta y_{2} \in D\left(T^{*}\right)$, and also that $T^{*}\left(\alpha y_{1}+\beta y_{2}\right)=$ $\alpha y_{1}^{*}+\beta y_{2}^{*}=\alpha T^{*}\left(y_{1}\right)+\beta T^{*}\left(y_{2}\right)$. Since these two properties hold for all $y_{1}, y_{2} \in D\left(T^{*}\right)$ and all $\alpha, \beta \in \mathbb{C}$ it follows that $D\left(T^{*}\right)$ is a vector subspace of H and that T^{*} is a linear operator.
2. Let $y_{1}, y_{2}, y_{3}, \ldots$ be a sequence of points in $T(C)$ such that $y=$ $\lim _{j \rightarrow \infty} y_{j}$ exists in Y. We must prove that $y \in T(C)$.

For each $j \geqq 1$ there exists some $x_{j} \in C$ with $y_{j}=T\left(x_{j}\right)$, since $y_{j} \in T(C)$. We now assume that such a vector x_{j} has been chosen for each $j \geqq 1$. Since C is compact and $x_{1}, x_{2}, x_{3}, \ldots \in C$ there exists a subsequence $x_{j_{1}}, x_{j_{2}}, x_{j_{3}}, \ldots$ (where $1 \leqq j_{1}<j_{2}<j_{3}<\ldots$) which converges to an element $x \in C$, i.e. $\lim _{n \rightarrow \infty} x_{j_{n}}=x \in C$. Now $\lim _{n \rightarrow \infty} T\left(x_{j_{n}}\right)=\lim _{n \rightarrow \infty} y_{j_{n}}=y\left(\right.$ since $\left.\lim _{j \rightarrow \infty} y_{j}=y\right)$. Hence by Theorem 4.13-3, since T is a closed linear operator, we have $T x=y$. But $x \in C$, hence $y \in T(C)$.

Hence we have proved that for every sequence $y_{1}, y_{2}, y_{3}, \ldots$ in $T(C)$ which converges to some $y \in Y$, we actually have $y \in T(C)$. Hence $T(C)$ is closed in Y, by Theorem 1.4-6.
3. Recall the intuitive formula $E_{\lambda}=$ projection on all part of ℓ^{2} which have "eigenvalues" $\leqq \lambda$. Note that the given operator T has the property that all of ℓ^{2} is (Hilbert-)spanned by eigenvectors; for note that all the vectors ${ }^{1} e_{1}, e_{2}, e_{3}, e_{4}, \ldots$ are eigenvectors of T, and these vectors span ℓ^{2} in the Hilbert sense, i.e. $\ell^{2}=\overline{\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}}$. Hence it

[^0]seems reasonable to expect that the above intuitive formula is in fact rigorously true in our case.

This leads to the following guess: For $\lambda \leqq 0: E_{\lambda}=0$. For $0<\lambda<1$: Let k be the smallest positive integer such that $\lambda \geqq \frac{1}{2 k}$:

$$
E_{\lambda}\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(0,0, \ldots, 0, \xi_{2 k}, 0, \xi_{2 k+2}, 0, \xi_{2 k+4}, 0, \ldots\right)
$$

(where the first non-zero entry is in position $2 k$). Finally for $\lambda \geqq 1$ we should have $E_{\lambda}:=I$.

We now prove that $\left(E_{\lambda}\right)$ as specified above satisfies all the desired properties.

One easily checks that $\left(E_{\lambda}\right)$ is a spectral family on $[0,1]$. Indeed, properties (7) and $\left(8^{*}\right)$ on p. 495 are directly clear from our definition of $\left(E_{\lambda}\right)$. It thus remains to check (9) on p. 495. Note that by our definition of $\left(E_{\lambda}\right)$ we have that for each $\lambda \neq 0 \in \mathbb{R}$ there exists some $\varepsilon>0$ such that $E_{\mu}=E_{\lambda}$ for all $\mu \in[\lambda, \lambda+\varepsilon]$, and this property immediately implies $\lim _{\mu \rightarrow \lambda+0} E_{\mu} x=E_{\lambda} x$ for all $x \in H$. Hence it only remains to verify that (9) on p. 495 holds when $\lambda=0$, i.e. that $\lim _{\mu \rightarrow 0+0} E_{\mu} x=E_{\lambda} x$ holds for all $x \in H$. By our definition of $\left(E_{\lambda}\right)$ this is the same as proving:

$$
\lim _{k \rightarrow \infty}\left(0,0, \ldots, 0, \xi_{2 k}, 0, \xi_{2 k+2}, 0, \ldots\right)=0, \quad \forall x=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right) \in \ell^{2}
$$

This is clear from the fact that for all $x=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right) \in \ell^{2}$ we have

$$
\left\|\left(0,0, \ldots, 0, \xi_{2 k}, 0, \xi_{2 k+2}, 0, \ldots\right)\right\|^{2}=\sum_{j=k}^{\infty}\left|\xi_{2 j}\right|^{2} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

Hence we have proved completely that $\left(E_{\lambda}\right)$ is a spectral family on $[0,1]$.

We now prove $T=\int_{0-0}^{1} t d E_{t}$. Given $n \in \mathbb{Z}^{+}$, let $P_{n}: 0=t_{0}<t_{1}<$ $t_{2}<\ldots<t_{m}=1$ be any partition of $[0,1]$ which has $t_{1}=\frac{1}{2 n}$ and for which all the points $\frac{1}{2 n}, \frac{1}{2 n-2}, \frac{1}{2 n-4}, \ldots, \frac{1}{4}, \frac{1}{2}$ occur among the t_{j} 's, and with more t_{j}-points inserted in a way such that $\eta\left(P_{n}\right) \leqq \frac{1}{2 n}$. Then the Riemann-Stieltjes sum for the integral $\int_{0-0}^{1} t d E_{t}$ corresponding to P_{n} is:

$$
s\left(P_{n}\right)=\sum_{j=1}^{m} t_{j} \cdot\left(E_{t_{j}}-E_{t_{j-1}}\right)
$$

(Since we have lower limit of integration " $0-0$ " we should in fact add a term $t_{0} \cdot E_{t_{0}}$ to this sum, but note that this term is anyway 0 .) The contribution from $j=1$ in the above sum is $t_{1} \cdot\left(E_{t_{1}}-E_{t_{0}}\right)=\frac{1}{2 n}\left(E_{\frac{1}{2 n}}-0\right)$.

Note that this operator acts as follows on ℓ^{2} :
$\frac{1}{2 n}\left(E_{\frac{1}{2 n}}-0\right)\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(0,0, \ldots, 0, \frac{1}{2 n} \xi_{2 n}, 0, \frac{1}{2 n} \xi_{2 n+2}, 0, \frac{1}{2 n} \xi_{2 n+4}, 0, \ldots\right)$.
Furthermore, if j in the above sum is such that $t_{j}=\frac{1}{2 k}$ for some $k=1,2, \ldots, n-1$ then by construction we have $\frac{1}{2 k+2} \leqq t_{j-1}<\frac{1}{2 k}$, and thus $E_{t_{j}}-E_{t_{j-1}}$ is projection onto the $2 k$:th coordinate, and the contribution from j to our sum is $\frac{1}{2 k}\left(E_{t_{j}}-E_{t_{j-1}}\right)$, which acts as follows:

$$
\frac{1}{2 k}\left(E_{t_{j}}-E_{t_{j-1}}\right)\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(0,0, \ldots, 0, \frac{1}{2 k} \xi_{2 k}, 0,0,0, \ldots\right)
$$

(where the non-zero entry is in position $2 k$). Next, for $j=m$ we have $t_{m}=1$ and $t_{m-1} \geqq \frac{1}{2}$, hence the contribution from this j is $1 \cdot\left(E_{1}-E_{\frac{1}{2}}\right)$. Note that this operator acts as follows:

$$
\left(E_{1}-E_{\frac{1}{2}}\right)\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(\xi_{1}, 0, \xi_{3}, 0, \xi_{5}, 0, \ldots\right)
$$

Finally, for every other j in the sum we see from our construction that $E_{t_{j}}=E_{t_{j-1}}$, hence the contribution for this j is 0 . Hence:

$$
\begin{aligned}
& s\left(P_{n}\right)\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right) \\
& =\left(\xi_{1}, \frac{1}{2} \xi_{2}, \xi_{3}, \frac{1}{4} \xi_{4}, \xi_{5}, \ldots, \frac{1}{2 n} \xi_{2 n}, \xi_{2 n+1}, \frac{1}{2 n} \xi_{2 n+2}, \xi_{2 n+3}, \frac{1}{2 n} \xi_{2 n+4}, \xi_{2 n+5}, \ldots\right)
\end{aligned}
$$

Hence we easily see $\left|\mid s\left(P_{n}\right)-T \| \leqq \frac{1}{2 n}-\frac{1}{2 n+2} \rightarrow 0\right.$ as $n \rightarrow \infty$. Hence $T=\int_{0-0}^{1} t d E_{t}$.

We have now proved that $\left(E_{\lambda}\right)$ is a spectral family on $[0,1]$ and that $T=\int_{0-0}^{1} t d E_{t}$. Hence by the uniqueness part of Theorem 9.9-1 (which I told about in class) we have that $\left(E_{\lambda}\right)$ is the spectral family associated with T.

Answer: For $\lambda \leqq 0: E_{\lambda}=0$. For $0<\lambda<1$: Let k be the smallest positive integer such that $\lambda \geqq \frac{1}{2 k}$:

$$
E_{\lambda}\left(\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)\right)=\left(0,0, \ldots, 0, \xi_{2 k}, 0, \xi_{2 k+2}, 0, \xi_{2 k+4}, 0, \ldots\right)
$$

(where the first non-zero entry is in position $2 k$). For $\lambda \geqq 1: E_{\lambda}:=I$.

[^0]: ${ }^{1}$ We use the standard notation $e_{j}=(0,0, \ldots, 0,1,0,0, \ldots)$, where the " 1 " is in position j.

