Uppsala Universitet	Prov i matematik
Matematiska Institutionen Andreas Strömbergsson	Funktionalanalys
	Kurs: NVP 6p-delen
	2006-04-21

Skrivtid: 9.00–11.30

Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok Introductory Functional Analysis with Applications och Strömbergssons häften Spectral theorem for compact, self-adjoint operators and Mathematical statements and proofs.

1. Let $T : \mathcal{D}(T) \to H$ be a (possibly unbounded) densely defined linear operator in a complex Hilbert space H. Recall the definition of the Hilbert-adjoint operator $T^* : \mathcal{D}(T^*) \to H$ (Definition 10.1-2). Give a careful proof that $\mathcal{D}(T^*)$ is a vector subspace of H and that T^* is a linear operator. (6p)

2. Let $T : \mathcal{D}(T) \to Y$ be a closed linear operator, where $\mathcal{D}(T) \subset X$ and X and Y are normed spaces. Let $C \subset \mathcal{D}(T)$ be a compact set. Prove that the image $T(C) = \{T(x) \mid x \in C\}$ is a closed subset of Y. (7p)

3. Let $T: \ell^2 \to \ell^2$ be the self-adjoint bounded linear operator

$$T\left((\xi_1,\xi_2,\xi_3,\ldots)\right) = (\xi_1,\frac{1}{2}\xi_2,\xi_3,\frac{1}{4}\xi_4,\xi_5,\frac{1}{6}\xi_6,\xi_7,\ldots).$$

What is the spectral family (E_{λ}) associated with T? (You get several points for giving the correct formula for E_{λ} for each $\lambda \in \mathbb{R}$, even if found by an intuitive (non-rigorous) argument. However, for full score, please give a careful verification of the fact $T = \int_{-\infty}^{\infty} \lambda \, dE_{\lambda}$ for your family (E_{λ}) .) (7p)

GOOD LUCK!

Solutions

1. By Definition 10.1-2 we have

$$D(T^*) = \Big\{ y \in H \mid \exists y^* \in H : \forall x \in D(T) : \langle Tx, y \rangle = \langle x, y^* \rangle \Big\},\$$

and for each $y \in D(T^*)$ we define $T^*y := y^*$ where $y^* \in H$ is the vector as above, i.e. the vector which has the property $\forall x \in D(T) : \langle Tx, y \rangle = \langle x, y^* \rangle$ (this vector y^* is *unique* since D(T) is dense in H).

Now let y_1, y_2 be arbitrary vectors in $D(T^*)$ and let α, β be arbitrary complex numbers. Then by the definition of $D(T^*)$ there exist vectors y_1^*, y_2^* such that

$$\forall x \in D(T) : \langle Tx, y_1 \rangle = \langle x, y_1^* \rangle \text{ and } \langle Tx, y_2 \rangle = \langle x, y_2^* \rangle.$$

Now note that for all $x \in D(T)$ we have

$$\langle Tx, \alpha y_1 + \beta y_2 \rangle = \overline{\alpha} \langle Tx, y_1 \rangle + \overline{\beta} \langle Tx, y_2 \rangle = \overline{\alpha} \langle x, y_1^* \rangle + \overline{\beta} \langle x, y_2^* \rangle = \langle x, \alpha y_1^* + \beta y_2^* \rangle.$$

This proves that $\alpha y_1 + \beta y_2 \in D(T^*)$, and also that $T^*(\alpha y_1 + \beta y_2) = \alpha y_1^* + \beta y_2^* = \alpha T^*(y_1) + \beta T^*(y_2)$. Since these two properties hold for all $y_1, y_2 \in D(T^*)$ and all $\alpha, \beta \in \mathbb{C}$ it follows that $D(T^*)$ is a vector subspace of H and that T^* is a linear operator.

2. Let y_1, y_2, y_3, \ldots be a sequence of points in T(C) such that $y = \lim_{j \to \infty} y_j$ exists in Y. We must prove that $y \in T(C)$.

For each $j \geq 1$ there exists some $x_j \in C$ with $y_j = T(x_j)$, since $y_j \in T(C)$. We now assume that such a vector x_j has been chosen for each $j \geq 1$. Since C is compact and $x_1, x_2, x_3, \ldots \in C$ there exists a subsequence $x_{j_1}, x_{j_2}, x_{j_3}, \ldots$ (where $1 \leq j_1 < j_2 < j_3 < \ldots$) which converges to an element $x \in C$, i.e. $\lim_{n\to\infty} x_{j_n} = x \in C$. Now $\lim_{n\to\infty} T(x_{j_n}) = \lim_{n\to\infty} y_{j_n} = y$ (since $\lim_{j\to\infty} y_j = y$). Hence by Theorem 4.13-3, since T is a closed linear operator, we have Tx = y. But $x \in C$, hence $y \in T(C)$.

Hence we have proved that for every sequence y_1, y_2, y_3, \ldots in T(C) which converges to some $y \in Y$, we actually have $y \in T(C)$. Hence T(C) is closed in Y, by Theorem 1.4-6.

3. Recall the intuitive formula $E_{\lambda} = [\text{projection on all part of } \ell^2 \text{ which}$ have "eigenvalues" $\leq \lambda$]. Note that the given operator T has the property that all of ℓ^2 is (Hilbert-)spanned by eigenvectors; for note that all the vectors¹ $e_1, e_2, e_3, e_4, \ldots$ are eigenvectors of T, and these vectors span ℓ^2 in the Hilbert sense, i.e. $\ell^2 = \overline{\text{Span}\{e_1, e_2, e_3, \ldots\}}$. Hence it

¹We use the standard notation $e_j = (0, 0, ..., 0, 1, 0, 0, ...)$, where the "1" is in position j.

seems reasonable to expect that the above intuitive formula is in fact rigorously true in our case.

This leads to the following guess: For $\lambda \leq 0$: $E_{\lambda} = 0$. For $0 < \lambda < 1$: Let k be the smallest positive integer such that $\lambda \geq \frac{1}{2k}$:

$$E_{\lambda}\Big((\xi_1,\xi_2,\xi_3,\ldots)\Big) = (0,0,\ldots,0,\xi_{2k},0,\xi_{2k+2},0,\xi_{2k+4},0,\ldots)$$

(where the first non-zero entry is in position 2k). Finally for $\lambda \ge 1$ we should have $E_{\lambda} := I$.

We now prove that (E_{λ}) as specified above satisfies all the desired properties.

One easily checks that (E_{λ}) is a spectral family on [0, 1]. Indeed, properties (7) and (8^{*}) on p. 495 are directly clear from our definition of (E_{λ}) . It thus remains to check (9) on p. 495. Note that by our definition of (E_{λ}) we have that for each $\lambda \neq 0 \in \mathbb{R}$ there exists some $\varepsilon > 0$ such that $E_{\mu} = E_{\lambda}$ for all $\mu \in [\lambda, \lambda + \varepsilon]$, and this property immediately implies $\lim_{\mu\to\lambda+0} E_{\mu}x = E_{\lambda}x$ for all $x \in H$. Hence it only remains to verify that (9) on p. 495 holds when $\lambda = 0$, i.e. that $\lim_{\mu\to 0+0} E_{\mu}x = E_{\lambda}x$ holds for all $x \in H$. By our definition of (E_{λ}) this is the same as proving:

$$\lim_{k \to \infty} (0, 0, \dots, 0, \xi_{2k}, 0, \xi_{2k+2}, 0, \dots) = 0, \qquad \forall x = (\xi_1, \xi_2, \xi_3, \dots) \in \ell^2.$$

This is clear from the fact that for all $x = (\xi_1, \xi_2, \xi_3, \ldots) \in \ell^2$ we have

$$\left\| (0, 0, \dots, 0, \xi_{2k}, 0, \xi_{2k+2}, 0, \dots) \right\|^2 = \sum_{j=k}^{\infty} |\xi_{2j}|^2 \to 0, \quad \text{as } k \to \infty.$$

Hence we have proved completely that (E_{λ}) is a spectral family on [0, 1].

We now prove $T = \int_{0-0}^{1} t \, dE_t$. Given $n \in \mathbb{Z}^+$, let $P_n : 0 = t_0 < t_1 < t_2 < \ldots < t_m = 1$ be any partition of [0, 1] which has $t_1 = \frac{1}{2n}$ and for which all the points $\frac{1}{2n}, \frac{1}{2n-2}, \frac{1}{2n-4}, \ldots, \frac{1}{4}, \frac{1}{2}$ occur among the t_j 's, and with more t_j -points inserted in a way such that $\eta(P_n) \leq \frac{1}{2n}$. Then the Riemann-Stieltjes sum for the integral $\int_{0-0}^{1} t \, dE_t$ corresponding to P_n is:

$$s(P_n) = \sum_{j=1}^m t_j \cdot (E_{t_j} - E_{t_{j-1}})$$

(Since we have lower limit of integration "0 – 0" we should in fact add a term $t_0 \cdot E_{t_0}$ to this sum, but note that this term is anyway 0.) The contribution from j = 1 in the above sum is $t_1 \cdot (E_{t_1} - E_{t_0}) = \frac{1}{2n} (E_{\frac{1}{2n}} - 0)$. Note that this operator acts as follows on ℓ^2 :

$$\frac{1}{2n} \left(E_{\frac{1}{2n}} - 0 \right) \left((\xi_1, \xi_2, \xi_3, \ldots) \right) = (0, 0, \ldots, 0, \frac{1}{2n} \xi_{2n}, 0, \frac{1}{2n} \xi_{2n+2}, 0, \frac{1}{2n} \xi_{2n+4}, 0, \ldots)$$

Furthermore, if *i* in the above sum is such that $t_{1} = \frac{1}{2n}$ for some

Furthermore, if j in the above sum is such that $t_j = \frac{1}{2k}$ for some k = 1, 2, ..., n-1 then by construction we have $\frac{1}{2k+2} \leq t_{j-1} < \frac{1}{2k}$, and thus $E_{t_j} - E_{t_{j-1}}$ is projection onto the 2k:th coordinate, and the contribution from j to our sum is $\frac{1}{2k}(E_{t_j} - E_{t_{j-1}})$, which acts as follows:

$$\frac{1}{2k}(E_{t_j} - E_{t_{j-1}})\Big((\xi_1, \xi_2, \xi_3, \ldots)\Big) = (0, 0, \dots, 0, \frac{1}{2k}\xi_{2k}, 0, 0, 0, \ldots)$$

(where the non-zero entry is in position 2k). Next, for j = m we have $t_m = 1$ and $t_{m-1} \ge \frac{1}{2}$, hence the contribution from this j is $1 \cdot (E_1 - E_{\frac{1}{2}})$. Note that this operator acts as follows:

$$(E_1 - E_{\frac{1}{2}}) \Big((\xi_1, \xi_2, \xi_3, \ldots) \Big) = (\xi_1, 0, \xi_3, 0, \xi_5, 0, \ldots)$$

Finally, for every other j in the sum we see from our construction that $E_{t_j} = E_{t_{j-1}}$, hence the contribution for this j is 0. Hence:

$$s(P_n)\Big((\xi_1,\xi_2,\xi_3,\ldots)\Big)$$

= $(\xi_1,\frac{1}{2}\xi_2,\xi_3,\frac{1}{4}\xi_4,\xi_5,\ldots,\frac{1}{2n}\xi_{2n},\xi_{2n+1},\frac{1}{2n}\xi_{2n+2},\xi_{2n+3},\frac{1}{2n}\xi_{2n+4},\xi_{2n+5},\ldots)$
Hence we easily see $||s(P_n) - T|| \leq \frac{1}{2n} - \frac{1}{2n+2} \to 0$ as $n \to \infty$. Hence
 $T = \int_{0-0}^{1} t \, dE_t.$

We have now proved that (E_{λ}) is a spectral family on [0, 1] and that $T = \int_{0-0}^{1} t \, dE_t$. Hence by the uniqueness part of Theorem 9.9-1 (which I told about in class) we have that (E_{λ}) is *the* spectral family associated with T.

Answer: For $\lambda \leq 0$: $E_{\lambda} = 0$. For $0 < \lambda < 1$: Let k be the smallest positive integer such that $\lambda \geq \frac{1}{2k}$:

$$E_{\lambda}\Big((\xi_1,\xi_2,\xi_3,\ldots)\Big) = (0,0,\ldots,0,\xi_{2k},0,\xi_{2k+2},0,\xi_{2k+4},0,\ldots)$$

(where the first non-zero entry is in position 2k). For $\lambda \ge 1$: $E_{\lambda} := I$.