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1. Let T : D(T ) → H be a (possibly unbounded) densely defined
linear operator in a complex Hilbert space H. Recall the definition of
the Hilbert-adjoint operator T ∗ : D(T ∗) → H (Definition 10.1-2). Give
a careful proof that D(T ∗) is a vector subspace of H and that T ∗ is a
linear operator. (6p)

2. Let T : D(T ) → Y be a closed linear operator, where D(T ) ⊂ X

and X and Y are normed spaces. Let C ⊂ D(T ) be a compact set.
Prove that the image T (C) = {T (x) | x ∈ C} is a closed subset of Y .

(7p)

3. Let T : `2 → `2 be the self-adjoint bounded linear operator

T
(

(ξ1, ξ2, ξ3, . . .)
)

= (ξ1,
1

2
ξ2, ξ3,

1

4
ξ4, ξ5,

1

6
ξ6, ξ7, . . .).

What is the spectral family (Eλ) associated with T ?
(You get several points for giving the correct formula for Eλ for each
λ ∈ R, even if found by an intuitive (non-rigorous) argument. However,
for full score, please give a careful verification of the fact T =

∫

∞

−∞
λ dEλ

for your family (Eλ).)
(7p)

GOOD LUCK!
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Solutions

1. By Definition 10.1-2 we have

D(T ∗) =
{

y ∈ H | ∃y∗ ∈ H : ∀x ∈ D(T ) : 〈Tx, y〉 = 〈x, y∗〉
}

,

and for each y ∈ D(T ∗) we define T ∗y := y∗ where y∗ ∈ H is the vector
as above, i.e. the vector which has the property ∀x ∈ D(T ) : 〈Tx, y〉 =
〈x, y∗〉 (this vector y∗ is unique since D(T ) is dense in H).

Now let y1, y2 be arbitrary vectors in D(T ∗) and let α, β be arbitrary
complex numbers. Then by the definition of D(T ∗) there exist vectors
y∗

1, y
∗

2 such that

∀x ∈ D(T ) : 〈Tx, y1〉 = 〈x, y∗

1〉 and 〈Tx, y2〉 = 〈x, y∗

2〉.

Now note that for all x ∈ D(T ) we have

〈Tx, αy1 + βy2〉 = α〈Tx, y1〉 + β〈Tx, y2〉 = α〈x, y∗

1〉 + β〈x, y∗

2〉 = 〈x, αy∗

1 + βy∗

2〉.

This proves that αy1 + βy2 ∈ D(T ∗), and also that T ∗(αy1 + βy2) =
αy∗

1 + βy∗

2 = αT ∗(y1) + βT ∗(y2). Since these two properties hold for
all y1, y2 ∈ D(T ∗) and all α, β ∈ C it follows that D(T ∗) is a vector
subspace of H and that T ∗ is a linear operator.

2. Let y1, y2, y3, . . . be a sequence of points in T (C) such that y =
limj→∞ yj exists in Y . We must prove that y ∈ T (C).

For each j = 1 there exists some xj ∈ C with yj = T (xj), since
yj ∈ T (C). We now assume that such a vector xj has been chosen
for each j = 1. Since C is compact and x1, x2, x3, . . . ∈ C there ex-
ists a subsequence xj1, xj2 , xj3, . . . (where 1 5 j1 < j2 < j3 < . . .)
which converges to an element x ∈ C, i.e. limn→∞ xjn

= x ∈ C. Now
limn→∞ T (xjn

) = limn→∞ yjn
= y (since limj→∞ yj = y). Hence by

Theorem 4.13-3, since T is a closed linear operator, we have Tx = y.
But x ∈ C, hence y ∈ T (C).

Hence we have proved that for every sequence y1, y2, y3, . . . in T (C)
which converges to some y ∈ Y , we actually have y ∈ T (C). Hence
T (C) is closed in Y , by Theorem 1.4-6.

3. Recall the intuitive formula Eλ =[projection on all part of `2 which
have “eigenvalues” 5 λ]. Note that the given operator T has the prop-
erty that all of `2 is (Hilbert-)spanned by eigenvectors; for note that
all the vectors1 e1, e2, e3, e4, . . . are eigenvectors of T , and these vectors
span `2 in the Hilbert sense, i.e. `2 = Span{e1, e2, e3, . . .}. Hence it

1We use the standard notation ej = (0, 0, . . . , 0, 1, 0, 0, . . .), where the “1” is in
position j.
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seems reasonable to expect that the above intuitive formula is in fact
rigorously true in our case.

This leads to the following guess: For λ 5 0: Eλ = 0. For 0 < λ < 1:
Let k be the smallest positive integer such that λ = 1

2k
:

Eλ

(

(ξ1, ξ2, ξ3, . . .)
)

= (0, 0, . . . , 0, ξ2k, 0, ξ2k+2, 0, ξ2k+4, 0, . . .)

(where the first non-zero entry is in position 2k). Finally for λ = 1 we
should have Eλ := I.

We now prove that (Eλ) as specified above satisfies all the desired
properties.

One easily checks that (Eλ) is a spectral family on [0, 1]. Indeed,
properties (7) and (8*) on p. 495 are directly clear from our definition
of (Eλ). It thus remains to check (9) on p. 495. Note that by our
definition of (Eλ) we have that for each λ 6= 0 ∈ R there exists some
ε > 0 such that Eµ = Eλ for all µ ∈ [λ, λ + ε], and this property
immediately implies limµ→λ+0 Eµx = Eλx for all x ∈ H. Hence it
only remains to verify that (9) on p. 495 holds when λ = 0, i.e. that
limµ→0+0 Eµx = Eλx holds for all x ∈ H. By our definition of (Eλ) this
is the same as proving:

lim
k→∞

(0, 0, . . . , 0, ξ2k, 0, ξ2k+2, 0, . . .) = 0, ∀x = (ξ1, ξ2, ξ3, . . .) ∈ `2.

This is clear from the fact that for all x = (ξ1, ξ2, ξ3, . . .) ∈ `2 we have

∥

∥

∥
(0, 0, . . . , 0, ξ2k, 0, ξ2k+2, 0, . . .)

∥

∥

∥

2

=
∞

∑

j=k

|ξ2j|
2 → 0, as k → ∞.

Hence we have proved completely that (Eλ) is a spectral family on
[0, 1].

We now prove T =
∫

1

0−0
t dEt. Given n ∈ Z+, let Pn : 0 = t0 < t1 <

t2 < . . . < tm = 1 be any partition of [0, 1] which has t1 = 1

2n
and for

which all the points 1

2n
, 1

2n−2
, 1

2n−4
, . . . , 1

4
, 1

2
occur among the tj’s, and

with more tj-points inserted in a way such that η(Pn) 5 1

2n
. Then the

Riemann-Stieltjes sum for the integral
∫

1

0−0
t dEt corresponding to Pn

is:

s(Pn) =
m

∑

j=1

tj ·
(

Etj − Etj−1

)

(Since we have lower limit of integration “0− 0” we should in fact add
a term t0 · Et0 to this sum, but note that this term is anyway 0.) The
contribution from j = 1 in the above sum is t1·(Et1−Et0) = 1

2n
(E 1

2n
−0).
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Note that this operator acts as follows on `2:

1

2n
(E 1

2n
− 0)

(

(ξ1, ξ2, ξ3, . . .)
)

= (0, 0, . . . , 0, 1

2n
ξ2n, 0, 1

2n
ξ2n+2, 0,

1

2n
ξ2n+4, 0, . . .).

Furthermore, if j in the above sum is such that tj = 1

2k
for some

k = 1, 2, . . . , n − 1 then by construction we have 1

2k+2
5 tj−1 < 1

2k
,

and thus Etj − Etj−1
is projection onto the 2k:th coordinate, and the

contribution from j to our sum is 1

2k
(Etj −Etj−1

), which acts as follows:

1

2k
(Etj − Etj−1

)
(

(ξ1, ξ2, ξ3, . . .)
)

= (0, 0, . . . , 0, 1

2k
ξ2k, 0, 0, 0, . . .).

(where the non-zero entry is in position 2k). Next, for j = m we have
tm = 1 and tm−1 = 1

2
, hence the contribution from this j is 1·(E1−E 1

2

).

Note that this operator acts as follows:

(E1 − E 1

2

)
(

(ξ1, ξ2, ξ3, . . .)
)

= (ξ1, 0, ξ3, 0, ξ5, 0, . . .).

Finally, for every other j in the sum we see from our construction that
Etj = Etj−1

, hence the contribution for this j is 0. Hence:

s(Pn)
(

(ξ1, ξ2, ξ3, . . .)
)

= (ξ1,
1

2
ξ2, ξ3,

1

4
ξ4, ξ5, . . . ,

1

2n
ξ2n, ξ2n+1,

1

2n
ξ2n+2, ξ2n+3,

1

2n
ξ2n+4, ξ2n+5, . . .).

Hence we easily see ||s(Pn) − T || 5 1

2n
− 1

2n+2
→ 0 as n → ∞. Hence

T =
∫

1

0−0
t dEt.

We have now proved that (Eλ) is a spectral family on [0, 1] and that

T =
∫

1

0−0
t dEt. Hence by the uniqueness part of Theorem 9.9-1 (which

I told about in class) we have that (Eλ) is the spectral family associated
with T .

Answer: For λ 5 0: Eλ = 0. For 0 < λ < 1: Let k be the smallest
positive integer such that λ = 1

2k
:

Eλ

(

(ξ1, ξ2, ξ3, . . .)
)

= (0, 0, . . . , 0, ξ2k, 0, ξ2k+2, 0, ξ2k+4, 0, . . .)

(where the first non-zero entry is in position 2k). For λ = 1: Eλ := I.


