SOLUTION SUGGESTIONS FOR THREE PROBLEMS

ANDREAS STRÖMBERGSSON

2.2. It follows from the formula $\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$ that $\phi(n)$ is a multiplicative function. Hence also the function $f(n) = \phi(n)n^{-s}$ is multiplicative for any fixed s. Next note that if $\sigma > 2$ then the series $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent, since

(1)
$$\sum_{n=1}^{\infty} |f(n)| = \sum_{n=1}^{\infty} \phi(n) n^{-\sigma} \le \sum_{n=1}^{\infty} n^{1-\sigma} < \infty.$$

Hence Proposition 2.7 applies when $\sigma > 2$ and we get

$$\sum_{n=1}^{\infty} \phi(n) n^{-s} = \prod_{p} \left(1 + \phi(p) p^{-s} + \phi(p^{2}) p^{-2s} + \dots \right)$$
$$= \prod_{p} \left(1 + \sum_{k=1}^{\infty} \left(1 - \frac{1}{p} \right) p^{k} \cdot p^{-ks} \right)$$
$$= \prod_{p} \left(1 + \left(1 - \frac{1}{p} \right) \sum_{k=1}^{\infty} p^{k(1-s)} \right)$$
$$= \prod_{p} \left(1 + \frac{p-1}{p} \cdot \frac{p^{1-s}}{1-p^{1-s}} \right)$$
$$= \prod_{p} \frac{p(1-p^{1-s}) + (p-1)p^{1-s}}{p(1-p^{1-s})}$$
$$= \prod_{p} \frac{1-p^{-s}}{1-p^{1-s}}$$
$$= \frac{\zeta(s-1)}{\zeta(s)}.$$

ANDREAS STRÖMBERGSSON

3.4 (final part of a solution).

I discussed this problem in class, but only gave a first part of a solution. I noted that we may assume that $N(r) < \infty$ for all r > 0 (since otherwise $\tau = A = \infty$ and the problem is solved). I proved that under this assumption, the following equivalence relation holds for every $\alpha > 0$:

(2)
$$\sum_{j=1}^{\infty} (1+|\rho_j|)^{-\alpha} < \infty \quad \Leftrightarrow \quad \left[\limsup_{r \to \infty} \frac{N(r)}{(1+r)^{\alpha}} < \infty \text{ and } \int_0^{\infty} \frac{N(r)}{(1+r)^{\alpha+1}} \, dr < \infty\right].$$

Now the solution can be completed as follows:

(a). For every $\alpha > A$ we can argue as follows: Choose a number A_1 in the interval $A < A_1 < \alpha$. Then by the definition of A (and the definition of "lim sup"), we have $\frac{\log N(r)}{\log r} < A_1$ for all sufficiently large r. Equivalently: $N(r) < r^{A_1}$ for all sufficiently large r. In precise terms, this means that there exists some $R_0 > 0$ such that

$$\forall r \ge R_0: \quad N(r) < r^{A_1}.$$

It follows that for all $r \ge R_0$ we have $\frac{N(r)}{(1+r)^{\alpha}} < \frac{r^{A_1}}{(1+r)^{\alpha}} < r^{A_1-\alpha}$, and since $A_1 - \alpha < 0$ this implies that $\lim_{r\to\infty} \frac{N(r)}{(1+r)^{\alpha}} = 0$, and in particular $\limsup_{r\to\infty} \frac{N(r)}{(1+r)^{\alpha}} < \infty$. It also follows that

$$\int_0^\infty \frac{N(r)}{(1+r)^{\alpha+1}} \, dr \le \int_0^{R_0} \frac{R_0^{A_1}}{(1+r)^{\alpha}} \, dr + \int_{R_0}^\infty \frac{r^{A_1}}{(1+r)^{\alpha+1}} \, dr$$
$$\le \int_0^{R_0} R_0^{A_1} \, dr + \int_{R_0}^\infty r^{A_1-\alpha-1} \, dr < \infty,$$

where we used the fact that $A_1 - \alpha - 1 < -1$. Hence, using the equivalence in (2) (in the " \Leftarrow " direction), we conclude that $\sum_{j=1}^{\infty} (1 + |\rho_j|)^{-\alpha} < \infty$. By the definition of τ , this implies $\tau \leq \alpha$.

To sum up, we have prove that $[\forall \alpha > A : \tau \leq \alpha]$. This implies that $\tau \leq A$.

(b). For every $\alpha > 0$ such that $\sum_{j=1}^{\infty} (1+|\rho_j|)^{-\alpha} < \infty$, we have by (2): $\limsup_{r \to \infty} \frac{N(r)}{(1+r)^{\alpha}} < \infty$, and this implies that there exist constants C > 0 and $R_0 > 0$ such that for all $r \ge R_0$ we have $\frac{N(r)}{(1+r)^{\alpha}} < C$, i.e., $N(r) < C(1+r)^{\alpha}$. This implies that for all $r \ge R_0$ we have

$$\frac{\log N(r)}{\log r} \le \frac{\log (C(1+r)^{\alpha})}{\log r}.$$

 $\mathbf{2}$

Hence

$$A = \limsup_{r \to \infty} \frac{\log N(r)}{\log r} \le \limsup_{r \to \infty} \frac{\log (C(1+r)^{\alpha})}{\log r} = \limsup_{r \to \infty} \frac{\log C + \alpha \log(1+r)}{\log r} = \alpha.$$

To sum up, we have proved that for every $\alpha > 0$ satisfying $\sum_{j=1}^{\infty} (1+|\rho_j|)^{-\alpha} < \infty$, we have $A \le \alpha$. In view of the definition of τ , this implies that $A \le \tau$.

3.5. Set $A(x) = \sum_{1 \le n \le x} a_n$; then the assumption says that $A(x) \sim x^2$ as $x \to \infty$, and hence for any given $\varepsilon > 0$ there is some X > 1 such that

(3)
$$|A(x) - x^2| < \varepsilon x^2, \quad \forall x \ge X.$$

Now for each $N \in \mathbb{Z}^+$ we have

$$\sum_{n=1}^{N} a_n (N-n)^2 = \int_0^N (N-x)^2 \, dA(x) = 0 + 2 \int_0^N (N-x)A(x) \, dx$$

If $A(x) \equiv x^2$ then the last expression equals

$$2\int_0^N (N-x)x^2 \, dx = 2\left[\frac{N}{3}x^3 - \frac{1}{4}x^4\right]_{x=0}^{x=N} = \frac{1}{6}N^4.$$

Hence for our general $A(x) = \sum_{1 \le n \le x} a_n$ we have, for each integer N > X:

$$\begin{split} \left| \sum_{n=1}^{N} a_n (N-n)^2 - \frac{1}{6} N^4 \right| &= \left| 2 \int_1^N (N-x) A(x) \, dx - 2 \int_0^N (N-x) x^2 \, dx \right| \\ &\leq 2 \int_0^N (N-x) \left| A(x) - x^2 \right| \, dx \\ &\leq 2 \int_0^X N \left| A(x) - x^2 \right| \, dx + 2 \int_X^N (N-x) \varepsilon x^2 \, dx \\ &\leq 2 N \int_0^X \left| A(x) - x^2 \right| \, dx + 2 \varepsilon \int_X^N N^3 \, dx \\ &\leq 2 N \int_0^X \left| A(x) - x^2 \right| \, dx + 2 \varepsilon N^4. \end{split}$$

Here the number $\int_0^X |A(x) - x^2| dx$ is independent of N; hence for all sufficiently large N the above is $< 3\varepsilon N^4$, i.e. we have proved that for all sufficiently large N we have

$$\left|\sum_{n=1}^{N} a_n (N-n)^2 - \frac{1}{6} N^4\right| < 3\varepsilon N^4,$$

or equivalently

$$\left|\frac{\sum_{n=1}^{N} a_n (N-n)^2}{N^4} - \frac{1}{6}\right| < 3\varepsilon.$$

Since ε was arbitrarily small, this implies that

$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N} a_n (N-n)^2}{N^4} = \frac{1}{6},$$

or equivalently:

$$\sum_{n=1}^{N} a_n (N-n)^2 \sim \frac{1}{6} N^4 \qquad \text{as } N \to \infty.$$

4