SOLUTION SUGGESTIONS FOR THREE PROBLEMS

ANDREAS STRÖMBERGSSON

2.2. It follows from the formula $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$ that $\phi(n)$ is a multiplicative function. Hence also the function $f(n)=\phi(n) n^{-s}$ is multiplicative for any fixed s. Next note that if $\sigma>2$ then the series $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent, since

$$
\begin{equation*}
\sum_{n=1}^{\infty}|f(n)|=\sum_{n=1}^{\infty} \phi(n) n^{-\sigma} \leq \sum_{n=1}^{\infty} n^{1-\sigma}<\infty \tag{1}
\end{equation*}
$$

Hence Proposition 2.7 applies when $\sigma>2$ and we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} \phi(n) n^{-s} & =\prod_{p}\left(1+\phi(p) p^{-s}+\phi\left(p^{2}\right) p^{-2 s}+\ldots\right) \\
& =\prod_{p}\left(1+\sum_{k=1}^{\infty}\left(1-\frac{1}{p}\right) p^{k} \cdot p^{-k s}\right) \\
& =\prod_{p}\left(1+\left(1-\frac{1}{p}\right) \sum_{k=1}^{\infty} p^{k(1-s)}\right) \\
& =\prod_{p}\left(1+\frac{p-1}{p} \cdot \frac{p^{1-s}}{1-p^{1-s}}\right) \\
& =\prod_{p} \frac{p\left(1-p^{1-s}\right)+(p-1) p^{1-s}}{p\left(1-p^{1-s}\right)} \\
& =\prod_{p} \frac{1-p^{-s}}{1-p^{1-s}} \\
& =\frac{\zeta(s-1)}{\zeta(s)}
\end{aligned}
$$

3.4 (final part of a solution).

I discussed this problem in class, but only gave a first part of a solution. I noted that we may assume that $N(r)<\infty$ for all $r>0$ (since otherwise $\tau=A=\infty$ and the problem is solved). I proved that under this assumption, the following equivalence relation holds for every $\alpha>0$:

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha}<\infty \quad \Leftrightarrow \quad\left[\limsup _{r \rightarrow \infty} \frac{N(r)}{(1+r)^{\alpha}}<\infty \text { and } \int_{0}^{\infty} \frac{N(r)}{(1+r)^{\alpha+1}} d r<\infty\right] \tag{2}
\end{equation*}
$$

Now the solution can be completed as follows:
(a). For every $\alpha>A$ we can argue as follows: Choose a number A_{1} in the interval $A<A_{1}<\alpha$. Then by the definition of A (and the definition of "limsup"), we have $\frac{\log N(r)}{\log r}<A_{1}$ for all sufficiently large r. Equivalently: $N(r)<r^{A_{1}}$ for all sufficiently large r. In precise terms, this means that there exists some $R_{0}>0$ such that

$$
\forall r \geq R_{0}: \quad N(r)<r^{A_{1}}
$$

It follows that for all $r \geq R_{0}$ we have $\frac{N(r)}{(1+r)^{\alpha}}<\frac{r^{A_{1}}}{(1+r)^{\alpha}}<r^{A_{1}-\alpha}$, and since $A_{1}-\alpha<0$ this implies that $\lim _{r \rightarrow \infty} \frac{N(r)}{(1+r)^{\alpha}}=0$, and in particular $\limsup _{r \rightarrow \infty} \frac{N(r)}{(1+r)^{\alpha}}<\infty$. It also follows that

$$
\begin{aligned}
\int_{0}^{\infty} \frac{N(r)}{(1+r)^{\alpha+1}} d r \leq \int_{0}^{R_{0}} \frac{R_{0}^{A_{1}}}{(1+r)^{\alpha}} d r+ & \int_{R_{0}}^{\infty} \frac{r^{A_{1}}}{(1+r)^{\alpha+1}} d r \\
& \leq \int_{0}^{R_{0}} R_{0}^{A_{1}} d r+\int_{R_{0}}^{\infty} r^{A_{1}-\alpha-1} d r<\infty
\end{aligned}
$$

where we used the fact that $A_{1}-\alpha-1<-1$. Hence, using the equivalence in (22) (in the " \Leftarrow " direction), we conclude that $\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha}<\infty$. By the definition of τ, this implies $\tau \leq \alpha$.

To sum up, we have prove that $[\forall \alpha>A: \tau \leq \alpha]$. This implies that $\tau \leq A$.
(b). For every $\alpha>0$ such that $\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha}<\infty$, we have by (2): $\limsup _{r \rightarrow \infty} \frac{N(r)}{(1+r)^{\alpha}}<\infty$, and this implies that there exist constants $C>0$ and $R_{0}>0$ such that for all $r \geq R_{0}$ we have $\frac{N(r)}{(1+r)^{\alpha}}<C$, i.e., $N(r)<C(1+r)^{\alpha}$. This implies that for all $r \geq R_{0}$ we have

$$
\frac{\log N(r)}{\log r} \leq \frac{\log \left(C(1+r)^{\alpha}\right)}{\log r}
$$

Hence

$$
A=\limsup _{r \rightarrow \infty} \frac{\log N(r)}{\log r} \leq \limsup _{r \rightarrow \infty} \frac{\log \left(C(1+r)^{\alpha}\right)}{\log r}=\limsup _{r \rightarrow \infty} \frac{\log C+\alpha \log (1+r)}{\log r}=\alpha .
$$

To sum up, we have proved that for every $\alpha>0$ satisfying $\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha}<\infty$, we have $A \leq \alpha$. In view of the definition of τ, this implies that $A \leq \tau$.
3.5. Set $A(x)=\sum_{1 \leq n \leq x} a_{n}$; then the assumption says that $A(x) \sim x^{2}$ as $x \rightarrow \infty$, and hence for any given $\varepsilon>0$ there is some $X>1$ such that

$$
\begin{equation*}
\left|A(x)-x^{2}\right|<\varepsilon x^{2}, \quad \forall x \geq X \tag{3}
\end{equation*}
$$

Now for each $N \in \mathbb{Z}^{+}$we have

$$
\sum_{n=1}^{N} a_{n}(N-n)^{2}=\int_{0}^{N}(N-x)^{2} d A(x)=0+2 \int_{0}^{N}(N-x) A(x) d x
$$

If $A(x) \equiv x^{2}$ then the last expression equals

$$
2 \int_{0}^{N}(N-x) x^{2} d x=2\left[\frac{N}{3} x^{3}-\frac{1}{4} x^{4}\right]_{x=0}^{x=N}=\frac{1}{6} N^{4} .
$$

Hence for our general $A(x)=\sum_{1 \leq n \leq x} a_{n}$ we have, for each integer $N>X$:

$$
\begin{aligned}
\left|\sum_{n=1}^{N} a_{n}(N-n)^{2}-\frac{1}{6} N^{4}\right| & =\left|2 \int_{1}^{N}(N-x) A(x) d x-2 \int_{0}^{N}(N-x) x^{2} d x\right| \\
& \leq 2 \int_{0}^{N}(N-x)\left|A(x)-x^{2}\right| d x \\
& \leq 2 \int_{0}^{X} N\left|A(x)-x^{2}\right| d x+2 \int_{X}^{N}(N-x) \varepsilon x^{2} d x \\
& \leq 2 N \int_{0}^{X}\left|A(x)-x^{2}\right| d x+2 \varepsilon \int_{X}^{N} N^{3} d x \\
& \leq 2 N \int_{0}^{X}\left|A(x)-x^{2}\right| d x+2 \varepsilon N^{4} .
\end{aligned}
$$

Here the number $\int_{0}^{X}\left|A(x)-x^{2}\right| d x$ is independent of N; hence for all sufficiently large N the above is $<3 \varepsilon N^{4}$, i.e. we have proved that for all sufficiently large N we have

$$
\left|\sum_{n=1}^{N} a_{n}(N-n)^{2}-\frac{1}{6} N^{4}\right|<3 \varepsilon N^{4}
$$

or equivalently

$$
\left|\frac{\sum_{n=1}^{N} a_{n}(N-n)^{2}}{N^{4}}-\frac{1}{6}\right|<3 \varepsilon .
$$

Since ε was arbitrarily small, this implies that

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{N} a_{n}(N-n)^{2}}{N^{4}}=\frac{1}{6}
$$

or equivalently:

$$
\sum_{n=1}^{N} a_{n}(N-n)^{2} \sim \frac{1}{6} N^{4} \quad \text { as } N \rightarrow \infty
$$

