Analytic Number Theory 2021; Assignment 2

Problem 1. For each $n \in \mathbb{Z}^{+}$, let $\lambda(n)=(-1)^{r}$ where r is the number of prime factors of n, counting multiplicity. Thus, e.g., $\lambda(1)=1$, $\lambda(8)=-1$ and $\lambda(10)=1$. Set $S(x)=\sum_{1 \leq n \leq x} \lambda(n)$. The goal of the following problem is to prove, by mimicking the proof of the prime number theorem, that $S(x)$ satisfies the bound $S(x)=o(x)$ as $x \rightarrow \infty$. This can be interpreted as saying that the asymptotic probability for a "random" large integer to have an odd number of primes in its prime factorization is 50%.
(a). Set $S_{1}(x)=\int_{0}^{x} S(u) d u(x>0)$. Prove that

$$
S_{1}(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s+1}}{s(s+1)} \frac{\zeta(2 s)}{\zeta(s)} d s
$$

for any $x>0$ and any $c>1$.
(b). Using (a), prove that $S_{1}(x)=o\left(x^{2}\right)$ as $x \rightarrow \infty$.
(c). Using (b), prove that $S(x)=o(x)$ as $x \rightarrow \infty$.
[Hint for (c): Trying to imitate the proof of Theorem 7.10 in the lecture notes we run into the problem that $S(u)$ is not increasing, as opposed to $\psi(u)$. However $S(u)$ has the property that $\left|S\left(u_{1}\right)-S\left(u_{2}\right)\right| \leq 1+\left|u_{1}-u_{2}\right|$ for any $u_{1}, u_{2}>0$ (proof?), and this can be used as a substitute for monotonicity.]

Problem 2. (a) Prove that for any $a, b \in \mathbb{R}_{>0}$:

$$
\prod_{n=1}^{\infty} \frac{n(n+a+b)}{(n+a)(n+b)}=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)}
$$

(b) Use the fact that $\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}$ to prove that for all $t \in \mathbb{R}$:

$$
\begin{equation*}
\left|\Gamma\left(\frac{1}{2}+i t\right)\right|=\sqrt{\frac{2 \pi}{e^{\pi t}+e^{-\pi t}}} . \tag{10p}
\end{equation*}
$$

Problem 3. Prove from the Siegel-Walfisz theorem that for any $\varepsilon>0$, $q \in \mathbb{Z}^{+}$and $a \in \mathbb{Z}$ with $(a, q)=1$, the smallest prime $p \equiv a \bmod q$ satisfies $p \ll e^{q^{\varepsilon}}$, where the implied constant depends only on ε.

Problem 4. Let $d(n):=\#\left\{a \in \mathbb{Z}^{+}: a \mid n\right\}$ (the divisor function). For any $\delta>0$, show that $d(n)<2^{(1+\delta) \log n / \log \log n}$ for all n sufficiently large.
[Hint: One approach is to prove that for every $\varepsilon>0$ we have $d(n) \leq C(\varepsilon) \cdot n^{\varepsilon}\left(\forall n \in \mathbb{Z}^{+}\right)$, with an explicit constant $C(\varepsilon)>0$. If your $C(\varepsilon)$ is not too wasteful, the desired inequality can then be obtained by choosing ε depending on n appropriately.]

