Analytic Number Theory 2021; Assignment 3

Problem 1. Show that any positive definite binary quadratic form of discriminant -3 is equivalent to

$$
Q_{0}(x, y)=x^{2}+x y+y^{2} .
$$

Show also that for every positive integer n with $3 \nmid n$, we have

$$
R^{\prime}\left(n, Q_{0}\right)=0
$$

if n is divisible by some prime $p \equiv 2 \bmod 3$, and otherwise

$$
R^{\prime}\left(n, Q_{0}\right)=6 \cdot 2^{s}
$$

where s is the number of distinct primes dividing n.

Problem 2. a) Let $R(n)$ denote the number of ways of writing n as a sum of a prime and a square-free number. Prove that

$$
R(n)=\sum_{d \leq \sqrt{n}} \mu(d) \pi\left(n-1 ; d^{2}, n\right), \quad \forall n \in \mathbb{Z}^{+}
$$

b) Using the formula in a), prove that for every $A>0$ we have

$$
R(n)=\operatorname{Li}(n) \cdot \prod_{p \nmid n}\left(1-\frac{1}{p(p-1)}\right)+O_{A}\left(\frac{n}{(\log n)^{A}}\right), \quad \forall n \geq 2
$$

[Hint: Estimate $\pi\left(n-1 ; d^{2}, n\right)$ using Siegel-Walfisz when it is applicable, and using trivial bounds in the remaining cases.]

Problem 3. Use the product formula for Θ to prove:
(a) The "triangular number" identity

$$
\prod_{n=0}^{\infty}\left(1+x^{n}\right)\left(1-x^{2 n+2}\right)=\sum_{n=-\infty}^{\infty} x^{n(n+1) / 2}
$$

which holds for $|x|<1$.
(b) The "septagonal number" identity

$$
\prod_{n=0}^{\infty}\left(1-x^{5 n+1}\right)\left(1-x^{5 n+4}\right)\left(1-x^{5 n+5}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} x^{n(5 n+3) / 2}
$$

which holds for $|x|<1$.

Problem 4. For each odd prime p, let η_{p} be the smallest positive integer which is not a quadratic residue mod p. For any real numbers $x \geq y \geq 1$, let $\mathcal{P}_{x, y}$ be the set of odd primes $p \leq x$ such that $\eta_{p}>y$, and let \mathcal{A}_{y} be the set of all positive integers which contain only primes $\leq y$ in their prime factorizations.
(a) Prove that for every $p \in \mathcal{P}_{x, y}$, all elements in \mathcal{A}_{y} are quadratic residues mod p.
(b) Using part (a) and the large sieve, prove that

$$
\#\left(\mathcal{A}_{y} \cap\left(0, x^{2}\right]\right) \ll \frac{x^{2}}{\# \mathcal{P}_{x, y}},
$$

where the implied constant is absolute.
(c) Fix $\varepsilon>0$. Using part (b) and homework problem 1:5, prove that for any $x>0$, the number of primes $p \leq x$ satisfying $\eta_{p}>x^{\varepsilon}$ is bounded above by a constant which only depends on ε.
(d) Using part (c), prove that the number of primes $p \leq x$ which satisfy $\eta_{p}>p^{\varepsilon}$, is $<_{\varepsilon} \log \log x$.

