
Hints / short solution sketches to problems

2.1. (b). By Proposition 2.7,
∞
∑

n=1

µ(n)χ(n)

ns
=

∏

p

(

1 +
µ(p)χ(p)

ps
+

µ(p2)χ(p2)

p2s
+

µ(p3)χ(p3)

p3s
+ . . .

)

=
∏

p

(

1− χ(p)

ps

)

=
(

∏

p

(

1− χ(p)

ps

)−1)−1

= L(s, χ)−1.

�

2.2. By Proposition 2.7,
∞
∑

n=1

φ(n)n−s =
∏

p

(

1 + φ(p)p−s + φ(p2)p−2s + . . .
)

=
∏

p

(

1 +
∞
∑

k=1

(p− 1)pk−1 · p−ks
)

=
∏

p

(

1 + (p− 1)p−s

∞
∑

m=0

pm(1−s)
)

=
∏

p

(

1 +
(p− 1)p−s

1− p1−s

)

=
∏

p

1− p−s

1− p1−s
=

ζ(s− 1)

ζ(s)
.

2.7.
(a) For example one may take any real numbers a1, a2, . . . > 1, satis-

fying an → 1 as n → ∞, and then set u2n−1 = an−1 and u2n = a−1
n −1

for n = 1, 2, . . .. Then

N
∏

n=1

(1 + un) =

{

1 if 2 | N,

a(N+1)/2 if 2 ∤ N,

and hence
∏∞

n=1(1 + un) converges. On the other hand

2N
∑

n=1

un =

N
∑

n=1

(

an + a−1
n − 2

)

=

N
∑

n=1

(an − 1)2

an
,

and hence if we take, for example, an := 1 + n−1/3, then
∑∞

n=1 un

diverges. �

(b) For example one may take any positive numbers a1, a2, . . . with
an → 0 as n → ∞, and set u2n−1 = ian and u2n = −ian for n =
1, 2, 3, . . .. Then

N
∑

n=1

un =

{

0 if 2 | N,

uN if 2 ∤ N,

and hence the sum
∑∞

n=1 un converges. On the other hand we have
∏2N

n=1(1 + un) =
∏N

n=1(1 + a2n) ≥ ∑N
n=1 a

2
n, and hence if we let, e.g.,

an = n−1/3 for all n, then
∑N

n=1 a
2
n → +∞ as N → ∞, and hence

∏2N
n=1(1+un) → +∞ as N → ∞, i.e.

∏∞
n=1(1+un) does not converge.

�
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2.8. We have
2N+1
∏

n=2

(

1 +
(−1)n√

n

)

=

N
∏

k=1

(

(

1 +
1√
2k

)(

1− 1√
2k + 1

)

)

=

N
∏

k=1

(

1 +
1√
2k

− 1√
2k + 1

− 1
√

2k(2k + 1)

)

,

and here (e.g. by the Mean Value Theorem) 0 < 1√
2k
− 1√

2k+1
≤ 1

2(2k)3/2
;

hence if we set

uk := − 1√
2k

+
1√

2k + 1
+

1
√

2k(2k + 1)
,

then for all sufficiently large k we have 1 > uk ≫ k−1. Hence by
Proposition 2.6, for all sufficiently large K we have

∏∞
k=K(1− uk) = 0.

Hence the same also holds for K = 1, i.e.
∏∞

k=1(1 − uk) = 0, and it

follows that the product
∏∞

n=2

(

1 + (−1)n√
n

)

also converges to zero. �
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3.4. (a). Let A1 be an arbitrary number > A. Then there is some

R > 0 such that logN(r)
log r

< A1 for all r ≥ R, hence by exponentiating:

N(r) < rA1 for all r ≥ R. It follows that

N(r) ≪ (1 + r)A1, ∀r ≥ 0.(1)

Now note that for every α > 0:
∞
∑

j=1

(1 + |ρj |)−α =

∫ ∞

0−
(1 + r)−α dN(r)(2)

= lim
R→∞

(

(1 +R)−αN(R) + α

∫ R

0

(1 + r)−α−1N(r) dr
)

.

Using here (1), it follows that
∑∞

j=1(1+|ρj |)−α converges for all α > A1.
We have proved this for every α > A1 and every A1 > A; hence
∑∞

j=1(1+ |ρj|)−α converges for every α > A, and thus by the definition
of τ we have τ ≤ A. �

(b). Assume that α > τ . Then
∑∞

j=1(1 + |ρj |)−α converges, and since
∑∞

j=1(1+ |ρj|)−α ≥ N(R) · (1+R)−α for all R > 0, it follows that there

is a constant C > 0 such that N(R) · (1 + R)−α ≤ C for all R. Hence
(by taking the logarithm)

logN(R) ≤ logC + α log(1 +R), ∀R > 0,

and dividing by logR (assuming R > 1) and then letting R → +∞, it
follows that

lim sup
R→∞

logN(R)

logR
≤ 0 + α,(3)

i.e. A ≤ α. Since this is true for all α > τ we conclude that A ≤ τ . �
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3.5. Set A(x) =
∑

1≤n≤x an; then the assumption says that A(x) ∼
x2 as x → ∞, and hence for any given ε > 0 there is some X > 1 such
that

∣

∣A(x)− x2
∣

∣ < εx2, ∀x ≥ X.(4)

Now for each N ∈ Z+ we have
N
∑

n=1

an(N − n)2 =

∫ N

1−
(N − x)2 dA(x) = 0 + 2

∫ N

1

(N − x)A(x) dx

If A(x) ≡ x2 then the last expression equals

2

∫ N

1

(N − x)x2 dx = 2
[N

3
x3 − 1

4
x4
]x=N

x=1
=

1

6
N4 − 2

3
N +

1

2
.

Hence for our general A(x) =
∑

1≤n≤x an we have, for each integer
N > X :
∣

∣

∣

N
∑

n=1

an(N − n)2 − 1

6
N4

∣

∣

∣
=

∣

∣

∣

∣

∣

2

∫ N

1

(N − x)A(x) dx− 2

∫ N

1

(N − x)x2 dx− 2

3
N +

1

2

∣

∣

∣

∣

∣

≤ 2

∫ N

1

(N − x)
∣

∣A(x)− x2
∣

∣ dx+
2

3
N +

1

2

≤ 2

∫ X

1

N
∣

∣A(x)− x2
∣

∣ dx+ 2

∫ N

X

N · εx2 dx+
2

3
N +

1

2

≤ 2N

∫ X

1

∣

∣A(x)− x2
∣

∣ dx+ 2ε

∫ N

X

N3 dx+
2

3
N +

1

2

≤ 2εN4 +

(

2

∫ X

1

∣

∣A(x)− x2
∣

∣ dx+
2

3

)

N +
1

2

The expression inside the last parenthesis does not depend on N , and
hence for all sufficiently large N the above is < 3εN4, i.e. we have
proved that for all sufficiently large N we have

∣

∣

∣

N
∑

n=1

an(N − n)2 − 1

6
N4

∣

∣

∣
< 3εN4.

Since ε was arbitrarily small this implies that
N
∑

n=1

an(N − n)2 ∼ 1

6
N4 as N → ∞.

�
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3.13.
(a). Writing z = x+ iy (with x ∈ R and y ∈ R>0), we have

|m+ nz|2 = (m+ nx)2 + (ny)2.

Now let us note that

(m+ nx)2 + (ny)2 ≥ c · (m2 + n2), ∀(m,n) ∈ R2,(5)

where

c = c(x, y) =
y2

x2 + y2 + 1
> 0.(6)

One way to prove (5) is to note that the quadratic form in the left hand side of

(5), which has the matrix

(

1 x

x x2 + y2

)

, has the two eigenvalues1

1

2

(

x
2 + y

2 + 1±
√

(x2 + y2 + 1)2 − 4y2
)

,

and since both these eigenvalues are positive, the inequality in (5) holds with c

being equal to the smallest eigenvalue, viz., with

c =
1

2

(

x
2 + y

2 + 1−
√

(x2 + y2 + 1)2 − 4y2
)

=
2y2

x2 + y2 + 1 +
√

(x2 + y2 + 1)2 − 4y2
(> 0).(7)

Hence (5) is also valid for any smaller value of c; in particular (5) is valid for c as
in (6).

A more elementary (but essentially equivalent) treatment: We wish to find some
constant c > 0 such that (5) holds. viz.,

(1− c)m2 + 2xmn+ (x2 + y
2 − c)n2 ≥ 0, ∀(m,n) ∈ R2

.

Completing the square, this is equivalent with

(1− c)m2 + 2xmn+ (x2 + y
2 − c)n2 ≥ 0, ∀(m,n) ∈ R2

.

Clearly for this to hold we must have 1 − c ≥ 0. Assuming 1 − c > 0, we can
complete the square to see that the above is equivalent with

(1− c)
(

m+
x

1− c
n

)2

+
(

x
2 + y

2 − c− x2

1− c

)

n
2 ≥ 0, ∀(m,n) ∈ R2

,

and this is clearly true if and only if x2 + y
2− c− x

2

1−c
≥ 0. Solving for c 2 we reach

again the conclusion that the above is true for c as in (7), or any smaller c-value.

1These eigenvalues are real, since (x2 + y2 + 1)2 − 4y2 ≥ (y2 + 1)2 − 4y2 =
(y2 − 1)2 ≥ 0.

2Encountering again the characteristic polynomial of the matrix

(

1 x

x x2 + y2

)

.
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Using (5) we have
∣

∣

∣

∣

1

(m+ nz)2k

∣

∣

∣

∣

≤ c−k · (m2 + n2)−k,

and hence in order to prove the uniform absolute convergence required
in the problem, it suffices to prove that the series

c−k
∑

(m,n)6=(0,0)

1

(m2 + n2)k

is uniformly absolutely convergent for z = x+iy in any compact subset
of H. But when z = x + iy ranges over a given compact subset of H,
the number c = c(x, y) (see (6)) is bounded from below by a positive
number; hence c−k is bounded from above by a finite number. Hence
it now suffices to prove that the series

∑

(m,n)6=(0,0)

1

(m2 + n2)k

converges!
This can be done e.g. using dyadic decomposition: Let

A(R) = {(m,n) ∈ Z2 \ {(0, 0)} : m2 + n2 < R}.
Then, A(1) = ∅ for R < 1, and for R ≥ 1 we have (as a quite crude
bound):

#A(R) ≤ #{(m,n) ∈ Z2 : |m| <
√
R and |n| <

√
R}

≤
(

1 + 2
√
R
)2 ≤

(

3
√
R
)2 ≤ 9R.

Hence (using A(1) = ∅, i.e. m2 + n2 ≥ 1 for all (m,n) ∈ Z2 \ {(0, 0)}):
∑

(m,n)6=(0,0)

1

(m2 + n2)k
≤

∞
∑

j=0

∑

(m,n)∈A(2j+1)\A(2j )

1

(2j)k
≤

∞
∑

j=0

#A(2j+1) · 2−jk

≤
∞
∑

j=0

9 · 2j+1 · 2−jk < ∞,

where in the last step we used the assumption that k ≥ 2. �
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(b). First note that az+b
cz+d

∈ H for every z ∈ H; indeed,

Im
(az + b

cz + d

)

= Im
((az + b)(cz + d)

|cz + d|2
)

=
Im (adz + bcz)

|cz + d|2 =
(ad− bc)Im z

|cz + d|2

=
Im z

|cz + d|2 > 0.

Now we compute (using the absolute convergence proved in (a)):

Ek

(

az + b

cz + d

)

=
∑

(m,n)6=(0,0)

1
(

m+ naz+b
cz+d

)2k

=
∑

(m,n)6=(0,0)

(cz + d)2k

(m(cz + d) + n(az + b))2k

=
∑

(m,n)6=(0,0)

(cz + d)2k

((md+ nb) + (mc + na)z)2k
.

Now note that the map

(m,n) 7→
(

md+ nb,mc + na
)

= (m,n)

(

d c

b a

)

is a permutation of Z2 \ {(0, 0)}, with inverse

(m′, n′) 7→ (m′, n′)

(

a −c

−b d

)

.

Hence we get

Ek

(

az + b

cz + d

)

= (cz + d)2kEk(z),

qed. �


