Hints / short solution sketches to problems

2.1. (b). By Proposition 2.7,

$$\sum_{n=1}^{\infty} \frac{\mu(n)\chi(n)}{n^s} = \prod_p \left(1 + \frac{\mu(p)\chi(p)}{p^s} + \frac{\mu(p^2)\chi(p^2)}{p^{2s}} + \frac{\mu(p^3)\chi(p^3)}{p^{3s}} + \dots \right)$$
$$= \prod_p \left(1 - \frac{\chi(p)}{p^s} \right) = \left(\prod_p \left(1 - \frac{\chi(p)}{p^s} \right)^{-1} \right)^{-1} = L(s,\chi)^{-1}.$$

2.2. By Proposition 2.7, $\sum_{n=1}^{\infty} \phi(n)n^{-s} = \prod_{p} \left(1 + \phi(p)p^{-s} + \phi(p^{2})p^{-2s} + \ldots \right) = \prod_{p} \left(1 + \sum_{k=1}^{\infty} (p-1)p^{k-1} \cdot p^{-ks} \right)$ $= \prod_{p} \left(1 + (p-1)p^{-s} \sum_{m=0}^{\infty} p^{m(1-s)} \right) = \prod_{p} \left(1 + \frac{(p-1)p^{-s}}{1-p^{1-s}} \right) = \prod_{p} \frac{1-p^{-s}}{1-p^{1-s}} = \frac{\zeta(s-1)}{\zeta(s)}.$

2.7.

(a) For example one may take any real numbers $a_1, a_2, \ldots > 1$, satisfying $a_n \to 1$ as $n \to \infty$, and then set $u_{2n-1} = a_n - 1$ and $u_{2n} = a_n^{-1} - 1$ for $n = 1, 2, \ldots$ Then

$$\prod_{n=1}^{N} (1+u_n) = \begin{cases} 1 & \text{if } 2 \mid N, \\ a_{(N+1)/2} & \text{if } 2 \nmid N, \end{cases}$$

and hence $\prod_{n=1}^{\infty} (1+u_n)$ converges. On the other hand

$$\sum_{n=1}^{2N} u_n = \sum_{n=1}^{N} \left(a_n + a_n^{-1} - 2 \right) = \sum_{n=1}^{N} \frac{(a_n - 1)^2}{a_n},$$

and hence if we take, for example, $a_n := 1 + n^{-1/3}$, then $\sum_{n=1}^{\infty} u_n$ diverges.

(b) For example one may take any positive numbers a_1, a_2, \ldots with $a_n \to 0$ as $n \to \infty$, and set $u_{2n-1} = ia_n$ and $u_{2n} = -ia_n$ for $n = 1, 2, 3, \ldots$ Then

$$\sum_{n=1}^{N} u_n = \begin{cases} 0 & \text{if } 2 \mid N, \\ u_N & \text{if } 2 \nmid N, \end{cases}$$

and hence the sum $\sum_{n=1}^{\infty} u_n$ converges. On the other hand we have $\prod_{n=1}^{2N} (1+u_n) = \prod_{n=1}^{N} (1+a_n^2) \ge \sum_{n=1}^{N} a_n^2$, and hence if we let, e.g., $a_n = n^{-1/3}$ for all n, then $\sum_{n=1}^{N} a_n^2 \to +\infty$ as $N \to \infty$, and hence $\prod_{n=1}^{2N} (1+u_n) \to +\infty$ as $N \to \infty$, i.e. $\prod_{n=1}^{\infty} (1+u_n)$ does not converge.

2.8. We have

$$\prod_{n=2}^{2N+1} \left(1 + \frac{(-1)^n}{\sqrt{n}} \right) = \prod_{k=1}^N \left(\left(1 + \frac{1}{\sqrt{2k}} \right) \left(1 - \frac{1}{\sqrt{2k+1}} \right) \right)$$

$$= \prod_{k=1}^N \left(1 + \frac{1}{\sqrt{2k}} - \frac{1}{\sqrt{2k+1}} - \frac{1}{\sqrt{2k(2k+1)}} \right),$$

and here (e.g. by the Mean Value Theorem) $0 < \frac{1}{\sqrt{2k}} - \frac{1}{\sqrt{2k+1}} \le \frac{1}{2(2k)^{3/2}}$; hence if we set

$$u_k := -\frac{1}{\sqrt{2k}} + \frac{1}{\sqrt{2k+1}} + \frac{1}{\sqrt{2k(2k+1)}},$$

then for all sufficiently large k we have $1 > u_k \gg k^{-1}$. Hence by Proposition 2.6, for all sufficiently large K we have $\prod_{k=K}^{\infty}(1-u_k) = 0$. Hence the same also holds for K = 1, i.e. $\prod_{k=1}^{\infty}(1-u_k) = 0$, and it follows that the product $\prod_{n=2}^{\infty}(1+\frac{(-1)^n}{\sqrt{n}})$ also converges to zero. \Box

 $\mathbf{2}$

3.4. (a). Let A_1 be an arbitrary number > A. Then there is some R > 0 such that $\frac{\log N(r)}{\log r} < A_1$ for all $r \ge R$, hence by exponentiating: $N(r) < r^{A_1}$ for all $r \ge R$. It follows that

(1)
$$N(r) \ll (1+r)^{A_1}, \quad \forall r \ge 0.$$

Now note that for every $\alpha > 0$:

(2)
$$\sum_{j=1}^{\infty} (1+|\rho_j|)^{-\alpha} = \int_{0-}^{\infty} (1+r)^{-\alpha} dN(r)$$
$$= \lim_{R \to \infty} \left((1+R)^{-\alpha} N(R) + \alpha \int_{0}^{R} (1+r)^{-\alpha-1} N(r) dr \right).$$

Using here (1), it follows that $\sum_{j=1}^{\infty} (1+|\rho_j|)^{-\alpha}$ converges for all $\alpha > A_1$. We have proved this for every $\alpha > A_1$ and every $A_1 > A$; hence $\sum_{j=1}^{\infty} (1+|\rho_j|)^{-\alpha}$ converges for every $\alpha > A$, and thus by the definition of τ we have $\tau \leq A$.

(b). Assume that $\alpha > \tau$. Then $\sum_{j=1}^{\infty} (1 + |\rho_j|)^{-\alpha}$ converges, and since $\sum_{j=1}^{\infty} (1 + |\rho_j|)^{-\alpha} \ge N(R) \cdot (1 + R)^{-\alpha}$ for all R > 0, it follows that there is a constant C > 0 such that $N(R) \cdot (1 + R)^{-\alpha} \le C$ for all R. Hence (by taking the logarithm)

$$\log N(R) \le \log C + \alpha \log(1+R), \qquad \forall R > 0,$$

and dividing by log R (assuming R > 1) and then letting $R \to +\infty$, it follows that

(3)
$$\limsup_{R \to \infty} \frac{\log N(R)}{\log R} \le 0 + \alpha,$$

i.e. $A \leq \alpha$. Since this is true for all $\alpha > \tau$ we conclude that $A \leq \tau$. \Box

3.5. Set $A(x) = \sum_{1 \le n \le x} a_n$; then the assumption says that $A(x) \sim x^2$ as $x \to \infty$, and hence for any given $\varepsilon > 0$ there is some X > 1 such that

(4)
$$|A(x) - x^2| < \varepsilon x^2, \quad \forall x \ge X.$$

Now for each $N \in \mathbb{Z}^+$ we have

$$\sum_{n=1}^{N} a_n (N-n)^2 = \int_{1-}^{N} (N-x)^2 \, dA(x) = 0 + 2 \int_{1}^{N} (N-x)A(x) \, dx$$

If $A(x) \equiv x^2$ then the last expression equals

$$2\int_{1}^{N} (N-x)x^{2} dx = 2\left[\frac{N}{3}x^{3} - \frac{1}{4}x^{4}\right]_{x=1}^{x=N} = \frac{1}{6}N^{4} - \frac{2}{3}N + \frac{1}{2}$$

Hence for our general $A(x) = \sum_{1 \le n \le x} a_n$ we have, for each integer N > X:

$$\begin{split} \left| \sum_{n=1}^{N} a_n (N-n)^2 - \frac{1}{6} N^4 \right| &= \left| 2 \int_1^N (N-x) A(x) \, dx - 2 \int_1^N (N-x) x^2 \, dx - \frac{2}{3} N + \frac{1}{2} \right| \\ &\leq 2 \int_1^N (N-x) \left| A(x) - x^2 \right| \, dx + \frac{2}{3} N + \frac{1}{2} \\ &\leq 2 \int_1^X N \left| A(x) - x^2 \right| \, dx + 2 \int_X^N N \cdot \varepsilon x^2 \, dx + \frac{2}{3} N + \frac{1}{2} \\ &\leq 2 N \int_1^X \left| A(x) - x^2 \right| \, dx + 2 \varepsilon \int_X^N N^3 \, dx + \frac{2}{3} N + \frac{1}{2} \\ &\leq 2 \varepsilon N^4 + \left(2 \int_1^X \left| A(x) - x^2 \right| \, dx + \frac{2}{3} \right) N + \frac{1}{2} \end{split}$$

The expression inside the last parenthesis does not depend on N, and hence for all sufficiently large N the above is $< 3\varepsilon N^4$, i.e. we have proved that for all sufficiently large N we have

$$\left|\sum_{n=1}^{N} a_n (N-n)^2 - \frac{1}{6} N^4\right| < 3\varepsilon N^4.$$

Since ε was arbitrarily small this implies that

$$\sum_{n=1}^{N} a_n (N-n)^2 \sim \frac{1}{6} N^4 \qquad \text{as } N \to \infty.$$

3.13.

(a). Writing
$$z = x + iy$$
 (with $x \in \mathbb{R}$ and $y \in \mathbb{R}_{>0}$), we have
 $|m + nz|^2 = (m + nx)^2 + (ny)^2$.

Now let us note that

(5)
$$(m+nx)^2 + (ny)^2 \ge c \cdot (m^2 + n^2), \quad \forall (m,n) \in \mathbb{R}^2,$$

where

(6)
$$c = c(x, y) = \frac{y^2}{x^2 + y^2 + 1} > 0.$$

One way to prove (5) is to note that the quadratic form in the left hand side of (5), which has the matrix $\begin{pmatrix} 1 & x \\ x & x^2 + y^2 \end{pmatrix}$, has the two eigenvalues¹ $\frac{1}{2} \left(x^2 + y^2 + 1 \pm \sqrt{(x^2 + y^2 + 1)^2 - 4y^2} \right)$, and since both these eigenvalues are positive, the inequality in (5) holds with c

(7)
$$c = \frac{1}{2} \left(x^2 + y^2 + 1 - \sqrt{(x^2 + y^2 + 1)^2 - 4y^2} \right)$$
$$= \frac{2y^2}{x^2 + y^2 + 1 + \sqrt{(x^2 + y^2 + 1)^2 - 4y^2}} \quad (> 0).$$

Hence (5) is also valid for any *smaller* value of c; in particular (5) is valid for c as in (6).

A more elementary (but essentially equivalent) treatment: We wish to find some constant c > 0 such that (5) holds. viz.,

$$(1-c)m^2 + 2xmn + (x^2 + y^2 - c)n^2 \ge 0, \qquad \forall (m,n) \in \mathbb{R}^2.$$

Completing the square, this is equivalent with

being equal to the smallest eigenvalue, viz., with

$$(1-c)m^2 + 2xmn + (x^2 + y^2 - c)n^2 \ge 0, \qquad \forall (m,n) \in \mathbb{R}^2.$$

Clearly for this to hold we must have $1 - c \ge 0$. Assuming 1 - c > 0, we can complete the square to see that the above is equivalent with

$$(1-c)\left(m+\frac{x}{1-c}n\right)^{2} + \left(x^{2}+y^{2}-c-\frac{x^{2}}{1-c}\right)n^{2} \ge 0, \qquad \forall (m,n) \in \mathbb{R}^{2},$$

and this is clearly true if and only if $x^2 + y^2 - c - \frac{x^2}{1-c} \ge 0$. Solving for c^2 we reach again the conclusion that the above is true for c as in (7), or any smaller c-value.

²Encountering again the characteristic polynomial of the matrix $\begin{pmatrix} 1 & x \\ x & x^2 + y^2 \end{pmatrix}$.

¹These eigenvalues are real, since $(x^2 + y^2 + 1)^2 - 4y^2 \ge (y^2 + 1)^2 - 4y^2 = (y^2 - 1)^2 \ge 0.$

Using (5) we have

$$\left|\frac{1}{(m+nz)^{2k}}\right| \le c^{-k} \cdot (m^2 + n^2)^{-k},$$

and hence in order to prove the uniform absolute convergence required in the problem, it suffices to prove that the series

$$c^{-k} \sum_{(m,n) \neq (0,0)} \frac{1}{(m^2 + n^2)^k}$$

is uniformly absolutely convergent for z = x + iy in any compact subset of **H**. But when z = x + iy ranges over a given compact subset of **H**, the number c = c(x, y) (see (6)) is bounded from below by a positive number; hence c^{-k} is bounded from above by a finite number. Hence it now suffices to prove that the series

$$\sum_{(m,n)\neq(0,0)} \frac{1}{(m^2+n^2)^k}$$

converges!

This can be done e.g. using dyadic decomposition: Let

$$A(R) = \{ (m, n) \in \mathbb{Z}^2 \setminus \{ (0, 0) \} : m^2 + n^2 < R \}.$$

Then, $A(1) = \emptyset$ for R < 1, and for $R \ge 1$ we have (as a quite crude bound):

$$#A(R) \le #\{(m,n) \in \mathbb{Z}^2 : |m| < \sqrt{R} \text{ and } |n| < \sqrt{R}\}\$$

 $\le (1 + 2\sqrt{R})^2 \le (3\sqrt{R})^2 \le 9R.$

Hence (using $A(1) = \emptyset$, i.e. $m^2 + n^2 \ge 1$ for all $(m, n) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$):

$$\sum_{(m,n)\neq(0,0)} \frac{1}{(m^2+n^2)^k} \le \sum_{j=0}^{\infty} \sum_{(m,n)\in A(2^{j+1})\setminus A(2^j)} \frac{1}{(2^j)^k} \le \sum_{j=0}^{\infty} \#A(2^{j+1}) \cdot 2^{-jk}$$
$$\le \sum_{j=0}^{\infty} 9 \cdot 2^{j+1} \cdot 2^{-jk} < \infty,$$

where in the last step we used the assumption that $k \ge 2$.

6

(b). First note that $\frac{az+b}{cz+d} \in \mathbf{H}$ for every $z \in \mathbf{H}$; indeed,

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \operatorname{Im}\left(\frac{(az+b)\overline{(cz+d)}}{|cz+d|^2}\right) = \frac{\operatorname{Im}\left(adz+bc\overline{z}\right)}{|cz+d|^2} = \frac{(ad-bc)\operatorname{Im}z}{|cz+d|^2}$$
$$= \frac{\operatorname{Im}z}{|cz+d|^2} > 0.$$

Now we compute (using the absolute convergence proved in (a)):

$$E_k \left(\frac{az+b}{cz+d}\right) = \sum_{(m,n)\neq(0,0)} \frac{1}{\left(m+n\frac{az+b}{cz+d}\right)^{2k}}$$
$$= \sum_{(m,n)\neq(0,0)} \frac{(cz+d)^{2k}}{(m(cz+d)+n(az+b))^{2k}}$$
$$= \sum_{(m,n)\neq(0,0)} \frac{(cz+d)^{2k}}{((md+nb)+(mc+na)z)^{2k}}.$$

Now note that the map

$$(m,n) \mapsto (md+nb,mc+na) = (m,n) \begin{pmatrix} d & c \\ b & a \end{pmatrix}$$

is a permutation of $\mathbb{Z}^2 \setminus \{(0,0)\}$, with inverse

$$(m',n')\mapsto (m',n')\begin{pmatrix}a&-c\\-b&d\end{pmatrix}.$$

Hence we get

$$E_k\left(\frac{az+b}{cz+d}\right) = (cz+d)^{2k}E_k(z),$$

qed.

	-	