Hints / short solution sketches to problems

2.1. (b). By Proposition 2.7,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\mu(n) \chi(n)}{n^{s}} & =\prod_{p}\left(1+\frac{\mu(p) \chi(p)}{p^{s}}+\frac{\mu\left(p^{2}\right) \chi\left(p^{2}\right)}{p^{2 s}}+\frac{\mu\left(p^{3}\right) \chi\left(p^{3}\right)}{p^{3 s}}+\ldots\right) \\
& =\prod_{p}\left(1-\frac{\chi(p)}{p^{s}}\right)=\left(\prod_{p}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}\right)^{-1}=L(s, \chi)^{-1}
\end{aligned}
$$

2.2. By Proposition 2.7,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \phi(n) n^{-s}=\prod_{p}\left(1+\phi(p) p^{-s}+\phi\left(p^{2}\right) p^{-2 s}+\ldots\right)=\prod_{p}\left(1+\sum_{k=1}^{\infty}(p-1) p^{k-1} \cdot p^{-k s}\right) \\
& =\prod_{p}\left(1+(p-1) p^{-s} \sum_{m=0}^{\infty} p^{m(1-s)}\right)=\prod_{p}\left(1+\frac{(p-1) p^{-s}}{1-p^{1-s}}\right)=\prod_{p} \frac{1-p^{-s}}{1-p^{1-s}}=\frac{\zeta(s-1)}{\zeta(s)}
\end{aligned}
$$

2.7.

(a) For example one may take any real numbers $a_{1}, a_{2}, \ldots>1$, satisfying $a_{n} \rightarrow 1$ as $n \rightarrow \infty$, and then set $u_{2 n-1}=a_{n}-1$ and $u_{2 n}=a_{n}^{-1}-1$ for $n=1,2, \ldots$. Then

$$
\prod_{n=1}^{N}\left(1+u_{n}\right)= \begin{cases}1 & \text { if } 2 \mid N \\ a_{(N+1) / 2} & \text { if } 2 \nmid N\end{cases}
$$

and hence $\prod_{n=1}^{\infty}\left(1+u_{n}\right)$ converges. On the other hand

$$
\sum_{n=1}^{2 N} u_{n}=\sum_{n=1}^{N}\left(a_{n}+a_{n}^{-1}-2\right)=\sum_{n=1}^{N} \frac{\left(a_{n}-1\right)^{2}}{a_{n}}
$$

and hence if we take, for example, $a_{n}:=1+n^{-1 / 3}$, then $\sum_{n=1}^{\infty} u_{n}$ diverges.
(b) For example one may take any positive numbers a_{1}, a_{2}, \ldots with $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, and set $u_{2 n-1}=i a_{n}$ and $u_{2 n}=-i a_{n}$ for $n=$ $1,2,3, \ldots$. Then

$$
\sum_{n=1}^{N} u_{n}= \begin{cases}0 & \text { if } 2 \mid N \\ u_{N} & \text { if } 2 \nmid N\end{cases}
$$

and hence the sum $\sum_{n=1}^{\infty} u_{n}$ converges. On the other hand we have $\prod_{n=1}^{2 N}\left(1+u_{n}\right)=\prod_{n=1}^{N}\left(1+a_{n}^{2}\right) \geq \sum_{n=1}^{N} a_{n}^{2}$, and hence if we let, e.g., $a_{n}=n^{-1 / 3}$ for all n, then $\sum_{n=1}^{N} a_{n}^{2} \rightarrow+\infty$ as $N \rightarrow \infty$, and hence $\prod_{n=1}^{2 N}\left(1+u_{n}\right) \rightarrow+\infty$ as $N \rightarrow \infty$, i.e. $\prod_{n=1}^{\infty}\left(1+u_{n}\right)$ does not converge.
2.8. We have

$$
\begin{aligned}
\prod_{n=2}^{2 N+1}\left(1+\frac{(-1)^{n}}{\sqrt{n}}\right) & =\prod_{k=1}^{N}\left(\left(1+\frac{1}{\sqrt{2 k}}\right)\left(1-\frac{1}{\sqrt{2 k+1}}\right)\right) \\
& =\prod_{k=1}^{N}\left(1+\frac{1}{\sqrt{2 k}}-\frac{1}{\sqrt{2 k+1}}-\frac{1}{\sqrt{2 k(2 k+1)}}\right)
\end{aligned}
$$

and here (e.g. by the Mean Value Theorem) $0<\frac{1}{\sqrt{2 k}}-\frac{1}{\sqrt{2 k+1}} \leq \frac{1}{2(2 k)^{3 / 2}}$; hence if we set

$$
u_{k}:=-\frac{1}{\sqrt{2 k}}+\frac{1}{\sqrt{2 k+1}}+\frac{1}{\sqrt{2 k(2 k+1)}}
$$

then for all sufficiently large k we have $1>u_{k} \gg k^{-1}$. Hence by Proposition 2.6, for all sufficiently large K we have $\prod_{k=K}^{\infty}\left(1-u_{k}\right)=0$. Hence the same also holds for $K=1$, i.e. $\prod_{k=1}^{\infty}\left(1-u_{k}\right)=0$, and it follows that the product $\prod_{n=2}^{\infty}\left(1+\frac{(-1)^{n}}{\sqrt{n}}\right)$ also converges to zero.
3.4. (a). Let A_{1} be an arbitrary number $>A$. Then there is some $R>0$ such that $\frac{\log N(r)}{\log r}<A_{1}$ for all $r \geq R$, hence by exponentiating: $N(r)<r^{A_{1}}$ for all $r \geq R$. It follows that

$$
\begin{equation*}
N(r) \ll(1+r)^{A_{1}}, \quad \forall r \geq 0 \tag{1}
\end{equation*}
$$

Now note that for every $\alpha>0$:

$$
\begin{align*}
\sum_{j=1}^{\infty} & \left(1+\left|\rho_{j}\right|\right)^{-\alpha}=\int_{0-}^{\infty}(1+r)^{-\alpha} d N(r) \tag{2}\\
& =\lim _{R \rightarrow \infty}\left((1+R)^{-\alpha} N(R)+\alpha \int_{0}^{R}(1+r)^{-\alpha-1} N(r) d r\right)
\end{align*}
$$

Using here (1), it follows that $\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha}$ converges for all $\alpha>A_{1}$. We have proved this for every $\alpha>A_{1}$ and every $A_{1}>A$; hence $\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha}$ converges for every $\alpha>A$, and thus by the definition of τ we have $\tau \leq A$.
(b). Assume that $\alpha>\tau$. Then $\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha}$ converges, and since $\sum_{j=1}^{\infty}\left(1+\left|\rho_{j}\right|\right)^{-\alpha} \geq N(R) \cdot(1+R)^{-\alpha}$ for all $R>0$, it follows that there is a constant $C>0$ such that $N(R) \cdot(1+R)^{-\alpha} \leq C$ for all R. Hence (by taking the logarithm)

$$
\log N(R) \leq \log C+\alpha \log (1+R), \quad \forall R>0
$$

and dividing by $\log R$ (assuming $R>1$) and then letting $R \rightarrow+\infty$, it follows that

$$
\begin{equation*}
\limsup _{R \rightarrow \infty} \frac{\log N(R)}{\log R} \leq 0+\alpha \tag{3}
\end{equation*}
$$

i.e. $A \leq \alpha$. Since this is true for all $\alpha>\tau$ we conclude that $A \leq \tau$.
3.5. Set $A(x)=\sum_{1<n<x} a_{n}$; then the assumption says that $A(x) \sim$ x^{2} as $x \rightarrow \infty$, and hence for any given $\varepsilon>0$ there is some $X>1$ such that

$$
\begin{equation*}
\left|A(x)-x^{2}\right|<\varepsilon x^{2}, \quad \forall x \geq X \tag{4}
\end{equation*}
$$

Now for each $N \in \mathbb{Z}^{+}$we have

$$
\sum_{n=1}^{N} a_{n}(N-n)^{2}=\int_{1-}^{N}(N-x)^{2} d A(x)=0+2 \int_{1}^{N}(N-x) A(x) d x
$$

If $A(x) \equiv x^{2}$ then the last expression equals

$$
2 \int_{1}^{N}(N-x) x^{2} d x=2\left[\frac{N}{3} x^{3}-\frac{1}{4} x^{4}\right]_{x=1}^{x=N}=\frac{1}{6} N^{4}-\frac{2}{3} N+\frac{1}{2} .
$$

Hence for our general $A(x)=\sum_{1 \leq n \leq x} a_{n}$ we have, for each integer $N>X$:

$$
\begin{aligned}
& \left|\sum_{n=1}^{N} a_{n}(N-n)^{2}-\frac{1}{6} N^{4}\right|=\left|2 \int_{1}^{N}(N-x) A(x) d x-2 \int_{1}^{N}(N-x) x^{2} d x-\frac{2}{3} N+\frac{1}{2}\right| \\
& \leq 2 \int_{1}^{N}(N-x)\left|A(x)-x^{2}\right| d x+\frac{2}{3} N+\frac{1}{2} \\
& \leq 2 \int_{1}^{X} N\left|A(x)-x^{2}\right| d x+2 \int_{X}^{N} N \cdot \varepsilon x^{2} d x+\frac{2}{3} N+\frac{1}{2} \\
& \leq 2 N \int_{1}^{X}\left|A(x)-x^{2}\right| d x+2 \varepsilon \int_{X}^{N} N^{3} d x+\frac{2}{3} N+\frac{1}{2} \\
& \leq 2 \varepsilon N^{4}+\left(2 \int_{1}^{X}\left|A(x)-x^{2}\right| d x+\frac{2}{3}\right) N+\frac{1}{2}
\end{aligned}
$$

The expression inside the last parenthesis does not depend on N, and hence for all sufficiently large N the above is $<3 \varepsilon N^{4}$, i.e. we have proved that for all sufficiently large N we have

$$
\left|\sum_{n=1}^{N} a_{n}(N-n)^{2}-\frac{1}{6} N^{4}\right|<3 \varepsilon N^{4}
$$

Since ε was arbitrarily small this implies that

$$
\sum_{n=1}^{N} a_{n}(N-n)^{2} \sim \frac{1}{6} N^{4} \quad \text { as } \quad N \rightarrow \infty
$$

3.13.

(a). Writing $z=x+i y$ (with $x \in \mathbb{R}$ and $y \in \mathbb{R}_{>0}$), we have

$$
|m+n z|^{2}=(m+n x)^{2}+(n y)^{2} .
$$

Now let us note that

$$
\begin{equation*}
(m+n x)^{2}+(n y)^{2} \geq c \cdot\left(m^{2}+n^{2}\right), \quad \forall(m, n) \in \mathbb{R}^{2}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
c=c(x, y)=\frac{y^{2}}{x^{2}+y^{2}+1}>0 \tag{6}
\end{equation*}
$$

One way to prove (5) is to note that the quadratic form in the left hand side of (55), which has the matrix $\left(\begin{array}{cc}1 & x \\ x & x^{2}+y^{2}\end{array}\right)$, has the two eigenvalues ${ }^{7}$

$$
\frac{1}{2}\left(x^{2}+y^{2}+1 \pm \sqrt{\left(x^{2}+y^{2}+1\right)^{2}-4 y^{2}}\right)
$$

and since both these eigenvalues are positive, the inequality in (5) holds with c being equal to the smallest eigenvalue, viz., with

$$
\begin{align*}
c & =\frac{1}{2}\left(x^{2}+y^{2}+1-\sqrt{\left(x^{2}+y^{2}+1\right)^{2}-4 y^{2}}\right) \\
& =\frac{2 y^{2}}{x^{2}+y^{2}+1+\sqrt{\left(x^{2}+y^{2}+1\right)^{2}-4 y^{2}}} \quad(>0) . \tag{7}
\end{align*}
$$

Hence (5) is also valid for any smaller value of c; in particular (5) is valid for c as in (6).

A more elementary (but essentially equivalent) treatment: We wish to find some constant $c>0$ such that (5) holds. viz.,

$$
(1-c) m^{2}+2 x m n+\left(x^{2}+y^{2}-c\right) n^{2} \geq 0, \quad \forall(m, n) \in \mathbb{R}^{2} .
$$

Completing the square, this is equivalent with

$$
(1-c) m^{2}+2 x m n+\left(x^{2}+y^{2}-c\right) n^{2} \geq 0, \quad \forall(m, n) \in \mathbb{R}^{2} .
$$

Clearly for this to hold we must have $1-c \geq 0$. Assuming $1-c>0$, we can complete the square to see that the above is equivalent with

$$
(1-c)\left(m+\frac{x}{1-c} n\right)^{2}+\left(x^{2}+y^{2}-c-\frac{x^{2}}{1-c}\right) n^{2} \geq 0, \quad \forall(m, n) \in \mathbb{R}^{2},
$$

and this is clearly true if and only if $x^{2}+y^{2}-c-\frac{x^{2}}{1-c} \geq 0$. Solving for $c{ }^{\text {2 }}$ we reach again the conclusion that the above is true for c as in (7), or any smaller c-value.

[^0]Using (5) we have

$$
\left|\frac{1}{(m+n z)^{2 k}}\right| \leq c^{-k} \cdot\left(m^{2}+n^{2}\right)^{-k}
$$

and hence in order to prove the uniform absolute convergence required in the problem, it suffices to prove that the series

$$
c^{-k} \sum_{(m, n) \neq(0,0)} \frac{1}{\left(m^{2}+n^{2}\right)^{k}}
$$

is uniformly absolutely convergent for $z=x+i y$ in any compact subset of \mathbf{H}. But when $z=x+i y$ ranges over a given compact subset of \mathbf{H}, the number $c=c(x, y)$ (see (6)) is bounded from below by a positive number; hence c^{-k} is bounded from above by a finite number. Hence it now suffices to prove that the series

$$
\sum_{(m, n) \neq(0,0)} \frac{1}{\left(m^{2}+n^{2}\right)^{k}}
$$

converges!
This can be done e.g. using dyadic decomposition: Let

$$
A(R)=\left\{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}: m^{2}+n^{2}<R\right\} .
$$

Then, $A(1)=\emptyset$ for $R<1$, and for $R \geq 1$ we have (as a quite crude bound):

$$
\begin{aligned}
& \# A(R) \leq \#\left\{(m, n) \in \mathbb{Z}^{2}:|m|<\sqrt{R} \text { and }|n|<\sqrt{R}\right\} \\
& \leq(1+2 \sqrt{R})^{2} \leq(3 \sqrt{R})^{2} \leq 9 R .
\end{aligned}
$$

Hence (using $A(1)=\emptyset$, i.e. $m^{2}+n^{2} \geq 1$ for all $\left.(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}\right)$:

$$
\begin{aligned}
\sum_{(m, n) \neq(0,0)} \frac{1}{\left(m^{2}+n^{2}\right)^{k}} \leq \sum_{j=0}^{\infty} \sum_{(m, n) \in A\left(2^{j+1}\right) \backslash A\left(2^{j}\right)} \frac{1}{\left(2^{j}\right)^{k}} & \leq \sum_{j=0}^{\infty} \# A\left(2^{j+1}\right) \cdot 2^{-j k} \\
& \leq \sum_{j=0}^{\infty} 9 \cdot 2^{j+1} \cdot 2^{-j k}<\infty
\end{aligned}
$$

where in the last step we used the assumption that $k \geq 2$.
(b). First note that $\frac{a z+b}{c z+d} \in \mathbf{H}$ for every $z \in \mathbf{H}$; indeed,

$$
\begin{array}{r}
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\operatorname{Im}\left(\frac{(a z+b) \overline{(c z+d)}}{|c z+d|^{2}}\right)=\frac{\operatorname{Im}(a d z+b c \bar{z})}{|c z+d|^{2}}=\frac{(a d-b c) \operatorname{Im} z}{|c z+d|^{2}} \\
=\frac{\operatorname{Im} z}{|c z+d|^{2}}>0 .
\end{array}
$$

Now we compute (using the absolute convergence proved in (a)):

$$
\begin{aligned}
E_{k}\left(\frac{a z+b}{c z+d}\right) & =\sum_{(m, n) \neq(0,0)} \frac{1}{\left(m+n \frac{a z+b}{c z+d}\right)^{2 k}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{(c z+d)^{2 k}}{(m(c z+d)+n(a z+b))^{2 k}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{(c z+d)^{2 k}}{((m d+n b)+(m c+n a) z)^{2 k}} .
\end{aligned}
$$

Now note that the map

$$
(m, n) \mapsto(m d+n b, m c+n a)=(m, n)\left(\begin{array}{ll}
d & c \\
b & a
\end{array}\right)
$$

is a permutation of $\mathbb{Z}^{2} \backslash\{(0,0)\}$, with inverse

$$
\left(m^{\prime}, n^{\prime}\right) \mapsto\left(m^{\prime}, n^{\prime}\right)\left(\begin{array}{cc}
a & -c \\
-b & d
\end{array}\right)
$$

Hence we get

$$
E_{k}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} E_{k}(z),
$$

qed.

[^0]: ${ }^{1}$ These eigenvalues are real, since $\left(x^{2}+y^{2}+1\right)^{2}-4 y^{2} \geq\left(y^{2}+1\right)^{2}-4 y^{2}=$ $\left(y^{2}-1\right)^{2} \geq 0$.
 ${ }^{2}$ Encountering again the characteristic polynomial of the matrix $\left(\begin{array}{cc}1 & x \\ x & x^{2}+y^{2}\end{array}\right)$.

