Analysis for PhD students (2013) Assignment 1

Problem 1. Let $0 < \omega_1 \leq \omega_2 \leq \cdots$ be an increasing sequence of positive numbers satisfying

(1)
$$\#\{n \in \mathbb{N} : \omega_n \le T\} = cT^2 + O(T) \qquad \forall T > 0$$

where c > 0 is some constant. Let $\alpha \leq 2$. Determine an asymptotic formula for $\sum_{\omega_n < T} \omega_n^{-\alpha}$ as $T \to \infty$. (10p)

Problem 2. Let $n \in \mathbb{N}$ and $\kappa \in \mathbb{R}$. A vector $x \in \mathbb{R}^n$ is said to be of *Diophantine type* κ if there exists some c > 0 such that for all $k \in \mathbb{Z}^n$ and $q \in \mathbb{N}$ we have $|x - q^{-1}k| > cq^{-\kappa}$. Prove that if $\kappa > 1 + n^{-1}$ then almost every $x \in \mathbb{R}^n$ (w.r.t. Lebesgue measure) is of Diophantine type κ .

(15p)

Problem 3. Let f be a bounded real-valued function on [a, b]. Prove that f is Riemann integrable iff $\{x \in [a, b] : f \text{ is discontinuous at } x\}$ has Lebesgue measure zero. (Hint: This is Folland's exercise 2:23; note that Folland gives an outline of a proof in his formulation of the exercise.)

(15p)

Problem 4. Let μ be the Borel measure on \mathbb{R} which is given by $\mu = \delta + m_1$, where δ is the Dirac measure at 0 and m_1 is the Lebesgue measure restricted to [0,1] (viz., $\delta(E) = I(0 \in E)$ and $m_1(E) = m(E \cap [0,1])$ for any Borel subset $E \subset \mathbb{R}$, where $I(\cdot)$ is the indicator function.) Let μ_2 be the product measure $\mu \times \mu$ on \mathbb{R}^2 .

(a). Find the Lebesgue decomposition of μ_2 with respect to Lebesgue measure on \mathbb{R}^2 .

(b). Give a formula for $\widehat{\mu}_2(\xi), \xi \in \mathbb{R}^2$.

(c). Describe $\mu * \mu$ (which is a Borel measure on \mathbb{R}) explicitly. (15p)

Problem 5. For the the following two sequences $\{\mu_N\}$ in $M(\mathbb{R}^2)$, prove that there is a measure $\mu \in M(\mathbb{R}^2)$ such that $\mu_N \to \mu$ in the weak^{*} topology on $M(\mathbb{R}^2) = C_0(\mathbb{R}^2)^*$, and describe μ explicitly.

(a). μ_N given by $\int_{\mathbb{R}^2} f \, d\mu_N = N^{-1} \sum_{k=1}^N f(\frac{k}{N}, 0), \, \forall f \in C_0(\mathbb{R}^2).$ (b). μ_N given by $\int_{\mathbb{R}^2} f \, d\mu_N = N^{-2} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f(\frac{k}{N}, \frac{km}{N^2}), \, \forall f \in C_0(\mathbb{R}^2).$ (10p) The next few exercises concern the rate of decay of $\widehat{\chi}_E$ for various sets $E \subset \mathbb{R}^n$.

Problem 6. Prove that if $E = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is any box in \mathbb{R}^n then along certain rays $\widehat{\chi}_E(\xi)$ does not decay faster than $|\xi|^{-1}$, while along other rays $\widehat{\chi}_E(\xi)$ decays as fast as $|\xi|^{-n}$.

(In more precise terms: Prove that there exist some $\xi \in \mathbb{R}^n \setminus \{0\}$, c > 0 and a sequence $0 < u_1 < u_2 < \ldots$ such that $\lim_{m \to \infty} u_m = \infty$ and $|\widehat{\chi}_E(u_m\xi)| > cu_m^{-1}$ for all m. Also prove that there exist some $\xi \in \mathbb{R}^n \setminus \{0\}$ and C > 0 such that $|\widehat{\chi}_E(u\xi)| < Cu^{-n}$ for all $u \ge 1$.) (10p)

Problem 7. For $E \subset \mathbb{R}^n$ and $\delta > 0$ we define $\partial_{\delta}E$ as the (open) set of all points in \mathbb{R}^n which have distance $<\delta$ to some point in ∂E . Now assume that there exist C > 0 and $0 < a \leq 1$ such that $m(\partial_{\delta}E) < C\delta^a$ for all $0 < \delta \leq 1$. Then prove that E is Lebesgue measurable, and if furthermore E is bounded then there is a constant K > 0 such that $|\widehat{\chi}_E(\xi)| \leq K |\xi|^{-a}$ for all $\xi \in \mathbb{R}^n \setminus \{0\}$. [Hint: Consider the Fourier transform of $\chi_E - \chi_{\eta+E}$, where η is a suitably chosen vector in \mathbb{R}^n .] (10p)

Problem 8. Let *B* be a fixed ball in \mathbb{R}^n . Prove that there is a constant C > 0 such that $|\widehat{\chi}_B(\xi)| \leq C(1+|\xi|)^{-\frac{1}{2}(n+1)}$ for all $\xi \in \mathbb{R}^n$.

[Hint: We here give an outline of a possible proof. Partial credit will be given for carrying out one or some of these steps. (1) Using invariance under rotations and Fubini's theorem, prove that $\hat{\chi}_B(\xi) = \int_{-1}^{1} f(x)e^{-2\pi i|\xi|x} dx$, where f(x) is the volume of a ball of radius $\sqrt{1-x^2}$ in \mathbb{R}^{n-1} . Explicitly, $f(x) = V_{n-1}(1-x^2)^{\frac{1}{2}(n-1)}$ where V_{n-1} is the volume of the (n-1)-dimensional unit ball. (2) Prove that for $k < \frac{1}{2}(n+1)$ the *k*th derivative of f(x) equals $\sum_{j=1}^{k} P_{j,k,n}(x)(1-x^2)^{\frac{1}{2}(n-1)-j}$, where $P_{j,k,n}(x)$ is a polynomial of degree $\leq j$. (3) Now integrate by parts repeatedly in the formula for $\hat{\chi}_B(\xi)$. For *n* odd there are no problems to integrate by parts $\frac{1}{2}(n+1)$ times and this leads to the desired bound. (4) For *n* even we integrate by parts $\frac{1}{2}n$ times; then split the range of integration into (-1, -1+h), (-1+h, 1-h), (1-h, 1) for an appropriate $h \in (0, 1)$, and apply integration by parts once more for the *middle* region; the desired bound can now be deduced.]

(15p)

Submission deadline: 18 February, 10.15 (i.e. before the problem discussion starts).