Analysis for PhD students (2013) Assignment 1

Problem 1. Let $0<\omega_{1} \leq \omega_{2} \leq \cdots$ be an increasing sequence of positive numbers satisfying

$$
\begin{equation*}
\#\left\{n \in \mathbb{N}: \omega_{n} \leq T\right\}=c T^{2}+O(T) \quad \forall T>0 \tag{1}
\end{equation*}
$$

where $c>0$ is some constant. Let $\alpha \leq 2$. Determine an asymptotic formula for $\sum_{\omega_{n}<T} \omega_{n}^{-\alpha}$ as $T \rightarrow \infty$.

Problem 2. Let $n \in \mathbb{N}$ and $\kappa \in \mathbb{R}$. A vector $x \in \mathbb{R}^{n}$ is said to be of Diophantine type κ if there exists some $c>0$ such that for all $k \in \mathbb{Z}^{n}$ and $q \in \mathbb{N}$ we have $\left|x-q^{-1} k\right|>c q^{-\kappa}$. Prove that if $\kappa>1+n^{-1}$ then almost every $x \in \mathbb{R}^{n}$ (w.r.t. Lebesgue measure) is of Diophantine type κ.

Problem 3. Let f be a bounded real-valued function on $[a, b]$. Prove that f is Riemann integrable iff $\{x \in[a, b]: f$ is discontinuous at $x\}$ has Lebesgue measure zero. (Hint: This is Folland's exercise 2:23; note that Folland gives an outline of a proof in his formulation of the exercise.)

Problem 4. Let μ be the Borel measure on \mathbb{R} which is given by $\mu=\delta+$ m_{1}, where δ is the Dirac measure at 0 and m_{1} is the Lebesgue measure restricted to $[0,1]$ (viz., $\delta(E)=I(0 \in E)$ and $m_{1}(E)=m(E \cap[0,1])$ for any Borel subset $E \subset \mathbb{R}$, where $I(\cdot)$ is the indicator function.) Let μ_{2} be the product measure $\mu \times \mu$ on \mathbb{R}^{2}.
(a). Find the Lebesgue decomposition of μ_{2} with respect to Lebesgue measure on \mathbb{R}^{2}.
(b). Give a formula for $\widehat{\mu}_{2}(\xi), \xi \in \mathbb{R}^{2}$.
(c). Describe $\mu * \mu$ (which is a Borel measure on \mathbb{R}) explicitly.

Problem 5. For the the following two sequences $\left\{\mu_{N}\right\}$ in $M\left(\mathbb{R}^{2}\right)$, prove that there is a measure $\mu \in M\left(\mathbb{R}^{2}\right)$ such that $\mu_{N} \rightarrow \mu$ in the weak* topology on $M\left(\mathbb{R}^{2}\right)=C_{0}\left(\mathbb{R}^{2}\right)^{*}$, and describe μ explicitly.
(a). μ_{N} given by $\int_{\mathbb{R}^{2}} f d \mu_{N}=N^{-1} \sum_{k=1}^{N} f\left(\frac{k}{N}, 0\right), \forall f \in C_{0}\left(\mathbb{R}^{2}\right)$.
(b). μ_{N} given by $\int_{\mathbb{R}^{2}} f d \mu_{N}=N^{-2} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f\left(\frac{k}{N}, \frac{k m}{N^{2}}\right), \forall f \in C_{0}\left(\mathbb{R}^{2}\right)$.

The next few exercises concern the rate of decay of $\widehat{\chi}_{E}$ for various sets $E \subset \mathbb{R}^{n}$.

Problem 6. Prove that if $E=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ is any box in \mathbb{R}^{n} then along certain rays $\widehat{\chi}_{E}(\xi)$ does not decay faster than $|\xi|^{-1}$, while along other rays $\widehat{\chi}_{E}(\xi)$ decays as fast as $|\xi|^{-n}$.
(In more precise terms: Prove that there exist some $\xi \in \mathbb{R}^{n} \backslash\{0\}$, $c>0$ and a sequence $0<u_{1}<u_{2}<\ldots$ such that $\lim _{m \rightarrow \infty} u_{m}=\infty$ and $\left|\widehat{\chi}_{E}\left(u_{m} \xi\right)\right|>c u_{m}^{-1}$ for all m. Also prove that there exist some $\xi \in \mathbb{R}^{n} \backslash\{0\}$ and $C>0$ such that $\left|\widehat{\chi}_{E}(u \xi)\right|<C u^{-n}$ for all $u \geq 1$.)

Problem 7. For $E \subset \mathbb{R}^{n}$ and $\delta>0$ we define $\partial_{\delta} E$ as the (open) set of all points in \mathbb{R}^{n} which have distance $<\delta$ to some point in ∂E. Now assume that there exist $C>0$ and $0<a \leq 1$ such that $m\left(\partial_{\delta} E\right)<C \delta^{a}$ for all $0<\delta \leq 1$. Then prove that E is Lebesgue measurable, and if furthermore E is bounded then there is a constant $K>0$ such that $\left|\widehat{\chi}_{E}(\xi)\right| \leq K|\xi|^{-a}$ for all $\xi \in \mathbb{R}^{n} \backslash\{0\}$. [Hint: Consider the Fourier transform of $\chi_{E}-\chi_{\eta+E}$, where η is a suitably chosen vector in \mathbb{R}^{n}.]

Problem 8. Let B be a fixed ball in \mathbb{R}^{n}. Prove that there is a constant $C>0$ such that $\left|\widehat{\chi}_{B}(\xi)\right| \leq C(1+|\xi|)^{-\frac{1}{2}(n+1)}$ for all $\xi \in \mathbb{R}^{n}$.
[Hint: We here give an outline of a possible proof. Partial credit will be given for carrying out one or some of these steps. (1) Using invariance under rotations and Fubini's theorem, prove that $\widehat{\chi}_{B}(\xi)=$ $\int_{-1}^{1} f(x) e^{-2 \pi i|\xi| x} d x$, where $f(x)$ is the volume of a ball of radius $\sqrt{1-x^{2}}$ in \mathbb{R}^{n-1}. Explicitly, $f(x)=V_{n-1}\left(1-x^{2}\right)^{\frac{1}{2}(n-1)}$ where V_{n-1} is the volume of the ($n-1$)-dimensional unit ball. (2) Prove that for $k<\frac{1}{2}(n+1)$ the k th derivative of $f(x)$ equals $\sum_{j=1}^{k} P_{j, k, n}(x)\left(1-x^{2}\right)^{\frac{1}{2}(n-1)-j}$, where $P_{j, k, n}(x)$ is a polynomial of degree $\leq j$. (3) Now integrate by parts repeatedly in the formula for $\widehat{\chi}_{B}(\xi)$. For n odd there are no problems to integrate by parts $\frac{1}{2}(n+1)$ times and this leads to the desired bound. (4) For n even we integrate by parts $\frac{1}{2} n$ times; then split the range of integration into $(-1,-1+h),(-1+h, 1-h),(1-h, 1)$ for an appropriate $h \in(0,1)$, and apply integration by parts once more for the middle region; the desired bound can now be deduced.]

Submission deadline: 18 February, 10.15 (i.e. before the problem discussion starts).

