Analysis for PhD students (2013) Assignment 3

Problem 1. In Folland's book: p. 289, Problem 1.

Problem 2. In Folland's book: p. 289, Problem 10.

(15p)

(15p)

Problem 3. Prove that if $\psi \in C^{\infty}(\mathbb{R}^n)$ is a slowly increasing function then $\phi \mapsto \psi \phi$ is a continuous map of \mathcal{S} into \mathcal{S} .

(15p)

Problem 4. Find the Fourier transform (in S') of the following functions on \mathbb{R} :

a)
$$x \mapsto x \sin x$$
.
b) $x \mapsto x \sin^2 x$.
c) $x \mapsto x^{-1} \sin x$.
d) $x \mapsto (\sin x)^k$ (for $k \in \mathbb{N}$).
e) $x \mapsto \sin |x|$.
(15p)

Problem 5. Let m, n be even positive integers. Prove that the function $f(x) = \exp(x^n + i \exp(x^m))$ on \mathbb{R} lies in \mathcal{S}' if and only if $n \le m$. (15p)

 Problem 6. In Folland's book:

 a) p. 255, Problem 18(a).
 b) p. 308, Problem 31.

 (15p)

Problem 7. Let $F_0 = 0, F_1 = 1, F_2 = 1, \ldots$ be the Fibonacci sequence. Fix $k \in \mathbb{N}$. Prove that for almost every $x \in (0, 1)$, the pattern $1, \ldots, 1$ (k digits 1) appears in the continued fraction expansion $x = [a_1, a_2, \ldots]$ with frequency $(-1)^k \log(1 + (-1)^k F_{k+2}^{-2}) / \log 2$, that is:

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ j \in \{1, \dots, n\} : a_j = a_{j+1} = \dots = a_{j+k-1} = 1 \right\}$$
$$= (-1)^k \frac{\log(1 + (-1)^k F_{k+2}^{-2})}{\log 2}.$$
(15p)

Problem 8. Let π_1, π_2 be the coordinate projections from \mathbb{R}^2 to \mathbb{R} , i.e. $\pi_j((x_1, x_2)) = x_j$, and let $b^{(1)}, b^{(2)} \in \mathbb{R}^2$ be a basis of \mathbb{R}^2 such that the two real numbers $\pi_2(b^{(1)}), \pi_2(b^{(2)})$ are linearly independent over \mathbb{Q} . Let $\mathcal{L} \subset \mathbb{R}^2$ be the lattice spanned by $b^{(1)}, b^{(2)}$, i.e.

$$\mathcal{L} = \mathbb{Z}b^{(1)} + \mathbb{Z}b^{(2)} = \{j_1b^{(1)} + j_2b^{(2)} : j_1, j_2 \in \mathbb{Z}\}.$$

Prove that for any fixed bounded open interval $J \subset \mathbb{R}$,

$$\lim_{T \to \infty} \frac{1}{2T} \# \left(([-T, T] \times J) \cap \mathcal{L} \right) = m(J) \left| \det \left(\begin{array}{c} b_1^{(1)} & b_2^{(1)} \\ b_1^{(2)} & b_2^{(2)} \end{array} \right) \right|^{-1}.$$
(15p)

Submission deadline: 29 April, 10.15 (i.e. before the problem discussion starts).