Analysis for PhD students (2013)

Assignment 3

Problem 1. In Folland's book: p. 289, Problem 1.

Problem 2. In Folland's book: p. 289, Problem 10.

Problem 3. Prove that if $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is a slowly increasing function then $\phi \mapsto \psi \phi$ is a continuous map of \mathcal{S} into \mathcal{S}.

Problem 4. Find the Fourier transform (in \mathcal{S}^{\prime}) of the following functions on \mathbb{R} :
a) $x \mapsto x \sin x$.
b) $x \mapsto x \sin ^{2} x$.
c) $x \mapsto x^{-1} \sin x$.
d) $x \mapsto(\sin x)^{k}($ for $k \in \mathbb{N}) . \quad$ e) $x \mapsto \sin |x|$.

Problem 5. Let m, n be even positive integers. Prove that the function $f(x)=\exp \left(x^{n}+i \exp \left(x^{m}\right)\right)$ on \mathbb{R} lies in \mathcal{S}^{\prime} if and only if $n \leq m$.

Problem 6. In Folland's book:
a) p. 255, Problem 18(a).
b) p. 308, Problem 31.

Problem 7. Let $F_{0}=0, F_{1}=1, F_{2}=1, \ldots$ be the Fibonacci sequence. Fix $k \in \mathbb{N}$. Prove that for almost every $x \in(0,1)$, the pattern $1, \ldots, 1$ (k digits 1) appears in the continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$ with frequency $(-1)^{k} \log \left(1+(-1)^{k} F_{k+2}^{-2}\right) / \log 2$, that is:

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{j \in\{1, \ldots, n\}: a_{j}=a_{j+1}\right. & \left.=\ldots=a_{j+k-1}=1\right\} \\
& =(-1)^{k} \frac{\log \left(1+(-1)^{k} F_{k+2}^{-2}\right)}{\log 2} \tag{15p}
\end{align*}
$$

Problem 8. Let π_{1}, π_{2} be the coordinate projections from \mathbb{R}^{2} to \mathbb{R}, i.e. $\pi_{j}\left(\left(x_{1}, x_{2}\right)\right)=x_{j}$, and let $b^{(1)}, b^{(2)} \in \mathbb{R}^{2}$ be a basis of \mathbb{R}^{2} such that the two real numbers $\pi_{2}\left(b^{(1)}\right), \pi_{2}\left(b^{(2)}\right)$ are linearly independent over \mathbb{Q}. Let $\mathcal{L} \subset \mathbb{R}^{2}$ be the lattice spanned by $b^{(1)}$, $b^{(2)}$, i.e.

$$
\mathcal{L}=\mathbb{Z} b^{(1)}+\mathbb{Z} b^{(2)}=\left\{j_{1} b^{(1)}+j_{2} b^{(2)}: j_{1}, j_{2} \in \mathbb{Z}\right\} .
$$

Prove that for any fixed bounded open interval $J \subset \mathbb{R}$,

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \#(([-T, T] \times J) \cap \mathcal{L})=m(J)\left|\operatorname{det}\left(\begin{array}{ll}
b_{1}^{(1)} & b_{2}^{(1)} \tag{15p}\\
b_{1}^{(2)} & b_{2}^{(2)}
\end{array}\right)\right|^{-1} .
$$

Submission deadline: 29 April, 10.15 (i.e. before the problem discussion starts).

