Assignment 2: Some answers, comments and references

Problem 1. This is Excercise 9.5 in Rudin’s “Real and Complex Anal-
ysis” (but using Folland’s notation.)

Problem 2. This is Folland’s Exercise 8.39 (corrected).

Problem 3. Here is a solution covering the more general situation of
an arbitrary k > %:

Case 1: |a| < 10. In this case we have 1 + | — a| < 1 + |z]| for all
r € R, and hence

/°° dx _ /°° dx - 1
oo (Tt |z —aR (U [2[)F 7F J (T )2 T8

Case 2: |a] > 10. Note that the integral is symmetric under a —
—a; hence in this Case 2 we may in fact assume a > 10. Then we have
(14 ]z —a|)™* > (1+|(—z) —a|)7" for all z > 0, and so

/OO dx _ /OO dx

oo (Lt fz—al)P X+ [2))* 7 Sy (L | = al)H(1+ |2)F

Next we note that if 0 < z < a/2 then 1+ |z —a] < 1+ a =< a; if
a/2 < x < 3a/2 then 1+ |z| < a, and if 3a/2 < z then 1 + |z — o] <
1+ 2 < x. Hence the above integral is

_ /a/2 dr N /3(1/2 dr N /oo dr
=k _ -
o dFA+a)k Sy A+fz—al)rah Sy 2

Here each term is easy to compute explicitly. (In particular, regarding
the middle term, note that the integrand there is symmetric about the
point a; using this and the substitution x = a + y we see that the
middle term equals 2a=* foa/2(1 + 1) % dy.) We obtain that the above
expression is (still assuming a > 10):

If k> 1: =pa F+a a7 < a7k
If k= 1: =<alloga+atloga+a?t=<atloga;
If % <k<l1: =, a Pk Rk g1m2k = o172k,

Combining the above Cases 1 and 2 we obtain the estimate(s) stated
in the problem formulation — and when % < k < 1 we obtain

h dz 1-2k
/_OO A+ |z — a)F(1 1 2]k " (1 + |a) (Va € R).




Addendum to Problem 3: Let us here also determine a more
precise asymptotic formula for the given integral as a — +oo0.

For this task, it is helpful to first use the fact that the integrand is
symmetric about the point x = 2, i.e. invariant under x — a — x. This
implies that
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/ o dx _s / o dx
oo (L4 |z —al)¥(1 + |2])* a2 (14 [z —al)F(1+2)F
We are studying the limit a — +o00; hence we may assume throughout
that a > 10. Hence we can approximate the integrand using (1+x) % ~
2%, Namely, by Taylor expansion we have (14+xz) 7% = 27 %(14+271)7% =
781 + Op(z™Y)) = 27%(1 + Og(a™?)) for all x > a/2 > 5, and hence
the above expression equals

° 1
(1) 2(1+ Og(a™) / dx.

( ) ), T o= alya?

Next we examine whether we can also get rid of the “1” in “1+ |z —al”
— or how we should otherwise handle that term. Of course this depends
on whether the main contribution comes from the part of the integral
where x is near a, or from the part where x is far from a. To study this,
it is convenient to move the point a to 0, i.e. we substitute x = a — ¥y
(for z < a) and = = a +y (for z > a), to get:

(2)

/oo 1 e /a/2 dy N /oo d'y
a2 (14 ]2 —al)kat o A+ykla—y*r  Jo A+y)Fla+ykr

Then the question is whether the main contribution in the last two
integrals comes from y (fairly) near 0, or from y far from 0. For the

first integral, f a/2 my)d%’ this is easily answered: Indeed, we have

(a—y) < a throughout the range of integration, and hence the question
is simply whether foa/ a + g (for a very large) has its main contribution
for “y small” or “y large”? Answer: If £ < 1 then the main contribution
is for “y large”, while if £ > 1 then the main contribution is for y small

(or: "not so large’) — basically because [;* T +y = diverges for & < 1 but

not for £ > 1. In both cases it makes sense to split fo o2 a5 fo + fa/2
(Note that a > 10 ensures that /a < a/2.)
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Case 1: k£ > 1. Then the main contribution comes from 0 < y < /a.
In this interval we have “a —y =~ a”, namely: a —y = a(14+O(y/a)) =
a(l +O(a""?)), and so (a — y)™* = a=*(1 + O(a=/?)). Hence:

a/2 dy B Va dy a/2 dy
/0 (I+y)(a—yr /0 (1 +y)k(a—y)* * /ﬁ (1 +y)k(a—y)k

~wrou) [ i o[ i)

= (O ) ™ g (1 (V) ) 4 Ol
a=* 1 1
=311 (1 + Ok(a_§ + ai(l_k)))_

Note that both the exponents inside the last “O(---)” are negative, so
that the error term tends to zero. The second integral in (2]) is handled
in a completely similar way, giving:

>0 dy Ve dy >0 dy
/0 (1 +y)k(a+y)* _/0 (I +y)k(a+y)* +/\/a (1 +y)k(a+y)*

—k
= pop (L oad 4 aktoh)),
Adding these two, and inserting in (II), we finally conclude:
o dx 4a7F 1 1
3 = 1+ Ok(a™2 + 2"
O | e~ e o ),

which in particular implies that

(4) /Oo du da”" as a — 0o
Oz —a)FA+ |z T k-1 ¢Tree

(Note that () is a strictly stronger statement than (4)).)




Case 2: % < k < 1. Then the main contribution comes from
Va <y < a/2. In this interval we have “1 + y =~ y”, namely 1 +y =
y(1+0(y™)) = y(14+0(a""?)), and so (1+y)~* = y*(1+O(a"/?)).
Hence:

/oa/2 (1+ y)f?(Ja —yF /oﬁ (1+ y)i?(Ja —y)k " /;/2 (1+ y)i(y“ —y)*
_ 0, (a—k /0\/a ﬂ:l—iyy)’f) + (1+ Ok(&_1/2)) /\/';/2 ﬁ
= O (a ™ 2079) 4 (14 Op(a™?)) ( /OW ﬁ O </of %) )

Ok (a273%) + (1 + Op(a™V/?)) /a/2 W
g k Qa k -, -

o Ya—y)*
(The point of the last steps of the above computation was to make the
integral f\%z ﬁ” cleaner, by replacing the end-point y/a by 0 and
showing that this causes a total error Ok(a%_%k), i.e. exactly the same
error as we got from the integral fo‘/a m in the step before.)
Substituting y = at in the last integral we get:

1_3 _ _ 1/2 dt
= 0ufat ) + (1 o)t [

_ ( /0 v tk(ld%t)k) % (14 Op(a~30-9)).

The second integral in (2) is handled in a completely similar way, giving:

/0"" (1+ y)i?g@ TF (/OOO tk(1d+t)k> a7 (14 Op(a=77P)).

Adding these two, and inserting in (II), we conclude:

> dx
5 ~ C . 1—2k
(5) /_oo T+ o =l FJalF ~ as @ oo,

. 1/2
where C}, is the constant C}, = 2( 0/ tk(ldft)k +f000 tk(flj—t)k) = f_oooo \t_le'

Remark 1: A brief way to describe what happens in the computa-
tion in Case 2 (3 < k < 1) is that it turns out that in this case, both
the terms “1” can be removed without changing the leading asymptotic

behaviour of the integral: [~ (1+|m_afl)€(1+|z|)k ~ [ MW. Substi-

tuting = = at in the last integral gives ([ m) ca'7% = Chal?k,
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Remark 2: A closed formula for the constant C}, can be obtained
as follows. We have

V2ooar 1t at I(1—k)?  2%2/70(1 k)
A ﬁu—wk_ilt% B

1—t)k  20(2 — 2k) INCES
22k—2
=— NG I'(k— 3)T(1 — k) cos(mk),
where we used (7)) and then (Z.6) and (ZH) from the lecture notes.
For the other integral, the substituting t = s~ — 1 leads to:

< dt [ e, DEE-1I(1-k)
[ warap = ) e =R
22k—2

NZs
where we used (7.7) and then (Z.6) from the lecture notes. Adding

these two, we conclude:
22k—1

NZS

Remark 3: I encourage you to also sort out the case £k = 1! In
particular, I think that an interesting challenge would be to seek an
asymptotic formula which is valid uniformly for all k in a neighborhood
of 1.

P(k—3)I(1— k),

Cr =

['(k— 31— k)(1 — cos(rk)).
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Problem 4. We have

oo oo
/ e—bxxab dr = / e—b(w—alogm) d.flf,
1 1

and for any a € [0, 1) the function
r+—x—alogx

is strictly increasing for x > 1 (since its derivative is 1 =2 > 1—a > 0).
Hence for b large, the main contribution to the integral will come from
x near 1, and we may hope to get an adequate estimate by using the
Taylor expansion of logx at the point x = 1. In fact we can obtain
quite simple and precise bounds from above and below by making use
of the following inequality, which is inspired by the aforementioned
Taylor expansion:

(%) r—1-3z-1)?<logz <z -1, Vo > 1.
(To verify the first inequality, note that the derivative of the function
logz— (z—1)+1(x—1)? equals z7' +2 —2, which is > 0 for all z > 1.)
Using the second inequality in (*), we get:
o] [ee] —b
—bx .ab —bx+ab(z—1) _ €
e ¥ dr < / e der = ————.
/1 1 (I —a)
Using the first inequality in (*), we get:

o *° Lo pa2
/ e—bmxab dx > / e—b(u+1)+abu—§abu du,
1 0

and since eV > 1 —y for all y > 0, the above is

~ —b
> o—b —(1—a)bu 1-—1 2 > 67 1— L .
> e /0 e ( 2abu)alu_ =) (1= a)2

In conclusion, we have proved:

et a o0 e ?
(1—a)b< (1—a)2b>_/1 R Fa

This easily implies the claim in the problem formulation, and in fact
gives the stronger information that the required asymptotic relation

[ et et da ~ 7oy bolds uniformly over all a € [0, ag(b)), where ag

is any function Rsg — [0, 1) such that (1 — ag(b)) - b*/? — oco.
(That is, a is allowed to approach 1 as b — oo, but not too quickly.)
O]




Problem 6. Outline of a solution: Set

fo(t) = a1t + 2ot® + -+ + 2",
for v = (z1,...,2,) € R" and t € R. We wish to show that if z # 0
then sup;c( |§Tifx(t)| > |x| for some k € {1,...,n}, and then use
this together with Stein’s Prop. 2 (Ch. 8.1).

One way to prove such a lower bound is to partition the unit sphere
in a clever way such that the desired bound can be proved with a
specific k for all  belonging to any given part of the partition. Three
students have nicely carried out such a solution (please ask me if you
are interested in seeing details on how this can be done). Here, for fun,
we give instead a less concrete argument, using compactness. Set
dk
— I t
Note for all z, k, the infimum over ¢t € [0, 1] is attained for some ¢, since
Ccllt—i fz(t) is a continuous function of ¢ and [0, 1] is a compact interval;
one also proves that for each k this infimum depends continuously on x;
hence also g(z) is a continuous function of x. Let us now consider the
infimum of g(z) over the unit sphere S"' = {x € R™ : |z| = 1}. Since
S™~1is compact, this infimum is attained, say at the point 2/ € S"~!.
Clearly g(z') > 0. Assume g(2’) = 0. This means that

dk

* inf |—

(+) te[0,1]| dtk

But note that 4= f./(t) = 2/, - n! (Vt); 1hence (*) for £k = n implies
that 2/, = 0. Using 2/, = 0 we have L— f,.(t) = (n — 1)1 (V1),

g(x) = max (x € R").

in
ke{l,...,n} t€[0,1]

fx/(t)‘ =0, Vke{l,...,n}

n—1"
and hence (*) for £ = n — 1 implies that z/,_; = 0. Repeating this
argument for k =n —2,n —3,...,1 (in this order), we conclude that
x! =21/ ,=---=12) =0. This is a contradiction against 2’ € S"~!!

Hence we conclude that

c:= inf g(z)>0.

zesn—1
Using this constant ¢ (which only depends on n), we may now argue as
follows, for any non-zero point * € R™: Set 7 = |z|~'z € S"'. Then
g(T) > ¢, i.e. there is some k € {1,...,n} such that }i—ifg(t)} > c
for all t € [0,1]. Note that f.(t) = |z|- fz(t); hence it follows that
}jt—];fx(t)} > c|z| for all t € [0,1]. If & > 2 then this immediately gives,
via Stein’s Prop. 2, that

/0 (£ (1)) dt < (cla])V~.
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If £ = 1 then we have to also satisfy the monotonicity assumption in
Stein’s Prop. 2; however note that % f=(t) is a polynomial of degree
< n — 2; hence it can have at most n — 2 zeros in the interval [0, 1]E
and so we can partition [0, 1] into at most n — 1 subintervals such that
% f=(t) is monotonic on each of these subintervals. Applying Stein’s
Prop. 2 (with & = 1) to the integral over each such subinterval, and

adding up, we obtain:

/0 e(fo()) dt < (n—1) - (cla]) .

The fact that at least one of the above inequalities must hold implies
that if |x| > 1 then we have

1
/ e(fa(t)) dt < max(lz| ™", 2|7V, fa V) = faf T
0

But we also have, trivially,

/1 e(f:(t))dt <1, (Vx € R").

Hence we conclude that, for all z € R™: we have

/1 e(fo(t)) dt < min(1, |z|~Y™) =< (1 + |z])~V"™.
0

Hence we have proved that the bound in the problem formulation
holds with o« = 1/n. To see that this is the best possible exponent,
it suffices to consider points of the form x = (0,...,0,x,), with z, —
+o00. We don’t give the details here.

Answer: a = 1/n. O

10r it may be the zero polynomial; but then we are done, since this implies that
% f=(t) is (constant and hence) monotonic as a function of ¢ over the whole real
axis.
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Problem 7. It should be noted that the integrand is not periodic
with period 27, unless A is an integer. Hence there is in general a
“non—negligible”ﬁ contribution from the end-points. It is part of the
problem to prove that this contribution is O(A™!).

2By this I mean: Not as small as “O(A~") with arbitrarily large N7, but instead
quite a bit larger!



