Analysis for PhD students (2020); Assignment 1

Problem 1. Prove that for any real $z>0$ and any natural number N,

$$
\begin{align*}
& \sum_{n=0}^{N} \log (z+n)=\left(z+N+\frac{1}{2}\right) \log (z+N)-N-\left(z-\frac{1}{2}\right) \log z \\
& \quad+\frac{1}{12}\left((z+N)^{-1}-z^{-1}\right)+\int_{0}^{N} \frac{(x-\lfloor x\rfloor)(x-\lfloor x\rfloor-1)+\frac{1}{6}}{2(z+x)^{2}} d x . \tag{10p}
\end{align*}
$$

Problem 2. Let $1<\omega_{1} \leq \omega_{2} \leq \cdots$ be an increasing sequence of real numbers satisfying

$$
\#\left\{n \in \mathbb{N}: \omega_{n} \leq T\right\}=c T+O\left(T^{\frac{1}{2}}\right) \quad \forall T>0
$$

where $c>0$ is some constant. Determine an asymptotic formula for $\prod_{\omega_{n}<T}\left(1-\omega_{n}^{-1}\right)$ as $T \rightarrow \infty$.
[Hint: Recall that one can use the logarithm function to transform a product into a sum.]

Problem 3. Compute the following limits and justify the calculations:
(a) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n \log \left(1+\frac{x}{n}\right)}{x\left(1+x^{2}\right)} d x$
(b) $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1+(n x)^{2}}{(1+x)^{n}} d x$
(c) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\cos \left(\frac{x}{n}\right)}{\left(1+\frac{x}{n}\right)^{n}} d x$
(d) $\lim _{n \rightarrow \infty} \int_{0}^{\infty}(n+x) e^{-n x} d x$

Problem 4. Let E_{1}, E_{2}, \ldots be measurable subsets of a measure space (X, μ), with $\mu\left(E_{n}\right)<\infty$ for each n. Let $f \in L^{1}(\mu)$, and assume that $\lim _{n \rightarrow \infty} \int_{X}\left|f-\chi_{E_{n}}\right| d \mu=0$. Prove that $f(x) \in\{0,1\}$ for μ-almost every $x \in X$.

Problem 5. Let $1 \leq p<\infty$, let (X, \mathcal{M}, μ) be a fixed measure space, and let $\left(f_{n}\right)$ be a sequence in $L^{p}=L^{p}(X, \mathcal{M}, \mu)$. Prove that $\left(f_{n}\right)$ is Cauchy in the L^{p} norm iff the following three conditions all hold:
(i) For every $\varepsilon>0, \mu\left(\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \geq \varepsilon\right\}\right) \rightarrow 0$ as $m, n \rightarrow \infty$;
(ii) for every $\varepsilon>0$ there exists $\delta>0$ such that $\int_{E}\left|f_{n}\right|^{p} d x<\varepsilon$ for every n and every measurable set $E \subset X$ with $\mu(E)<\delta$; and
(iii) for every $\varepsilon>0$ there exists $E \subset X$ such that $\mu(E)<\infty$ and $\int_{X \backslash E}\left|f_{n}\right|^{p} d \mu<\varepsilon$ for all n.
[Hint: I think that the most difficult part may be the proof of the necessity of (ii). For this, one may combine Folland's Cor. 3.6 with basic facts about the space L^{p}.]

Problem 6. (a) Find an example of a sequence $\left(\mu_{n}\right)$ in $M(\mathbb{R})$ such that $\mu_{n} \rightarrow 0$ vaguely, but $\left\|\mu_{n}\right\| \nrightarrow 0$.
(b) Find an example of a sequence $\left(\mu_{n}\right)$ in $M(\mathbb{R})$ such that $\mu_{n} \geq 0$ for every n and $\mu_{n} \rightarrow 0$ vaguely, but there exists some $x \in \mathbb{R}$ such that $\mu_{n}((-\infty, x]) \nrightarrow 0$.
(c) Let $\mu_{n} \in M(\mathbb{R})$ be given by $\int_{\mathbb{R}} f d \mu_{n}=\sum_{k=1}^{n} \frac{n-k}{n^{2}} f\left(\frac{k}{n}\right)$ for all $f \in$ $C_{0}(\mathbb{R})$. Prove that the sequence $\left(\mu_{n}\right)$ converges vaguely in $M(\mathbb{R})$, and describe the limit measure explicitly.

Problem 7. [Multi-indices] (a) Prove that for any multi-indices α, β, there is a constant $c_{\alpha, \beta}$ such that

$$
\partial^{\alpha}\left(\frac{1}{x^{\beta}}\right)=\frac{c_{\alpha, \beta}}{x^{\beta+\alpha}} .
$$

Give an explicit formula for $c_{\alpha, \beta}$.
(b) For any multi-index α we write $|\alpha|_{\infty}:=\max \left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Prove that for any multi-index α, there exist constants $c_{\alpha, m}>0$ such that

$$
\partial^{\alpha} \exp \left(\prod_{j=1}^{n} x_{j}\right)=\sum_{m=|\alpha|_{\infty}}^{|\alpha|} c_{\alpha, m} \frac{\prod_{j=1}^{n} x_{j}^{m}}{x^{\alpha}} \exp \left(\prod_{j=1}^{n} x_{j}\right) .
$$

(Example: $\partial_{1}^{5} \partial_{2} \partial_{3} \exp \left(x_{1} x_{2} x_{3}\right)=\left(25 x_{2}^{4} x_{3}^{4}+11 x_{1} x_{2}^{5} x_{3}^{5}+x_{1}^{2} x_{2}^{6} x_{3}^{6}\right) \exp \left(x_{1} x_{2} x_{3}\right)$. .)

Problem 8. For any $a>0$ let $g_{a}: \mathbb{R} \rightarrow \mathbb{R}$ be the function $g_{a}=$ $a^{-1} \cdot \chi_{(0, a)}$. Let $\left(a_{n}\right)$ be a sequence of positive real numbers and set

$$
f_{n}=g_{a_{1}} * \cdots * g_{a_{n}} .
$$

(a). Compute $\int_{\mathbb{R}} f_{n} d x$ and $\int_{\mathbb{R}}\left|f_{n}\right| d x$.
(b). What is the support of f_{n} ?
(c). Prove that for each $n \geq 2, f_{n} \in C^{n-2}(\mathbb{R})$ but $f_{n} \notin C^{n-1}(\mathbb{R})$.
(d). Prove that if $\sum_{n=1}^{\infty} a_{n}=\infty$, then as $n \rightarrow \infty, f_{n}$ converges pointwise to 0 .
[Comment: As (even?) more challenging task\{] you may try to prove that if $\sum_{n=1}^{\infty} a_{n}<\infty$, then as $n \rightarrow \infty, f_{n}$ converges uniformly to a function $f \in C_{c}^{\infty}(\mathbb{R})$, $f \not \equiv 0$. Also, when $\sum_{n=1}^{\infty} a_{n}=\infty$, is the convergence $f_{n} \rightarrow 0$ uniform or not?]

To be returned: Tuesday, October 6, before midnight. Please send your solutions by email, or put them in my mailbox.

Note: Delayed exercises will in general be ignored. Exceptions are possible, but this requires that you have given me an explanation in advance, which I have approved.

[^0]
[^0]: ${ }^{1}$ October 21: I have corrected the formulation here in the case $\sum_{n=1}^{\infty} a_{n}=\infty$.

