Analysis for PhD students (2020); Assignment 1

Problem 1. Prove that for any real z > 0 and any natural number N,

$$\sum_{n=0}^{N} \log(z+n) = \left(z+N+\frac{1}{2}\right) \log(z+N) - N - \left(z-\frac{1}{2}\right) \log z + \frac{1}{12} \left((z+N)^{-1} - z^{-1}\right) + \int_{0}^{N} \frac{(x-\lfloor x \rfloor)(x-\lfloor x \rfloor-1) + \frac{1}{6}}{2(z+x)^{2}} dx.$$
(10p)

Problem 2. Let $1 < \omega_1 \leq \omega_2 \leq \cdots$ be an increasing sequence of real numbers satisfying

$$#\{n \in \mathbb{N} : \omega_n \le T\} = cT + O(T^{\frac{1}{2}}) \qquad \forall T > 0,$$

where c > 0 is some constant. Determine an asymptotic formula for $\prod_{\omega_n < T} (1 - \omega_n^{-1})$ as $T \to \infty$.

[Hint: Recall that one can use the logarithm function to transform a product into a sum.] (10p)

Problem 3. Compute the following limits and justify the calculations:

(a)
$$\lim_{n \to \infty} \int_0^\infty \frac{n \log(1 + \frac{x}{n})}{x(1 + x^2)} dx$$
 (b)
$$\lim_{n \to \infty} \int_0^1 \frac{1 + (nx)^2}{(1 + x)^n} dx$$

(c)
$$\lim_{n \to \infty} \int_0^\infty \frac{\cos(\frac{x}{n})}{(1 + \frac{x}{n})^n} dx$$
 (d)
$$\lim_{n \to \infty} \int_0^\infty (n + x) e^{-nx} dx$$

(15p)

Problem 4. Let E_1, E_2, \ldots be measurable subsets of a measure space (X, μ) , with $\mu(E_n) < \infty$ for each n. Let $f \in L^1(\mu)$, and assume that $\lim_{n\to\infty} \int_X |f - \chi_{E_n}| d\mu = 0$. Prove that $f(x) \in \{0, 1\}$ for μ -almost every $x \in X$. (10p)

Problem 5. Let $1 \leq p < \infty$, let (X, \mathcal{M}, μ) be a fixed measure space, and let (f_n) be a sequence in $L^p = L^p(X, \mathcal{M}, \mu)$. Prove that (f_n) is Cauchy in the L^p norm iff the following three conditions all hold:

(i) For every $\varepsilon > 0$, $\mu(\{x : |f_n(x) - f_m(x)| \ge \varepsilon\}) \to 0$ as $m, n \to \infty$; (ii) for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\int_E |f_n|^p dx < \varepsilon$ for every n and every measurable set $E \subset X$ with $\mu(E) < \delta$; and

(iii) for every $\varepsilon > 0$ there exists $E \subset X$ such that $\mu(E) < \infty$ and $\int_{X \setminus E} |f_n|^p d\mu < \varepsilon$ for all n.

[Hint: I think that the most difficult part may be the proof of the necessity of (ii). For this, one may combine Folland's Cor. 3.6 with basic facts about the space L^p .] (15p) **Problem 6.** (a) Find an example of a sequence (μ_n) in $M(\mathbb{R})$ such that $\mu_n \to 0$ vaguely, but $\|\mu_n\| \neq 0$.

(b) Find an example of a sequence (μ_n) in $M(\mathbb{R})$ such that $\mu_n \geq 0$ for every n and $\mu_n \to 0$ vaguely, but there exists some $x \in \mathbb{R}$ such that $\mu_n((-\infty, x]) \not\to 0$.

(c) Let $\mu_n \in M(\mathbb{R})$ be given by $\int_{\mathbb{R}} f d\mu_n = \sum_{k=1}^n \frac{n-k}{n^2} f(\frac{k}{n})$ for all $f \in C_0(\mathbb{R})$. Prove that the sequence (μ_n) converges vaguely in $M(\mathbb{R})$, and describe the limit measure explicitly.

(15p)

Problem 7. [Multi-indices] (a) Prove that for any multi-indices α, β , there is a constant $c_{\alpha,\beta}$ such that

$$\partial^{\alpha} \left(\frac{1}{x^{\beta}} \right) = \frac{c_{\alpha,\beta}}{x^{\beta+\alpha}}$$

Give an explicit formula for $c_{\alpha,\beta}$.

(b) For any multi-index α we write $|\alpha|_{\infty} := \max(\alpha_1, \ldots, \alpha_n)$. Prove that for any multi-index α , there exist constants $c_{\alpha,m} > 0$ such that

$$\partial^{\alpha} \exp\left(\prod_{j=1}^{n} x_{j}\right) = \sum_{m=|\alpha|_{\infty}}^{|\alpha|} c_{\alpha,m} \frac{\prod_{j=1}^{n} x_{j}^{m}}{x^{\alpha}} \exp\left(\prod_{j=1}^{n} x_{j}\right).$$

(Example: $\partial_{1}^{5} \partial_{2} \partial_{3} \exp(x_{1} x_{2} x_{3}) = \left(25 x_{2}^{4} x_{3}^{4} + 11 x_{1} x_{2}^{5} x_{3}^{5} + x_{1}^{2} x_{2}^{6} x_{3}^{6}\right) \exp(x_{1} x_{2} x_{3}).$)

(10p)

Problem 8. For any a > 0 let $g_a : \mathbb{R} \to \mathbb{R}$ be the function $g_a = a^{-1} \cdot \chi_{(0,a)}$. Let (a_n) be a sequence of positive real numbers and set

 $f_n = g_{a_1} * \cdots * g_{a_n}.$

(a). Compute $\int_{\mathbb{R}} f_n dx$ and $\int_{\mathbb{R}} |f_n| dx$.

(b). What is the support of f_n ?

(c). Prove that for each $n \geq 2$, $f_n \in C^{n-2}(\mathbb{R})$ but $f_n \notin C^{n-1}(\mathbb{R})$.

(d). Prove that if $\sum_{n=1}^{\infty} a_n = \infty$, then as $n \to \infty$, f_n converges pointwise to 0. (15p)

[Comment: As (even?) more challenging tasks¹, you may try to prove that if $\sum_{n=1}^{\infty} a_n < \infty$, then as $n \to \infty$, f_n converges uniformly to a function $f \in C_c^{\infty}(\mathbb{R})$, $f \neq 0$. Also, when $\sum_{n=1}^{\infty} a_n = \infty$, is the convergence $f_n \to 0$ uniform or not?]

To be returned: Tuesday, October 6, before midnight. Please send your solutions by email, or put them in my mailbox.

Note: Delayed exercises will in general be ignored. Exceptions are possible, but this requires that you have given me an explanation in advance, which I have approved.

 $\mathbf{2}$

¹October 21: I have corrected the formulation here in the case $\sum_{n=1}^{\infty} a_n = \infty$.