Analysis for PhD students (2020); Assignment 2

Problem 1. Prove that if $f \in L^{1}(\mathbb{R})$ and $\int_{-\infty}^{\infty}|\xi \widehat{f}(\xi)| d \xi<\infty$, then f coincides almost everywhere with a differentiable function f_{0} whose derivative is

$$
\begin{equation*}
f_{0}^{\prime}(x)=2 \pi i \int_{-\infty}^{\infty} \xi \widehat{f}(\xi) e^{2 \pi i \xi x} d \xi \quad(\forall x \in \mathbb{R}) \tag{15p}
\end{equation*}
$$

Problem 2. [Formulation corrected, Nov. 6.] Prove that if μ is a positive Borel measure on \mathbb{T} with $\mu(\mathbb{T})=1$, then $|\widehat{\mu}(k)|<1$ for all $k \neq 0$ unless μ is a linear combination, with nonnegative coefficients, of the point masses at $y, y+\frac{1}{m}, \ldots, y+\frac{m-1}{m}$ for some $m \in \mathbb{N}$ and $y \in \mathbb{T}$.

Problem 3. [Formulation corrected, Oct. 14.] Prove that for any $k \geq 1$:

$$
\int_{-\infty}^{\infty} \frac{d x}{(1+|x-a|)^{k}(1+|x|)^{k}} \asymp_{k} \begin{cases}(1+|a|)^{-k} & \text { if } k>1 \tag{10p}\\ (1+|a|)^{-1} \log (2+|a|) & \text { if } k=1\end{cases}
$$

uniformly over all $a \in \mathbb{R}$.

Problem 4. Let a_{0} be a fixed number with $0<a_{0}<1$. Prove that

$$
\begin{equation*}
\int_{1}^{\infty} e^{-b x} x^{a b} d x \sim \frac{e^{-b}}{(1-a) b} \tag{15p}
\end{equation*}
$$

as $b \rightarrow \infty$, uniformly over all $a \in\left[0, a_{0}\right]$.

Problem 5. Prove that for any given $A>0$ there exist an interval [a,b] and a real-valued function $f \in C^{\infty}([a, b])$ such that $f^{\prime}(x) \geq 1$ for all $x \in[a, b]$, and

$$
\left|\int_{a}^{b} e(f(x)) d x\right| \geq A
$$

[Comment: An outline proof is given in connection with Prop. 2 in Stein's Ch. 8; however please provide more details on (1) exactly how such a function is constructed and (2) how the desired inequality is proved.]

Problem 6. Let $n \in \mathbb{Z}^{+}$. Find (with proof) the largest possible constant $\alpha>0$ such that

$$
\begin{equation*}
\int_{0}^{1} e\left(x_{1} t+x_{2} t^{2}+\cdots+x_{n} t^{n}\right) d t<_{n}(1+|x|)^{-\alpha}, \quad \forall x \in \mathbb{R}^{n} \tag{15p}
\end{equation*}
$$

Problem 7. Using stationary phase, prove that for any fixed $\alpha>1$,

$$
\begin{array}{r}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \lambda(\alpha \sin x-x)} d x=\sqrt{\frac{2}{\pi}} \cdot \frac{\cos \left(\lambda\left(\sqrt{\alpha^{2}-1}-\arccos \left(\alpha^{-1}\right)\right)-\frac{\pi}{4}\right)}{\sqrt[4]{\alpha^{2}-1} \sqrt{\lambda}} \\
+O\left(\frac{1}{\lambda}\right)
\end{array}
$$

as $\lambda \rightarrow+\infty$ (through real numbers), where the implied constant may depend on α.
[Comment: Specializing to $\lambda=n \in \mathbb{Z}^{+}$this gives an asymptotic formula for $J_{n}(\alpha n)$, via (8.9) in the lecture notes. It is satisfactory to note that this asymptotic formula is consistent with Prop. 10.1 in the lecture notes.]

To be returned: Thursday, November 12, before midnight. Please send your solutions by email, or put them in my mailbox.

Note: Delayed exercises will in general be ignored. Exceptions are possible, but this requires that you have given me an explanation in advance, which I have approved.

