Analysis for PhD students (2020); Assignment 2

Problem 1. Prove that if $f \in L^1(\mathbb{R})$ and $\int_{-\infty}^{\infty} |\xi \widehat{f}(\xi)| d\xi < \infty$, then f coincides almost everywhere with a differentiable function f_0 whose derivative is

$$f_0'(x) = 2\pi i \int_{-\infty}^{\infty} \xi \,\widehat{f}(\xi) \, e^{2\pi i \xi x} \, d\xi \qquad (\forall x \in \mathbb{R}).$$
(15p)

Problem 2. [Formulation corrected, Nov. 6.] Prove that if μ is a positive Borel measure on \mathbb{T} with $\mu(\mathbb{T}) = 1$, then $|\hat{\mu}(k)| < 1$ for all $k \neq 0$ unless μ is a linear combination, with nonnegative coefficients, of the point masses at $y, y + \frac{1}{m}, \ldots, y + \frac{m-1}{m}$ for some $m \in \mathbb{N}$ and $y \in \mathbb{T}$. (15p)

Problem 3. [Formulation corrected, Oct. 14.] Prove that for any $k \ge 1$:

$$\int_{-\infty}^{\infty} \frac{dx}{(1+|x-a|)^k (1+|x|)^k} \asymp_k \begin{cases} (1+|a|)^{-k} & \text{if } k > 1\\ (1+|a|)^{-1} \log(2+|a|) & \text{if } k = 1, \end{cases}$$

uniformly over all $a \in \mathbb{R}$.

as

(10p)

Problem 4. Let a_0 be a fixed number with $0 < a_0 < 1$. Prove that

$$\int_{1}^{\infty} e^{-bx} x^{ab} dx \sim \frac{e^{-b}}{(1-a)b}$$

 $b \to \infty$, uniformly over all $a \in [0, a_0].$ (15p)

Problem 5. Prove that for any given A > 0 there exist an interval [a, b] and a real-valued function $f \in C^{\infty}([a, b])$ such that $f'(x) \ge 1$ for all $x \in [a, b]$, and

$$\left| \int_{a}^{b} e(f(x)) \, dx \right| \ge A.$$

[Comment: An outline proof is given in connection with Prop. 2 in Stein's Ch. 8; however please provide more details on (1) exactly how such a function is constructed and (2) how the desired inequality is proved.]

(15p)

Problem 6. Let $n \in \mathbb{Z}^+$. Find (with proof) the largest possible constant $\alpha > 0$ such that

$$\int_{0}^{1} e(x_{1}t + x_{2}t^{2} + \dots + x_{n}t^{n}) dt \ll_{n} (1 + |x|)^{-\alpha}, \qquad \forall x \in \mathbb{R}^{n}.$$
(15p)

Problem 7. Using stationary phase, prove that for any fixed $\alpha > 1$, $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda(\alpha \sin x - x)} dx = \sqrt{\frac{2}{\pi}} \cdot \frac{\cos\left(\lambda\left(\sqrt{\alpha^2 - 1} - \arccos\left(\alpha^{-1}\right)\right) - \frac{\pi}{4}\right)}{\sqrt[4]{\alpha^2 - 1}\sqrt{\lambda}} + O\left(\frac{1}{\lambda}\right)$

as $\lambda \to +\infty$ (through real numbers), where the implied constant may depend on α .

[Comment: Specializing to $\lambda = n \in \mathbb{Z}^+$ this gives an asymptotic formula for $J_n(\alpha n)$, via (8.9) in the lecture notes. It is satisfactory to note that this asymptotic formula is consistent with Prop. 10.1 in the lecture notes.]

(15p)

To be returned: Thursday, November 12, before midnight. Please send your solutions by email, or put them in my mailbox.

Note: Delayed exercises will in general be ignored. Exceptions are possible, but this requires that you have given me an explanation in advance, which I have approved.

 $\mathbf{2}$