Analysis for PhD students (2020); Assignment 3

Problem 1. (a) Compute the distributional derivative of the function $x \mapsto |x|$ on \mathbb{R} , as an explicit element in $L^1_{\text{loc}}(\mathbb{R})$.

(b) Let *B* be the open unit ball in \mathbb{R}^n centered at the origin. Compute the distributional derivatives $f_j = \frac{\partial}{\partial x_j} \chi_B$, $j = 1, \ldots, n$, as explicit signed measures on $M(\mathbb{R}^n)$. Also compute the total variation of these measures.

(c) Explain why the functions $\sin x$ and $\cos x$ (on \mathbb{R}) can be viewed as tempered distributions, and compute their Fourier transforms. (15p)

Problem 2. A distribution F on \mathbb{R}^n is called *homogeneous* of degree λ if $F \circ S_r = r^{\lambda} F$ for all r > 0, where S_r is the linear map $S_r(x) = rx$ on \mathbb{R}^n .

(a). Prove that δ is homogeneous of degree -n.

(b). Prove that if F is homogeneous of degree λ , then for any multiindex α , $\partial^{\alpha} F$ is homogeneous of degree $\lambda - |\alpha|$.

(c). Let L be the distribution corresponding to the function $x \mapsto \chi_{(0,\infty)}(x) \log x$. Prove that its derivative, L' (which is discussed in Folland's book, p. 288), satisfies the relation $L' \circ S_r = r^{-1}(L' + (\log r)\delta)$ for all r > 0. Prove also that this implies that L' is not homogeneous (of any degree). (15p)

Problem 3. Prove that if $\psi \in C^{\infty}(\mathbb{R}^n)$ is a slowly increasing function then $\phi \mapsto \psi \phi$ is a continuous map of \mathcal{S} into \mathcal{S} (15p)

Problem 4. (a). Let $f \in L^2(\mathbb{R})$. Prove that the L^2 derivative f' (in the sense of Folland's Exercise 8 in Ch. 8.2) exists iff $\xi \hat{f} \in L^2$, in which case $\hat{f}'(\xi) = 2\pi i \xi \hat{f}(\xi)$.

(b). Let $k, n \ge 1$. Prove that H_k is equal to the space of all $f \in L^2(\mathbb{R}^n)$ that possess strong L^2 derivatives $\partial^{\alpha} f$ (again in the sense of Folland's Exercise 8 in Ch. 8.2) for $|\alpha| \le k$. Prove also that (for $f \in H_k$) all these derivatives coincide with the distribution derivatives. (15p)

Problem 5. Let α be an irrational number, let $T : \mathbb{T}^2 \to \mathbb{T}^2$ be the translation $T(x, y) = (x + \alpha, y + \alpha)$, and let μ be the Lebesgue measure on \mathbb{T}^2 .

(a). Prove that for any two Borel sets $A, B \subset \mathbb{T}$, if $T^{-1}(A \times B) = A \times B$, then $\mu(A \times B) = 0$ or $\mu(A \times B) = 1$.

(b). Prove that, still, T is *not* an ergodic transformation of (\mathbb{T}^2, μ) . (10p) **Problem 6.** A measure-preserving system (X, \mathcal{M}, μ, T) with $\mu(X) = 1$ is said to be *mixing of order* k if

(*)
$$\begin{cases} \mu (A_0 \cap T^{-n_1} A_1 \cap \dots \cap T^{-n_k} A_k) \to \prod_{j=0}^k \mu(A_j) \\ \text{as } n_1, n_2 - n_1, n_3 - n_2, \dots, n_k - n_{k-1} \to \infty, \end{cases}$$

for any sets $A_0, \ldots, A_k \in \mathcal{M}$.

Now let (X, \mathcal{M}, μ, T) be a Bernoulli shift.

(a). Prove that (*) holds whenever A_0, \ldots, A_k are finite unions of cylinder sets.

(b). Prove that (*) holds for arbitrary $A_0, \ldots, A_k \in \mathcal{M}$. (Thus every Bernoulli shift is mixing of order k for every $k \ge 1$.) (15p)

Problem 7. (a) Define the sequences (u_n) and (v_n) recursively by

$$u_1 = 1, u_2 = 2$$
 and $u_{n+2} = 2u_{n+1} + u_n (n = 1, 2, 3, ...);$
 $v_1 = 1, v_2 = 3$ and $v_{n+2} = 2v_{n+1} + v_n (n = 1, 2, 3, ...).$

Let x be an arbitrary number in $Y = (0, 1) \setminus \mathbb{Q}$ with continued fraction expansion $x = [a_1, a_2, \ldots]$, and let n be a positive integer. Prove that the first n coefficients a_1, \ldots, a_n are all equal to 2 if and only if x lies strictly between $\frac{u_n}{u_{n+1}}$ and $\frac{v_n}{v_{n+1}}$.

(b) Prove that for Lebesgue almost every $x \in Y$, the pattern 2,...,2 (*n* terms 2) appears in the continued fraction expansion $x = [a_1, a_2, ...]$ with frequency $(-1)^n \log(\frac{(v_n+v_{n+1})u_{n+1}}{(u_n+u_{n+1})v_{n+1}}) / \log 2$, that is:

$$\lim_{m \to \infty} \frac{1}{m} \# \{ j \in \{1, \dots, m\} : a_j = a_{j+1} = \dots = a_{j+n-1} = 2 \}$$

$$\begin{cases} 7 \text{ Dec: corrected} \\ \text{this line.} \end{cases} = (-1)^n \frac{\log\left(\frac{(v_n + v_{n+1})u_{n+1}}{(u_n + u_{n+1})v_{n+1}}\right)}{\log 2}. \end{cases}$$
(15p)

[Comments: • To get somewhat cleaner statements, you may also like to verify that $v_n = u_n + u_{n-1}$ for all $n \ge 2$; also $2u_n^2 = v_n^2 + (-1)^{n+1}$ for all $n \ge 1$, and (hence) $\frac{(v_n + v_{n+1})u_{n+1}}{(u_n + u_{n+1})v_{n+1}} = 1 + \frac{(-1)^n}{v_{n+1}^2}$ for all $n \ge 1$. • You may also enjoy proving for yourself the corresponding statements for the sequences $1, \ldots, 1$!]

Submission deadline: Thursday, December 17, before midnight. Please send your solutions by email, or put them in my mailbox.

Note: Delayed exercises will in general be ignored. Exceptions are possible, but this requires that you have given me an explanation in advance, which I have approved.

 $\mathbf{2}$