Analysis for PhD students (2020); Assignment 3

Problem 1. (a) Compute the distributional derivative of the function $x \mapsto|x|$ on \mathbb{R}, as an explicit element in $L_{\mathrm{loc}}^{1}(\mathbb{R})$.
(b) Let B be the open unit ball in \mathbb{R}^{n} centered at the origin. Compute the distributional derivatives $f_{j}=\frac{\partial}{\partial x_{j}} \chi_{B}, j=1, \ldots, n$, as explicit signed measures on $M\left(\mathbb{R}^{n}\right)$. Also compute the total variation of these measures.
(c) Explain why the functions $\sin x$ and $\cos x($ on $\mathbb{R})$ can be viewed as tempered distributions, and compute their Fourier transforms. (15p)

Problem 2. A distribution F on \mathbb{R}^{n} is called homogeneous of degree λ if $F \circ S_{r}=r^{\lambda} F$ for all $r>0$, where S_{r} is the linear map $S_{r}(x)=r x$ on \mathbb{R}^{n}.
(a). Prove that δ is homogeneous of degree $-n$.
(b). Prove that if F is homogeneous of degree λ, then for any multiindex $\alpha, \partial^{\alpha} F$ is homogeneous of degree $\lambda-|\alpha|$.
(c). Let L be the distribution corresponding to the function $x \mapsto$ $\chi_{(0, \infty)}(x) \log x$. Prove that its derivative, L^{\prime} (which is discussed in Folland's book, p. 288), satisfies the relation $L^{\prime} \circ S_{r}=r^{-1}\left(L^{\prime}+(\log r) \delta\right)$ for all $r>0$. Prove also that this implies that L^{\prime} is not homogeneous (of any degree).

Problem 3. Prove that if $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is a slowly increasing function then $\phi \mapsto \psi \phi$ is a continuous map of \mathcal{S} into \mathcal{S}

Problem 4. (a). Let $f \in L^{2}(\mathbb{R})$. Prove that the L^{2} derivative f^{\prime} (in the sense of Folland's Exercise 8 in Ch. 8.2) exists iff $\xi \widehat{f} \in L^{2}$, in which case $\widehat{f}^{\prime}(\xi)=2 \pi i \xi \widehat{f}(\xi)$.
(b). Let $k, n \geq 1$. Prove that H_{k} is equal to the space of all $f \in L^{2}\left(\mathbb{R}^{n}\right)$ that possess strong L^{2} derivatives $\partial^{\alpha} f$ (again in the sense of Folland's Exercise 8 in Ch. 8.2) for $|\alpha| \leq k$. Prove also that (for $f \in H_{k}$) all these derivatives coincide with the distribution derivatives.

Problem 5. Let α be an irrational number, let $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be the translation $T(x, y)=(x+\alpha, y+\alpha)$, and let μ be the Lebesgue measure on \mathbb{T}^{2}.
(a). Prove that for any two Borel sets $A, B \subset \mathbb{T}$, if $T^{-1}(A \times B)=A \times B$, then $\mu(A \times B)=0$ or $\mu(A \times B)=1$.
(b). Prove that, still, T is not an ergodic transformation of $\left(\mathbb{T}^{2}, \mu\right)$.

Problem 6. A measure-preserving system (X, \mathcal{M}, μ, T) with $\mu(X)=1$ is said to be mixing of order k if

$$
\left\{\begin{array}{l}
\mu\left(A_{0} \cap T^{-n_{1}} A_{1} \cap \cdots \cap T^{-n_{k}} A_{k}\right) \rightarrow \prod_{j=0}^{k} \mu\left(A_{j}\right) \tag{*}\\
\quad \text { as } n_{1}, n_{2}-n_{1}, n_{3}-n_{2}, \cdots, n_{k}-n_{k-1} \rightarrow \infty
\end{array}\right.
$$

for any sets $A_{0}, \ldots, A_{k} \in \mathcal{M}$.
Now let (X, \mathcal{M}, μ, T) be a Bernoulli shift.
(a). Prove that $\left(^{*}\right)$ holds whenever A_{0}, \ldots, A_{k} are finite unions of cylinder sets.
(b). Prove that $\left(^{*}\right)$ holds for arbitrary $A_{0}, \ldots, A_{k} \in \mathcal{M}$. (Thus every Bernoulli shift is mixing of order k for every $k \geq 1$.)

Problem 7. (a) Define the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ recursively by

$$
\begin{aligned}
& u_{1}=1, u_{2}=2 \quad \text { and } \quad u_{n+2}=2 u_{n+1}+u_{n} \quad(n=1,2,3, \ldots) ; \\
& v_{1}=1, v_{2}=3 \quad \text { and } \quad v_{n+2}=2 v_{n+1}+v_{n} \quad(n=1,2,3, \ldots) .
\end{aligned}
$$

Let x be an arbitrary number in $Y=(0,1) \backslash \mathbb{Q}$ with continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$, and let n be a positive integer. Prove that the first n coefficients a_{1}, \ldots, a_{n} are all equal to 2 if and only if x lies strictly between $\frac{u_{n}}{u_{n+1}}$ and $\frac{v_{n}}{v_{n+1}}$.
(b) Prove that for Lebesgue almost every $x \in Y$, the pattern $2, \ldots, 2$ (n terms 2) appears in the continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$ with frequency $(-1)^{n} \log \left(\frac{\left(v_{n}+v_{n+1}\right) u_{n+1}}{\left(u_{n}+u_{n+1}\right) v_{n+1}}\right) / \log 2$, that is:

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \frac{1}{m} \#\left\{j \in\{1, \ldots, m\}: a_{j}=a_{j+1}=\cdots=a_{j+n-1}=2\right\} \\
& \left\{\begin{array}{l}
7 \text { Dec: corrected } \\
\text { this line. }
\end{array}\right\} \quad=(-1)^{n} \frac{\log \left(\frac{\left(v_{n}+v_{n+1}\right) u_{n+1}}{\left(u_{n}+u_{n+1}\right) v_{n+1}}\right)}{\log 2} . \tag{15p}
\end{align*}
$$

[Comments: - To get somewhat cleaner statements, you may also like to verify that $v_{n}=u_{n}+u_{n-1}$ for all $n \geq 2$; also $2 u_{n}^{2}=v_{n}^{2}+(-1)^{n+1}$ for all $n \geq 1$, and (hence) $\frac{\left(v_{n}+v_{n+1}\right) u_{n+1}}{\left(u_{n}+u_{n+1}\right) v_{n+1}}=1+\frac{(-1)^{n}}{v_{n+1}^{2}}$ for all $n \geq 1$. - You may also enjoy proving for yourself the corresponding statements for the sequences $1, \ldots, 1$!]

Submission deadline: Thursday, December 17, before midnight. Please send your solutions by email, or put them in my mailbox.

Note: Delayed exercises will in general be ignored. Exceptions are possible, but this requires that you have given me an explanation in advance, which I have approved.

