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Abstract. Let G = SL(2,R) ⋉ R2 be the affine special linear group of the plane, and set
Γ = SL(2,Z) ⋉ Z2. We prove a polynomially effective asymptotic equidistribution result for
the orbits of a 1-dimensional, non-horospherical unipotent flow on Γ\G.

1. Introduction

In the theory of unipotent flows on homogeneous spaces, a fundamental role is played by the
theorems by M. Ratner on measure rigidity, topological rigidity, and orbit equidistribution,
[38], [39]; these results also appear as a crucial ingredient in numerous, and surprisingly diverse,
applications. See [52] and [24] for expositions and references; some more recent works where
important use is made of Ratner’s theorems are [10], [13], [43], [44], [32], [33], to just mention
a few.

In the last decade there has been an increased interest in obtaining effective versions of
Ratner’s results, that is, to provide an explicit rate of density or equidistribution for the
orbits of a unipotent flow. This problem was raised for example in [26, Probl. 7]. There are
two general cases where it has been known for a fairly long time that effective results may be
proved, namely when the group generating the flow is either horospherical or “large” in an
appropriate sense (cf. [5, §1.5.2] for a discussion; compare also p. 3 below). Recently, however,
some new important cases have been established: Green and Tao [15] have proved effective
equidistribution of polynomial orbits on nilmanifolds; this is an important input in their work
on linear equations in primes [14], [16]. Moreover, Einsiedler, Margulis and Venkatesh [5] have
proved effective equidistribution for large closed orbits of semisimple groups on homogeneous
spaces; see also Mohammadi [34] for a more explicit result in the special case of closed SO(2, 1)-
orbits in SL(3,Z)\SL(3,R). Recently also Lindenstrauss and Margulis [25] have obtained an
effective density-type result for arbitrary SO(2, 1)-orbits in SL(3,Z)\SL(3,R), and used this
to give an effective proof of a theorem of Dani and Margulis regarding the values of indefinite
ternary quadratic forms at primitive integer vectors.

Our purpose in the present paper is to establish effective Ratner equidistribution in a
new particular setting: We let G be the semidirect product group G = SL(2,R) ⋉ R2 with
multiplication law

(M,v)(M ′,v′) = (MM ′,vM ′ + v′).

Let Γ = SL(2,Z)⋉Z2 and X = Γ\G, and consider the flow on X which is generated by right
multiplication by the (Ad-)unipotent 1-parameter subgroup UR = {U t : t ∈ R}, where

U t =

((
1 t
0 1

)
, (0, 0)

)
.

The Ratner measure rigidity and equidistribution for this particular flow, and closely related
ones, have found several applications in number theory and in mathematical physics; cf. [48,

The work was conducted while Strömbergsson was a Royal Swedish Academy of Sciences Research Fellow
supported by a grant from the Knut and Alice Wallenberg Foundation.

2010 Mathematics Subject Classification. Primary 37A17, 37A45; Secondary 11K60.

1



2 ANDREAS STRÖMBERGSSON

Remark 4], [30], [29], [8], [31], [32], [28, Thm. 1.10], [6], [7]; we discuss this further in Sec-
tion 1.3. Note that {U t} on X is a 1-dimensional, non-horospherical unipotent flow on a non-
solvable homogeneous space. As far as we are aware, there is only one previous setting of this
kind where effective equidistribution has been established; namely, the results by Venkatesh
[50, §3.1] and Sarnak and Ubis [41, Thm. 4.11] for orbits of the discrete horocycle flow can be
viewed as giving effective equidistribution for the flow generated by U t = (( 1 t

0 1 ) , s
−1t) (any

fixed s > 0) in (Γ′ ×Z)\(SL(2,R)×R), with either Γ′ = SL(2,Z) or Γ′ a cocompact subgroup
of SL(2,R).

The group G = SL(2,R)⋉R2 can be viewed as the group of area and orientation preserving
affine maps of the plane R2, with the action given by

y(M,v) := yM + v, ∀(M,v) ∈ G, y ∈ R2,

and a central property of X = Γ\G is that it can be naturally identified with the space of
translates of unimodular lattices in R2, through Γg 7→ Z2g = {mg : m ∈ Z2}. Then the
subspace of (non-translated) lattices becomes identified withX ′ = Γ′\G′, whereG′ = SL(2,R),
which we always view as a subgroup of G through M 7→ (M,0), and Γ′ = Γ ∩ G′ = SL(2,Z).
Note that X ′ is an embedded submanifold of X. Furthermore, UR is contained in G′, and the
flow UR on X ′ is the standard horocycle flow. There is also a natural projection D : G → G′

sending (M,v) to M , which makes X into a torus fiber bundle over X ′. We write D also for
the projection map X → X ′. Note that the embeddings G′ ⊂ G and X ′ ⊂ X are sections of
D. In the language of lattice translates, the fiber over a lattice L ∈ X ′ equals the torus R2/L
consisting of all translates of L.

Let µ be the (left and right invariant) Haar measure on G, normalized so as to induce a
probability measure on X, which we also denote by µ. Then µ′ := D∗µ is the Haar measure
on G′ which induces a probability measure on X ′.

We will start by discussing the case of UR-orbits in X which project to closed orbits in X ′;
we then turn to the case of general UR-orbits is Section 1.2.

1.1. Lifts of pieces of closed horocycles. Set

Φt =

(
e−t/2 0

0 et/2

)
∈ G′ ⊂ G (t ∈ R).

We also write 12 = ( 1 0
0 1 ). For given ξ ∈ R2 and t ∈ R, we consider pieces of the UR-orbit

through the point Γ (12, ξ)Φ
t ∈ X. These are exactly those UR-orbits in X which project to

closed orbits, i.e. closed horocycles, in X ′. From the relation

UxΦt = ΦtU etx(1)

we see that Γ (12, ξ)Φ
tUR = Γ (12, ξ)U

RΦt, that is, the UR-orbit through Γ (12, ξ)Φ
t is ob-

tained as the Φt-push-forward of the UR-orbit through Γ (12, ξ) . It also follows from (1) that
the projected orbit, x 7→ Γ′ΦtUx ∈ X ′, has period et with respect to x. It is well-known
that these closed horocycles, and more generally the Φt-push-forwards of any fixed segment
{Γ′Ux : x ∈ [α, β]}, become asymptotically equidistributed in (X ′, µ′) as t → ∞. These
facts are also known with precise rates; cf. [40], [18], [46], [11]. As to the orbits in X, it
turns out that the Φt-push-forwards of a fixed segment {Γ(12, ξ)Ux : x ∈ [α, β]} become
asymptotically equidistributed in (X,µ) as t → ∞ if and only if ξ is irrational. We state the
non-trivial direction of this implication as Theorem 1.1 below; it is a special case of a theorem
of Shah, [42, Thm. 1.4] (cf. [32, proof of Thm. 5.2]), and also a special case of Elkies and
McMullen, [8, Thm. 2.2]. Both proofs depend crucially on Ratner’s classification of invariant
measures. (See [9, §3] for a discussion of the proof of Ratner’s theorem in exactly our setting
with G = SL(2,R)⋉R2, Γ = SL(2,Z)⋉ Z2.)

Theorem 1.1. ([42] or [8]) Fix any ξ ∈ R2 with at least one irrational coordinate, i.e. ξ /∈ Q2.
Then the Φt-push-forwards of any fixed portion of the orbit Γ (12, ξ)U

R become asymptotically
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equidistributed in (X,µ) as t → ∞. In other words, for any fixed α < β and any bounded
continuous function f : X → R,

lim
t→∞

1

β − α

∫ β

α
f
(
Γ (12, ξ)U

xΦt
)
dx =

∫

X
f dµ.(2)

To see that the assumption ξ /∈ Q2 in Theorem 1.1 is a necessary condition, set, for any
positive integer q,

Xq :=
{
Γ(12,v)M : M ∈ G′, v ∈ Q2, d(v) = q

}
,

where for any vector v ∈ Q2 we write d(v) for its denominator, i.e. the smallest positive integer
d such that v ∈ d−1Z2. Then Xq is a closed embedded 3-dimensional submanifold of X; this is
an easy consequence of the fact that {v ∈ Q2 : d(v) = q} is an invariant subset for the action
of Γ on R2. Note in particular that X1 = X ′. Now if ξ ∈ Q2 then Γ (12, ξ)U

RΦt ⊂ Xd(ξ)

holds for every t; hence the orbit certainly cannot become equidistributed in (X,µ).
The map G′ ∋ M 7→ Γ

(
12, (0, q

−1)
)
M ∈ Xq gives an identification of Xq with the homoge-

neous space Γ1(q)\G′, where Γ1(q) is the congruence subgroup

Γ1(q) =
{(

a b
c d

)
∈ Γ′ : a ≡ d ≡ 1 (mod q), c ≡ 0 (mod q)

}
.

(To see this, note that Γ acts transitively on {v ∈ Q2 : d(v) = q}.) If ξ ∈ Q2 with d(ξ) = q
then the curves studied in Theorem 1.1 correspond to pieces of closed horocycles in Γ1(q)\G′,
and hence as t → ∞ they go asymptotically equidistributed in Xq, i.e. in place of (2) we have

lim
t→∞

1

β − α

∫ β

α
f
(
Γ (12, ξ)U

xΦt
)
dx =

∫

Xq

f dµq,

where µq is the measure which corresponds to Haar measure on G′, normalized to give a
probability measure on Γ1(q)\G′ (cf., e.g., [11]).

The main result of the present paper is Theorem 1.2 below, which is an effective version of
Theorem 1.1. It is clear from the preceding discussion that the rate of convergence in (2) is
necessarily quite sensitive to the Diophantine properties of the vector ξ.

One should note that the flow {Φt} on X is Anosov, with unstable directions generated
by the flows UR and (12, (0,R)) and stable directions generated by the flows

((
1 0
R 1

)
, (0, 0)

)

and (12, (R, 0)). In fact, for any fixed metric on X coming from a left invariant Riemannian
metric on G, the tangent vectors in the direction of UR are expanded at a rate et by the
flow Φt (cf. (1)), the tangent vectors in the direction of (12, (0,R)) are expanded at a rate

et/2, while vectors in the direction of
((

1 0
R 1

)
, (0, 0)

)
are contracted at a rate e−t and those

in the direction of (12, (R, 0)) are contracted at a rate e−t/2. If, in place of 1-dimensional
averages along UR-orbits, we would instead consider 2-dimensional averages taken over some
bounded open subset of the unstable manifold, then there exists a by now standard approach
to establishing effective results by using mixing properties of the flow ΦR; the origin of this
technique can be traced back to the thesis of Margulis, [27], where it was used in the context
of general Anosov flows. However, it seems that this technique cannot be carried over to the
1-dimensional averages which we consider; instead our proof relies on Fourier analysis and
methods from number theory, in particular Weil’s bound on Kloosterman sums.

We now state Theorem 1.2. Let Ck
b(X) be the space of k times continuously differentiable

functions on X whose all left invariant derivatives up to order k are bounded. Choose, once
and for all, a norm ‖ · ‖Ck

b
on Ck

b(X) involving the supremum norms of all these derivatives.

(For definiteness, we fix a precise choice of ‖ · ‖Ck
b
; cf. (11) below.) Set

a(y) = Φ− log y =

(√
y 0
0 1/

√
y

)
for y > 0.

(As a motivation, note that Uxa(y)(i) = x+ iy, for the standard action of G′ on the Poincaré
upper half plane model of the hyperbolic plane.) For x ∈ R we write 〈x〉 for the distance to
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the nearest integer; 〈x〉 = minn∈Z |x− n|. For any ξ = (ξ1, ξ2) ∈ R2, L > 0 and y > 0 we set

bξ,L(y) := max
q∈Z+

min
( 1

q2
,

√
y

Lq〈qξ1〉
,

√
y

q〈qξ2〉
)
.(3)

(Convention: if 〈qξ1〉 = 0 or 〈qξ2〉 = 0 then the corresponding entry is removed from the
minimum; in particular if both 〈qξ1〉 = 〈qξ2〉 = 0 then the minimum equals 1/q2.) Note that
the entry 1/q2 ensures that the maximum is attained, and 0 < bξ,L(y) ≤ 1 for all y, ξ, L;
furthermore, bξ,L(y) depends continuously on y, ξ, L.

Theorem 1.2. Given any ε > 0, there exists a constant C > 0 such that, for any f ∈ C8
b(X)

and any α < β, ξ ∈ R2 and 0 < y < 1,
∣∣∣∣

1

β − α

∫ β

α
f
(
Γ (12, ξ)U

xa(y)
)
dx−

∫

Γ\G
f dµ

∣∣∣∣ ≤ C‖f‖C8
b

L

β − α

(
bξ,L(y) + y

1
4

)1−ε
,(4)

where L = max(1, |α|, |β|).
Let us make some comments on this result. First of all, note that for any fixed ξ ∈ R2 and

L > 0, we have limy→0 bξ,L(y) = 0 if (and only if) ξ /∈ Q2. Hence Theorem 1.2 is indeed an
effective version of Theorem 1.1.

In order to discuss the rate of decay of our bound as y → 0, we recall the following definition:
We say that a vector ξ ∈ R2 is of (Diophantine) type K if there is some constant c > 0 such
that ‖ξ − q−1m‖ > cq−K for all q ∈ Z+ and m ∈ Z2. The smallest possible value for K is
K = 3

2 , and it is known that Lebesgue-almost all ξ ∈ R2 are of type K = 3
2 + ε for any ε > 0.

In fact, by a result of Jarnik [22], for any K ≥ 3
2 , the set of those ξ ∈ R2 which are not of type

K has Hausdorff dimension 3/K. Now from the definition (3) one easily verifies that, for any
fixed ξ and L and any given δ > 0, we have bξ,L(y) ≪ yδ as y → 0 if and only if δ ≤ 1

2 and ξ

is of type K = δ−1. Hence we get:

Corollary 1.3. For any ε > 0, f ∈ C8
b(X), α < β and any ξ ∈ R2 of Diophantine type

K ≥ 3
2 , there is a constant C = C(ε, f, α, β, ξ) > 0 such that
∣∣∣∣

1

β − α

∫ β

α
f
(
Γ (12, ξ)U

xa(y)
)
dx−

∫

Γ\G
f dµ

∣∣∣∣ < Cymin( 1
4
, 1
K
)−ε, ∀0 < y < 1.(5)

In particular, in view of Jarnik’s result, we obtain the rate y
1
4
−ε for any fixed ξ ∈ R2 away

from a set of Hausdorff dimension 3
4 . It seems that the exponent 1

4 in (5) is not the best
possible, and that optimally one might hope to prove that the left hand side of (4) decays

with a rate y
1
2
−ε as y → 0, for any ξ satisfying an appropriate Diophantine condition; cf.

Remark 8.1 below.
Regarding the dependence of our bound on α, β, we remark that we could have chosen to

state Theorem 1.2 with the extra restriction −1 ≤ α < β ≤ 1 (viz., L = 1); the general case
can be deduced aposteriori from that case by using invariance under Un ∈ Γ, n ∈ Z, and
splitting [α, β] into subintervals of length ≤ 1; this will be seen in Section 10 where we discuss
basic properties of the majorant function bξ,L(y). We have not given any special attention to
the case of β − α becoming small in our proof of Theorem 1.2, and there seems to be room
for improvement in this direction. (Cf. [46], where the case of both β − α and y being small
is considered for the case of pieces of closed horocycles in X ′ and other homogeneous spaces
of SL(2,R).) Also we have made no effort to optimize the dependence on f in Theorem 1.2.

A point to note is that the orbit Γ(12, ξ)U
R is closed in X if and only if ξ1 ∈ Q, and

in this case its period equals the denominator of ξ1; a corresponding fact also holds for any
Φt-push-forward of that orbit. This is to some extent reflected in the bound (4): for fixed y, ξ,
we have limL→∞ bξ,L(y) = 0 if and only if ξ1 /∈ Q.

1.2. General orbits. We now turn to the case of arbitrary UR-orbits. According to Ratner’s
equidistribution theorem [39], every UR-orbit inX has a closure which is homogeneous. Stated
in more detail, for any given x = Γg ∈ X (g ∈ G) there exists a closed connected subgroup



AN EFFECTIVE RATNER EQUIDISTRIBUTION RESULT FOR SL(2,R) ⋉ R2 5

H ⊂ G such that UR ⊂ H, Γ ∩ gHg−1 is a lattice in gHg−1, and the closure of xUR in X
equals xH = Γ\ΓgH. Furthermore the orbit xUR is then asymptotically equidistributed in
xH with respect to νH , the H-invariant Borel probability measure on X supported on xH
[39, Thm. B].

For our specific space X it is fairly easy to list explicitly those subgroups H which can
occur, and in particular to give a precise criterion for when xUR = ΓgUR is asymptotically
equidistributed in (X,µ). Clearly a necessary condition for the latter is that the projected
orbit D(xUR) should be equidistributed in X ′. By a theorem of Dani [3] (a very special case
of Ratner’s [39]), D(xUR) is equidistributed in X ′ unless D(xUR) is a closed horocycle, viz.,
unless the lattice Z2D(g) contains some point along the line (0,R) := {0} ×R other than the
origin. Assuming that D(xUR) is equidistributed in X ′, one finds (cf. the discussion in [8,
§2.6] applied to the measure νH ; see in particular [8, Cor. 2.11 and Cor. 2.12, corrected]) that
either H = G and xH = X, or else there is some β ∈ R such that (0, β)g−1 ∈ Q2, and then
H =

(
12,−(0, β)

)
G′(12, (0, β)

)
and xH = Xq

(
12, (0, β)

)
, where q = d

(
(0, β)g−1

)
. (For clarity,

note that in the second case, β is uniquely determined. Indeed, if the point set Q2g intersects
the line (0,R) in more than one point then by subtraction Q2D(g) contains a non-zero point
on (0,R); hence so does the lattice Z2D(g), contradicting our assumption that D(xUR) is
equidistributed in X ′.)

In particular we have:

Theorem 1.4. (Special case of Ratner, [39].) Fix any g ∈ G satisfying Z2D(g)∩ (0,R) = {0}
and (0, β)g−1 /∈ Q2 for all β ∈ R. Then the orbit ΓgUR is asymptotically equidistributed in

(X,µ). In other words, for any bounded continuous function f on X, 1
T

∫ T
0 f(ΓgU t) dt →∫

X f dµ as T → ∞.

As an application of our main result, Theorem 1.2, and using the technique of approximating
nonclosed horocycles by pieces of closed horocycles (cf. [41]), we will prove an effective version
of Theorem 1.4; see Theorem 1.6 below. Before stating it, it is useful to recall the effective
equidistribution result for horocycles in X ′ proved in [47] (viz., an effective version of Dani’s
theorem [3]); cf. also [2], [11], [41]. For g ∈ G′ we write ℓ(g) > 0 for the Euclidean length of
the shortest non-zero vector in the lattice Z2g. Note that ℓ(γg) = ℓ(g) for all γ ∈ Γ′, i.e. ℓ is
a function on X ′; in fact ℓ(g) equals the inverse square root of the invariant height function
YΓ′(g) used in [47]. More generally for g ∈ G we set ℓ(g) = ℓ(D(g)). Finally for g ∈ G and
T > 0 we set

yg(T ) := T−1ℓ(g a(T ))−2.(6)

Theorem 1.5. ([47, Thm. 1]; cf. also [41]) There exists an absolute constant C > 0 such that,
for any g ∈ G′, T ≥ 1, and any f ∈ C4

b(X
′):

∣∣∣∣
1

T

∫ T

0
f
(
Γ′gU t

)
dt−

∫

X′

f dµ′
∣∣∣∣ ≤ C‖f‖C4

b
yg(T )

1
2 log3(2 + yg(T )

−1).(7)

Note that for given g ∈ G′, limT→∞ yg(T ) = 0 holds if and only if the horocycle Γ′gUR is
not closed; hence Theorem 1.5 is indeed an effective version of Dani’s equidistribution result.
For given g =

(
a b
c d

)
∈ G′, the rate of decay of yg(T ) as T → ∞ is directly related to the

Diophantine properties of the number a
c (assuming c 6= 0): If a

c is of Diophantine type K ≥ 2

(viz., infq∈Z+ qK−1〈q a
c 〉 > 0), then there is C = C(g,K) > 0 such that yg(T ) ≤ CT−2/K for

all T ≥ 1. In particular, for (Haar-)almost all g ∈ G′, the right hand side of (7) decays more

rapidly than T ε− 1
2 as T → ∞ (∀ε > 0). The rate of decay of the right hand side in (7) is in

fact essentially optimal, for any given g ∈ G′; cf. [47, Thm. 2 and §§4-5]. We also remark that
[47, Thm. 1] is more general in that it holds for an arbitrary cofinite subgroup of PSL(2,R) in
place of Γ′ (the bound then depends on the small eigenvalues of the Laplace-Beltrami operator
on the corresponding hyperbolic surface); also the bound holds with a weaker function space
norm than the ‖ · ‖C4

b
used above.
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We are now ready to state our effective version of Theorem 1.4. For T > 0, let RT be
the closed rectangle RT := [−T−1, T−1] × [−1, 1] ⊂ R2. We also use the shorthand notation
Z+
≤a = (0, a] ∩ Z. Set, for g ∈ G and T > 0,

bg(T ) = inf
{
δ > 0 :

[
∀q ∈ Z+

≤δ−1/2 : (q−1Z2)g ∩ 1

δq2
RT = ∅

]}
.(8)

(This can be viewed as a generalization of the notation bξ,L(y) introduced previously; cf.
equation (100) on p. 35.)

Theorem 1.6. Given any ε > 0, there exists a constant C > 0 such that, for any g ∈ G,
T ≥ 2 and f ∈ C8

b(Γ\G), we have
∣∣∣∣
1

T

∫ T

0
f(ΓgU t) dt−

∫

Γ\G
f dµ

∣∣∣∣ ≤ C‖f‖C8
b

(
yg(T )

1
4 + bg(T )

) 1
2
−ε

.(9)

Note that for any given g ∈ G we have limT→∞(yg(T )
1
4 + bg(T )) = 0 if (and only if)

D(ΓgUR) is not a closed horocycle in X ′ and Q2g ∩ (0,R) = ∅, viz. (0, β)g−1 /∈ Q2 for all
β ∈ R. Hence Theorem 1.6 is indeed an effective version of Theorem 1.4. We will also see
that for µ-almost all g ∈ G, we have limT→∞ bg(T )T

δ = 0 for all δ < 1
2 (cf. Proposition 11.4);

hence, recalling the earlier discussion about yg(T ), we see that for µ-almost all g ∈ G, the

right hand side in (9) decays more rapidly than T ε− 1
8 as T → ∞ (∀ε > 0). As we discuss in

Remark 11.1 below, optimally one might hope to improve Theorem 1.6 so as to yield a rate

of decay T ε− 1
2 for any g satisfying appropriate Diophantine conditions.

1.3. Applications and extensions. As we have mentioned, cases of Ratner equidistribution
in settings closely related to that of the present paper have played a crucial role in the solution
of several problems in number theory and in mathematical physics. We discuss some of these
here.

In [30], [29], Marklof proved that the limit local pair correlation density of the sequence
‖m − α‖k, m ∈ Zk (k ≥ 2) is that of a Poisson process, under Diophantine conditions on
the fixed vector α ∈ Rk. In particular for k = 2 this gives a quantitative Oppenheim type
statement for the inhomogeneous quadratic form (x1−α)2+(x2−β)2− (x3−α)2− (x4−β)2.
The proof makes use of an analogue of Theorem 1.1 for G = SL(2,R) ⋉ (R2)⊕k and Γ a
congruence subgroup of SL(2,Z)⋉(Z2)⊕k. In joint work with Pankaj Vishe, [49], we generalize
the methods of the present paper to that case, and apply this to obtain an effective rate of
convergence for the pair correlation density of ‖m−α‖k.

In particular it is noted in [49] that the methods of the present paper can without serious
difficulty be extended to the case of Γ being an arbitrary congruence subgroup of SL(2,Z)⋉Z2.

However, already in a case such as Γ = Γ̃′ ⋉ Z2, with Γ̃′ a noncongruence subgroup of finite
index of SL(2,Z), new ideas would be needed to extend the results of the present paper. (We
remark that every lattice Γ in G = SL(2,R)⋉R2 can be conjugated within GL(2,R)⋉R2 into
a position whereD(Γ) is a finite index subgroup of SL(2,Z) and ({12}⋉R2)∩Γ = {12}⋉Z2; cf.
[36, Cor. 8.28]. However it is not always possible to conjugate into a situation where Γ contains

Γ̃′ ⋉L for some subgroup Γ̃′ of finite index in SL(2,Z) and a lattice L ⊂ Z2. Indeed, consider
for example the lattice Γ generated by (( 1 2

0 1 ) ,v), ((
1 0
2 1 ) ,v

′), (12, (1, 0)), (12, (0, 1)), for some
fixed v,v′ ∈ R2 such that the first coordinate of v is irrational. Recall in this connection that
( 1 2
0 1 ) and ( 1 0

2 1 ) are free generators of the principal congruence subgroup Γ(2) in SL(2,Z).)
Quantitative Oppenheim type results for more general inhomogeneous quadratic forms have

recently been obtained by Margulis and Mohammadi [28], using a method different from
Marklof’s. For the special case of forms of signature (2,1) whose homogeneous part is a split
rational form (see [28, Thm. 1.10]), the proof depends on equidistribution of unipotent orbits
in homogeneous spaces of the group SL(2,R) ⋉ Sym2(R). It seems that it should be possible
to extend the methods of the present paper to these homogeneous spaces, and also to more
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general groups of the form SL(2,R) ⋉ V where V is the vector space of a finite dimensional
linear representation of SL(2,R).

Elkies and McMullen [8] have shown that the gaps between the fractional parts of
√
n for

n = 1, . . . , N , have a limit distribution as N tends to infinity, and they compute this limit
distribution explicitly. In a recent paper, El-Baz, Marklof and Vinogradov [7] also prove
convergence of the local pair-correlation and more general mixed moments. The proofs make
crucial use of an analogue of Theorem 1.1 for the flow UR

1 , with Ux
1 =

(
( 1 x
0 1 ) ,−(x/2, x2/4)

)
.

Since UR
1 is not conjugate to UR, Theorem 1.2 does not apply to this setting. In fact any Ad-

unipotent 1-parameter subgroup in G with nontrivial image in G′ is conjugate to either UR or
UR
1 . Recently, Browning and Vinogradov [1] have extended the methods of the present paper

so as to yield an effective equidistribution result for certain orbits of the flow UR
1 , and applied

this to establish an effective rate for the convergence of the gap distribution of
√
n mod1.

(Note also that Sinai [45] has proposed an alternative approach to the statistics of
√
n mod1.)

Another application concerns the local statistics of directions to lattice points: Consider
a fixed lattice translate L in R2 and record the directions of all lattice vectors of length at
most T . In joint work with Marklof we proved in [32, Thm. 1.3; see also Thm. 2.1] that the
distribution of gaps between the lattice directions has a limit as T tends to infinity; see also El-
Baz, Marklof and Vinogradov [6] regarding convergence of the local pair-correlation and more
general mixed moments. Assuming that L is an ’irrational’ translate, the limit distribution
is universal and in fact coincides with the limiting gap distribution for

√
n mod1 found by

Elkies and McMullen. The proofs of these facts make use of equidistribution of expanding
translates of SO(2)-orbits in the same space X = Γ\G as we consider here. By a standard
approximation argument this is reduced to the equidistribution of pieces of UR-orbits (cf. the
proof of Cor. 5.4 in [32]), and thus using our Theorem 1.6 it should be possible to prove
an effective rate of convergence in [32, Thm. 1.3], for ’irrational’ lattice translates. However
several technicalities remain to be worked out to carry this through.

As a final example, in [48, Remark 4 (n = 2)] it is noted that the number of values modulo
one of a random linear form ωn for n = 1, . . . , N which fall inside a given small interval of
length c/N centered at a fixed irrational point ξ ∈ R/Z, has a limit distribution as N → ∞,
which is independent of ξ. The proof is an application of Theorem 1.1 in the special case
ξ = (0, ξ), and thus using our Theorem 1.2 it would be possible to prove an effective rate for
the convergence to the limit distribution, depending on the Diophantine properties of ξ.

We hope to return to several of the above-mentioned questions in later work.

1.4. Outline of the paper. Sections 2–5 lay down the setup of our approach: In Section 2 we
set some basic notation; in Section 3 we smooth the (α, β)-integral appearing in Theorem 1.2;
in Section 4 we discuss the Fourier decomposition of the given test function on X = Γ\G
with respect to the torus fiber variable; and in Section 5 we handle the contribution from
the zeroth Fourier term; this reduces to a known result on the effective equidistribution of
horocycle orbits in X ′.

The basic idea of our approach appears in Sections 6–7; we first rewrite the remaining terms
of the Fourier decomposition in an appropriate format, and then prove a lemma (Lemma 7.1)
which can be used to establish cancellation in the sum; this lemma is nothing but a standard
application of the classical Weil’s bound on Kloosterman sums.

The proof of Theorem 1.2 is given in Sections 8–9: In Section 8 we carry out those steps
which utilize only the irrationality properties of ξ1 and not those of ξ2; the outcome is a weaker
version of the theorem, Proposition 8.3, which is strong enough to imply the equidistribution in
Theorem 1.1 whenever ξ1 is irrational, with the error bound decaying as a power of y whenever
ξ1 is of Diophantine type; however for ξ1 rational it does not imply any equidistribution
whatsoever. To complete the proof of Theorem 1.2, in Section 9 (the longest section of
the paper), we consider more carefully those terms in the Fourier decomposition which give
the largest contribution in the treatment of Section 8; these correspond to good rational
approximations of ξ1; we collect these terms in a way which allows us to utilize also the
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irrationality properties of ξ2 to establish cancellation. The error bound which we finally arrive
at in Theorem 1.2 incorporates the Diophantine properties of both ξ1 and ξ2, the bound being
far from zero only if ξ1 and ξ2 are well approximable by rational numbers with a common
small denominator q; cf. the definition of the error majorant bξ,L(y) in (3).

The precise format of this bound plays a crucial role when we apply Theorem 1.2 to deduce
the effective equidistribution of general UR-orbits, Theorem 1.6. To illustrate this point, note
that to establish a result which could be called “an effective version of Theorem 1.1”, it would
suffice to complement Proposition 8.3 with an effective equidistribution result for ξ1 rational
and ξ2 irrational. This would be quite a bit easier than what we do in Section 9; however
it would not be sufficient for our goal of deriving a satisfactory effective equidistribution for
general UR-orbits, basically since our proof of Theorem 1.6 for a given g = (12, ξ)M generally
involves applying Theorem 1.2 with ξγ in place of ξ, where γ varies through more and more
elements of Γ′ as T → ∞.

In Section 10 we establish some important basic properties of the error majorant bξ,L(y).

Finally in Section 11 we prove Theorem 1.6, by approximating the given UR-orbit by one or
several lifts of pieces of closed horocycles in X ′ and applying Theorem 1.2 to each of these.

1.5. Acknowledgments. I am grateful to Livio Flaminio, Giovanni Forni, Han Li, Jens
Marklof, Amir Mohammadi, Hee Oh, Wolfgang Staubach, Akshay Venkatesh and Pankaj
Vishe for helpful and inspiring discussions. I would also like to thank the referees for their
valuable comments; in particular Remark 6.2 below is based on a suggestion by one of the
referees.

2. Some notation

We shall use the standard notation A = O(B) or A ≪ B meaning |A| ≤ CB for some
constant C > 0. We shall also write A ≍ B as a substitute for A ≪ B ≪ A. To indicate
that the implicit constant C may depend on some quantities or functions f, g, h we will use
the notation A ≪f,g,h B or A = Of,g,h(B). The constant C will not depend on any other
variable, except in a statement that contains an implication of the kind “if A1 = O(B1) then
A2 = O(B2)”; in that case the constant implicit in O(B2) may also depend on the one in
O(B1). (We will use the last convention only in Remarks 10.1 and 10.2.)

Recall from Section 1 that G = SL(2,R) ⋉ R2, Γ = SL(2,Z) ⋉ Z2, G′ = SL(2,R) and
Γ′ = SL(2,Z). We will also write Γ′

∞ := {( 1 x
0 1 ) : x ∈ Z}.

Let g be the Lie algebra ofG. We may identify g in a natural way with the space sl(2,R)⊕R2,
with Lie bracket [(X,v), (Y,w)] = (XY − Y X,vY −wX) (cf., e.g., [23, Prop. 1.124]). Using
this notation, we fix the following basis of g:

X1 =
(
( 0 1
0 0 ) ,0

)
; X2 =

(
( 0 0
1 0 ) ,0

)
; X3 =

((
1 0
0 −1

)
,0

)
; X4 =

(
02, (1, 0)

)
; X5 =

(
02, (0, 1)

)
.

(10)

To each Y ∈ g corresponds a left invariant differential operator on functions on G, and thus
also a differential operator on Γ\G, which we will also denote by Y . We let Ck

b(Γ\G) be the
space of k times continuously differentiable functions on Γ\G such that ‖Df‖L∞ < ∞ for
every left invariant differential operator D on G of order ≤ k. For f ∈ Ck

b(Γ\G) we set

‖f‖Ck
b
:=

∑

ord(D)≤k

‖Df‖L∞ ,(11)

the sum being over all monomials inX1, . . . ,X5 of degree ≤ k. Note in particular that C0
b(Γ\G)

is the space of bounded continuous functions on Γ\G, and ‖ · ‖C0
b
is the supremum norm.

We will also have occasion to use Sobolev L1-norms on functions on R: For 1 ≤ p < ∞, k
a positive integer and ν ∈ Ck(R) we set

‖ν‖Wk,p =

k∑

j=0

‖ν‖Lp =

k∑

j=0

(∫

R

|ν(j)(x)|p dx
)1/p

.
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We will only use these for p = 1.
We will use the standard notation e(x) = e2πix. We write gcd(c, d), or just (c, d), for the

greatest common divisor of two integers c, d. For n a positive integer, we write σ(n) for the
number of (positive) divisors of n, and σ1(n) for their sum: σ(n) =

∑
d|n 1 and σ1(n) =

∑
d|n d.

3. Smoothed ergodic averages

As a first step in our proof of Theorem 1.2 we replace the sharp cutoff “
∫ β
α ” by a compactly

supported cutoff function ν(x) satisfying a mild regularity assumption. Basically we need
control on the L1-norm of “1 + ε” derivatives of ν; in order to avoid a technical overhead
we formulate the bound using a crude interpolation between the Sobolev norms ‖ν‖W1,1 and
‖ν‖W2,1 (cf., e.g., [48, Sec. 2]). We will prove the following theorem.

Theorem 3.1. Let 0 < η < 1 and ε > 0 be fixed. Then for any f ∈ C8
b(Γ\G), any ν ∈ C2(R)

with compact support, and any ξ ∈ R2, 0 < y < 1,
∫

R

f
(
Γ (12, ξ)U

xa(y)
)
ν(x) dx =

∫

Γ\G
f dµ

∫

R

ν dx

+Oη,ε

{
‖f‖C8

b
‖ν‖1−η

W1,1‖ν‖ηW2,1 y
1
4 log(1 + y−1) + ‖f‖C4

b
L‖ν‖L∞

(
bξ,L(y) + y

1
4
)1−ε

}
,(12)

where L is the smallest real number ≥ 1 such that supp(ν) ⊂ [−L,L].

Proof that Theorem 3.1 implies Theorem 1.2. This is a standard approximation argument.
Fix g ∈ C∞

c (R) satisfying g ≥ 0,
∫
R
g = 1 and supp(g) ⊂ [−1, 1]. Set gδ(x) = δ−1g(δ−1x) for

0 < δ ≤ 1; then supp(gδ) ⊂ [−δ, δ] and
∫
R
gδ = 1. Let α < β be given, and set L′ = β − α.

We apply Theorem 3.1 with ν = χ[α,β] ∗ gδ. Then ‖ν‖W1,1 ≪ L′ + 1 and ‖ν‖W2,1 ≪ L′ + δ−1;

thus ‖ν‖1−η

W1,1‖ν‖ηW2,1 ≪ (L′ + 1)δ−η , and so the error term in Theorem 3.1 is

Oη,ε

{
‖f‖C8

b
(L′ + 1)δ−η y

1
4
(1−ε) + ‖f‖C4

b
L
(
bξ,L(y) + y

1
4
)1−ε

}
,

with L = max(1, |α|+ δ, |β|+ δ). Furthermore, using 0 ≤ ν ≤ 1 and ν(x) = χ[α,β](x) whenever
|x− α| ≥ δ and |x− β| ≥ δ, we see that the difference between the left hand side of (12) and∫ β
α f(Γ (12, ξ)U

xa(y)) dx is ≪ ‖f‖C0
b
δ. Hence, choosing δ = y

1
4 , we obtain

∫ β

α
f
(
Γ (12, ξ)U

xa(y)
)
dx = (β − α)

∫

Γ\G
f dµ

+Oη,ε

{
‖f‖C8

b
(L′ + 1)y

1
4
(1−ε−η) + ‖f‖C4

b
L
(
bξ,L(y) + y

1
4
)1−ε

}
.

This implies Theorem 1.2 with ε+ η in place of ε (cf. also Lemma 10.1 below). �

Remark 3.1. The proof shows that the bound in Theorem 1.2 may be improved to

C

(
‖f‖C8

b

(
1 +

1

β − α

)
y

1
4
(1−ε) + ‖f‖C4

b

L

β − α

(
bξ,L(y) + y

1
4
)1−ε

)
.

4. Fourier decomposition in the torus variable

We now start with the proof of Theorem 3.1. In this section we consider the Fourier
decomposition of the given test function with respect to the torus variable, and prove bounds
on the Fourier coefficients appearing in this decomposition.

Assume that f ∈ C2
b(Γ\G). We view f as a function on G which is Γ-left invariant.

In particular we have f((12, ξ)M) = f((12, ξ + n)M) for all n ∈ Z2, and hence for any
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fixed M ∈ G′, the function ξ 7→ f((12, ξ)M) is a C2-function on the torus T2 = R2/Z2.
Decomposing this function as a Fourier series we have

f((12, ξ)M) =
∑

m∈Z2

f̂(M,m)e(m · ξ),(13)

where the Fourier coefficients f̂(M,m) are given by

f̂(M,m) =

∫

T2

f((12, ξ)M)e(−m · ξ) dξ.(14)

Here dξ denotes Lebesgue measure on R2. Note that the sum in (13) is absolutely convergent,
uniformly1 over (M, ξ) in any compact subset of G, since f ∈ C2

b(Γ\G) implies that the
function ξ 7→ f(M, ξ) is in C2

b(T
2), with ‖f(M, ·)‖C2

b(T
2) depending continuously on M ∈ G′.

Now the fact that f is also Γ′-left invariant leads to an invariance relation for f̂(M,m),

which allows us to group together terms in (13) in a convenient way. Let us write Ẑ2 for the
set of primitive lattice points in Z2, i.e. the set of integer vectors (c, d) with gcd(c, d) = 1.
Recall that Γ′

∞ := {( 1 x
0 1 ) : x ∈ Z}.

Lemma 4.1. In the above situation we have

f̂(TM,m) = f̂(M,m tT−1), ∀T ∈ Γ′, M ∈ G′, m ∈ Z2.(15)

In particular, for each n ∈ Z≥0, the function

f̃n(M) := f̂(M, (n, 0)) (M ∈ G′)(16)

is left Γ′
∞-invariant, and f̃0(M) is even left Γ′-invariant. We have

f((12, ξ)M) = f̃0(M) +

∞∑

n=1

∑

(c,d)∈Ẑ2

f̃n

((
∗ ∗
c d

)
M

)
· e(n(dξ1 − cξ2)), ∀(M, ξ) ∈ G,

(17)

where ( ∗ ∗
c d ) denotes any matrix in Γ′ having lower entries c and d. The sum in (17) is

absolutely convergent, uniformly over (M, ξ) in any compact subset of G.

(To see that the sum in (17) is well-defined, note that for any (c, d) ∈ Ẑ2, the set of matrices

( ∗ ∗
c d ) ∈ Γ′ = SL(2,Z) is a coset of the form Γ′

∞
(
a b
c d

)
, and since f̃n is left Γ′

∞-invariant, f̃n(TM)
takes the same value for every matrix T in this coset.)

Proof. For any T ∈ Γ′ we have,

f̂(TM,m) =

∫

Z2\R2

f((12, ξ)TM)e(−m · ξ) dξ =

∫

Z2\R2

f(T (12, ξT )M)e(−m · ξ) dξ

=

∫

Z2\R2

f(T (12, ξ)M)e(−m · ξT−1) dξ =

∫

Z2\R2

f((12, ξ)M)e(−m · ξT−1) dξ,

where in the third identity we used the fact that ξ 7→ ξT is a diffeomorphism of Z2\R2

preserving the area measure dξ, and in the last identity we used the fact that f is left Γ-
invariant. Using now m · ξT−1 = m tT−1 · ξ we obtain (15).

Next, note that every non-zero vector m ∈ Z2 can be uniquely expressed as n(d,−c) with

n ∈ Z+ and (c, d) ∈ Ẑ2. Hence the Fourier series (13) can be expressed as

f((12, ξ)M) = f̂(M,0) +

∞∑

n=1

∑

(c,d)∈Ẑ2

f̂
(
M,n(d,−c)

)
e(n(d,−c) · ξ).

1This is for any fixed exhaustion of Z2 by an increasing sequence of finite subsets.
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However if T is any matrix of the form ( ∗ ∗
c d ) ∈ Γ′ then n(d,−c) = (n, 0) tT−1, and now by

using (15) we obtain (17). The uniform absolute convergence on compacta holds since it holds
in (13). �

Note that the functions f̃n are well-defined for any f ∈ C(Γ\G), through (16), (14).

Lemma 4.2. For any m ∈ Z≥0, n ∈ Z+ and f ∈ Cm
b (Γ\G), we have

∣∣∣f̃n
((

a b
c d

))∣∣∣ ≪m

‖f‖Cm
b

nm(c2 + d2)
m
2

, ∀
(
a b
c d

)
∈ G′.(18)

Proof. The left invariant differential operator corresponding to X ∈ g is given by Xf(g) =
limt→0(f(g exp(tX)) − f(g))/t. In particular, since exp(tX4) = (12, (t, 0)) and exp(tX5) =
(12, (0, t)) (cf. (10)), we find that if we parametrize G by (12, (x1, x2))

(
a b
c d

)
then

X4 = d
∂

∂x1
− b

∂

∂x2
and X5 = −c

∂

∂x1
+ a

∂

∂x2
.

Now

f̃n
((

a b
c d

))
=

∫

T2

f
(
(12, (x1, x2))

(
a b
c d

))
e(−nx1) dx2 dx1,

and hence by repeated integration by parts we have

(2πind)m · f̃n
((

a b
c d

))
=

∫

T2

[Xm
4 f ]

(
(12, (x1, x2))

(
a b
c d

))
e(−nx1) dx2 dx1,

and

(−2πinc)m · f̃n
((

a b
c d

))
=

∫

T2

[Xm
5 f ]

(
(12, (x1, x2))

(
a b
c d

))
e(−nx1) dx2 dx1.

Hence

max(|c|m, |d|m) ·
∣∣f̃n

((
a b
c d

))∣∣ ≤ (2πn)−m‖f‖Cm
b
,

and this implies that (18) holds. �

Using Lemma 4.2 we immediately also obtain bounds on derivatives of f̃n. To make this
explicit, let us embed sl(2,R) as a subalgebra of g through X 7→ (X,0) (using our notation
g ∼= sl(2,R)⊕R2). Then each X ∈ sl(2,R), and more generally any element D in the universal
enveloping algebra U(sl(2,R)), gives rise to a left invariant differential operator both on G′

and on G.

Lemma 4.3. For any m ∈ Z≥0, n ∈ Z+, any D ∈ U(sl(2,R)) of order ≤ k, and any

f ∈ Cm+k
b (Γ\G), we have

∣∣∣Df̃n
((

a b
c d

))∣∣∣ ≪m

‖Df‖Cm
b

nm(c2 + d2)
m
2

, ∀
(
a b
c d

)
∈ G′.(19)

Proof. Set g := Df ∈ Cm
b (Γ\G); then by differentiation under the integration sign in (14) we

have Df̃n = g̃n. Hence the lemma follows from Lemma 4.2 applied to g. �

We will often consider the function f̃n in Iwasawa coordinates, that is we write (by a slight
abuse of notation)

f̃n(u, v, θ) := f̃n

((
1 u
0 1

)(√
v 0
0 1/

√
v

)(
cos θ − sin θ
sin θ cos θ

))
,(20)

for u ∈ R, v > 0, θ ∈ R/2πZ.

Lemma 4.4. For any m ∈ Z≥0, n ∈ Z+, k1, k2, k3 ∈ Z≥0 and f ∈ Cm+k
b (Γ\G), where

k = k1 + k2 + k3, we have∣∣∣∣
( ∂

∂u

)k1( ∂

∂v

)k2( ∂

∂θ

)k3
f̃n(u, v, θ)

∣∣∣∣ ≪m,k ‖f‖Cm+k
b

n−mv
m
2
−k1−k2 .(21)
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Proof. Let kθ :=
(
cos θ − sin θ
sin θ cos θ

)
∈ SL(2,R), and write X1,X2,X3 for the sl(2,R)-elements ( 0 1

0 0 ),

( 0 0
1 0 ),

(
1 0
0 −1

)
, respectively. This is consistent with (10) and our fixed embedding of sl(2,R) in

g. Also let Ad : SL(2,R) → Aut(sl(2,R)) be the adjoint representation. Then we compute, in
the parametrization (20),

Ad(k−θ)X1 = v
∂

∂u
; Ad(k−θ)X3 = 2v

∂

∂v
; X2 −X1 =

∂

∂θ
.

But Ad(k−θ)X1 and Ad(k−θ)X3 belong to a fixed compact subset of sl(2,R); in fact one checks
by a quick computation that these elements always lie in {c1X1 + c2X2 + c3X3 : c1, c2, c3 ∈
[−1, 1]}. Hence we have, at every point (u, v, θ) ∈ R× R>0 × (R/2πZ),

∣∣∣∣
(
v
∂

∂u

)k1(
2v

∂

∂v

)k2( ∂

∂θ

)k3
f̃n(u, v, θ)

∣∣∣∣ ≤
∑

ord(D)=k

∣∣Df̃n(u, v, θ)
∣∣,

where the sum is taken over all the 3k monomials in X1,X2,X3 of degree k. Now the desired
bound follows immediately from Lemma 4.3 and the preceding discussion, if we also note that
c2 + d2 = v−1 holds whenever

(
a b
c d

)
= ( 1 u

0 1 ) a(v)kθ (the matrix in (20)), and that vk2∂k2
v can

be expressed as a linear combination of (v∂v)
j for j = 1, . . . , k2. �

5. The leading term; horocycle equidistribution in X ′ = SL(2,Z)\SL(2,R)
Our task is to study the integral

∫

R

f
(
Γ (12, ξ)U

xa(y)
)
ν(x) dx =

∫

R

f

(
Γ (12, ξ)

(√
y x/

√
y

0 1/
√
y

))
ν(x) dx.

Decomposing f as in Lemma 4.1 we get

=

∫

R

f̃0

((√
y x/

√
y

0 1/
√
y

))
ν(x) dx(22)

+
∞∑

n=1

∑

(c,d)∈Ẑ2

e(n(dξ1 − cξ2))

∫

R

f̃n

((
∗ ∗
c d

)(√
y x/

√
y

0 1/
√
y

))
ν(x) dx.

Recall that f̃0 is invariant under Γ′; hence the first integral in (22) is simply a weighted
average along a closed horocycle in X ′ = Γ′\G′ = SL(2,Z)\SL(2,R), a case which has been
thoroughly studied in the literature. One can prove, either through a careful study of the
cohomological equation and invariant distributions for the horocycle flow, as in Flaminio and
Forni, [11], or more directly from the representation theory of SL(2,R) as in Burger [2], that

∫

R

f̃0

((√
y x/

√
y

0 1/
√
y

))
ν(x) dx =

∫

X′

f̃0 dµ
′
∫

R

ν dx+O
(
‖f̃0‖C4

b
‖ν‖W1,1 y

1
2 log3(2 + 1/y)

)
.

(23)

(See [47] for how to extend [2] to the case of a non-cocompact but cofinite group such as
SL(2,Z). In particular (23) follows easily from [47, Thm. 1, Rem. 3.4].) In (23), note that

∫

X′

f̃0 dµ
′ =

∫

Γ′\G′

∫

T2

f((12, ξ)M) dξ dµ′(M) =

∫

Γ\G
f dµ.(24)

Hence (23) accounts for the leading term in (12) in Theorem 3.1. We also note that the error

term in (23) is subsumed by the error term in (12), since ‖f̃0‖C4
b
≤ ‖f‖C4

b
≤ ‖f‖C8

b
.
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6. Initial discussion of the main error contribution

It now remains to treat the sum over n ∈ Z+ in (22).
The contribution from the terms with c = 0 can be bounded easily. Indeed, for each n

there are two such terms, for which we can take ( ∗ ∗
c d ) to be 12 and −12, respectively, and by

Lemma 4.2 we have ∫

R

f̃n

(
±
(√

y x/
√
y

0 1/
√
y

))
ν(x) dx ≪ ‖ν‖L1‖f‖C2

b

y

n2
.(25)

Adding this over all n ∈ Z+ we conclude that the contribution from all terms with c = 0 in
(22) is O(‖ν‖L1‖f‖C2

b
y), which is clearly subsumed by the error term in (12).

Hence from now on we focus on the terms with c 6= 0. The following lemma expresses
the integral appearing in the second line of (22) in the Iwasawa parametrization (cf. (20)).

Note that in this notation, the fact that f̃n is left Γ′
∞-invariant (cf. Lemma 4.1) means that

f̃n(u+ 1, v, θ) ≡ f̃n(u, v, θ).

Lemma 6.1. For any
(
a b
c d

)
∈ Γ′ with c > 0, and any n ∈ Z+, y > 0, we have

∫

R

f̃n

((
a b
c d

)(√
y x/

√
y

0 1/
√
y

))
ν(x) dx

=

∫ π

0
f̃n

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ

)
ν

(
−d

c
+ y cot θ

)
y dθ

sin2 θ
.(26)

Remark 6.1. In the case c < 0 one obtains exactly the same formula, except that
∫ π
0 is replaced

by
∫ 0
−π in the right hand side of (26).

Proof. By a quick computation identifying matrix entries, we find that for any x ∈ R, the
unique u ∈ R, v > 0, θ ∈ R/2πZ satisfying

(
a b
c d

)(√
y x/

√
y

0 1/
√
y

)
=

(
1 u
0 1

)(√
v 0
0 1/

√
v

)(
cos θ − sin θ
sin θ cos θ

)
,

are given by

u =
a

c
− cx+ d

c((cx+ d)2 + (cy)2)
; v =

y

(cx+ d)2 + (cy)2
; θ = arg(cx+ d+ i(cy)).

(Thus cos θ = cx+d√
(cx+d)2+(cy)2

and sin θ = cy√
(cx+d)2+(cy)2

.) In particular θ is a smooth and

strictly decreasing function of x ∈ R, with θ → π as x → −∞ and θ → 0 as x → ∞. We may
thus take θ as a new variable of integration. Then

cot θ =
cx+ d

cy
, so that x = −d

c
+ y cot θ,

and furthermore

u =
a

c
− (sin θ)(cos θ)

c2y
=

a

c
− sin 2θ

2c2y
, v =

sin2 θ

c2y
.

Hence we obtain the stated identity. �

Note that the map T 7→ −T gives a bijection from {
(
a b
c d

)
∈ Γ′ : c > 0} onto {

(
a b
c d

)
∈ Γ′ :

c < 0}. Also note that for any matrix
(
a b
c d

)
∈ Γ′ with c 6= 0 we have a ≡ d∗ mod c, where

d∗ ∈ Z denotes a multiplicative inverse of d modulo c. Hence, by Lemma 6.1 and Remark 6.1,
the sum in the second line of (22), excluding all terms with c = 0, can be expressed as

∞∑

n=1

∞∑

c=1

∫ π

−π

∑

d∈Z
(c,d)=1

ν

(
−d

c
+ y cot θ

)
f̃n

(
d∗

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ

)
e
(
n(sgn θ)(dξ1 − cξ2)

) y dθ

sin2 θ
.

(27)
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Of course, f̃n(
d∗

c − sin 2θ
2c2y

, sin
2 θ

c2y
, θ) is independent of the choice of d∗ since f̃n is periodic with

period 1 in its first variable.
It is clear from the way in which we have obtained (27), and also easy to check directly, that

if we try to bound (27) by simply inserting absolute values and using our bounds on f̃n proved
in Section 4 together with the fact that ν has compact support and bounded L∞-norm, we
obtain that (27) stays bounded as y → 0 (for fixed f, ν, ξ). Hence to reach our goal of proving
that (27) tends to zero as y → 0, it suffices to establish any systematic cancellation in this
expression.

Remark 6.2. Our approach, working with the sum in (27), has close similarities to the following
method of proving equidistribution of pieces of closed horocycles in X ′.

Let f be a function on X ′, which for simplicity we assume to be smooth and compactly
supported, i.e. f ∈ C∞

c (X ′). Any such f can be expressed as

f(Γ′g) =
∑

γ∈Γ′

η(γg) (∀g ∈ G′),(28)

for some η ∈ C∞
c (G′). We wish to study the weighted average of f along a closed horocycle

in X ′,
∫
R
f(Γ′Uxa(y))ν(x) dx, in the limit y → 0. To do so we use (28), and change order of

summation and integration. The contribution from all γ =
(
a b
c d

)
with c = 0 is seen to vanish

for y small, since η has compact support. The remaining terms are handled by expressing η
in Iwasawa coordinates (cf. (20)), applying an analogue of Lemma 6.1, and then introducing
η̃(u, v, θ) :=

∑
n∈Z η(u+ n, v, θ), a function on (R/Z)× R>0 × (R/2πZ):

∫

R

f(Γ′Uxa(y))ν(x) dx =

∞∑

c=1

∑

a,d∈Z
ad≡1mod c

∫ π

−π
ν
(
−d

c
+ y cot θ

)
η

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ

)
y dθ

sin2 θ

=

∫ π

−π

∞∑

c=1

∑

d∈Z
(d,c)=1

ν
(
−d

c
+ y cot θ

)
η̃

(
d∗

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ

)
y dθ

sin2 θ

≈
∫ π

−π

∞∑

c=1

ϕ(c)

∫

R

ν(x) dx

∫

R/Z
η̃
(
u,

sin2 θ

c2y
, θ
)
du

y dθ

sin2 θ

≈
∫ π

−π

∫ ∞

0

6

π2
r

∫

R/Z
η̃
(
u,

sin2 θ

r2y
, θ
)
du dr

y dθ

sin2 θ

∫

R

ν dx

=
3

π2

∫ π

−π

∫

R

∫ ∞

0
η(u, v, θ)

dv du dθ

v2

∫

R

ν dx =

∫

G′

η dµ′
∫

R

ν dx =

∫

X′

f dµ′
∫

R

ν dx.

Here the approximate equality between the second and third lines holds since, for any large c,
as d varies through a not too small interval of integers, the multiplicative inverse d∗ becomes
approximately equidistributed Z/cZ. The next approximate equality holds since ϕ(c) for large
c behaves like 6

π2 c on average. The last equality in the above computation follows using (28)
and standard unfolding. The errors in the approximations can be bounded using Lemma 7.1
below and [17, Thm. 330] (together with summation by parts); in this way one obtains, with
some work, that the total difference between the horocycle average

∫
R
f(Γ′Uxa(y))ν(x) dx and

the volume average
∫
X′ f dµ′ ∫

R
ν dx is bounded by Of,ν,ε(y

1
4
−ε) as y → 0. This falls short of

the optimal error bound y
1
2
−ε which we pointed out in Section 5; but it is comparable with

the “non-Diophantine” part of the error bound in Theorem 3.1.
The main difference between the above computation and our proof of Theorem 3.1 is that

we will establish cancellation in (27), caused by the oscillating factor e(n(sgn θ)(dξ1 − cξ2)).
For ξ1 nicely Diophantine, cancellation can be established already in the inner sum over d (cf.
Section 8); however when ξ1 is well-approximable by rational numbers we will collect certain
main contributions from the inner sum and establish cancellation when these are added over
c (cf. Section 9).



AN EFFECTIVE RATNER EQUIDISTRIBUTION RESULT FOR SL(2,R) ⋉ R2 15

7. Cancellation in an exponential sum

The following lemma is a standard application of Weil’s bound on Kloosterman sums.

Lemma 7.1. Let 0 < η < 1, α ∈ R, c ∈ Z+, let g1 ∈ C2(R) with compact support and
g2 ∈ C2(R/Z), and let N be an arbitrary subset of Z. Then

∑

d∈Z
(c,d)=1

g1

(d
c

)
e(dα)g2

(d∗
c

)

=
∑

k∈N

(∫

R

g1(x)e
(
(cα− k)x

)
dx

)(∫

R/Z
g2

)
µ
( c

(c, k)

) ϕ(c)

ϕ(c/(c, k))
(29)

+Oη

(
‖g1‖1−η

W1,1‖g1‖ηW2,1

){
‖g2‖L1(R/Z)

∑

k∈Z\N

(c, k)

1 + |k − cα|1+η
+ ‖g′′2‖L1(R/Z) σ(c)

√
c

}
.

Proof. Set

h(x) =
∑

m∈Z
g1(x+m)e(cα(x +m)).

Then h ∈ C2(R) and h(x + n) = h(x) for all n ∈ Z; hence we may view h as a function in
C2(R/Z). Let the Fourier expansions of h(x) and g2(x) be

h(x) =
∑

n∈Z
ane(nx) and g2(x) =

∑

m∈Z
bme(mx).

Here

an =

∫

R/Z
h(x)e(−nx) dx =

∫

R

g1(x)e((cα − n)x) dx,(30)

and thus, by integration by parts, |an| ≤ ‖g(j)1 ‖L1(2π|cα − n|)−j for j = 0, 1, 2. Hence,
making use of the general inequality min(A,By) ≤ A1−ηBηyη (true for all A,B, y ≥ 0) with
A = ‖g′1‖L1 , B = ‖g′′1‖L1 and y = (2π|cα − n|)−1, we conclude:

|an| ≪
‖g1‖1−η

W1,1‖g1‖ηW2,1

1 + |cα− n|1+η
, ∀n ∈ Z.

Similarly, using bm =
∫
R/Z g2(x)e(−mx) dx, we have |b0| ≤ ‖g2‖L1(R/Z) and |bm| ≤ ‖g′′2‖L1(R/Z) |m|−2

for m 6= 0. Now the sum in the left hand side of (29) can be expressed as

∑

d∈(Z/cZ)×
h
(d
c

)
g2

(d∗
c

)
=

∑

n∈Z

∑

m∈Z
anbmS(n,m; c),(31)

where we use standard notation for Kloosterman sums; S(n,m; c) :=
∑

d∈(Z/cZ)× e(nd
c +md∗

c ).

For m = 0, S(n,m; c) is a Ramanujan sum;

S(n, 0; c) =
∑

d∈(Z/cZ)×
e
(
n
d

c

)
= µ

( c

(c, n)

) ϕ(c)

ϕ(c/(c, n))
,

and in particular |S(n, 0; c)| ≤ (c, n) (cf., e.g., [21, Sec. 3.2]). Hence the contribution from all
terms with m = 0 in (31) is

=
∑

n∈N
anb0S(n, 0; c) +O

(
‖g1‖1−η

W1,1‖g1‖ηW2,1‖g2‖L1

∑

n∈Z\N

(c, n)

1 + |cα− n|1+η

)
,

and the sum over n ∈ N expands to give the first line in the right hand side of (29).
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Next for m 6= 0 we use Weil’s bound, |S(n,m; c)| ≤ σ(c) gcd(n,m, c)1/2
√
c (cf. [51], and

[21, Ch. 11.7]), and gcd(n,m, c)1/2 ≤ |m|1/2, to see that the contribution from all terms with
m 6= 0 in (31) is

≪ ‖g1‖1−η

W1,1‖g1‖ηW2,1‖g′′2‖L1σ(c)
√
c
∑

n∈Z

1

1 + |cα − n|1+η

∑

m∈Z\{0}
|m|−3/2

≪η ‖g1‖1−η

W1,1‖g1‖ηW2,1‖g′′2‖L1σ(c)
√
c.

This completes the proof of the lemma. �

8. Proof of a weaker version of Theorem 3.1

In this section we go through the first steps of the proof of Theorem 3.1; the outcome of
this is a version of Theorem 3.1 which only involves the Diophantine properties of ξ1 and not
those of ξ2; see Proposition 8.3 below. This result is strong enough to imply that the error

term in Theorem 3.1 (as well as the left hand side in Theorem 1.2) decays like ymin( 1
4
, 1
K
)−ε in

the case of ξ1 irrational of Diophantine type K (see Remark 8.1); however for ξ with ξ1 ∈ Q

but ξ2 /∈ Q, Proposition 8.3 does not imply any equidistribution whatsoever.
Recall that our task is to bound the sum in (27). We write ω = sgn(θ), where we always

assume θ 6= 0 so that ω ∈ {−1, 1}. Applying Lemma 7.1 and replacing k by ωk we get the
following estimate valid for any θ ∈ (−π, π) \ {0} and n, c ∈ Z+:

∑

d∈Z
(c,d)=1

ν

(
−d

c
+ y cot θ

)
f̃n

(
d∗

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ

)
e
(
nω(dξ1 − cξ2)

)

=
∑

k∈N

µ( c
(c,k))ϕ(c)

ϕ( c
(c,k))

e
(
−nωcξ2

) ∫

R

ν
(
−x+ y cot θ

)
e
(
(cnξ1 − k)ωx

)
dx

∫

R/Z
f̃n

(
u,

sin2 θ

c2y
, θ
)
du

+Oη

(
‖ν‖1−η

W1,1‖ν‖ηW2,1

){(∫

R/Z

∣∣∣∣f̃n
(
u,

sin2 θ

c2y
, θ
)∣∣∣∣ du

) ∑

k∈Z\N

(c, k)

1 + |k − cnξ1|1+η
(32)

+

(∫

R/Z

∣∣∣∣
∂2

∂u2
f̃n

(
u,

sin2 θ

c2y
, θ
)∣∣∣∣ du

)
σ(c)

√
c

}
.

Here N is a subset of Z which we are free to choose (it may depend on n, c, θ). In the present
section, we will in fact make the simple choice N = ∅! Thus the first row in the right hand
side of (32) vanishes. In order to bound the remaining expressions, note that by Lemma 4.2,
for any m ∈ Z≥0 we have

∫

R/Z

∣∣∣∣f̃n
(
u,

sin2 θ

c2y
, θ
)∣∣∣∣ du ≪m ‖f‖Cm

b

( | sin θ|
nc

√
y

)m
.(33)

Using this bound for both m = 0 and a general m ∈ Z≥0 gives
∫

R/Z

∣∣∣∣f̃n
(
u,

sin2 θ

c2y
, θ
)∣∣∣∣ du ≪m ‖f‖Cm

b
min

(
1,
( | sin θ|
nc

√
y

)m)
.(34)

Similarly, by Lemma 4.4, we have for any ℓ ∈ Z≥4:
∫

R/Z

∣∣∣∣
∂2

∂u2
f̃n

(
u,

sin2 θ

c2y
, θ
)∣∣∣∣ du ≪ℓ ‖f‖Cℓ+2

b
n−4min

(
1,
( | sin θ|
nc

√
y

)ℓ−4)
.(35)

We also compute that, for m ≥ 2 and any real a > 0,
∫ π

−π
min

(
1,
(
a−1| sin θ|

)m) dθ

sin2 θ
≍m a−1(1 + a)1−m.(36)
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Using the bounds (33)–(35) in (32) and then applying (36) with a = nc
√
y, assuming from

now on that m ≥ 2 and ℓ ≥ 6, we conclude that (27) is

≪m,ℓ,η ‖ν‖1−η

W1,1‖ν‖ηW2,1

{
‖f‖Cm

b
y1−

m
2

∞∑

n=1

n−m
∞∑

c=1

c−1
(
(n
√
y)−1 + c

)1−m
∑

k∈Z

(c, k)

1 + |k − cnξ1|1+η

+‖f‖Cℓ+2
b

y3−
ℓ
2

∞∑

n=1

n−ℓ
∞∑

c=1

(
(n
√
y)−1 + c

)5−ℓ σ(c)√
c

}
.(37)

Lemma 8.1. For any X > 0 and m ∈ Z+ we have
∞∑

c=1

(X + c)−m σ(c)√
c

≪m

{
X

1
2
−m log(1 +X) if X ≥ 1

1 if X < 1.

Proof. This follows by using
∑

1≤c≤x σ(c) ≪ x log(1 + x), ∀x ≥ 1 (cf., e.g., [21, (1.75)]), and
integration by parts. �

It follows from Lemma 8.1 and a simple summation over n that the expression in the second

line of (37) is ≪ ‖f‖Cℓ+2
b

y
1
4 log(1 + y−1).

When bounding the double sum over c and k appearing in the first line of (37), it is natural
to introduce the following majorant function.

Mα(X) :=
∞∑

ℓ=1

min
( 1

ℓ2
,

1

Xℓ〈ℓα〉
)

(X > 0, α ∈ R).(38)

Clearly this is a decreasing function of X for fixed α, but it is never very rapidly decreasing;
in short we have

Mα(X2) ≤ Mα(X1) ≤ min
(X2

X1
Mα(X2), ζ(2)

)
, ∀0 < X1 ≤ X2.(39)

The proof is immediate, using (38).

Lemma 8.2. Fix η > 0 and m ∈ Z≥3. Then for any α ∈ R and X > 0 we have

∞∑

c=1

c−1(X + c)1−m
∑

k∈Z

(c, k)

1 + |k − cα|1+η
≪η,m

{
X2−mMα(X) if X ≥ 1

1 if X < 1.
(40)

Proof. For given positive integers d and c = ℓd (ℓ ∈ Z+), we will bound the sum over k in (40)
when further restricted by the condition (c, k) = d. Denote by k0 the unique integer in the
interval cα − 1

2d < k0 ≤ cα + 1
2d which is divisible by d. Then |k0 − cα| equals the distance

from cα to the point set dZ, viz. |k0 − cα| = d〈 cdα〉. Note that the set {k ∈ Z : (c, k) = d} is
contained in dZ = k0 + dZ. This gives

∑

k∈Z
((c,k)=d)

(c, k)

1 + |k − cα|1+η
≤

∑

k∈k0+dZ

d

1 + |k − cα|1+η
≪η

d

1 + (d〈 cdα〉)1+η
,

since the contribution from all terms with k 6= k0 is ≪ d−η
∑∞

v=1 v
−1−η ≪η d−η. Hence the

left hand side of (40) is

≪η

∞∑

ℓ=1

ℓ−1
∞∑

d=1

(X + ℓd)1−m

1 + (d〈ℓα〉)1+η
≍m,η

∞∑

ℓ=1

ℓ−1





X2−mℓ−1 if 1 ≤ X/ℓ ≤ 〈ℓα〉−1

X1−m〈ℓα〉−1 if 〈ℓα〉−1 < X/ℓ

ℓ1−m if X/ℓ < 1





,

where we used m ≥ 3 in the last step. If X < 1 then the above sum is
∑∞

ℓ=1 ℓ
−m ≪ 1. On

the other hand if X ≥ 1 then we get

= X2−m
∑

1≤ℓ≤X

min
( 1

ℓ2
,

1

Xℓ〈ℓα〉
)
+

∑

ℓ>X

ℓ−m ≪ X2−m Mα(X).
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�

In Lemma 8.2, of course the bound X2−mMα(X) is valid also when X < 1, albeit wasteful.
We now get in (37), assuming from now on m ≥ 3,

y1−
m
2

∞∑

n=1

n−m
∞∑

c=1

c−1
(
(n
√
y)−1 + c

)1−m
∑

k∈Z

(c, k)

1 + |k − cnξ1|1+η

≪m,η y1−
m
2

∞∑

n=1

n−m(n
√
y)m−2Mnξ1

( 1

n
√
y

)
=

∞∑

n=1

∞∑

ℓ=1

min
( 1

(nℓ)2
,

√
y

nℓ〈nℓξ1〉
)
= M̃ξ1(y

−1/2),

where

M̃ξ1(X) :=
∞∑

k=1

σ(k)min
( 1

k2
,

1

Xk〈kξ1〉
)
.(41)

We have now proved:

Proposition 8.3. Let 0 < η < 1 be fixed. Then for any f ∈ C8
b(Γ\G), any ν ∈ C2(R) with

compact support, and any ξ ∈ R2, 0 < y < 1,
∫

R

f
(
Γ (12, ξ)U

xa(y)
)
ν(x) dx =

∫

Γ\G
f dµ

∫

R

ν dx

+Oη

(
‖ν‖1−η

W1,1‖ν‖ηW2,1

){
‖f‖C8

b
y

1
4 log(1 + y−1) + ‖f‖C3

b
M̃ξ1(y

−1/2)

}
.(42)

Remark 8.1. Note that for fixed ξ1, limy→0 M̃ξ1(y
−1/2) = 0 if and only if ξ1 /∈ Q. Hence

Proposition 8.3 gives an effective version of Theorem 1.1 in the special case of ξ1 irrational.
In order to compare Proposition 8.3 and Theorem 1.2 (or Theorem 3.1) in the y-aspect, we

point out that

M̃ξ1(y
−1/2) ≪ε

(
b1ξ1(y) + y

1
4
)1−ε

, where b1ξ1(y) := max
q∈Z+

min
( 1

q2
,

√
y

q〈qξ1〉
)
.(43)

This can be proved by following the same argument as we will use later below (74), and again

below (79). Note that M̃ξ1(y
−1/2) ≥ b1ξ1(y) holds trivially from the definition (41), and so the

bound (43) is essentially sharp whenever b1ξ1(y) ≫ y1/4.

On the other hand for ξ1 Diophantine of typeK ≥ 2, M̃ξ1(y
−1/2) ≪ε,ξ1 y

1
K
−ε (cf. Lemma 8.4);

in particular if K < 4 then M̃ξ1(y
−1/2) decays more rapidly than y

1
4 as y → 0. We expect

that for ξ satisfying an appropriate Diophantine condition, the error bound in (42) can be im-

proved to Of,ν,ξ,ε(y
1
2
−ε). This is the rate which one obtains when f is a lift of a function on X ′

(cf. [11], [47]); furthermore the exponent 1
2 corresponds to the exponential rate of mixing for

the flow ΦR on X, when acting on sufficiently smooth vectors in L2(X) (cf. [19, Thm. 3.3.10]
as well as [4]). In our approach we are stuck at the exponent 1

4 since in (27) we bound the
absolute value of the sum over d individually for each c using the Weil bound; cf. Lemma 7.1.

Lemma 8.4. Let ε > 0, X ≥ 1 and ξ ∈ R, and assume 〈nξ〉 ≥ cn1−K for all n ∈ Z+ and
some fixed c > 0 and K ≥ 2. Then

M̃ξ(X) ≪ε c
− 2

K Xε− 2
K .(44)

(This bound is essentially optimal. Indeed, if 〈nξ〉 ≤ cn1−K holds for some n then already

the single term σ(n)min( 1
n2 ,

1
Xn〈nξ〉) equals σ(n)(cX)−

2
K when X = nK/c.)

Proof. We assume cX > 1 since otherwise the stated bound is trivial. Let
pj
qj

for j ∈ Z≥0 be

the jth convergent of the (simple) continued fraction expansion of ξ (cf., e.g., [17, Ch. X]).
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Thus 1 = q0 ≤ q1 < q2 < · · · . Now for any ℓ ≥ 1 we have

∑

1≤n≤qℓ/2

σ(n)

n〈nξ〉 ≪ε q
ε
ℓ

ℓ∑

j=1

∑

qj−1/2<n≤qj/2

1

n〈nξ〉 ≪ qεℓ

ℓ∑

j=1

q−1
j−1

∑

1≤n≤qj/2

1

〈nξ〉 ≪ qεℓ

ℓ∑

j=1

qj log qj
qj−1

,

where the last bound follows from [35, Lemma 4.8], since |ξ − pj
qj
| < 1

qjqj+1
([17, Thm. 171]).

But for every j ≥ 1 we have cq1−K
j−1 ≤ 〈qj−1ξ〉 < q−1

j , i.e. qj < c−1qK−1
j−1 . Hence

∑

1≤n≤qℓ/2

σ(n)

Xn〈nξ〉 ≪ε (cX)−1qεℓ

ℓ−1∑

j=0

qK−2
j log qj+1 ≪ε (cX)−1q2εℓ ℓqK−2

ℓ−1 ≪ε (cX)−1q3εℓ qK−2
ℓ−1 ,

(45)

where we used the fact that qℓ is bounded below by the ℓth Fibonacci number.
Next note that for any ℓ ≥ 1 and h ≥ 1, by [35, Lemma 4.9],

∑

hqℓ+1≤n≤(h+1)qℓ

σ(n)min
( 1

n2
,

1

Xn〈nξ〉
)
≪ε X

−1(hqℓ)
ε−1

qℓ∑

r=1

min
( X

hqℓ
,

1

〈(hqℓ + r)ξ〉
)

(46)

≪ (hqℓ)
ε
( 1

(hqℓ)2
+

log qℓ
Xh

)
.

Similarly also

∑

qℓ/2<n≤qℓ

σ(n)min
( 1

n2
,

1

Xn〈nξ〉
)
≪ε X

−1qε−1
ℓ

qℓ∑

r=1

min
(X
qℓ
,

1

〈rξ〉
)
≪ qεℓ

( 1

q2ℓ
+

log qℓ
X

)
.(47)

Adding (47) and (46) for all h ≤ X/qℓ we obtain

∑

qℓ/2<n≤X

σ(n)min
( 1

n2
,

1

Xn〈nξ〉
)
≪ε X

ε
( 1

q2ℓ
+

log qℓ
X

)
.(48)

(This is valid, trivially, also if X ≤ qℓ/2.) Now choose ℓ ≥ 1 so that qℓ−1 ≤ (cX)
1
K < qℓ.

Then qℓ < c−1qK−1
ℓ−1 ≤ (cX)−

1
KX < X. Now (44) follows by adding (45), (48) and the bound

∑
n>X σ(n)n−2 ≪ε X

ε−1, replacing ε by 1
3ε, and using (cX)−

2
K > X− 2

K ≥ X−1. �

9. Proof of Theorem 3.1

We will now make a choice of the set N in (32) which will allow us to reach a reasonable
bound also when ξ1 is rational or well-approximable by rational numbers, provided that ξ2
has good Diophantine properties. Given any irrational number α, let

pj
qj

(j ∈ Z≥0) be the

jth convergent of the (simple) continued fraction expansion of α (cf., e.g., [17, Ch. X]; thus
1 = q0 ≤ q1 < q2 < · · · ), and set, for each c ∈ Z+,

N (α)
c :=

{
k ∈ Z :

k

c
∈
{p0
q0

,
p1
q1

, . . .
}}

.(49)

We will choose N = N
(nξ1)
c in (32). In order for this to make sense we have to assume

that ξ1 is irrational. This assumption is made merely for notational convenience, to ensure
that the continued fraction expansion of nξ1 is not finite. Note that the assumption can be
made without loss of generality: if (12) holds whenever ξ1 is irrational then it must also hold
when ξ1 is rational, because all expressions involved depend continuously on ξ1. (There is
some flexibility in the possible choices of the set N in (32) which make the proof work; cf.
Remark 9.2 below; however the choice made here is notationally convenient.)

We will use the following lemma to bound the contribution from the sum over k ∈ Z \N in
(32) to the expression in (27).
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Lemma 9.1. Fix η > 0 and m ∈ Z≥3. Then for any irrational α ∈ R, and any X > 0,

∞∑

c=1

∑

k∈Z\N(α)
c

c−1(X + c)1−m (c, k)

1 + |k − cα|1+η
≪m,η

{
X

3
2
−m if X ≥ 1

1 if X < 1.
(50)

Proof. Introduce d, ℓ, k0 as in the proof of Lemma 8.2. Note that if |k0 − cα| < d
2ℓ then

|k0/dℓ − α| < 1
2ℓ2

, which implies that k0
c = k0/d

ℓ is a convergent of the continued fraction

expansion of α [17, Thm. 184], viz. k0 ∈ N
(α)
c . Hence

∑

k∈Z\N(α)
c

((c,k)=d)

(c, k)

1 + |k − cα|1+η
≤

∑

v∈Z
v 6=0 or |k0−cα|≥d/2ℓ

d

1 + |k0 + dv − cα|1+η

≪
{

d
1+|k0−cα|1+η if |k0 − cα| ≥ d/2ℓ

0 otherwise

}
+ d−η

∞∑

v=1

v−1−η ≪η
d

1 + (d/ℓ)1+η
≪ dℓ

d+ ℓ
.

Hence the left hand side of (50) is (using m ≥ 3):

≪η

∞∑

d=1

∞∑

ℓ=1

(X + ℓd)1−m

d+ ℓ
≪

∞∑

d=1

∞∑

ℓ=d

(X + ℓd)1−m

ℓ
≪

{
X

3
2
−m if X ≥ 1

1 if X < 1.

�

By following the steps leading to (37), with m = 3 and ℓ = 6, and also using Lemma 9.1 and
Lemma 8.1, it follows that the contribution from the last two lines of (32) to the expression
in (27) is:

≪ ‖ν‖1−η

W1,1‖ν‖ηW2,1‖f‖C8
b
y

1
4 log(1 + y−1).

Remark 9.1. The simple bound in Lemma 9.1 is wasteful in the X-aspect for any α of Dio-
phantine type K < 4; cf. Lemma 8.2 and Lemma 8.4; however this does not matter for us,

since the end result is anyway subsumed by the y
1
4 log(1 + y−1) bound coming from the last

line of (32). The fact that, in this paper, we are not aiming to get below the exponent 1
4 , will

also be convenient at certain steps later in our discussion; cf. pp. 27–28.

It remains to bound the contribution from the first line in the right hand side of (32) to
the expression in (27). This contribution equals:

=

∞∑

n=1

∞∑

c=1

∫ π

−π

∑

k∈N(nξ1)
c

(∫

R

ν
(
−x+ y cot θ

)
e
(
(cnξ1 − k)ωx

)
dx

∫

R/Z
f̃n

(
u,

sin2 θ

c2y
, θ
)
du

)

×µ
( c

(c, k)

) ϕ(c)

ϕ(c/(c, k))
e
(
−nωcξ2

) y dθ

sin2 θ
.(51)

In order to bound this, we first fix n ∈ Z+ and θ ∈ (−π, π) (assuming θ 6= 0), and write
a = y cot θ, α1 := nξ1 and α2 := −nωξ2 (ω = sgn(θ) as before). Now

∞∑

c=1

∑

k∈N(α1)
c

(∫

R

ν
(
a− x

)
e
(
(cα1 − k)ωx

)
dx

∫

R/Z
f̃n

(
u,

sin2 θ

c2y
, θ
)
du

)
µ
( c

(c, k)

) ϕ(c)

ϕ(c/(c, k))
e(cα2)

=

∞∑

j=0

µ(qj)

ϕ(qj)

∞∑

k=1

ϕ(kqj)e(kqjα2)

(∫

R

ν
(
a− x

)
e
(
k(qjα1 − pj)ωx

)
dx

∫

R/Z
f̃n

(
u,

sin2 θ

(kqj)2y
, θ
)
du

)
,

(52)

http://file://T:hardy/hardywright1938.pdf:169
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where
pj
qj

are the convergents of α1. We will treat this double sum using integration by parts

(cf. (64) below), and the key task then is to bound the following sum:

Bn,θ(X) :=

∞∑

j=0

µ(qj)

ϕ(qj)

∑

1≤k≤X/qj

ϕ(kqj)e(kqjα2)

∫

R

ν
(
a− x

)
e
(
k(qjα1 − pj)ωx

)
dx.(53)

Lemma 9.2. For any q ∈ Z+, α ∈ R and X ≥ 1,

∑

1≤k≤X

ϕ(kq)e(kα) ≪ σ1(q)X
2

∑

1≤j≤X

min
( 1

j2
,

1

Xj〈jα〉
)
.(54)

Proof. For any k ∈ Z+ we have

ϕ(kq) =
∑

d|kq
µ
(kq
d

)
d =

∑

d1|k

∑

d2|q
(d2,k/d1)=1

µ
( kq

d1d2

)
d1d2 =

∑

d1|k
(q,k/d1)=1

∑

d2|q
µ
( kq

d1d2

)
d1d2,

where the third equality holds since the conditions d1 | k, d2 | q, (d2, k/d1) = 1 and µ( kq
d1d2

) 6= 0

together imply (q, k/d1) = 1. Using this formula and then substituting k = jd1, we get

∑

1≤k≤X

ϕ(kq)e(kα) =
∑

d2|q
d2

∑

1≤j≤X
(q,j)=1

µ
(jq
d2

) ∑

1≤d1≤X/j

d1e(d1jα).(55)

But for any j, n ∈ Z+ with jα /∈ Z we have

n∑

d1=1

d1e(d1jα) =
ne((n + 2)jα) − (n+ 1)e((n + 1)jα) + e(jα)

(e(jα) − 1)2
≪ min

(
n2,

n

〈jα〉 +
1

〈jα〉2
)

≪ min
(
n2,

n

〈jα〉
)
,

and the last bound is valid also when jα ∈ Z. Using this bound in (55) we obtain (54). �

Lemma 9.3. Let q ∈ Z+, α, β ∈ R, Y ≥ 1 and g ∈ Cc(R). Let L and L′ be positive real
numbers such that supp(g) ⊂ [A,A + L] ⊂ [−L′, L′], for some A ∈ R. Then

∑

1≤k≤Y

ϕ(kq)e(kα)

∫

R

g(x)e(kβx) dx

≪ ‖g‖L∞ σ1(q)

{
Y min

(
LY, |β|−1

)(
1 + log+

(
LY |β|

))2
Mα

(min(LY,|β|−1)
L′

)
if L|β| ≤ 10;

LY (1 + log Y )2 if L|β| ≥ 1
10 .

(56)

(Thus both bounds are valid when 1
10 ≤ L|β| ≤ 10.)

Proof. Changing order of summation and integration and applying Lemma 9.2, we have

∑

1≤k≤Y

ϕ(kq)e(kα)

∫

R

g(x)e(kβx) dx ≪ σ1(q)Y
2

∑

1≤j≤Y

∫

R

∣∣g(x)
∣∣min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx.

(57)

Here
∫

R

∣∣g(x)
∣∣min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx ≤ ‖g‖L∞

∫ A+L

A
min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx

≤ ‖g‖L∞

∫ L

−L
min

( 1

j2
,

1

Y j〈jβx〉
)
dx,(58)
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where the last inequality is holds since the function x 7→ min( 1
j2 ,

1
Y j〈jβx〉) is even, periodic with

period 1
j|β| , and decreasing in [0, 1

2j|β| ] (if β 6= 0). If Lj|β| ≥ 1
10 then (58) is (using 1 ≤ j ≤ Y ):

≪ ‖g‖L∞ L

∫

R/Z
min

( 1

j2
,

1

Y j〈y〉
)
dy ≪ ‖g‖L∞ L

jY

(
1 + log(Y/j)

)
.(59)

On the other hand if Lj|β| ≤ 1 then (58) is

≪ ‖g‖L∞

1

j|β|

∫ Lj|β|

0
min

( 1

j2
,

1

Y jy

)
dy ≍ ‖g‖L∞

j2
min

(
L,

1

Y |β|
)(

1 + log+
(
LY |β|

))
.(60)

We also note an alternative bound in a special case: If 〈jα〉 ≥ 2jL′|β| then for all x in the
support of g we have |jβx| ≤ 1

2〈jα〉 and thus 〈j(α + βx)〉 ≥ 1
2〈jα〉; therefore

∫

R

∣∣g(x)
∣∣min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx ≪ ‖g‖L∞ Lmin

( 1

j2
,

1

Y j〈jα〉
)
.(61)

If L|β| ≥ 1
10 then (57) and (59) immediately imply that the second bound in (56) holds.

Hence from now on we assume L|β| ≤ 10, and our task is to prove the first bound in (56).

Case I: LY |β| ≥ 1. In this case we split our sum over 1 ≤ j ≤ Y into two parts corre-
sponding to j < (L|β|)−1 and j ≥ (L|β|)−1, respectively. For 1 ≤ j < (L|β|)−1 we have, by
(60) and (61):

∫

R

∣∣g(x)
∣∣min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx ≪ ‖g‖L∞

{
1

Y |β|j2 (1 + log(LY |β|)) (in general)
L

Y j〈jα〉 (if 〈jα〉 ≥ 2jL′|β|)

}

≪ ‖g‖L∞

1

Y |β| min
( 1

j2
,
L′|β|
j〈jα〉

)(
1 + log(LY |β|)

)
,

where we used L ≤ 2L′. Hence

∑

1≤j<(L|β|)−1

∫

R

∣∣g(x)
∣∣min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx ≪ ‖g‖L∞

1 + log(LY |β|)
Y |β|

∞∑

j=1

min
( 1

j2
,
L′|β|
j〈jα〉

)
.

For the remaining sum we have, by (59),

∑

(L|β|)−1≤j≤Y

∫

R

∣∣g(x)
∣∣min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx ≪ ‖g‖L∞L

Y

∑

(L|β|)−1≤j≤Y

1

j

(
1 + log(Y/j)

)

≪ ‖g‖L∞

L

Y

(
1 + log(LY |β|)

)2
.

Now (56) follows from (57) and the last two bounds, since we are assuming Y −1 ≤ L|β| ≤ 10.

Case II: LY |β| < 1. Then for all 1 ≤ j ≤ Y , by (60) and (61),

∫

R

∣∣g(x)
∣∣min

( 1

j2
,

1

Y j〈j(α + βx)〉
)
dx ≪ ‖g‖L∞

{
L
j2 (in general)

L
Y j〈jα〉 (if 〈jα〉 ≥ 2jL′|β|)

}

≪ ‖g‖L∞ Lmin
( 1

j2
,

L′/L
Y j〈jα〉

)
.

Hence again (56) follows from (57). �

Recall that we wish to bound Bn,θ(X) for X ≥ 1 (cf. (53)). For each j ≥ 0 such that
qj ≤ X, we apply Lemma 9.3 with g(x) = ν(a − x), β = (qjα1 − pj)ω, α = qjα2, q = qj and
Y = X/qj. Note that supp(g) ⊂ [a − L, a+ L], since supp(ν) ⊂ [−L,L] by assumption. Also
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(2qj+1)
−1 < |β| < q−1

j+1 (cf., e.g., [17, Ch. X]). Hence Lemma 9.3 implies

∑

1≤k≤X/qj

ϕ(kqj)e(kqjα2)
(∫

R

ν
(
a− x

)
e
(
k(qjα1 − pj)ωx

)
dx

)

≪ ‖ν‖L∞σ1(qj)





X
qj
min(LXqj , qj+1)

(
1 + log+( LX

qjqj+1
)
)2
Mqjα2

(min(LX/qj , qj+1)
L+|a|

)
if qj+1 ≥ L

LX
qj

(1 + log(Xqj ))
2 if qj+1 < L.

In order to get a bound on Bn,θ(X), we multiply the last bound with |µ(qj)|ϕ(qj)−1, and
then add over all j ≥ 0 for which qj ≤ X. We split the set of these j into three disjoint parts,
according to the following conditions:





(i) qj+1 < L;

(ii) qj+1 ≥ L and qjqj+1 ≤ LX;

(iii) qj+1 ≥ L and qjqj+1 > LX.

(62)

We thus obtain

Bn,θ(X) ≪ ‖ν‖L∞

{ (i)∑

j

|µ(qj)|σ1(qj)
ϕ(qj)

LX

qj

(
1 + log

(X
qj

))2

+

(ii)∑

j

|µ(qj)|σ1(qj)
ϕ(qj)

Xqj+1

qj

(
1 + log

( LX

qjqj+1

))2
Mqjα2

( qj+1

L+ |a|
)

(63)

+

(iii)∑

j

|µ(qj)|σ1(qj)
ϕ(qj)

LX2

q2j
Mqjα2

( LX

qj(L+ |a|)
)}

.

Let us first record a trivial bound on Bn,θ(X).

Lemma 9.4. For any positive integer q, |µ(q)|σ1(q)
ϕ(q) ≪ (log log(q + 2))4.

Proof. The bound is trivial unless µ(q) 6= 0, i.e. q is squarefree. For squarefree q,

|µ(q)|σ1(q)
ϕ(q)

=
∏

p|q

p+ 1

p− 1
≤

∏

p|q
(1 + 4p−1) ≤

∏

p|q
(1 + p−1)4 ≪ (log log(q + 2))4,

e.g. by [20, Theorems 4 and 7]. �

Lemma 9.5. For all X ≥ 1, Bn,θ(X) ≪ ‖ν‖L∞ LX2.

Proof. Using Lemma 9.4 and (for (ii)) the fact that u(1 + log(LX/u))2 ≪ LX for all u ∈
[1, LX], we obtain (for any fixed ε > 0)

Bn,θ(X) ≪ε ‖ν‖L∞

{
LX

(
1 + logX

)2
(i)∑

j

q−1+ε
j + LX2

(ii)∑

j

qε−2
j + LX2

(iii)∑

j

qε−2
j

}
.

Here the first sum is bounded using the fact that the sequence {qj} grows geometrically in the
precise sense that qj+2 ≥ qj+1 + qj ≥ 2qj for all j (cf. [17, (10.2.2)]); the remaining two sums
are bounded trivially. This gives the stated bound. �

Using (52), (53) and (33) with m = 3, together with the fact that Bn,θ(X) ≪ν,L X2 as
X → ∞, by Lemma 9.5, we see that the expression in (51) can be rewritten as:

−
∞∑

n=1

∫ π

−π

∫ ∞

1

(
∂

∂X

∫

R/Z
f̃n

(
u,

sin2 θ

X2y
, θ
)
du

)
Bn,θ(X) dX

y dθ

sin2 θ
.(64)



24 ANDREAS STRÖMBERGSSON

By Lemma 4.4 we have, for any fixed m ∈ Z≥0,

∂

∂X

∫

R/Z
f̃n

(
u,

sin2 θ

X2y
, θ
)
du ≪m ‖f‖Cm+1

b
X−1min

(
1,
( | sin θ|
nX

√
y

)m)
.

Hence the expression in (51) is

≪m ‖f‖Cm+1
b

y

∞∑

n=1

∫ π

−π

∫ ∞

1

∣∣Bn,θ(X)
∣∣ min

(
1,
( | sin θ|
nX

√
y

)m) dX dθ

X sin2 θ
.(65)

The following three lemmas will allow us to further simplify the bound.

Lemma 9.6. For any m ≥ 2, 0 < σ < 1 and 0 < y < 1 we have

∞∑

n=1

∫ π

−π

∫ ∞

1
X1+σ min

(
1,
( | sin θ|
nX

√
y

)m) dX dθ

X sin2 θ
≪m,σ y−

1
2
(1+σ).

Proof. Using (36) we see that the given expression is

≪m

∞∑

n=1

∫ ∞

1
(nX

√
y)−1(1 + nX

√
y)1−mXσ dX ≪m

∞∑

n=1

{
(n
√
y)−m if n

√
y ≥ 1

(n
√
y)−1−σ if n

√
y ≤ 1,

and this gives the stated bound. �

The next lemma generalizes (36).

Lemma 9.7. For m ≥ 2, a > 0, and 0 ≤ δ ≤ 1, we have

∫
θ∈(−π,π)
| sin θ|<δ

min
(
1,
(
a−1| sin θ|

)m) dθ

sin2 θ
≍m

{
a−mδm−1 if δ ≤ a

a−1 if δ ≥ a

}
= a−1 min(1, (δ/a)m−1).

Proof. This is seen by a direct computation. �

Lemma 9.8. Let σ ∈ [0, 12 ], m ≥ 3 and 0 < y < 1. If the integral over θ in (65) is restricted
by the condition | sin θ| ≤ yσ, the resulting expression is ≪m ‖f‖Cm+1

b
‖ν‖L∞ Lyσ.

Proof. Using Lemma 9.7 and Lemma 9.5 we see that the expression in question is

≪ ‖f‖Cm+1
b

‖ν‖L∞ Ly

∞∑

n=1

1

n
√
y

∫ ∞

1
min

(
1,
( yσ

nX
√
y

)m−1)
dX

≪ ‖f‖Cm+1
b

‖ν‖L∞ Ly

∞∑

n=1

1

n
√
y

{
yσ−

1
2 /n if n ≤ yσ−

1
2

(yσ−
1
2 /n)m−1 if n ≥ yσ−

1
2

}
≪ ‖f‖Cm+1

b
‖ν‖L∞ Lyσ.

�

We saw in the proof of Lemma 9.5 that the
∑(i)-sum in (63) is ≪ε LX1+ε; hence by

Lemma 9.6 the total contribution from the
∑(i)-sum in (63) to the expression in (65) is

≪m,ε ‖f‖Cm+1
b

‖ν‖L∞Ly
1
2
−ε. We also use Lemma 9.8 with σ = 1

2 , and note that for | sin θ| > y
1
2

we have |a| = y| cot θ| < y
1
2 < 1 and L+ |a| ≤ 2L in (63); hence we conclude that the whole

expression in (65) is

≪m,ε ‖f‖Cm+1
b

‖ν‖L∞

{
Ly

1
2
−ε + y

∞∑

n=1

∫ ∞

1
Bn(X)

∫ π

−π
min

(
1,
( | sin θ|
nX

√
y

)m) dθ

sin2 θ

dX

X

}
,(66)



AN EFFECTIVE RATNER EQUIDISTRIBUTION RESULT FOR SL(2,R) ⋉ R2 25

where (keeping from now on α2 := nξ2, and using the fact that Mα(X) ≡ M−α(X))

Bn(X) =

(ii)∑

j

|µ(qj)|σ1(qj)
ϕ(qj)

Xqj+1

qj

(
1 + log

( LX

qjqj+1

))2
Mqjα2

(qj+1

2L

)
(67)

+

(iii)∑

j

|µ(qj)|σ1(qj)
ϕ(qj)

LX2

q2j
Mqjα2

( X

2qj

)
.

Using (36) to bound the integral over θ we conclude that the expression in (66) is

≪m,ε ‖f‖Cm+1
b

‖ν‖L∞

{
Ly

1
2
−ε + y

1
2

∞∑

n=1

1

n

∫ ∞

1

Bn(X)

(1 + n
√
yX)m−1X2

dX

}
.(68)

Now note that
∫ ∞

1

Bn(X)

(1 + n
√
yX)m−1X2

dX =
∑

j≥0
(qj+1≥L)

|µ(qj)|σ1(qj)
ϕ(qj)

{
L

q2j

∫ qjqj+1/L

1

Mqjα2(
X
2qj

)

(1 + n
√
yX)m−1

dX

+
qj+1

qj
Mqjα2

(qj+1

2L

)∫ ∞

qjqj+1/L

(1 + log( LX
qjqj+1

))2

(1 + n
√
yX)m−1X

dX

}
.(69)

Let us write M1
α(X) for the integral of Mα(X):

M1
α(X) :=

∫ X

0
Mα(Y ) dY =

∞∑

n=1

min
(X

n2
,

1

n〈nα〉
)(

1 + log+
(X〈nα〉

n

))
.(70)

We have the bound
∫ qjqj+1/L

1

Mqjα2(
X
2qj

)

(1 + n
√
yX)m−1

dX ≪
∫ qjqj+1/L

0
Mqjα2

( X

2qj

)
dX = 2qjM

1
qjα2

(qj+1

2L

)
.

If qjqj+1/L > (n
√
y)−1 then the same integral can also be bounded more sharply as (assuming

m ≥ 3, and using the fact that Mα(X) ≤ X−1M1
α(X) for all X)

≪
∫ (n

√
y)−1

0
Mqjα2

( X

2qj

)
dX +

∫ ∞

(n
√
y)−1

Mqjα2(
1

2qjn
√
y )

(n
√
yX)m−1

dX ≪ 2qjM
1
qjα2

( 1

2qjn
√
y

)
.

Also by an easy computation,

∫ ∞

qjqj+1/L

(1 + log( LX
qjqj+1

))2

(1 + n
√
yX)m−1X

dX ≪





(1 + log( L
qjqj+1n

√
y ))

3 if qjqj+1/L ≤ (n
√
y)−1

(
L

qjqj+1n
√
y

)m−1
if (n

√
y)−1 ≤ qjqj+1/L.

(71)

Adding up the bounds (using the fact that if (n
√
y)−1 ≤ qjqj+1/L then Mqjα2(

qj+1

2L ) ≤
2qjn

√
y M1

qjα2
( 1
2qjn

√
y )), we conclude

∫ ∞

1

Bn(X)

(1 + n
√
yX)m−1X2

dX(72)

≪ L
∑

j≥0
(qj+1≥L)

|µ(qj)|σ1(qj)
qjϕ(qj)

(
1 + log+

( L

qjqj+1n
√
y

))3
M1

qjα2

(
min

(qj+1

L
,

1

qjn
√
y

))
.

Using also qj+1 < 〈qjα1〉−1 < 2qj+1 we get

≪ L

∞∑

q=1

|µ(q)|σ1(q)
qϕ(q)

(
1 + log+

(L〈qα1〉
qn

√
y

))3
M1

qα2

(
min

( 1

L〈qα1〉
,

1

qn
√
y

))
.(73)
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Adding now over n (recalling α1 = nξ1, α2 = nξ2) we get, after substituting k = qn and using∑
q|k

|µ(q)|σ1(q)
ϕ(q) ≪ε k

ε,

y
1
2

∞∑

n=1

1

n

∫ ∞

1

Bn(X)

(1 + n
√
yX)m−1X2

dX

≪ε Ly
1
2

∞∑

k=1

kε−1
(
1 + log+

(L〈kξ1〉
k
√
y

))3
M1

kξ2

(
min

( 1

L〈kξ1〉
,

1

k
√
y

))
.(74)

Remark 9.2. In (73) we overestimate a sum over {qj} by a sum over all q ∈ Z+; the (simple)
reason why this is not very wasteful will be seen in the next paragraph. It is clear from this
that there is some flexibility in choosing the set N in (32) so as to make our proof work.

As we will see, the vast majority of the terms in the sum in (74) can be bounded trivially.
First of all, using M1

kξ2
(X) ≪ X and the fact that for any k, y > 0 the function f(δ) =

(1 + log+( δ
k
√
y ))

3 min(δ−1, 1
k
√
y ) satisfies f(δ2) ≪ f(δ1) for all 0 < δ1 ≤ δ2, it follows that the

contribution from all k with 〈kξ1〉 ≥ (2k)−1 in the right hand side of (74) is

≪ Ly
1
2

∞∑

k=1

kε−1
(
1 + log+

( L

k2
√
y

))3
min

( k

L
,

1

k
√
y

)
≪ε L

1
2
+εy

1
4
−ε.

It remains to consider the contribution from all k with 〈kξ1〉 < (2k)−1. From now on, let
pj
qj

for j ∈ Z≥0 be the jth convergent of the continued fraction expansion of ξ1. Then each

k ≥ 1 satisfying 〈kξ1〉 < (2k)−1 is known to be of the form k = ℓqj for some j ∈ Z≥0 and

some ℓ ∈ Z+ which is so small that 〈kξ1〉 = ℓ〈qjξ1〉 and thus ℓ
2qj+1

< 〈kξ1〉 < ℓ
qj+1

(cf., e.g.,

[17, Thm. 184]). Hence the total contribution from all such k to the right hand side of (74) is

≪ Ly
1
2

∞∑

j=0

∞∑

ℓ=1

(ℓqj)
ε−1

(
1 + log+

( L

qjqj+1
√
y

))3
M1

ℓqjξ2

(
ℓ−1 min

(qj+1

L
,

1

qj
√
y

))
.(75)

Recall the summation formula for M1
α(X); cf. (70). Let us write M

1,ε
α (X) for the analogous

sum with an extra factor nε in each term:

M1,ε
α (X) :=

∞∑

n=1

nεmin
(X

n2
,

1

n〈nα〉
)(

1 + log+
(X〈nα〉

n

))
.(76)

Lemma 9.9. For any X > 0, α ∈ R, ε > 0,
∞∑

ℓ=1

ℓε−1M1
ℓα(ℓ

−1X) ≪ε M
1,2ε
α (X),(77)

Proof. Using (70) and substituting k = ℓn we obtain

∞∑

ℓ=1

ℓε−1M1
ℓα(ℓ

−1X) =
∞∑

k=1

(∑

ℓ|k
ℓε
)
min

(X
k2

,
1

k〈kα〉
)(

1 + log+
(X〈kα〉

k

))
.

Now the desired bound follows using
∑

ℓ|k ℓ
ε ≪ε k

2ε. �

Lemma 9.10. For any X > 0, α ∈ R, 0 < ε ≤ 1
2 we have M

1,ε
α (X) ≪ X.

Proof. Simply note M
1,ε
α (X) ≤ (

∑∞
n=1 n

ε−2)X. �

Using Lemma 9.9 we see that (75) is

≪ε Ly
1
2

∞∑

j=0

qε−1
j

(
1 + log+

( L

qjqj+1
√
y

))3
M

1,2ε
qjξ2

(
min

(qj+1

L
,

1

qj
√
y

))
.(78)
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Recall that 0 < y < 1. Now let j0 ≥ 0 be the unique index satisfying

q4j0 < y−
1
2 ≤ q4j0+1.

Then the contribution from all j < j0 in (78) is (using Lemma 9.10, keeping ε ≤ 1
4)

≪ Ly
1
2

∑

j<j0

(1 + log(Ly−1))3
qj+1

L
≪ y

1
2 qj0(1 + log(Ly−1))3 < y

3
8 (1 + log(Ly−1))3.

Also if
qj0+1

Lqj0
≤ y−

1
4 then the contribution from j = j0 in (78) is

≪ Ly
1
2 qεj0

(
1 + log(y−1) + log+

( L

qj0+1

))3 qj0+1

Lqj0
≪ε Ly

1
4
−ε.

Finally the contribution from all j > j0 to (78) is

≪ Ly
1
2 (1 + log(y−1))3

∞∑

j=j0+1

qε−1
j





qj+1

L (1 + log( L
qj+1

))3 if qj+1 < L

1
qj
√
y if qj+1 ≥ L





≪ Ly
1
2 (1 + log(y−1))3

(
1 + y−

1
2

∞∑

j=j0+1

qε−2
j

)
≪ε Ly

1
4
−ε.

Now there remains at most one j to consider in the bound in (78): namely that j ≥ 0, if

any, which satisfies q4j < y−
1
2 < (

qj+1

Lqj
)2. In the case when such a j exists, let us write q := qj

and q′ := qj+1. Collecting our bounds and recalling the definition of M1,2ε
qξ2

(X), we have now

proved that the right hand side of (74) is ≪ε Ly
1
4
−ε if the special denominator q does not

exist, and otherwise it is

≪ε Ly
1
4
−ε + Ly

1
2 qε−1

(
1 + log+

( L

q′q
√
y

))3
∞∑

n=1

n2ε−1
(
1 + log+

(X〈nqξ2〉
n

))
min

(X
n
,

1

〈nqξ2〉
)

(79)

where

X := min
( 1

q
√
y
,
q′

L

)
> 1.

For the rest of this discussion we will assume that the special denominator q exists. In close
analogy to what we have shown for (74), we will see that the vast majority of the terms in
the sum in (79) can be bounded trivially. First, note that the total contribution to (79) from
all n ∈ Z+ with 〈nqξ2〉 ≥ (2n)−1 is

≪ε Ly
1
2 qε−1

(
1 + log+

( L

q′q
√
y

))3
(1 + logX)X

1
2
+ε ≪ε Ly

1
4
−ε,(80)

where the last relation holds since log+( L
q′q

√
y ) ≤ log(y−1) and X ≤ y−

1
2 . From now on we

assume, without loss of generality, that ξ2 is irrational (just as we did for ξ1 on p. 19). Let
rj
sj

for j ∈ Z≥0 be the jth convergent of the continued fraction expansion of qξ2. Then each

n ∈ Z+ satisfying 〈nqξ2〉 < (2n)−1 is of the form n = ℓsj for some j ∈ Z≥0 and some ℓ ∈ Z+

which is so small that 〈nqξ2〉 = ℓ〈sjqξ2〉 and thus ℓ
2sj+1

< 〈nqξ2〉 < ℓ
sj+1

. Hence the total

contribution from all these n to the sum in (79) is

≪
∞∑

j=0

∞∑

ℓ=1

(ℓsj)
2ε−1

(
1 + log+

( X

sjsj+1

))
ℓ−1min

(X
sj
, sj+1

)

≪
∞∑

j=0

s2ε−1
j

(
1 + log+

( X

sjsj+1

))
min

(X
sj
, sj+1

)
.(81)
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Next let j0 ≥ 0 be the unique index satisfying s4j0 < X ≤ s4j0+1. Then the contribution from all

j < j0 in (81) is ≤ (1+logX)
∑

j<j0
sj+1 ≪ε X

1
4
+ε. Also if

sj0+1

sj0
≤

√
X then the contribution

from j = j0 in (81) is ≤ (1+ logX)s2εj0
sj0+1

sj0
≪ε X

1
2
+ε. Finally the contribution from all j > j0

in (81) is

≤ X(1 + logX)

∞∑

j=j0+1

s2ε−2
j ≪ X(1 + logX)s2ε−2

j0+1 ≪ε X
1
2
+ε.

Now there remains at most one j to consider in (81): namely that j ≥ 0, if any, which satisfies
s4j < X < (

sj+1

sj
)2. In the case when such a j exists, let us write s := sj and s′ := sj+1.

Collecting our bounds (recalling also the last relation in (80)), we have now proved that (79)

is ≪ε Ly
1
4
−ε if the special denominator s does not exist, and otherwise it is

≪ε Ly
1
4
−ε + Ly

1
2 qε−1

(
1 + log+

( L

q′q
√
y

))3
s2ε−1

(
1 + log+

( X

ss′

))
min

(X
s
, s′

)
.

Recalling the definition of X, and writing U = L
q′q

√
y , V = 1

qss′
√
y , the above is seen to be

≤ Ly
1
4
−ε + L(sq)2ε−2 (1 + log(max(1, U, V )))4

max(1, U, V )
≪ε Ly

1
4
−ε + L

(
(sq)−2min(1, U−1, V −1)

)1−ε

≤ L
(
y

1
4
−ε + bξ,L(y)

1−ε
)
,(82)

Here the last relation follows from (3), since q′ < 〈qξ1〉−1 ≤ s〈sqξ1〉−1 and s′ < 〈sqξ2〉−1 and

therefore, writing q0 := qs, we have (qs)−2U−1 <
√
y

Lq0〈q0ξ1〉 and (qs)−2V −1 <
√
y

q0〈q0ξ2〉 . Taking

m = 3 it follows that (68) is ≪ L‖ν‖L∞‖f‖C4
b

(
y

1
4 + bξ,L(y)

)1−4ε
. Hence, replacing ε by 1

4ε,

we have now completed the proof of Theorem 3.1. � � �

Remark 9.3. Let us note that the last step in (82) is essentially sharp. Indeed, if bξ,L(y) > 2y
1
4

(and y < 1, L ≥ 1) then the “special denominators” q, s introduced above do in fact exist,
and

bξ,L(y) = min
( 1

(sq)2
,

√
y

Ls2q〈qξ1〉
,

√
y

sq〈sqξ2〉
)

(83)

(and here 1
2 < q′〈qξ1〉 < 1 and 1

2 < s′〈sqξ2〉 < 1, so that the expression in (83) is comparable

with (sq)−2min(1, U−1, V −1) in the notation used in (82)).

To prove this claim, assume bξ,L(y) > 2y
1
4 and let q0 be a positive integer for which the

maximum in (3) is attained. Then 〈q0ξ1〉 < y1/4

2Lq0
< 1

2q0
; therefore there exist q, s ∈ Z+ such

that q0 = sq, q is a denominator of a convergent of the continuous fraction expansion of ξ1 and

〈q0ξ1〉 = s〈qξ1〉. It follows that (83) holds for these q, s. Next note that also 〈sqξ2〉 < y1/4

2sq < 1
2s ;

therefore there exist s̃, k ∈ Z+ such that s = ks̃, s̃ is a denominator of a convergent of qξ2,
and 〈sqξ2〉 = k〈s̃qξ2〉; and now the assumption that the maximum in (3) is attained at q0
forces k = 1, i.e. s itself is a denominator of a convergent of qξ2. Finally note that since (83)

is larger than 2y
1
4 , we have (sq)4 < 1

4y
− 1

2 , ( 1
Lq〈qξ1〉)

2 > 4 s4√
y and ( 1

s〈sqξ2〉)
2 > 4 q2√

y , and these

inequalities imply that q, s are in fact the “special denominators” introduced above.

10. Basic properties of the majorant bξ,L(y)

In this section we will note some basic properties of the majorant bξ,L(y) appearing in the
bound in our Theorems 1.2 and 3.1. This is helpful for clarifying the content of those theorems
in certain parameter regimes; we will also make use of the facts proved here in our treatment
of general UR-orbits in the next section.
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Lemma 10.1. For any ξ ∈ R2 and any L1, L2, y1, y2 > 0 we have

min
(
L2
L1

, 1
)
min

(y1
y2
, 1
) 1

2 bξ,L2(y2) ≤ bξ,L1(y1) ≤ max
(
L2
L1

, 1
)
max

(y1
y2
, 1
) 1

2 bξ,L2(y2).

Proof. This is immediate from the definition, (3). �

In particular replacing L and/or y by numbers of the same order of magnitude does not
change the order of magnitude of bξ,L(y); we will use this fact several times in Section 11
without explicit mention.

Lemma 10.2. For any 0 < y < 1, ξ ∈ R2, L ≥ 1, and any integer n ∈ [−L,L], we have
bξUn,L(y) ≍ bξ,L(y).

Proof. For every q ∈ Z+, 〈q(nξ1 + ξ2)〉 ≤ L〈qξ1〉 + 〈qξ2〉; thus min( 1
q2
,

√
y

Lq〈qξ1〉 ,
√
y

q〈q(nξ1+ξ2)〉) ≥
1
2 min( 1

q2
,

√
y

Lq〈qξ1〉 ,
√
y

q〈qξ2〉). Therefore bξUn,L(y) ≥ 1
2bξ,L(y). Similarly bξ,L(y) ≥ 1

2bξUn,L(y). �

The following lemma is in principle contained in the discussion on the last pages of Section 9.
For clarity, we write out the short proof here.

Lemma 10.3. Let 0 < y < 1, ξ ∈ R2 and L ≥ 1, and assume that bξ,L(y) > 2y
1
4 . Let q0 be

a positive integer where the maximum in (3) is attained. Then every positive integer q such

that min( 1
q2
,

√
y

Lq〈qξ1〉 ,
√
y

q〈qξ2〉) > 2y
1
4 must be of the form q = mq0 for some m ∈ Z+ which is so

small that 〈qξ1〉 = m〈q0ξ1〉 and 〈qξ2〉 = m〈q0ξ2〉 (in particular q0 is uniquely determined).

Proof. We assume ξ1, ξ2 /∈ Q; the cases when ξ1 ∈ Q or ξ2 ∈ Q can then be treated by a

limit argument. Let q be a positive integer satisfying min( 1
q2 ,

√
y

Lq〈qξ1〉 ,
√
y

q〈qξ2〉) > 2y
1
4 . Then

〈qξ1〉 < y1/4

2Lq < 1
2q and 〈qξ2〉 < y1/4

2q < 1
2q . Therefore for both j = 1, 2, we have q = mjqj for

some mj, qj ∈ Z+ such that qj is a denominator of a convergent of the continuous fraction

expansion of ξj, and 〈qξj〉 = mj〈qjξj〉. Note that qj ≤ q < y−
1
8 and also, if we denote

by q′j the denominator of the “next” convergent of ξj, then 1
2q′j

< 〈qjξj〉 < y1/4

2 and thus

q′j > y−
1
4 > y−

1
8 . Hence q1 and q2 are uniquely determined for our given ξ, L, y; namely, qj

equals the largest number < y−
1
8 among all the denominators of the convergents of ξj . Let q0

be the least common multiple of these two numbers q1, q2. It then follows that any number
q as above must be of the form q = mq0 for some m ∈ Z+ so small that 〈qξ1〉 = m〈q0ξ1〉
and 〈qξ2〉 = m〈q0ξ2〉; thus also q0 is the unique number at which the maximum in (3) is
attained. �

Let us define

b̃ξ,L(y) = bξ,L(y) + y
1
4 .(84)

Note that the obvious analogues of Lemmata 10.1 and 10.2 also hold for b̃.

Lemma 10.4. Let 0 < η < 1. For any 0 < y < 1, ξ ∈ R2, L ≥ 1 we have
∑

|n|≤L

b̃ξUn,1(y)
η ≍η Lb̃ξ,L(y)

η.(85)

Proof. Case 1. Assume bξ,L(y) ≥ 8y
1
4 . Let q be the unique positive integer at which the

maximum in (3) is attained (cf. Lemma 10.3). In particular then q2 ≤ 1
8y1/4

, 〈qξ1〉 ≤ y1/4

8Lq and

〈qξ2〉 ≤ y1/4

8q . We claim that, with the same q, for every integer n with |n| ≤ L,

bξUn,1(y) = min
( 1

q2
,

√
y

q〈qξ1〉
,

√
y

q〈q(nξ1 + ξ2)〉
)
.(86)
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To prove this, note that

〈q(nξ1 + ξ2)〉 ≤ |n|〈qξ1〉+ 〈qξ2〉 ≤ L〈qξ1〉+ 〈qξ2〉 ≤
y1/4

4q
.

Hence the right hand side of (86) is ≥ 4y
1
4 , and by Lemma 10.3, we have q = mq0 for some

m ∈ Z+, where q0 is the positive integer for which the maximum for bξUn,1(y) is attained, and
〈qξ1〉 = m〈q0ξ1〉 and 〈q(nξ1 + ξ2)〉 = m〈q0(nξ1 + ξ2)〉. Now

〈q0ξ2〉 = 〈q0(nξ1 + ξ2 − nξ1)〉 ≤
1

m
〈q(nξ1 + ξ2)〉+

|n|
m

〈qξ1〉 <
1

4m
+

L

8Lm
<

1

2m
,

so that 〈qξ2〉 = m〈q0ξ2〉. Therefore min( 1
q2 ,

√
y

Lq〈qξ1〉 ,
√
y

q〈qξ2〉) = m−2min( 1
q20
,

√
y

Lq0〈q0ξ1〉 ,
√
y

q0〈q0ξ2〉), so

that by our choice of q, m = 1 must hold. Now (86) is proved.

Case 1a: 〈qξ2〉 ≥ 2L〈qξ1〉. Then bξ,L(y) = min( 1
q2 ,

√
y

q〈qξ2〉), and also for each |n| ≤ L we

have 1
2〈qξ2〉 ≤ 〈q(nξ1 + ξ2)〉 ≤ 3

2〈qξ2〉 and 2
3bξ,L(y) ≤ bξUn,1(y) ≤ 2bξ,L(y). Hence (85) holds.

Case 1b: 〈qξ2〉 < 2L〈qξ1〉. Then 1
2 min( 1

q2
,

√
y

Lq〈qξ1〉) ≤ bξ,L(y) ≤ min( 1
q2
,

√
y

Lq〈qξ1〉). Note also

that there is ω ∈ {±1} such that 〈q(nξ1 + ξ2)〉 =
∣∣ωn〈qξ1〉 + 〈qξ2〉

∣∣ for every integer n with
|n| ≤ L; hence our task is to prove:

∑

|n|≤L

min
( 1

q2
,

√
y

q〈qξ1〉
,

√
y

q
∣∣n〈qξ1〉+ 〈qξ2〉

∣∣
)η

≍η Lmin
( 1

q2
,

√
y

Lq〈qξ1〉
)η

.(87)

Set A = max(0, 〈qξ2〉〈qξ1〉 − L). Then 0 ≤ A < L, and (87) is

≍
L∑

n=1

min
( 1

q2
,

√
y

(A+ n)q〈qξ1〉
)η

= q−2η
L∑

n=1

min
(
1,

B

A+ n

)η
,

with B =
√
yq

〈qξ1〉 . However the last expression is ≍η q−2ηLmin
(
1, (B/L)η

)
, uniformly over all

A ∈ [0, L]. Hence (87) holds.

Case 2: Assume bξ,L(y) < 8y
1
4 . Then the right hand side of (85) is ≍η Lyη/4, and it

now suffices to prove that
∑

|n|≤L bξUn,1(y)
η ≪η Lyη/4. For any integer n satisfying |n| ≤ L

and bξUn,1(y) > 16y
1
4 , we can do the following: Let L′ ≥ 1 be the largest number for which

bξUn,L′(y) ≥ 16y
1
4 . Then in fact L′ < L and bξUn,L′(y) = 16y

1
4 , since bξUn,L(y) ≤ 2bξ,L(y) <

16y
1
4 , by the proof of Lemma 10.2. Furthermore, by what we proved in Case 1,

∑

n−L′≤m≤n+L′

bξUm,1(y)
η ≪η L′bξUn,L′(y)η ≍ L′yη/4.

It follows that for every integer n with |n| ≤ L, there exist integers a(n) ≤ n ≤ b(n)

satisfying b(n)− n = n − a(n) < L, such that
∑b(n)

m=a(n) bξUm,1(y)
η ≪η (b(n) − a(n) + 1)yη/4.

(Indeed, if bξUn,1(y) ≤ 16y
1
4 then take a(n) = b(n) = n.)

Now fix F to be any subset of Z ∩ [−L,L] which is minimal with the property that
∪n∈F [a(n), b(n)] contains all Z ∩ [−L,L]. Let us write F = {n1, n2, . . . , nr} where n1 <
n2 < . . . < nr. Then a(n1) < a(n2) < . . . < a(nr), for otherwise, if a(nj) ≥ a(nj+1) for some
1 ≤ j < r, then [a(nj), b(nj)] ⊂ [a(nj+1), b(nj+1)] and so Z ∩ [−L,L] ⊂ ∪n∈F\{nj}[a(n), b(n)],
contradicting the minimality of F . Similarly b(n1) < b(n2) < . . . < b(nr). Next note that if
1 ≤ j ≤ r− 2 and b(nj) ≥ a(nj+2), then [a(nj+1), b(nj+1)] ⊂ [a(nj), b(nj)]∪ [a(nj+2), b(nj+2)],
so that nj+1 could be removed from F , a contradiction. Hence, for every j ∈ {1, . . . , r − 2}
we have b(nj) < a(nj+2). It follows that

∑
1≤j≤r
j odd

(b(nj)− a(nj) + 1) ≤ b(nr)− a(n1) + 1 ≪ L,
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and the same bound holds for the sum over all even j. Hence

∑

|n|≤L

bξUn,1(y)
η ≤

r∑

j=1

b(nj)∑

m=a(nj)

bξUm,1(y)
η ≪η

r∑

j=1

(b(nj)− a(nj) + 1)yη/4 ≪ Lyη/4.

�

Remark 10.1. For any integer n we have
∫ β

α
f
(
Γ(12, ξ)U

xa(y)) dx =

∫ β−n

α−n
f
(
Γ(12, ξU

n)Uxa(y)) dx,

since U−n ∈ Γ. Hence in Theorem 1.2, (4) holds more generally with the right hand side
replaced by

C‖f‖C8
b

Ln

β − α
b̃ξUn,Ln(y)

1−ε, with Ln := max(1, |α − n|, |β − n|),

where n is an arbitrary integer. It follows from Lemmata 10.1 and 10.2 that among the choices
of n, the best bound (to within an absolute constant) is obtained for any n such that the point
0 lies within distance ≪ 1 + |β − α| from the interval [α− n, β − n].

Remark 10.2. Assume now that |β − α| is large, and that [α, β] has distance ≪ |β − α| from
0, in line with Remark 10.1. One may then consider partitioning [α, β] into subintervals,
applying Theorem 1.2 to each of these individually, and then adding the results. It follows
from Lemma 10.4 (and Lemma 10.1) that the resulting error bound is never better (to within
an absolute constant) than the original one, (4); and if each subinterval has length ≫ 1 then
the resulting error bound is in fact equally good as (4).

11. General orbits

We will now prove the effective equidistribution result for arbitrary UR-orbits in X, Theo-
rem 1.6. The proof uses the technique of approximating nonclosed horocycles in X ′ by pieces
of closed horocycles, in the precise form which was worked out in Sarnak and Ubis [41, Sec. 2].
We fix a left invariant Riemannian metric dG on G. Recall that G′ = SL(2,R) ⊂ G and
Γ′ = SL(2,Z).

Proposition 11.1. [Sarnak and Ubis [41].] There is an absolute constant C1 > 0 such that
the following holds. For every M ∈ G′ and T ≥ 2 there is some γ = γM,T ∈ Γ′ and numbers
α = αM,T ∈ R, y = yM,T > 0, W = WM,T ∈ R and ω = ωM,T ∈ {1,−1} such that

1

C1y
≤ T ≤ C1|W |(88)

and such that, writing ℓ(t) ≡ t if ω = 1 and ℓ(t) ≡ T − t if ω = −1:

dG

(
γ−1MU ℓ(t) , U

α+ yW
1−ωt/W a

( y
(1−ωt/W )2

))
≪ |W |−1

|1− ωt/W | , ∀t ∈ [0, T ],(89)

and

−1
2 < ℜ

(
γ−1MU ℓ(0)(i)

)
≤ 1

2 .(90)

Proof. This is proved in [41, Sec. 2]. (Note that the restriction of dG to G′ is a left invariant
Riemannian metric on G′. Note also that once (88) and (89) hold, we can make also (90) hold
by replacing γ by γUn and α by α− n, for an appropriate n ∈ Z.) �

Now for any M ∈ G′ and T ≥ 2 we have defined both yM,T (in Proposition 11.1) and yM (T )
(in (6)). These are in fact of the same order of magnitude:

Lemma 11.2. yM,T ≍ yM (T ), uniformly over all M ∈ G′ and T ≥ 2.
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Proof. Let γ = γM,T , α = αM,T , y = yM,T and W = WM,T be as in Proposition 11.1. By (89),

dG(γ
−1MU ℓ(0), Uα+yW a(y)) ≪ |W |−1, and therefore dG(γ

−1MU ℓ(0)a(T ), Uα+yW a(y)a(T )) ≪
|W |−1T ≤ C1. Note here that U ℓ(0)a(T ) equals either a(T ) or UTa(T ) = a(T )U1. It follows
that, if we set g = γ−1Ma(T ) and consider the standard action of G′ on the Poincaré upper half
plane model of the hyperbolic plane, then ℑg(i) ≍ ℑUα+yWa(y)a(T )(i) = yT ≥ C−1

1 . Hence
the invariant height function used in [47] satisfies YΓ′(g) ≪ ℑ(g(i)) ≤ YΓ′(g) and therefore
YΓ′(g) ≍ yT . The lemma follows from this, since yM (T ) = T−1ℓ(g)−2 = T−1YΓ′(g). �

Using Theorem 1.2 and Proposition 11.1 we will now prove:

Theorem 11.3. Let ε > 0 be fixed. For any ξ ∈ R2, M ∈ G′, T ≥ 2, f ∈ C8
b(Γ\G), and for

any y = yM,T and γ = γM,T as in Proposition 11.1, we have

T−1

∫ T

0
f(Γ(12, ξ)MU t) dt =

∫

Γ\G
f dµ+Oε

(
‖f‖C8

b
b̃ξγ,yT (y)

1
2
−ε

)
.(91)

Here b̃ξγ,yT (y) := bξγ,yT (y) + y
1
4 as in (84).

We will see below that Theorem 11.3 implies Theorem 1.6.

Proof of Theorem 11.3. Let ξ,M, T, y, γ, f be as in the statement of the theorem; also fix
corresponding numbers α = αM,T , W = WM,T , ω = ωM,T as in Proposition 11.1, and set
ℓ(t) ≡ t if ω = 1, ℓ(t) ≡ T − t if ω = −1. Note that (91) is trivial when y ≥ 1 (since then

b̃ξγ,yT (y) > 1); hence from now on we will assume y < 1. We will partition the interval
[0, T ] into smaller intervals I0, I1, . . . , Im, in a way which we make precise below. Using
γ−1(12, ξ)M = (12, ξγ)γ

−1M we have

∫ T

0
f
(
Γ(12, ξ)MU t

)
dt =

m∑

j=0

∫

Ij

f
(
Γ(12, ξγ)γ

−1MU ℓ(t)
)
dt.(92)

For each j we set ρmax
j = supt∈Ij |1− ωt/W |, ρmin

j = inft∈Ij |1− ωt/W |. We also set τj = |Ij |,
the length of the interval Ij . Our partition will be such that I0 contains those t for which
1−ωt/W are closest to 0; in particular we will have ρmin

j > 0 for all j ≥ 1. Using (89) together

with |f(Γg1)− f(Γg2)| ≪ ‖f‖C1
b
dG(g1, g2) (∀g1, g2 ∈ G) and the fact that dG is left invariant,

we have, for each j ≥ 1,
∫

Ij

f
(
Γ(12, ξγ)γ

−1MU ℓ(t)
)
dt =

∫

Ij

f
(
Γ(12, ξγ)U

α+ yW
1−ωt/W a

( y
(1−ωt/W )2

))
dt

+O

(
‖f‖C1

b

τj

ρmin
j |W |

)
.(93)

We set y∗j = y/(ρmin
j )2. Note that a( y

(1−ωt/W )2
) = a(y∗j )a

( (1−ωt/W )2

(ρmin
j )2

)−1
and 1 ≤ (1−ωt/W )2

(ρmin
j )2

≤

1 +
2ρmax

j τj

(ρmin
j )2|W | for all t ∈ Ij; therefore dG

(
a( y

(1−ωt/W )2
), a(y∗j )

)
≪ ρmax

j τj

(ρmin
j )2|W | for all t ∈ Ij. We

will choose the intervals I0, . . . , Im so that ρmax
j ≤ 2ρmin

j for each j ≥ 1. Hence we may replace

a( y
(1−ωt/W )2 ) by a(y∗j ) in the integral in (93), without changing the error term. Next we take

s = α+ yW
1−ωt/W as a new variable of integration. Let Sj ⊂ R be the s-interval which corresponds

to Ij . Note that |Sj| = yτj
ρmin
j ρmax

j
, and dt

ds = ωy−1(1−ωt/W )2 = ω
ρmin
j ρmax

j

y +O(
ρmax
j τj
y|W | ) for t ∈ Ij .

Hence (93) equals

ρmin
j ρmax

j

y

∫

Sj

f
(
Γ(12, ξγ)U

s a(y∗j )
)
ds+O

(
‖f‖C1

b

1 + τ2j

ρmin
j |W |

)
.(94)
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We will choose the intervals I0, . . . , Im so that y∗j < 1 for each j ≥ 1. Take nj ∈ Z so that

Sj −nj intersects the interval [0, 1), and set γj := γUnj . Applying Theorem 1.2 together with
Remark 10.1 (with n = nj), we conclude that

∫

Ij

f
(
Γ(12, ξγ)γ

−1MU ℓ(t)
)
dt = τj

∫

Γ\G
f dµ+Oε

(
‖f‖C8

b

Lj

y∗j
b̃ξγj ,Lj

(y∗j )
1−ε + ‖f‖C1

b

1 + τ2j

ρmin
j |W |

)
,

(95)

where Lj = 1 + |Sj|. We have |Sj| = yτj
ρmin
j ρmax

j
≍ y∗j τj, and we will choose I0, . . . , Im in such

a way that y∗j τj ≪ 1 for all j ≥ 1; hence (95) holds with Lj replaced by 1. We now wish
to choose I0, . . . , Im in such a way that for each j ≥ 1, τj takes a value which essentially

minimizes τ−1
j times the error term in (95), but subject to y∗j τj ≪ 1.

The precise choice of I0, . . . , Im is made according to the following algorithm. Let the ab-
solute constant C1 > 0 be as in Proposition 11.1, and set C2 =

1
2(1+C1)3

.

1. Set j = 1 and T1 = 0.

2. If 1− ωTj/W > 2y
1
4 then set ρj = |1− ωTj/W |, nj = ⌊α + yW

1−ωTj/W
⌋ ∈ Z and γj = γUnj ,

and go to Step 3; otherwise change the value of Tj to Tj = T and go to Step 4.

3. Set τj = min
(
ρ

3
2
j y

− 1
2 |W | 12 b̃ξγj ,1(y/ρ2j )

1
2 , C2ρ

2
jy

−1, T − Tj

)
, Tj+1 = Tj+τj and Ij = [Tj , Tj+1].

If Tj+1 = T , set m = j and I0 = ∅, and we are done; otherwise replace j by j +1 and go back
to Step 2.

4. If 1−ωTj/W < −2y
1
4 then set ρj = |1−ωTj/W |, nj = ⌊α+ yW

1−ωTj/W
⌋ ∈ Z and γj = γUnj ,

and go to Step 5; otherwise set m = j − 1 and I0 = [0, T ] \ ∪m
i=1Ii (this is an interval), and we

are done.

5. Set τj = min
(
ρ

3
2
j y

− 1
2 |W | 12 b̃ξγj ,1(y/ρ2j )

1
2 , C2ρ

2
jy

−1
)
, Tj+1 = Tj−τj and Ij = [Tj+1, Tj ]. Then

replace j by j + 1 and go back to Step 4.

Note that |1 − ωt/W | ≤ 1 + T/|W | ≤ 1 + C1 for all t ∈ [0, T ]; hence we always get

2y
1
4 < ρj ≤ 1 + C1 in Steps 2 and 4. Using this and (88) we see that each time we set τj

and Ij in Steps 3 and 5, we get τj ≤ C2ρ
2
jy

−1 ≤ C2C
2
1(1 +C1)ρj |W | < 1

2ρj |W |, and therefore

|1 − ωt/W − ρj | < 1
2ρj for all t ∈ Ij . Hence for each such interval Ij we have ρmin

j > 0 and

ρmax
j < 2ρmin

j , and also y∗j = y/(ρmin
j )2 < 4y/ρ2j < y

1
2 < 1. It also follows that for any interval

Ij obtained in Step 3 (resp. Step 5) we have 1− ωt/W > y
1
4 (resp. 1− ωt/W < −y

1
4 ) for all

t ∈ Ij ; therefore the intervals constructed in Steps 2–3 do not overlap with those constructed
in Steps 4–5. Hence the resulting I0, I1, . . . , Im indeed form a partition of [0, T ] (after possibly
removing one or both endpoints from some of the Ij ’s), satisfying all the conditions specified
earlier.

For each j ≥ 1 we have, because of the choice of τj in Steps 3 and 5,

1 + τ2j

ρmin
j |W | ≪ (ρmin

j )−1 + (ρmin
j )2y−1b̃ξγj ,1(y

∗
j ) ≪ y∗j

− 1
2 + y∗j

−1b̃ξγj ,1(y
∗
j ) ≪ y∗j

−1b̃ξγj ,1(y
∗
j ).

Hence by (92) and (95) (with Lj = 1), we have (possibly with m = 0):

∫ T

0
f
(
Γ(12, ξ)MU t

)
dt =

∫

I0

f(· · · ) dt+
( m∑

j=1

τj

)∫

Γ\G
f dµ+Oε

(
‖f‖C8

b

m∑

j=1

y∗j
−1 b̃ξγj ,1(y

∗
j )

1−ε

)
.

Next we note that
∫
I0
f dt = τ0

∫
Γ\G f dµ + O(‖f‖C0

b
τ0) and τ0 ≪ y

1
4T . (Indeed, τ0 ≤ T ; also

if y
1
4 < 1

4 , say, and I0 6= ∅, then it follows from our construction that |1 − ωt/W | ≤ 2y
1
4 < 1

2
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for all t ∈ I0; hence |W | < 2T and τ0 = |I0| ≤ 4y
1
4 |W | < 8y

1
4T .) Therefore,

∫ T

0
f
(
Γ(12, ξ)MU t

)
dt = T

∫

Γ\G
f dµ+Oε

(
‖f‖C8

b

){
Ty

1
4 +

m∑

j=1

y∗j
−1 b̃ξγj ,1(y

∗
j )

1−ε
}
.(96)

Now for each n ∈ Z, let Jn be the set of those j ∈ {1, . . . ,m} for which nj = n. By our

choice of nj , for each j ∈ Jn there is some t ∈ Ij such that yW
1−ωt/W ∈ [n − α, n − α + 1).

If |n − α| ≥ 2 then this forces |1 − ωt/W | ≍ y|W |
|n−α| ; on the other hand if |n − α| < 2 then

both |1 − ωt/W | ≍ 1 and y|W | ≍ 1, since y|W | ≥ C−2
1 and |1 − ωt/W | ≤ 1 + C1 by

Prop. 11.1. It follows that ρmin
j ≍ ρmax

j ≍ ρ(n) := y|W |
1+|n−α| for each j ∈ Jn, and thus also

y∗j ≍ y/ρ(n)2 and |Sj| ≍ yτj/ρ(n)
2. But

∑
j∈Jn |Sj | = | ∪j∈Jn Sj| ≪ 1, since for each j ∈ Jn

we have |Sj | ≪ 1 (by our choice of τj) and Sj ∩ [n, n + 1) 6= ∅. Hence
∑

j∈Jn τj ≪ ρ(n)2y−1.

However for all except at most one j ∈ Jn (the possible exception being j = m) we have

τj ≫ min(ρ(n)
3
2 y−

1
2 |W | 12 b̃ξγUn,1(y/ρ(n)

2)
1
2 , ρ(n)2/y). Hence

#Jn ≪ 1 + ρ(n)
1
2 y−

1
2 |W |− 1

2 b̃ξγUn,1

(
y/ρ(n)2

)− 1
2 ≪ b̃ξγUn,1

(
y/ρ(n)2

)− 1
2 ,(97)

and thus in (96) we have
m∑

j=1

y∗j
−1 b̃ξγj ,1(y

∗
j )

1−ε ≪ y−1
∑

n∈Z
(Jn 6=∅)

ρ(n)2 b̃ξγUn,1

(
y/ρ(n)2

) 1
2
−ε

≪ y−1
∑

n∈Z
(Jn 6=∅)

ρ(n)
3
2 b̃ξγUn,1(y)

1
2
−ε,(98)

where we used Lemma 10.1 and the fact that ρ(n) ≪ 1 for all n.
Let us first assume |W | ≥ 2T . Then for every n with Jn 6= ∅ we have ρ(n) ≍ 1, and there

is some t ∈ [0, T ] such that n = α + yW
1−ωt/W + O(1); thus n = α + yW + O(yT ) = O(yT ),

since |α + yW | ≪ 1 by (90) and (89). Hence by Lemma 10.4, (98) is ≪ T b̃ξγ,yT (y)
1
2
−ε.

Next assume instead |W | < 2T . Then |W | ≍ T , by (88). Given ρ̃ ∈ (0, 1], note that

for every n with ρ(n) = y|W |
1+|n−α| ≥ ρ̃ we have |n − α| < ρ̃−1y|W | ≍ ρ̃−1yT , and since

|α + yW | ≪ 1 this implies |n| ≪ ρ̃−1yT . By Lemma 10.4, the sum of b̃ξγUn,1(y)
1
2
−ε over all

these n is ≪ ρ̃−1yT b̃ξγ,yT (y)
1
2
−ε. Hence the contribution from all n with ρ(n) ≥ 1

2 in (98) is

≪ T b̃ξγ,yT (y)
1
2
−ε, and for each k ∈ Z+, the contribution from all n with ρ(n) ∈ [2−k−1, 2−k) in

(98) is ≪ 2−
1
2
kT b̃ξγ,yT (y)

1
2
−ε. Adding over k we again conclude that (98) is ≪ T b̃ξγ,yT (y)

1
2
−ε.

In view of (96), this completes the proof of Theorem 11.3. �

We remark that the last step in (97) is in general wasteful, but leads to a simple result.
Working instead with the first bound in (97) one obtains a variant of Theorem 11.3 with a
more complicated but generally better error term:

Theorem 11.3′. Let ε > 0 be fixed. For any ξ ∈ R2, M ∈ G′, T ≥ 2, f ∈ C8
b(Γ\G), and for

any y = yM,T and γ = γM,T as in Proposition 11.1, we have

T−1

∫ T

0
f(Γ(12, ξ)MU t) dt =

∫

Γ\G
f dµ+Oε

(
‖f‖C8

b
b̃ξγ,yT (y)

1
2
−ε

(
b̃ξγ,yT (y)

1
2 +

(
y|W |

)− 1
2

))
.

It is worth noticing that in the special case M = Uα0a(y0) with −1
2 < α0 ≤ 1

2 , y0 small and

T > C−1
1 y−1

0 , we may take γM,T = 12 in Proposition 11.1, as well as αM,T = α0 − y0WM,T

and WM,T “very large” (that is, let WM,T → ∞ for our fixed M,T , so that (89) turns into
an equality between two points in G). In this case, one may expect from the method of
proof that Theorem 11.3 should recover the statement of Theorem 1.2, with y = y0, α = α0,
β = β0 + y0T . This is indeed seen to be the case when we use the more precise error term
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of Theorem 11.3′. In this vein recall also Remarks 10.1, 10.2. In the case of β − α becoming
small as y → 0 in Theorem 1.2, we expect that Theorem 11.3′ should typically result in a
better error term than that of Theorem 1.2.

Next we will reinterprete the error term in Theorem 11.3 and thereby deduce Theorem 1.6.
Recall RL = [−L−1, L−1]× [−1, 1] ⊂ R2. Let us first note that, for any ξ ∈ R2, L > 0, y > 0,

bξ,L(y) = inf
{
δ > 0 :

[
∀q ∈ Z+

≤δ−1/2 : (q−1Z2 + ξ) ∩
√
y

δq2
RL = ∅

]}
.(99)

Indeed, from the definition (3) we see that, given any δ > 0 we have bξ,L(y) ≥ δ if and only

if there is some q ∈ Z+ such that q ≤ δ−1/2, 〈qξ1〉 ≤
√
y

δLq and 〈qξ2〉 ≤
√
y

δq ; and the last two

conditions hold if and only if (Z2 + qξ) ∩
√
y

δq RL 6= ∅.
Using

√
y

δq2
RL = ( 1

δq2
RL/y)a(y)

−1, the formula (99) may also be expressed as

bξ,L(y) = b(12,ξ)a(y)(L/y),(100)

where in the right hand side we use the notation introduced in (8).

Proof of Theorem 1.6. Let g, T, f be as in the statement of Theorem 1.6. Write g = (12, ξ)M ;
fix corresponding numbers y = yM,T , α = αM,T , W = WM,T , ω = ωM,T and γ = γM,T ∈ Γ′

as in Proposition 11.1, and set ℓ(t) ≡ t if ω = 1, ℓ(t) ≡ T − t if ω = −1. By (89) we have

γ−1MU ℓ(0) = Uα+yW a(y)η for some η ∈ G′ in a O(|W |−1)-neighbourhood of 12. Hence for
any q ∈ Z+,

(q−1Z2)g = (q−1Z2 + ξ)γγ−1M = (q−1Z2 + ξγ)Uα+yW a(y)ηU−ℓ(0).

Now assume that, for some q ∈ Z+ and δ > 0, the lattice translate q−1Z2 + ξγ contains a

point (x1, x2) ∈
√
y

δq2
RyT . Then (q−1Z2)g contains the point

(x1, x2)U
α+yW a(y)ηU−ℓ(0) =

(
y1/2x1, y

−1/2((α + yW )x1 + x2)
)
ηU−ℓ(0).

But here |α + yW | ≪ 1 by (89), (90), and yT ≫ 1 by (88); hence |x1| ≤ 1
δq2

√
yT

≪
√
y

δq2
, and

the above point is

=
(
O
( 1

δq2T

)
, O

( 1

δq2

))(
1 +O(|W |−1) O(|W |−1)
O(|W |−1) 1 +O(|W |−1)

)(
1 O(T )
0 1

)
=

(
O
( 1

δq2T

)
, O

( 1

δq2

))
,

where we also used the fact that |W | ≫ T . We have thus proved that there is an absolute

constant C2 > 1 such that, for any q ∈ Z+ and δ > 0 for which (q−1Z2 + ξγ) ∩
√
y

δq2RyT 6= ∅,
we have (q−1Z2)g ∩ C2

δq2
RT 6= ∅. Hence by (99),

bξγ,yT (y) = inf
{
δ > 0 :

[
∀q ∈ Z+

≤δ−1/2 : (q−1Z2 + ξγ) ∩
√
y

δq2
RyT = ∅

]}

≤ inf
{
δ > 0 :

[
∀q ∈ Z+

≤δ−1/2 : (q−1Z2)g ∩ C2

δq2
RT = ∅

]}

≤ C2 inf
{
δ > 0 :

[
∀q ∈ Z+

≤δ−1/2 : (q−1Z2)g ∩ 1

δq2
RT = ∅

]}
= C2bg(T ).

Using this bound together with b̃ξγ,yT (y) = y
1
4 + bξγ,yT (y) and y = yM,T ≪ yM (T ) = yg(T )

(cf. Lemma 11.2), we see that b̃ξγ,yT (y) ≪ yg(T )
1
4 + bg(T ), so that Theorem 1.6 follows from

Theorem 11.3. �

Finally let us prove that, generically, the error term in Theorem 1.6 decays like T− 1
8
+ε as

T → ∞.

Proposition 11.4. Let 0 < α < 1
2 and M ∈ G′ be given. Then for Lebesgue almost all

ξ ∈ R2, there is some C > 0 such that b(M,ξ)(T ) < CT−α for all T ≥ 1.
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Proof. It follows from the definition, (8), that for given (M, ξ) ∈ G and C ≥ 1, the inequality
b(M,ξ)(T ) < CT−α holds for all T ≥ 1 if and only if, for every q ∈ Z+, the lattice translate

ξ + q−1Z2M is disjoint from the set

BCq2 =
⋃

T≥(Cq2)1/α

Tα

Cq2
RT =

{
(x1, x2) ∈ R2 : |x1| ≤ (Cq2)−

1
α min

(
1, |x2|1−

1
α
)}

.

For given M ∈ G′ we write L = Z2M , so that the lattice translate in question is ξ + q−1L.
Note that this point set only depends on the congruence class of ξmod q−1L. Now
∫

R2/L
I
(
(ξ + q−1L) ∩BCq2 6= ∅

)
dξ = q−2

∫

R2/qL
I
(
(η + L) ∩ qBCq2 6= ∅

)
dη

=

∫

R2/L
I
(
(η + L) ∩ qBCq2 6= ∅

)
dη ≤

∫

R2/L

∑

m∈L
I
(
η +m ∈ qBCq2

)
dη =

∣∣qBCq2
∣∣ = q2

∣∣BCq2
∣∣,

where we substituted ξ = q−1η, and where | · | denotes Lebesgue measure on R2. Next note

that, since 1 − 1
α < −1, we have

∣∣BCq2
∣∣ = K(Cq2)−

1
α where K > 0 is a constant which only

depends on α. It follows that
∫

R2/L
I
(
∃T ≥ 1 : b(M,ξ)(T ) ≥ CT−α

)
dξ ≤

∞∑

q=1

q2
∣∣BCq2

∣∣ = K
( ∞∑

q=1

q2(1−
1
α
)
)
C− 1

α .

The sum converges for our α, and the proposition follows since the last expression tends to
zero as C → ∞. �

Remark 11.1. As we noted in the introduction, Proposition 11.4 implies that for µ-almost all

g ∈ G, the right hand side in (9) in Theorem 1.6 decays more rapidly than T ε− 1
8 as T → ∞

(∀ε > 0). On the other hand, using the fact that the flow {U t} is mixing on smooth vectors
in L2(X) with a rate tε−1 as t → ∞ (as follows from [4] combined with an argument as in
[37, Lemma 2.3]2), one can prove that for sufficiently nice test functions f on Γ\G, and for
µ-almost all Γg ∈ X, the deviation of the ergodic average in the left hand side of (9) decays

like T ε− 1
2 as T → ∞; cf. [12]. In this last statement the µ-null set of exceptional points Γg

is non-explicit and depends on f ; furthermore the implied constant in the bound depends on
both f and Γg in a non-explicit way; the strength of Theorem 1.6 lies of course in the fact
that it gives a bound where all these dependencies are explicit. Nevertheless, the discussion

suggests that it might be possible to improve Theorem 1.6 so as to yield a rate of decay T ε− 1
2

for any Γg ∈ X satisfying an appropriate Diophantine condition.
In this vein, we note that there are two steps in our proof of Theorem 1.6 which are clearly

non-optimal, each of which causes a halving of the expected optimal exponent. The first is
when we bound the d-sums in (27) individually for each c using the Weil bound, and the
second is in (93), where we replace the integral over the given orbit with an integral over a
nearby orbit which is a lift of a piece of a closed horocycle. We discussed the first of these
in Remark 8.1. Regarding the second step, we note that a possible approach for an improved
treatment might be to rework the proof of Theorem 1.2 for the case of an arbitrary U t-orbit,
choosing coordinates in a similar way as in the proofs of [47, Propositions 5.1 and 5.3].
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