
ON THE UNIFORM EQUIDISTRIBUTION OF LONG
CLOSED HOROCYCLES

ANDREAS STRÖMBERGSSON

Abstract
It is well known that on any given hyperbolic surface of finite area, a closed horocycle
of length ` becomes asymptotically equidistributed as ` → ∞. In this paper we prove
that any subsegment of length greater than `1/2+ε of such a closed horocycle also
becomes equidistributed as ` → ∞. The exponent 1/2 + ε is the best possible and
improves upon a recent result by Hejhal [He3]. We give two proofs of the above result;
our second proof leads to explicit information on the rate of convergence. We also
prove a result on the asymptotic joint equidistribution of a finite number of distinct
subsegments having equal length proportional to `.
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1. Introduction
Let 0 be a cofinite Fuchsian group acting on the Poincaré upper half-plane H with
metric ds = |dz|/y. We assume that 0 \ H has at least one cusp. By an auxiliary
conjugation, we may then assume that 0 \ H has one cusp located at ∞ and that the
isotropy group 0∞ is generated by the translation S(z) = z + 1.

For any y > 0, the curve {x + iy | x ∈ [0, 1]} is a closed horocycle of length 1/y
on 0\H . When y → 0, this curve is known to become equidistributed on 0\H with
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respect to the Poincaré area µ. (Recall that dµ = y−2 dx dy.) Investigations related to
this fact have been carried out by a number of people over the years, including Selberg
(unpublished), Zagier [Z], Sarnak [S], Hejhal [He2], [He3], and Flaminio and Forni
[FF].

By elementary functional analysis, the equidistribution fact just mentioned is
equivalent to the assertion that∫ 1

0
f (x + iy) dx →

1
µ(0 \ H )

∫
0\H

f (z) dµ(z)

holds for every compactly supported function f ∈ C(0 \ H ) as y → 0+.
In [He3], Hejhal asked the following question. To exactly what degree of unifor-

mity does this equidistribution result hold? Specifically, for numbers α = α(y) <

β = β(y), under what conditions do we have

1
β − α

∫ β

α
f (x + iy) dx →

1
µ(0 \ H )

∫
0\H

f (z) dµ(z) (1.1)

as y → 0?
The main result in [He3] is that there exists a positive constant c(0) 5 1/3,

which depends only on the group 0, such that (1.1) holds as y → 0 so long as β − α

is kept bigger than yc(0)−ε. The proof is based on spectral-theoretic techniques. (The
constant c(0) obtained in [He3] depends on the smallest eigenvalue λ1 > 0 of the
Laplacian on 0 \ H ; in particular, [He3] gives c(0) = 1/3 if and only if λ1 = 3/16.)

For fixed α and β, a proof of (1.1) was outlined earlier in [He2, page 44], and
the same assertion can also be obtained using ergodic-theoretic techniques (see [EM,
Theorem 7.1]∗ as well as [Sh]).

In this paper, we improve the result from [He3] to show that, for any Fuchsian
group 0 as above, we may in fact take c(0) = 1/2. In other words, we prove the
following.

THEOREM 1
Let 0 be a cofinite Fuchsian group such that 0 \ H has a cusp at ∞, with 0∞ =

[z 7→ z + 1]. Let δ > 0, and let f : H → C be any fixed, bounded, continuous, and
0-invariant function. Then

1
β − α

∫ β

α
f (x + iy) dx →

1
µ(0 \ H )

∫
0\H

f (z) dµ(z) (1.2)

uniformly as y → 0 so long as β − α remains bigger than y1/2−δ .

∗The proof in [EM] is for closed horocycles, that is, α = 0, β = 1, but the proof can be adapted to work for any
fixed α < β.
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The exponent c(0) = 1/2 is the best possible result because, as remarked in [He3,
page 840], it is easily seen that there are numerous cases of α = α(y), β = β(y) with
β − α = [const] y1/2 as y → 0 such that all of the horocycle segments [α, β] + iy
stay far out in one cusp of 0 \ H .

We give two different proofs of Theorem 1. In §3 we give a proof using ergodic
properties of the horocycle flow on 0 \ PSL(2, R). This approach leads to a more
general version of Theorem 1 in that we obtain asymptotic equidistribution on the
unit tangent bundle of 0 \ H . We also replace the boundedness assumption on f by
a weaker condition on the growth of f in each cusp.

Our second proof of Theorem 1 is given in §§4 and 5. This proof uses spectral
theory and yields a stronger result than Theorem 1 as we also obtain explicit infor-
mation on the rate of convergence in (1.2) (albeit for a more restricted class of test
functions f ). Such information does not seem possible to obtain using the ergodic
methods of §3.

We remark that our approach in §§4 and 5 is different from the one used in
[He3], although both are based on spectral-theoretic techniques in a completely clas-
sical style. The present proof uses the spectral expansion of the given test function f
in a direct way, and the argument ultimately relies on uniform Rankin-Selberg-type
bounds on the Fourier coefficients cn of the eigenfunctions. In case there are small
eigenvalues present (0 < λ < 1/4), we also need to use bounds on sums of the
form

∑N
n=1 cne(nα). For a Maass cusp form, this sum is known to be bounded by

O(N 1/2+ε); however, for a noncuspidal Maass waveform, the best possible uniform
bound is O(N 1−

√
1/4−λ), which we prove in Proposition 5.1 (see also Remark 5.2).

We should mention a recent paper by Flaminio and Forni, [FF], in which a de-
tailed analysis is made of the invariant distributions and the cohomological equation
for the horocycle flow on 0 \SL(2, R). One possible alternative approach to the ques-
tion of the rate of convergence in (1.2) would be to build on the results in that paper,
adapting the technique in [FF, §5].

We next turn to another natural question concerning the deeper properties of the
asymptotic distribution of the closed horocycle [0, 1]+ iy. To what extent are we able
to assert that distinct subsegments [α j , α j + `] + iy ( j = 1, . . . , N ) tend to become
more and more decorrelated position-wise on 0 \ H as y → 0? This question was
raised by Hejhal in [He2] in connection with a heuristic and numerical study of the
sum

Sy,N (x) =

N−1∑
j=0

F
( x + j

N
+ iy

)
.

Here F is a test function on 0 \ H , x ∈ [0, 1], and N → ∞, y → 0 in such a way
that N y → 0. The numerical studies in [He2] carried out on the nonarithmetic Hecke
triangle groups 0 = G5 and 0 = G7 showed that for several choices of functions F
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(of mean zero), the value distribution of N−1/2
· Sy,N (x) with respect to x ∈ [0, 1]

clearly approached a Gaussian curve. However, for the arithmetic group 0 = G3 =

PSL(2, Z), this Gaussian behavior broke down completely, and an explanation of this
phenomenon was given based on the existence of Hecke operators on PSL(2, Z).

In §6, we study this question for fixed N by applying, on the group PSL(2, R)N ,
the topological rigidity of unipotent flows proved by Ratner in [R2] together with a
theorem by Shah [Sh, Theorem 1.4] on the asymptotic equidistribution of expanding
translates of certain orbits on homogeneous spaces. We prove in Theorem 4 that unless
there are Hecke symmetries present to force correlations, distinct segments [α j , α j +

`] + iy indeed go decorrelated, and even jointly equidistributed, as y → 0 (with
` fixed). As an application, using the central limit theorem for independent random
variables, we show that on any nonarithmetic Hecke triangle group 0 = GL (i.e.,
L = 5 or L = 7), if y = y(N ) tends to zero sufficiently rapidly as N → ∞, then the
value distribution of N−1/2

· Sy,N (x) indeed has a Gaussian limit, as expected from
[He2] (cf. Corollary 6.5 and Remark 6.6). We should stress, however, that we do not
know of any way to make “sufficiently rapidly” effective in this statement, and we
are still very far from being able to prove any result about Sy,N (x) in the case that
receives most attention in [He2], namely, y = N−1−ε.

In the last section, §7, we state some further extensions and applications of The-
orem 1; in particular, we present a new result on the value distribution of the general-
ized theta sum

2 f (x + iy) = y1/4
∑
n∈Z

f (ny1/2)e(n2x),

which was studied by Marklof in [Mar1].

2. Some preliminaries on 0 \ H and the distribution of cusps
We start by introducing some notation that is in force throughout this paper. (To a
large extent, our notation is the same as in [He1, page 268].)

We let 0 be as in the introduction; that is, 0 is a cofinite Fuchsian group having a
normalized cusp at ∞. We let F ⊂ H be a canonical (closed) fundamental domain
for 0 \ H , and we let η1 = ∞, η2, . . . , ηκ (where κ = 1) be the vertices of F along
∂H = R ∪ {∞}. Since F is canonical, η1, . . . , ηκ are 0-inequivalent.

We denote

S =

(
1 1
0 1

)
.

For each k ∈ {1, . . . , κ}, we choose Nk ∈ PSL(2, R) such that Nk(ηk) = ∞ and
such that the stabilizer 0ηk is [Tk], where Tk := N−1

k S−1 Nk . We will always keep
N1 =

(
1 0
0 1

)
.

Since F is canonical, its intersection with {z ∈ H | Im z = B} for B large is a
vertical strip [x, x + 1] × [B, ∞) ⊂ H ; without loss of generality, we may assume
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that F was chosen so that x = 0. Then, by modifying Nk for k = 2, . . . , κ , we can
ensure that

Nk(F )
⋂ {

z ∈ H
∣∣ Im z = B

}
= [0, 1] × [B, ∞) (2.1)

holds for all k ∈ {1, . . . , κ} and for all B = B0, where B0 = B0(0) > 1 is a constant
fixed once and for all.

For B = B0, the corresponding cuspidal region in F is called Ck B :

Ck B = N−1
k

(
[0, 1] × [B, ∞)

)
⊂ F . (2.2)

We then define

FB = F −

κ⋃
k=1

Ck B . (2.3)

This is a bounded region.
Closely related to the above splitting of the fundamental domain is the invariant

height function, Y0(z). This is defined by

Y0(z) = max
k∈{1,...,κ}

max
W∈0

Im Nk W (z) (z ∈ H ) (2.4)

(cf. [I, (3.8)]). The function Y0(z) is well known to be continuous and is 0-invariant
and is bounded from below by a positive constant that depends only on the group 0.
Notice that we have Y0(z) → ∞ when z ∈ F approaches any of the cusps.

One important step in the ergodic-theoretic proof of Theorem 1 is carried out in
this section. We show that it is not possible for a positive proportion of the horocycle
segment [α, β] + iy to escape into some cusp as y → 0, so long as we keep β − α =
y1/2−δ . A precise form of this statement is given in the following proposition.

PROPOSITION 2.1
Given any number ε > 0, there exists a continuous, 0-invariant function f : H →

[0, 1] which has compact support on 0 \ H , such that the following holds. For any
δ > 0, there is a y0 > 0 such that

1
β − α

∫ β

α
f (x + iy) dx = 1 − ε

for all 0 < y < y0 and all α, β ∈ R such that β − α = y1/2−δ .

Without much extra difficulty, we can in fact prove a stronger result, the use of which
later on allows us to replace the boundedness assumption in Theorem 1 by the weaker
assumption f (z) = O(

√
Y0(z)).
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Given any constant M = 0, we define the cutoff function

bxcM :=

{
x if x = M,

0 otherwise.
(2.5)

PROPOSITION 2.2
Let δ > 0 be given. We then have

1
β − α

∫ β

α

√
Y0(x + iy) dx = O(1) (2.6)

for all 0 < y < 1 and all α, β ∈ R such that β − α = y1/2−δ. The implied constant
depends only on 0 and δ. Furthermore, given any M = 10, there is some y0 =

y0(M, δ) > 0 such that

1
β − α

∫ β

α

√
bY0(x + iy)cM dx 5

25κ
√

M
(2.7)

for all 0 < y < y0 and all α, β ∈ R such that β − α = y1/2−δ.

Proof of Proposition 2.1 using Proposition 2.2
Take M = 10 so large that 25κ/

√
M < ε, and let F : R+

→ [0, 1] be a continuous
function satisfying F(y) = 1 for 0 < y 5 M and F(y) = 0 for y = M + 1. Set
f (z) = F(Y0(z)). Using f (z) = 1−

√
bY0(z)cM (∀z ∈ H ) and (2.7) in Proposition

2.2, we obtain the desired result.

Proof of Proposition 2.2
We first prove the second assertion, (2.7). Using (2.4) and Nk[Tk] = [S]Nk , we see
that the left-hand side in (2.7) is bounded from above by

κ∑
k=1

∑
W0∈[Tk ]\0

1
β − α

∫ β

α

√
bIm Nk W0(x + iy)cM dx, (2.8)

where [Tk] \ 0 denotes a set of representatives of the cosets {[Tk]W | W ∈ 0}. We
temporarily fix some M = 10, some y ∈ (0, 1), and some α, β such that β − α =
y1/2−δ.

Take k ∈ {1, . . . , κ}, and look at any W0 ∈ [Tk] \ 0 that gives a nonzero contri-
bution to (2.8). Write Nk W0 =

(
a b
c d

)
. Then there is some x ∈ [α, β] for which

M 5 Im Nk W0(x + iy) =
y

|c(x + iy) + d|2
. (2.9)
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Hence
(

a b
c d

)
/∈ [S] since M > y. Using Lemma 2.3 below

(
with j = 1, N1 =(

1 0
0 1

))
, we now get |c| = 1. From (2.9) we also get |c| 5 (My)−1/2 and |x + d/c| 5

y1/2
|c|−1 M−1/2 5 (β − α)M−1/2, and hence

−
d
c

∈ [µ, ν], where µ = α −
β − α
√

M
, ν = β +

β − α
√

M
. (2.10)

Now notice that∫ β

α

√
bIm Nk W0(x + iy)cM dx 5

∫
∞

−∞

√⌊ y
(cx + d)2 + (cy)2

⌋
M

dx

=

√
y

|c|

∫ (Mc2 y)−1

1

du
√

u
√

u − 1
.

(We substituted x = −d/c ± y
√

u − 1.) Using (u(u − 1))−1/2 5 (u − 1)−1/2 for
1 5 u 5 2 and (u(u − 1))−1/2 5 2/u for 2 5 u, we see that

∫ D
1 (u(u − 1))−1/2 du 5

2(1 + log D) for all D = 1. Hence∫ β

α

√
bIm Nk W0(x + iy)cM dx 5

2
√

y
|c|

(
1 + 2 log

( 1
√

My|c|

))
.

In conclusion, we see that the left-hand side in (2.7) is bounded from above by

1
β − α

κ∑
k=1

∑
W0

2
√

y
|c|

(
1 + 2 log

( 1
√

My|c|

))
, (2.11)

where the inner sum is taken over all W0 ∈ [Tk] \ 0 such that 1 5 |c| 5 (My)−1/2

and −d/c ∈ [µ, ν] for
(

a b
c d

)
= Nk W0.

Sums similar to the inner sum in (2.11) also occur in §5, where we prove a bound
on sums of Fourier coefficients of Maass waveforms of residual type. The following
three lemmas give useful inequalities related to these types of sums.

LEMMA 2.3
Let j, k ∈ {1, . . . , κ} be given. Take

(
a b
c d

)
∈ Nk0N−1

j . Then

|c| = 1, unless k = j and
(

a b
c d

)
∈ [S].

Proof
We write T =

(
a b
c d

)
= Nk W N−1

j with W ∈ 0. We then find that T ST −1
=

(
∗ ∗

−c2
∗

)
and T ST −1

∈ Nk0N−1
k . But Nk0N−1

k is a Fuchsian group having ∞ as a cusp, with
stabilizer (Nk0N−1

k )∞ = [S]. Hence by Shimizu’s lemma (cf. [Shi, Lemma 4] or
[Mi, Lemma 1.7.3]), we have either | − c2

| = 1 or T ST −1
∈ [S]. In the second case,

T −1(∞) is a fix-point of S, and thus T −1(∞) = ∞, which gives W (η j ) = ηk and
hence k = j and W ∈ [Tk] = N−1

k [S]Nk , and
(

a b
c d

)
= Nk W N−1

k ∈ [S].
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We define

Ck
µν(X) := ]

{
W0 = N−1

k
(

a b
c d

)
∈ [Tk] \ 0

∣∣∣ 0 < |c| 5 X, −
d
c

∈ [µ, ν]

}
. (2.12)

LEMMA 2.4
For any k ∈ {1, . . . , κ}, µ < ν, and X > 0, we have

Ck
µν(X) 5 (ν − µ)X2

+ 1.

Proof (Cf. [I, Proposition 2.8])
Let M be the set occurring in the right-hand side in the definition of Ck

µν(X). If W0 =

N−1
k

(
a b
c d

)
and W ′

0 = N−1
k

(
a′ b′

c′ d ′

)
are any two distinct elements of M , then W0W ′

0
−1 /∈

[Tk] and
(

a b
c d

)(
a′ b′

c′ d ′

)−1
= Nk W0W ′

0
−1 N−1

k ∈ Nk0N−1
k . Hence by Shimizu’s lemma

(cf. the proof of Lemma 2.3), we have |cd ′
− dc′

| = 1. But 0 < |c|, |c′
| 5 X ; hence∣∣∣d ′

c′
−

d
c

∣∣∣ = |cc′
|
−1 = X−2.

The lemma now follows by ordering the elements in M by increasing quotients
d/c and then adding the above inequality over all pairs of consecutive elements in M .

LEMMA 2.5
Let real numbers µ < ν and 1 5 A 5 B be given, and let

∑
W0

refer to a sum over
a set of representatives W0 = N−1

k
(

a b
c d

)
∈ [Tk] \ 0 restricted by A 5 |c| 5 B and

−d/c ∈ [µ, ν]. We then have the following bounds:∑
W0

1
|c|δ

5
2

2 − δ
(ν − µ)B2−δ

+ A−δ for any 0 < δ < 2,

∑
W0

1
|c|δ

5
δ

δ − 2
(ν − µ)A2−δ

+ A−δ for any δ > 2,

∑
W0

1
|c|

log
( B
|c|

)
5 2(ν − µ)B +

1
A

log
( B

A

)
.

(Notice that the second bound also holds for B = ∞, as follows by taking the limit
B → ∞.)

Proof
This is proved by standard integration by parts and by the use of Lemma 2.4. We give
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the details for only the third sum. We have, for any γ ∈ (0, 1),

∑
W0

1
|c|

log
( B
|c|

)
5

∫ B

A−γ

1
x

log
( B

x

)
dCk

µν(x)

=

[
1
x

log
( B

x

)
Ck

µν(x)

]x=B

x=A−γ

+

∫ B

A−γ

(
1
x2 log

( B
x

)
+

1
x2

)
Ck

µν(x) dx .

Here the first term is at most zero, and thus by Lemma 2.4, the whole expression is

5
∫ B

A−γ

(
1
x2 log

( B
x

)
+

1
x2

)(
(ν − µ)x2

+ 1
)

dx .

Substituting x = B/u, we obtain that the whole expression is

= (ν − µ)B
∫ B/(A−γ )

1

log(u) + 1
u2 du +

1
B

∫ B/(A−γ )

1

(
log(u) + 1

)
du

5 (ν − µ)B
[
− log(u) − 2

u

]u=∞

u=1
+

1
B

[
u log(u)

]u=B/(A−γ )

u=1

= 2(ν − µ)B +
1

A − γ
log

( B
A − γ

)
.

The desired inequality follows by letting γ → 0.

We continue onward with the proof of Proposition 2.2. If My > 1, then the sum in
(2.11) is empty; if My 5 1, Lemma 2.5 implies that the sum is bounded from above
by

κ
2
√

y
β − α

[
2(ν − µ)

√
My

+ 1 +
4(ν − µ)

√
My

+ 2 log
( 1
√

My

)]
.

From (2.10) and M = 10, it follows that ν − µ 5 2(β − α). Using β − α = y1/2−δ ,
we finally conclude that

1
β − α

∫ β

α

√
bY0(x + iy)cM dx (2.13)

5
24κ
√

M
+ 2κ yδ

(
1 + 2 log+

( 1
√

My

))
.

This holds for all 0 < y < 1 and all α, β ∈ R such that β − α = y1/2−δ . The second
assertion in Proposition 2.2 follows immediately from this inequality.

The first assertion, (2.6), follows from (2.13) with M = 10 and the inequality
√

Y0(z) 5
√

10 +
√

bY0(z)c10.
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3. Proof of Theorem 1 using ergodic theory
Let G denote the group PSL(2, R). In this section we give a proof of Theorem 1 based
on the ergodic properties of the horocycle flow on 0 \ G. We start by recalling some
basic facts concerning the geodesic and horocycle flow and the standard identification
of G and T1H , the unit tangent bundle of H (cf. [S, §1], [M, §3.1], [Mar2, §2.3]).

We use the notation

Sx
:=

(
1 x
0 1

)
, a(y) :=

(√
y 0

0 1/
√

y

)
, k(ϑ) =

(
cos ϑ − sin ϑ

sin ϑ cos ϑ

)
.

We let T1H denote the unit tangent bundle of H . T1H is parametrized by
(z, θ) ∈ H × (R/2πZ), where θ is an angular variable measured from the upward
vertical counterclockwise. The action of G on T1H is given by

T (z, θ) :=
(
T (z), θ − 2ϑT (z)

)
, (3.1)

where

ϑT (z) = arg(cz + d) for T =

(
a b
c d

)
.

We now identify T1H and G (as manifolds) through

G → T1H , T 7−→ T (i, 0) =
(
T (i), −2ϑT (i)

)
. (3.2)

The inverse of this identification map is given by

T1H → G, (x + iy, θ) 7−→ Sx a(y)k(−θ/2). (3.3)

Under this identification, the left- and right-invariant Haar measure on G corre-
sponds (up to a multiplicative constant) to the Liouville volume measure ν on T1H ,
given by

dν(z, θ) := dµ(z) dθ =
dx dy dθ

y2 . (3.4)

We let gt and ht denote the geodesic flow and the horocycle flow on T1H (cf.,
e.g., [M, §3.1] for the intrinsic geometric definition of these flows). Under our identi-
fication T1H ↔ G, gt and ht are given by

gt (T ) = T a(et ), ht (T ) = T St (for T ∈ G, t ∈ R). (3.5)

As before, we let 0 be a cofinite Fuchsian group with a standard cusp at ∞, and
we let M = 0 \ T1H = 0 \ G. Clearly, a (closed) fundamental domain for the action
of 0 on T1H is given by

F̃ = F × (R/2πZ) ⊂ T1H .
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Hence, in particular, ν(M) = 2π µ(F ). The flows gt and ht induce well-defined
flows on M, which we again denote by gt , ht . It is well known that the volume mea-
sure ν on M is invariant under the horocycle flow ht and is ergodic. The same fact
also holds for the geodesic flow gt (cf., e.g., [CFS, Chapter 4, §4]).

A point p ∈ T1H belongs to a closed orbit of the horocycle flow on M if and
only if it determines a closed horocycle encircling one of the κ cusps, that is, if and
only if

p ∈ 0N−1
k (z, 0) for some k ∈ {1, . . . , κ}, z ∈ H

(cf., e.g., [S, §1]).
Our goal in this section is to prove the following theorem. We write

Y0(p) := Y0(z) for p = (z, θ) ∈ T1H .

THEOREM 2
Let δ > 0, and let f : T1H → C be any fixed, continuous, and 0-invariant function
satisfying the growth condition

| f (p)| 5 C
√

Y0(p), ∀p ∈ T1H , (3.6)

for some positive constant C. Then

1
β − α

∫ β

α
f (x + iy, 0) dx →

1
ν(M)

∫
M

f (p) dν(p) (3.7)

uniformly as y → 0 so long as β − α remains bigger than y1/2−δ.

Clearly, this is a generalization of Theorem 1 stated in the introduction.
The fundamental result on which we build our proof of Theorem 2 is the fact that

all the ergodic measures for the horocycle flow ht on M are explicitly known. If ω is a
Borel probability measure on M, invariant and ergodic under the flow ht , then either
ω is just the volume measure ν normalized by a factor ν(M)−1 or the support of ω

is a closed orbit h of the flow ht (and then ω has uniform mass along h). This is a
special case of Dani’s result in [D1], [D2]. (Dani’s result was later vastly generalized
by Ratner in [R1]; cf. also [R3].)

We let S be the union of all closed orbits on M; that is, we let

S =

κ⋃
k=1

π
(
N−1

k (H × {0})
)

⊂ M, (3.8)

where π is the projection map T1H → 0 \ T1H = M. We call S the singu-
lar set. By an application of ergodic decomposition, the characterization of invariant
measures stated above implies the following proposition.
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PROPOSITION 3.1
Let ω be a Borel probability measure on M invariant under the horocycle flow. As-
sume that ω(S ) = 0. Then ω is equal to ν(M)−1ν, the unit normalized volume
measure on M.

We use the following notation for subsets of the singular set S :

SA,B =

κ⋃
k=1

π
(
N−1

k (R × [A, B] × {0})
)

⊂ S .

Here A, B are any numbers such that 0 < A < B.
In the proof of the next lemma, we use the same idea as in [R3, page 21 (bottom)].

LEMMA 3.2
Let δ > 0 be given. Then, for any numbers 0 < A < B and ε > 0, there exist a
number y0 > 0 and a continuous, 0-invariant function f : T1H → [0, 1] which has
compact support on M = 0 \ T1H , such that

f (p) = 1 for all p ∈ SA,B (3.9)

and
1

β − α

∫ β

α
f (x + iy, 0) dx 5 ε (3.10)

for all 0 < y < y0 and all α, β ∈ R satisfying β − α = y1/2−δ .

Proof
Let δ, A, B, ε be given as in the lemma. Let f0(z) be a function as in Proposition
2.1 ( f0(z) depends only on 0 and ε). Since f0(z) has compact support in 0 \ H ,
we can take T > 0 so large that 1 < eT A, and Y0(z) < 0.5 eT A for all points z in
the support of f0. Let F(y) be a continuous function satisfying χ[eT A,eT B] 5 F 5
χ[0.5 eT A,2eT (B+1)] on R+ (where χ denotes the characteristic function). Recall the
definition of the geodesic flow gt , (3.5). We define f (p) for p ∈ T1H by

f (p) = F
(
Y0(gT (p))

)
.

It is now clear that f (p) is a continuous, 0-invariant function on T1H and that
f (p) has compact support on M = 0 \ T1H .

To prove (3.9), let p ∈ SA,B . Then p = π(N−1
j (x + iy, 0)) for some x ∈ R,

y ∈ [A, B], j ∈ {1, . . . , κ}, and gT (p) = π(N−1
j (x + ieT y, 0)). Write z′

= N−1
j (x +

ieT y). For k = j and W ∈ [T j ], we then have Im Nk W (z′) = eT y. For all other
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〈k, W 〉 ∈ {1, . . . , κ} × 0, we have, writing
(

a b
c d

)
= Nk W N−1

j ,

Im Nk W (z′) =
eT y

(cx + d)2 + (ceT y)2 < 1 < eT y

since eT y = eT A > 1, and c = 1 by Lemma 2.3. This shows that Y0(z′) = eT y ∈

[eT A, eT B], and hence f (p) = 1.
To prove (3.10), notice that for all x + iy ∈ H ,

f (x + iy, 0) = F
(
Y0(x + ieT y, 0)

)
5 1 − f0(x + ieT y).

Also, for each sufficiently small y, we have y1/2−δ > (eT y)1/2−δ/2. Hence by the
property of f0(z) from Proposition 2.1 (with δ/2 in place on δ), we have

1
β − α

∫ β

α
f (x + iy, 0) dx 5 1 −

1
β − α

∫ β

α
f0(x + ieT y) dx 5 ε

for all sufficiently small y and all α, β ∈ R satisfying β − α = y1/2−δ .

Proof of Theorem 2
Let δ > 0 be fixed. Let C0(M) denote the Banach space of all real continuous func-
tions on M vanishing at infinity, with the norm being the supremum norm, ‖ f ‖ =

supp∈M | f (p)|. Let C∗

0 (M) denote the dual of C0(M).
For y > 0 and α < β, define 3y,α,β ∈ C∗

0 (M) by

3y,α,β( f ) =
1

β − α

∫ β

α
f (x + iy, 0) dx, f ∈ C0(M).

We first prove that Theorem 2 holds for all functions f ∈ C0(M). Let T denote
the set of all limit points in the weak *-topology on C∗

0 (M) of the set {3y,α,β | y >

0, β − α = y1/2−δ
} when y → 0. It suffices to prove that T = {3ν}, where 3ν is

given by 3ν f = ν(M)−1 ∫
M f dν.

Take 3 ∈ T . Then there are sequences {yn}
∞

n=1, {αn}
∞

n=1, {βn}
∞

n=1 such that
y1 > y2 > · · · , limn→∞ yn = 0, βn − αn = y1/2−δ

n for all n, and

lim
n→∞

3yn ,αn ,βn ( f ) = 3 f

for all f ∈ C0(M).
Let ω be the unique Borel measure on M such that

3 f =

∫
M

f dω, f ∈ C0(M).

It is clear that ω(M) 5 1. Also, by Proposition 2.1, for any ε > 0 there is a function
f ∈ C0(M) such that ‖ f ‖ 5 1 and 3 f = 1 − ε, and thus ω(M) = 1 − ε. Hence we
have ω(M) = 1.
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Furthermore, ω is ht -invariant since, for any fixed f, t , we have

|3( f ◦ ht ) − 3 f | = lim
n→∞

∣∣3yn ,αn ,βn ( f ◦ ht ) − 3yn ,αn ,βn ( f )
∣∣

5 lim sup
n→∞

1
βn − αn

[ ∫ αn+t yn

αn

+

∫ βn+t yn

βn

]
| f (x + iyn, 0)| |dx |

5 lim sup
n→∞

2|t |yn ‖ f ‖

βn − αn
= 0.

Finally, Lemma 3.2 implies that ω(SA,B) 5 ε for all A < B, ε > 0; hence
ω(S ) = 0.

Now Proposition 3.1 forces ω = ν(M)−1ν, as was to be shown.
To complete the proof of Theorem 2, we now use an approximation argument to

treat the general case of functions f ∈ C(M) restricted only by the growth condition
(3.6). Given such a function f , and given any number ε > 0, we can find M = 10
such that

C
ν(M)

∫
F̃

√
bY0(p)cM dν(p) 5

ε

10
(3.11)

and

25κC
√

M
5

ε

10
, (3.12)

where C is as in (3.6).
(
To see that (3.11) can be achieved, one applies the decom-

position of F into the bounded region FB and the cuspidal regions Ck B (cf. (2.3));
one then uses the fact that Y0(z) is bounded on FB and that, for B sufficiently large,
Y0(z) = Im Nk(z) on Ck B .

)
We let F(y) be a continuous function on R+ satisfying

χ(0,M] 5 F 5 χ(0,M+1], and we define

f1(p) = F
(
Y0(p)

)
· f (p).

Clearly, f1 ∈ C0(M), and by (3.6), we have∣∣ f (p) − f1(p)
∣∣ 5 C

√
bY0(p)cM , ∀p ∈ T1H . (3.13)

By what we have already proved, f1 satisfies the conclusion (3.7) in Theorem 2. Using
this fact together with (3.11), (3.12), (3.13), and (2.7) in Proposition 2.2, we now obtain∣∣∣ 1

β − α

∫ β

α
f (x + iy, 0) dx −

1
ν(M)

∫
M

f (p) dν(p)
∣∣∣ 5 ε

for all sufficiently small y and all α, β ∈ R such that β − α = y1/2−δ . Since ε was
arbitrary, this concludes the proof of Theorem 2.
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4. Spectral theory and the rate of convergence in (1.2)
Let D = y2( ∂2

∂x2 +
∂2

∂y2

)
denote the non-Euclidean Laplacian, and let φ0, φ1, . . . be

the discrete eigenfunctions of −D on 0 \ H , taken to be orthonormal and to have
increasing eigenvalues 0 = λ0 < λ1 5 λ2 5 · · · . In general, we do not know if the
set {φ0, φ1, . . .} is infinite or not. We let Ek(z, s) be the Eisenstein series associated
to the cusp ηk (cf. [He1, pages 280 (Definition 3.5), 130 (Definition 11.7, Theorem
11.8), 296 – 297]). We recall that whenever φm (m = 1) is not a cusp form, we have
0 < λm < 1/4, at least one of the Ek(z, s) has a pole at s = sm = 1/2+

√
1/4 − λm ∈

(1/2, 1), and φm is a linear combination of the residues of Ek(z, s) (k = 1, . . . , κ) at
s = sm (cf. [He1, pages 284 – 288]). We call such a φm a residual eigenfunction.

For f ∈ L2(0\H ), we let ‖ f ‖ denote the L2-norm, ‖ f ‖ =

√∫
F | f (z)|2 dµ(z).

Our goal in this section and in Section 5 is to prove the following theorem.

THEOREM 3
Let ε > 0. We then have, for all f ∈ C2(H )∩L2(0\H ) such that D f ∈ L2(0\H )

and all y ∈ (0, 1), α, β such that
√

y 5 β − α 5 1:

1
β − α

∫ β

α
f (x + iy) dx =

1
µ(F )

∫
F

f (z) dµ(z) (4.1)

+ O
(
(‖ f ‖ + ‖D f ‖) y1/2−ε(β − α)−1)

+ O
(
‖ f ‖ y1−s1−ε(β − α)s1−1)

+ O
(
‖ f ‖ y1−s′

1(β − α)2(s′

1−1)
)
.

(In each big O , the implied constant depends solely on 0 and ε.) Here s1 ∈ (1/2, 1)

is the largest number such that there is a cusp form on 0 \ H of eigenvalue λ =

s1(1 − s1), and s′

1 ∈ (1/2, 1) is the largest number such that there is a residual
eigenfunction on 0 \ H of eigenvalue λ = s′

1(1 − s′

1). If there are no such cusp forms
or residual eigenfunctions, it is understood that the corresponding error term in (4.1)
is omitted.

By a standard approximation argument, one can show that Theorem 3 implies Theo-
rem 1, stated in the introduction.

The first step in the proof of Theorem 3 is to apply spectral decomposition to the
given function f (z). According to [He1, pages 317 (Proposition 5.3), 733 (note 5)],
any function f (z) as in Theorem 3 has a spectral expansion

f (z) =

∑
m=0

dmφm(z) +

κ∑
k=1

∫
∞

0
gk(R)Ek

(
z,

1
2

+ i R
)

d R (4.2)



522 ANDREAS STRÖMBERGSSON

with uniform and absolute convergence over z ∈ H -compacta. Here dm = 〈 f, φm〉,

and “gk(R) = (2π)−1 ∫
F f (z)Ek(z, 1/2 + i R) dµ(z)” (this has to be properly con-

sidered as a limit in the L2(0, ∞)-norm); compare [He1, page 242 (Proposition 2.3),
317 (line 4)].

The proof in [He1] of the uniform and absolute convergence in (4.2) starts by
considering the spectral expansion (in the L2-sense) of the function D f +a(1−a) f ∈

L2(0 \ H ) for some fixed number a > 1; this is then integrated against the Green
function Ga(z, w). It is seen in this proof that

∑
m=0

|dm |
2(a(1 − a) − λm

)2
+ 2π

κ∑
k=1

∫
∞

0
|gk(R)|2

(
a(1 − a) −

1
4

− R2
)2

d R

=

∫
F

|D f (z) + a(1 − a) f (z)|2 < ∞ (4.3)

(cf. [He1, pages 91 (9.36), 244 – 245, 291 (3.23)]).
Substituting (4.2) in (1/(β − α))

∫ β
α f (x + iy) dx and changing order between

summation and integration, we see that the contribution from the constant eigenfunc-
tion φ0 ≡ µ(0 \ H )−1/2 gives exactly the main term in (4.1) since d0 = 〈 f, φ0〉.

To treat the other contributions from (4.2), we use the Fourier expansions of the
eigenfunctions φm(z) (m = 1) and Ek(z, 1/2 + i R) at the cusp η1 = ∞. Recall that
for Ek(z, 1/2 + i R), this expansion is

Ek

(
x + iy,

1
2

+ i R
)

= δk1 y1/2+i R
+ ϕk1

(1
2

+ i R
)

y1/2−i R

+

∑
n 6=0

cn
√

yKi R (2π |n|y) e(nx), (4.4)

where ϕk1(s) is an element in the scattering matrix 8(s) = (ϕi j (s)) (cf. [He1, Chapter
8]). Of course, the coefficients cn depend on R.

Integrating (4.4) over the horocycle segment [α, β] + iy, we get

1
β − α

∫ β

α
Ek

(
x + iy,

1
2

+ i R
)

dx = δk1 y1/2+i R
+ ϕk1

(1
2

+ i R
)

y1/2−i R

+
1

β − α

∑
n 6=0

cn
√

yKi R (2π |n|y)
e(nβ) − e(nα)

2π in
. (4.5)

In order to obtain an upper bound on this expression, we prove a Rankin-Selberg-type
bound on the Fourier coefficients cn .

We need our bounds to be uniform over R = 0. A valuable tool in this regard is
the spectral majorant function ω(R), which is defined in [He1, pages 161, 299 (line
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14)]. This function depends only on 0, and it satisfies ω(−R) = ω(R) = 1 and

Tr
[
8′

(1
2

+ i R
)
8

(1
2

+ i R
)−1]

= O
(
ω(R)

)
(4.6)

for all R ∈ R. One also has∫ T

0
ω(R) d R = O(T 2) as T → ∞ (4.7)

(cf. [He1, page 315 (i) – (iii)]). The implied constants in (4.6) and (4.7) depend on 0.

PROPOSITION 4.1
In the Fourier expansion (4.4) we have, uniformly over N = 1 and R = 0,∑

15|n|5N

|cn|
2

= O
(
eπ R(N + R)

){
ω(R) + log

( 2N
R + 1

+ R
)}

.

(The implied constant depends only on 0.)

Proof
The method of proof is similar to [Wo1, Proposition 5.1], where the case of 0 =

PSL(2, Z) was treated.
We keep 0 < Y < H and try to find a bound from above for the integral

J =

∫
D

∣∣∣Ek

(
z,

1
2

+ i R
)∣∣∣2

dµ(z), where D = (0, 1) × (Y, H). (4.8)

We tessellate D by translates of the fundamental region; that is, we write D =⋃
T ∈0(D ∩ T (F )), an essentially disjoint union. Using the automorphy of

Ek(z, 1/2 + i R), we then get

J =

∑
T ∈0

∫
F

I [T (z) ∈ D] ·

∣∣∣Ek

(
z,

1
2

+ i R
)∣∣∣2

dµ(z), (4.9)

where I [ · ] is the indicator function.
Recall our definition of B0 just below (2.1), and recall relations (2.2) and (2.3)

defining C j B and FB . We take

B = max
(

B0, H,
1
Y

)
. (4.10)

We then claim that in (4.9), the integrand is zero for all z ∈ F − FB and all T ∈ 0.

Indeed, given z ∈ F − FB , there is some j ∈ {1, . . . , κ} such that z ∈ C j B , that is,
Im N j (z) = B. Recall N1 =

(
1 0
0 1

)
. For each T ∈ 0, writing

(
a b
c d

)
= N1T N−1

j and
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using Lemma 2.3, we now have either j = 1, T ∈ [S], and Im T (z) = Im z = B =
H , or else |c| = 1, and then

Im T (z) = Im N1T (z) = Im
aN j (z) + b
cN j (z) + d

=
Im N j (z)

|cN j (z) + d|2

5
(
Im N j (z)

)−1
5 B−1 5 Y.

In both cases, we get T (z) /∈ D, that is, I [T (z) ∈ D] = 0. This proves our claim, and
as a result we see that in (4.9), we may replace F by FB . Changing order between
summation and integration, we get

J =

∫
FB

#
{
T ∈ 0

∣∣ T (z) ∈ D
}

·

∣∣∣ Ek

(
z,

1
2

+ i R
)∣∣∣2

dµ(z).

Next, we have, by [I, Lemma 2.10],

#
{
T ∈ 0

∣∣ T (z) ∈ D
}

5 #
{
W0 ∈ [S] \ 0

∣∣ Im W0(z) > Y
}

5 1 + O(Y −1),

where the implied constant depends only on 0; that is, the bound is uniform over all
z ∈ H and Y > 0. This implies

J 5 O(1 + Y −1)

∫
FB

∣∣∣Ek

(
z,

1
2

+ i R
)∣∣∣2

dµ(z). (4.11)

We define E B
k (z, s) for z ∈ F by

E B
k (z, s) =

{
Ek(z, s) if z ∈ FB,

Ek(z, s) − δ jk · (Im N j z)s
− ϕk j (s) · (Im N j z)1−s if z ∈ C j B .

Using the appropriate Maass-Selberg identity, we have for all R > 0 (cf., e.g., [He1,
pages 301 (3.43), 311 – 312, 315 (i)]),

κ∑
k′=1

∫
FB

∣∣∣Ek′

(
z,

1
2

+ i R
)∣∣∣2

dµ(z) 5
κ∑

k′=1

∫
F

∣∣∣E B
k′

(
z,

1
2

+ i R
)∣∣∣2

dµ(z)

= 2κ log B − Tr
[
8′

(1
2

+ i R
)
8

(1
2

+ i R
)−1]

+

κ∑
k′=1

Re
(

ϕk′k′

(1
2

+ i R
) B2i R

i R

)
.

Recall that the scattering matrix 8(s) is unitary for s = 1/2 + i R. Because of (4.6),
we now obtain, for all R = 1,

J 5 O
(
1 + Y −1){log(B) + ω(R)

}
. (4.12)
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The implied constant depends only on 0. The inequality (4.12) also holds for 0 5
R 5 1, as follows directly from (4.11) by using [He1, page 301 (d)] and decomposing
FB as a union of FB0 and (C j B0 − C j B) for j = 1, . . . , κ .

On the other hand, substituting (4.4) directly in the definition of J , (4.8), and then
applying Parseval’s formula, we get

J =
∑
n 6=0

|cn|
2
∫ 2π |n|H

2π |n|Y
Ki R(y)2 dy

y
.

We now take Y = (R + 1)/(8π N ), H = (R + 1)/(4π). With this choice we
have [1

4
(R + 1),

1
2
(R + 1)

]
⊂

[
2π |n|Y, 2π |n|H

]
whenever 1 5 |n| 5 N ,

and hence ∑
15|n|5N

|cn|
2 5 C−1 J, where C =

∫ (R+1)/2

(R+1)/4
Ki R(y)2 dy

y
. (4.13)

However, from the asymptotic formula for Ki R(y) for R large and y < (1 − ε)R (cf.
[B1], [B2], and also [EMOT, page 88 (19)]), it follows that C−1 5 O((R + 1)eπ R)

holds for all sufficiently large R. By a simple continuity argument, this bound then ac-
tually holds for all R = 0. Using this fact and (4.10), (4.12), and (4.13) (remembering
ω(R) = 1), we obtain the desired result.

PROPOSITION 4.2
Let ε > 0 and k ∈ {1, . . . , κ}, and keep 0 < y < 1, R = 0, α < β. We then have

1
β − α

∫ β

α
Ek

(
x + iy,

1
2

+ i R
)

dx = O
(
y1/2−ε

){
1 +

(R + 1)1/6+ε
√

ω(R)

β − α

}
.

(4.14)

(The implied constant depends only on 0 and ε.)

Proof
This result follows from relation (4.5) and Proposition 4.1 by use of partial summation.
The details are as follows.

We keep 0 < ε < 1 and write ε′
= ε/2. Notice that |ϕk1(1/2 + i R)| 5 1 since

8(s) is unitary at s = 1/2 + i R. A convenient bound on the K -Bessel function is
given by

Ki R(y0) = O
(
e−(π/2)R(R + 1)−1/3+ε′

y−ε′

0 · min(1, e(π/2)R−y0)
)
. (4.15)
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This holds uniformly for all R = 0 and y0 > 0. To prove (4.15), we first notice that
by the integral representation of Ki R(y0) (see [W, p. 181 (5)]), we have for all R = 0
and y0 > 0,

|Ki R(y0)| 5
∫

∞

0
e−y0(1+t2/2) dt =

√
π

2y0
e−y0 . (4.16)

Now keep R restricted to an arbitrary compact interval [0, R0]. Then for 1 5 y0, (4.15)
follows directly from (4.16). For 0 < y0 5 1, we use [W, pages 77 (2), 78 (6)] to show
|Kv(y0)| 5 Cy−ε′

0 for all v on the boundary of the rectangle [−ε′, ε′
] × [−R0, R0]

in the complex plane (where C > 0 depends only on R0, ε′), and (4.15) follows by
applying the modulus principle in the v-variable. In the remaining case, that is, R
large, (4.15) follows from the asymptotic formula for Ki R(y0) given in [B1], [B2]. (In
the case of R = 1 and y0 = (π/2)R, (4.15) also follows more directly from (4.16).)

We now get the following upper bound on the expression in (4.5):

O
(√

y
)
+ O

(
e−(π/2)R(R + 1)−1/3+ε′ y1/2−ε′

β − α

) ∞∑
n=1

(|cn| + |c−n|) · f (n), (4.17)

where f (X) := X−1−ε′

· min
(
1, e(π/2)R−2πy X )

.

We define
S(X) :=

∑
15|n|5X

|cn|.

Then, by a weak form of Proposition 4.1 and Cauchy’s inequality,

S(X) = O
(
eπ R/2(R + 1)ε

′
√

ω(R)X1/2+ε′√
X + R

)
, ∀X =

1
2
.

Notice that for given R = 0, 0 < y < 1, the function f (X) is continuous and
piecewise smooth, and f (X)S(X) → 0 as X → ∞. We now get

∞∑
n=1

(|cn| + |c−n|) · f (n) =

∫
∞

1/2
f (X) d S(X) = −

∫
∞

1/2
f ′(X)S(X) d X. (4.18)

But we have f ′(X) = O(X−2−ε′

) for X < R/4y, while f ′(X) = O((1 +

y X)X−2−ε′

e(π/2)R−2πy X ) and
√

X + R = O(
√

X) for X > R/4y. Using these facts,
we see that (4.18) is bounded by

O
(
e(π/2)R(R + 1)ε

′
√

ω(R)
)[ ∫ max(1/2,R/4y)

1/2

(
X−1

+
√

R X−3/2) d X

+

∫
∞

max(1/2,R/4y)
(1 + y X)e(π/2)R−2πy X d X

X

]
. (4.19)
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Here the second integral is equal to
∫

∞

max(y/2,R/4)(1 + u)e(π/2)R−2πu du
u , which is

clearly bounded by O(log(2/y)) if 0 5 R 5 1 and by O(1) if R = 1. Hence (4.19) is

= O
(
e(π/2)R(R + 1)ε

′
√

ω(R)
)[

log+

( R
2y

)
+

√
R + log

( 2
y

)]
= O

(
e(π/2)R(R + 1)1/2+ε′

√
ω(R)y−ε′)

.

Using this bound in (4.17), we obtain the desired result.

PROPOSITION 4.3
Let ε > 0 and k ∈ {1, . . . , κ}. Take f ∈ C2(H ) ∩ L2(0 \ H ) such that D f ∈

L2(0 \ H ), and let the spectral expansion of f be as in (4.2). We then have, for all
0 < y < 1 and all α, β such that 0 < β − α 5 1,

1
β − α

∫ β

α

{ ∫
∞

0
gk(R)Ek

(
x + iy,

1
2

+ i R
)

d R
}

dx

= O
(
(‖ f ‖ + ‖D f ‖) y1/2−ε(β − α)−1). (4.20)

(The implied constant depends only on 0 and ε.)

Proof
We keep ε < 1/10. Changing order of integration and applying Cauchy’s inequality,
we find that the absolute value of the left-hand side in (4.20) is less than or equal to√∫

∞

0
(R + 1)4|gk(R)|2 d R

×

√∫
∞

0
(R + 1)−4

∣∣∣ 1
β − α

∫ β

α
Ek

(
x + iy,

1
2

+ i R
)

dx
∣∣∣2

d R.

The first factor is bounded by O(‖ f ‖+‖D f ‖) because of (4.3). Also, by Proposition
4.2 (and ω(R) = 1, β − α 5 1), the second factor is bounded by

O
(
y1/2−ε(β − α)−1)√∫

∞

0
(R + 1)−11/3+2εω(R) d R.

Here the integral is convergent, as follows from (4.7) using integration by parts. This
concludes the proof.

The above treatment of the Eisenstein series can easily be carried over to the discrete
eigenfunctions φm(z), except those that have small eigenvalues λm < 1/4.



528 ANDREAS STRÖMBERGSSON

PROPOSITION 4.4
Let ε > 0, take m = 1 such that λm = 1/4, and define R = 0 through λm = 1/4+ R2.
We then have, for all 0 < y < 1 and all α < β,

1
β − α

∫ β

α
φm(x + iy) dx = O

(
(R + 1)1/6+ε y1/2−ε

β − α

)
. (4.21)

(The implied constant depends only on 0 and ε.)

Proof
This is very similar to the proof of Proposition 4.2. One uses the Fourier expansion of
φm(z) at the cusp η1 = ∞,

φm(x + iy) =

∑
n 6=0

cn
√

yKi R (2π |n|y) e(nx) (4.22)

(φm is certainly a cusp form since λm = 1/4). Since we are assuming ‖φm‖ = 1, we
have the following bound on the coefficients cn:∑

|n|5N

|cn|
2

= O
(
eπ R(N + R)

)
, ∀N = 1

(cf. [I, Theorem 3.2, the first bound]).∗

PROPOSITION 4.5
Let ε > 0. Take f ∈ C2(H ) ∩ L2(0 \ H ) such that D f ∈ L2(0 \ H ), and let the
spectral expansion of f be as in (4.2). We then have, for all 0 < y < 1 and all α, β

such that 0 < β − α 5 1,

1
β − α

∫ β

α

{ ∑
λm=1/4

dmφm(x + iy)
}

dx = O
(
(‖ f ‖ + ‖D f ‖) y1/2−ε(β − α)−1).

(The implied constant depends only on 0 and ε.)

Proof
Mimic the proof of Proposition 4.3. One uses the fact that

∑
λm=1/4(Rm +

1)−11/3+2ε < ∞ for Rm =
√

λm − 1/4 and ε small; this fact can be deduced from
[He1, page 315 (ii)].

∗Notice that some minor revisions are called for in the proof given in [I] for, in fact, one has
∫

∞

R Ki R(y)2 dy
y =

O(R−4/3e−π R) as R → ∞; that is, [I, p. 61 (line 7)] is false (cf. the proof of Proposition 4.1 and the choice of
Y therein).
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Recall that 0 = λ0 < λ1 5 λ2 5 · · · . Notice that if we have λ1 = 1/4, then
the statement in Theorem 3 follows from (4.2), Proposition 4.3, and Proposition 4.5
(and our remark just below (4.3)). However, when λm < 1/4, the best bound on
(1/(β − α))

∫ β
α φm(x + iy) dx that can be obtained by use of the Rankin-Selberg

bound on
∑

|n|5N |cn|
2 as in the above proofs is∗

1
β − α

∫ β

α
φm(x + iy) dx = O

(
y1−s(β − α)s−3/2),

where s =
1
2

+

√
1
4

− λm ∈

(1
2
, 1

)
. (4.23)

This holds uniformly over all y ∈ (0, 1) and all α, β such that y 5 β−α 5 1. Clearly,
the bound (4.23) is not sufficient for our purposes. The largest constant c for which
y1−s(β − α)s−3/2

→ 0 holds anytime β − α = yc−ε and y → 0 is

c = 1 −
1

3 − 2s
<

1
2
, (4.24)

whereas our goal is to reach c = 1/2. (One may notice that when s = 3/4, the
constant c in (4.24) is the same as “c(0)” in [He3, Theorem A].)

If φm is a cusp form, we improve (4.23) by using the following bound from Hafner
[H, Theorem 3]:†

Sα(X) =

∑
15n5X

cne(nα) = O(X1/2+ε), ∀X = 0. (4.25)

This holds for any cusp form φm having Fourier expansion as in (4.22). The same
bound also holds for the sum

∑
−X5n5−1 cne(nα). The implied constant in (4.25)

depends only on 0, ε, and φm ; in particular, the bound is uniform over all α ∈ R.

PROPOSITION 4.6
Let ε > 0, and take m = 1 such that φm is a cusp form. Define s through λm =

s(1 − s), s ∈ [1/2, 1) ∪ [1/2, 1/2 + i∞). We then have, uniformly over all y ∈ (0, 1)

and all α, β such that y 5 β − α 5 1,

1
β − α

∫ β

α
φm(x + iy) dx = O

(
y1−Re s−ε(β − α)Re s−1). (4.26)

The implied constant depends on 0, ε, and φm(z).

∗In the proof of (4.23), one uses (e(nβ) − e(nα))/n = O(min(β − α, n−1)) in place of the coarser O(n−1) that
we used in the proofs of Propositions 4.2 and 4.4 below.
†We state here a slightly modified form of the result in [H]. The proof is completely analogous (cf. the proof of
Proposition 5.1 below).
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Proof
Since φm(z) is a cusp form, it has a Fourier expansion as in (4.22), wherein i R =

s − 1/2. The analog of (4.5) reads

1
β − α

∫ β

α
φm(x + iy) dx =

1
β − α

∑
n 6=0

cn
√

yKs−1/2(2π |n|y)
e(nβ) − e(nα)

2π in
.

(4.27)
We define δ = β − α, and

f (X) := Ks−1/2
(
2πy X

)e(Xδ) − 1
X

, g(X) = Ks−1/2(2πy X)
1
X

.

Also, recall the definition of Sα(X) in (4.25). We can now express the part corre-
sponding to n > 0 in the right-hand side of (4.27) as

√
y

2π iδ

{ ∫ δ−1

1/2
f (X) d Sα(X) +

∫
∞

δ−1
g(X) d Sβ(X) −

∫
∞

δ−1
g(X) d Sα(X)

}
=

√
y

2π iδ

{
f (δ−1)Sα(δ−1) − g(δ−1)Sβ(δ−1) + g(δ−1)Sα(δ−1)

−

∫ δ−1

1/2
f ′(X)Sα(X) d X −

∫
∞

δ−1
g′(X)Sβ(X) d X

+

∫
∞

δ−1
g′(X)Sα(X) d X

}
. (4.28)

(Convergence follows easily from (4.25) and the exponential decay of g(X) and g′(X)

as X → ∞.) Let us write σ = Re s. One knows that

Ks−1/2(u) = O(u1/2−σ−ε), K ′

s−1/2(u) = O(u−1/2−σ ) for 0 5 u 5 2π,

Ks−1/2(u) = O(u−1/2e−u), K ′

s−1/2(u) = O(u−1/2e−u) for 2π 5 u (4.29)

(cf. [W, pages 77 (2), 78 (6), 79 (2), 80 (14), 202 (1)]; the implied constants depend
on s and ε). Recall that y 5 δ 5 1. It is now easy to verify that

f (δ−1), g(δ−1) = O(δ1/2+σ+ε y1/2−σ−ε),

f ′(X) = O(δy1/2−σ−ε X−1/2−σ−ε) for
1
2

5 X 5 δ−1,

g′(X) = O(y1/2−σ−ε X−3/2−σ−ε) for δ−1 5 X 5 y−1,

g′(X) = O(
√

y X−3/2e−2πy X ) for y−1 5 X.

It follows by a short computation, using the above bounds and (4.25), that the whole
expression in (4.28) is bounded by O

(
y1−σ−εδσ−1). The part corresponding to n < 0

in (4.27) can be treated in an entirely similar way. This concludes the proof.
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Remark 4.7
For φm fixed, the error term in Proposition 4.6 is much stronger than what we obtained
in Proposition 4.4 (for comments related to this fact, see §7(I)).

Notice that in view of Proposition 4.6, in the case when there exist no residual eigen-
functions on 0\H , the proof of Theorem 3 is now complete since |dm | = |〈 f, φm〉| 5
‖ f ‖ for each m, and there are at most finitely many m such that 0 < λm < 1/4.

5. Bounding
∑N

n=1 cne(nα) for residual eigenfunctions
If φm is a residual eigenfunction, the bound (4.25) is not true for all α (cf. Remark
5.2). The best possible uniform bound is given in the following proposition.

PROPOSITION 5.1
Let m = 1, and assume that φ = φm is a residual eigenfunction (hence 0 < λm <

1/4). Define s through λm = s(1− s), s ∈ (1/2, 1). Let the Fourier expansion of φ(z)
at the cusp η1 = ∞ be

φ(z) = c0 y1−s
+

∑
n 6=0

cn
√

yKs−1/2(2π |n|y)e(nx). (5.1)

We then have, uniformly over all N = 1 and α ∈ R,

N∑
n=1

cne(nα) = O(N 3/2−s).

(The implied constant depends on 0 and φ(z).) The same bound holds for the sum∑
−1
n=−N cne(nα).

Proof
The basic idea is the same as in [H, Theorem 3], but the computations in the present
case are much more involved. We fix a number δ ∈ (s, 1), and we let

I =

∫
∞

0

∫ α+1/2

α−1/2
φ(x + iy)

( N∑
m=1

e
(
m(α − x)

))
dx

dy
yδ

. (5.2)

We remark that the double integral is not absolutely convergent, but we have∫
∞

0

∣∣∣∫ α+1/2

α−1/2
· · · dx

∣∣∣ y−δdy < ∞.

In fact, for each fixed y > 0, using (5.1), we see that the inner integral in (5.2) equals∑N
m=1 cm

√
yKs−1/2(2πmy)e(mα), and the absolute convergence follows at once (cf.
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(4.29)) since the sum is finite. In fact, using [W, page 388 (8)], we find that

I =

N∑
m=1

cme(mα)(2πm)δ−3/22−1/2−δ 0
(2 − s − δ

2

)
0

(1 + s − δ

2

)
. (5.3)

We now estimate |I | from above. For each k ∈ {1, . . . , κ}, we know from the
Fourier expansion of φ(z) at the cusp ηk that

φ(z) = c(k)
0

(
Im Nk(z)

)1−s
+ O(e−2π Im Nk(z)) as Im Nk(z) → ∞ (5.4)

(cf. (5.1); of course, c(1)
0 = c0). Also, φ(z) is bounded on any bounded region FB .

Using 0-invariance, it now follows that

|φ(z)| = O
(
Y0(z)1−s)

= O
(
1 + bY0(z)c1−s

1
)
, ∀z ∈ H (5.5)

(cf. (2.4), (2.5)). Here, and in all big O estimates in the rest of this proof, the implied
constant depends solely on 0, φ(z), and δ.

For y = 1, we substitute (5.4) (with k = 1) directly in (5.2); the c0-term is then
killed in the inner integral. For y 5 1, we use (5.5). We then get

|I | 5
∫

∞

1

∫ α+1/2

α−1/2
O(e−2πy)

∣∣∣ N∑
m=1

e
(
m(α − x)

)∣∣∣ dx dy
yδ

+

∫ 1

0

∫ α+1/2

α−1/2
O

(
1 + bY0(z)c1−s

1
)∣∣∣ N∑

m=1

e
(
m(α − x)

)∣∣∣ dx dy
yδ

.

We have, by direct evaluation,
∣∣ ∑N

m=1 e(m(α − x))
∣∣ = O(min(N , |x − α|

−1)) for
all x ∈ [α − 1/2, α + 1/2], and thus

∫ α+1/2
α−1/2

∣∣ ∑N
m=1 e(m(α − x))

∣∣ dx = O(log 2N ).

Hence

|I | 5 O(log 2N ) + O(1)

∫ 1

0

∫ α+1/2

α−1/2
bY0(z)c1−s

1 min(N , |x − α|
−1)

dx dy
yδ

.

Using here the definition of Y0(z), we see that the double integral is bounded
from above by

κ∑
k=1

∑
W0∈[Tk ]\0

∫ 1

0

∫ α+1/2

α−1/2
bIm Nk W0(z)c1−s

1 min(N , |x − α|
−1)

dx dy
yδ

. (5.6)

We now temporarily fix some k ∈ {1, . . . , κ} and W0 ∈ [Tk] \ 0 which give a
nonzero contribution in (5.6), and we write

(
a b
c d

)
= Nk W0. Then Im Nk W0(z) = 1

for some z = x + iy ∈ (α − 1/2, α + 1/2) × (0, 1). Hence Nk W0 /∈ [S], and by
Lemma 2.3 with j = 1, N1 =

(
1 0
0 1

)
, we have |c| = 1. Notice that Im Nk W0(z) = 1
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means that z belongs to the horoball tangent to R at −d/c with Euclidean radius
r = (1/2)c−2 5 1/2. In particular, |x + d/c| 5 r 5 1/2, and combining this with
|x − α| < 1/2, we see that −d/c ∈ (α − 1, α + 1). We let

α′
= α +

d
c
. (5.7)

CLAIM 1
The contribution from each 〈k, W0〉 in (5.6) is bounded by

O
[
|c|2s−2 min(N , |α′

|
−1)δ−s

· (1 + log+(N |α′
|))

]
. (5.8)

Proof
As noticed above, the integrand in (5.6) vanishes outside the vertical strip |x +d/c| 5
r. Using this and Im W0(z) = y/|cz + d|

2, we get the following upper bound on the
double integral in (5.6):

|c|2s−2
∫ r

−r

( ∫ 1

0

( y
x2 + y2

)1−s dy
yδ

)
min(N , |x − α′

|
−1) dx . (5.9)

For any x 6= 0, the inner integral is less than∫
∞

0

( y
x2 + y2

)1−s dy
yδ

5
∫

|x |

0

( y
x2

)1−s dy
yδ

+

∫
∞

|x |

( y
y2

)1−s dy
yδ

= O(|x |
s−δ)

(5.10)

(we used 1/2 < s < δ < 1). Using this fact and |x − α′
| =

∣∣|x | − |α′
|
∣∣, we find that

(5.9) is bounded from above by

O(|c|2s−2)

∫
∞

0
x s−δ min(N , |x − |α′

||
−1) dx . (5.11)

If
∣∣α′

∣∣ 5 100/N , we get that (5.11) is

= O(|c|2s−2)

∫ 200/N

0
x s−δ N dx + O(|c|2s−2)

∫
∞

200/N
x s−δ−1 dx = O(|c|2s−2 N δ−s)

(again using 1/2 < s < δ < 1). The bound thus obtained is the same as (5.8) since∣∣α′
∣∣ 5 100/N .

On the other hand, if |α′
| > 100/N , then by splitting the integral at x = |α′

|/2
and x = 3|α′

|/2 and using obvious inequalities, we see that (5.11) is less than

O(|c|2s−2)
[ ∫

|α′
|/2

0
x s−δ

|α′
|
−1 dx +

∫
∞

3|α′|/2
x s−δx−1 dx

+

∫ 3|α′
|/2

|α′|/2
|α′

|
s−δ min(N , |x − |α′

||
−1) dx

]
= O

(
|c|2s−2

|α′
|
s−δ(1 + log(N |α′

|))
)
.
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This is, again, the same as (5.8).

CLAIM 2
In the case c2 = min(N , |α′

|
−1), we also have the following upper bound on the

contribution from 〈k, W0〉 in (5.6):

O
[
|c|2δ−4 min(N , |α′

|
−1)

]
. (5.12)

Proof
Assume that c2 = min(N , |α′

|
−1). We now maintain that

min(N , |x − α′
|
−1) 5 2 min(N , |α′

|
−1), ∀x ∈ [−r, r ]. (5.13)

Indeed, if N 5 |α′
|
−1, then (5.13) is trivial since the right-hand side equals 2N . In

the other case, N > |α′
|
−1, we prove (5.13) by first noticing that

(2r)−1
= c2 = min(N , |α′

|
−1) = |α′

|
−1,

and thus r 5 |α′
|/2. We then get, for all x ∈ [−r, r ],

|x − α′
| = |α′

| − r =
|α′

|

2
,

and hence |x − α′
|
−1 5 2|α′

|
−1

= 2 min
(
N , |α′

|
−1) , and (5.13) is proved.

Using (5.13), (5.10), and
∫ r
−r |x |

s−δ dx = O(r s−δ+1) = O(|c|−2(s−δ+1)), we find
that (5.9) is less than (5.12).

We continue onward with our proof of Proposition 5.1. We add up all contributions
to (5.6) for one fixed k ∈ {1, . . . , κ}. As we have already noticed, we get a nonzero
contribution from W0 = N−1

k
(

a b
c d

)
∈ [Tk] \ 0 only if |c| = 1 and −d/c ∈ (α −

1, α + 1). We split the analysis into the following cases:

−
d
c

∈ [α − N−1, α + N−1
],

−
d
c

∈ [α + 2`N−1, α + 2`+1 N−1
]

(
` ∈ {0, 1, 2, . . . , [log2 N ]}

)
,

−
d
c

∈ [α − 2`+1 N−1, α − 2`N−1
]

(
` ∈ {0, 1, 2, . . . , [log2 N ]}

)
.

Clearly, each W0 giving nonzero contribution to (5.6) is then counted at least once.
Let us consider the second case in detail; that is, we take ` ∈

{0, 1, 2, . . . , [log2 N ]} and consider all W0 satisfying −d/c ∈ [α + 2`N−1, α +

2`+1 N−1
]. We then have min(N , |α′

|
−1) = |α′

|
−1 5 2−`N (cf. (5.7)), and hence
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by Claims 1 and 2, we get the following bound on the total contribution from these
W0’s:

O
( ∑

W0
15|c|<

√

2−` N

|c|2s−2(2−`N )δ−s(1 + log(2`+1)
)
+

∑
W0

|c|=
√

2−` N

|c|2δ−4(2−`N )
)
.

(Of course, 2−`N = 1 since ` 5 [log2 N ].) The sums are taken over a set of
representatives W0 = N−1

k
(

a b
c d

)
∈ [Tk] \ 0 restricted by −d/c ∈ [α + 2`N−1,

α + 2`+1 N−1
] together with the stated bounds on |c|. By a quick computation using

Lemma 2.5, we now get

= O
[
(` + 1)

(
(2−`N )δ−s

+ (2−`N )δ−1)]
= O

(
(` + 1)(2−`N )δ−s).

We get exactly the same bound for −d/c ∈ [α − 2`+1 N−1, α − 2`N−1
]. Also,

by a similar computation using Claim 1, Claim 2, and Lemma 2.5, we find that the
total contribution from all W0 satisfying −d/c ∈ [α − N−1, α + N−1

] is bounded by
O(N δ−s).

We now add up all these contributions to (5.6), for each k ∈ {1, . . . , κ}. Since∑
∞

`=0(` + 1)2−`(δ−s) < ∞, we finally obtain

|I | = O(log 2N + N δ−s) = O(N δ−s).

Hence by (5.3),
∑N

m=1 cme(mα)mδ−3/2
= O(N δ−s), and by partial summation, we

obtain
N∑

n=1

cne(nα) = O(N 3/2−s),

and we are done. The proof of
∑

−1
n=−N cne(nα) = O(N 3/2−s) is entirely similar.

Remark 5.2
Proposition 5.1 is complemented by the following result, which shows that the expo-
nent 3/2 − s therein is the best possible.

PROPOSITION 5.1′

Let φ(z) be as in Proposition 5.1. Take k ∈ {1, . . . , κ} such that c(k)
0 6= 0 in (5.4)

(such k always exists since φ is a residual eigenfunction), and let α ∈ R be any cusp
equivalent to ηk .∗ Then at least one of

N∑
n=1

cne(nα) = �(N 3/2−s),

−1∑
n=−N

cne(nα) = �(N 3/2−s)

∗It is well known that the set of such points α is dense in R. A more precise statement of this nature is provided
in §7(II).
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must hold as N → ∞.

Proof
Assume that this is not true; that is, assume that S+(X) =

∑
15n5X cne(nα) =

o(X3/2−s) and S−(X) =
∑

15n5X c−ne(−nα) = o(X3/2−s) as X → ∞. (Here α is
fixed.) We now study φ(α + iy) as y → 0.

It follows from (5.1), using partial summation (treating n > 0 and n < 0 sepa-
rately), that

φ(α + iy) = c0 y1−s
− 2πy3/2

∫
∞

1/2
K ′

s−1/2(2π X y)
(
S+(X) + S−(X)

)
d X.

Convergence follows easily using our bounds on S±(X) and the exponential decay of
K ′

s−1/2(u) (cf. (4.29)).
Now let ε > 0 be given. It follows from our assumption on S±(X) that there is

some X0 = X0(ε) > 1 such that |S+(X) + S−(X)| 5 εX3/2−s for all X = X0. Let
M = supX∈[1/2,X0]

|S+(X) + S−(X)|. We then get, for all y < 1/X0,

|φ(α + iy)| 5 |c0|y1−s
+ 2πy3/2

∫ X0

1/2
C(X y)−1/2−s M d X

+ 2πy3/2
∫ 1/y

X0

C(X y)−1/2−sεX3/2−s d X

+ 2πy3/2
∫

∞

1/y
Ce−X yεX3/2−s d X

<
(
|c0| + 2πC M

∫ X0

1/2
X−1/2−s d X

)
y1−s

+ ε
( 2πC

2 − 2s
+ 2πC

∫
∞

1
e−uu3/2−s du

)
ys−1.

Recall that s ∈ (1/2, 1); hence s − 1 < 0 < 1 − s. Since ε was arbitrary, and since
the expression inside the parentheses in front of ys−1 above does not depend on ε, it
now follows that

φ(α + iy) = o(ys−1) as y → 0. (5.14)

On the other hand, take T ∈ 0 such that α = T (ηk), and write Nk T −1
=

(
a b
c d

)
.

We then have Nk T −1(α) = ∞, and thus cα + d = 0. Hence c 6= 0, and by a
quick computation, Im Nk T −1(α + iy) = |c|−2 y−1 for all y > 0. Using (5.4) and
0-invariance, we now get

φ(α + iy) ∼ c(k)
0

(
Im Nk T −1(α + iy)

)1−s
= c(k)

0 |c|2(s−1)ys−1

as y → 0. This is a contradiction to (5.14).
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PROPOSITION 5.3
Let m = 1 be such that φm is a residual eigenfunction (hence 0 < λm < 1/4). Define
s by λm = s(1 − s), s ∈ (1/2, 1). We then have, uniformly over all y ∈ (0, 1) and all
α, β such that y 5 β − α 5 1,

1
β − α

∫ β

α
φm(x + iy) dx = O

(
y1−s(β − α)2s−2).

The implied constant depends on 0 and φm .

Proof
The proof is almost identical to the proof of Proposition 4.6, except that we use the
bound from Proposition 5.1 instead of (4.25). Notice that since 1/2 < s < 1, (4.29)
holds with ε = 0.

The proof of Theorem 3 is now complete in view of Propositions 4.3, 4.5, 4.6, and
5.3.

6. Joint equidistribution of subsegments
In this section we prove a result on the joint distribution of several subsegments of the
closed horocycle {x + iy | x ∈ [0, 1]}.

As before, we let 0 be a cofinite Fuchsian group with a standard cusp at infinity.
We use the same notation as in §3, in particular, G = PSL(2, R). Let us write

Comm(0) =
{
g ∈ G

∣∣ g0g−1 and 0 are commensurable
}
.

(Two subgroups of a group are called commensurable if their intersection has finite
index in both of them.) For basic information concerning Comm(0) and its use for the
construction of Hecke operators on 0 \ H , the reader is referred to [Shim, Chapter
3]. We also remark that if 0 is a nonarithmetic group, then 0 is of finite index in
Comm(0) (cf. [Ma, Chapter IX, Theorem 1.16]).

THEOREM 4
Let n = 2, let ` > 0, and let α1, α2, . . . , αn be real numbers such that(

1 α j − αk

0 1

)
/∈ Comm(0) for all j 6= k. (6.1)

We then have, for any bounded continuous function f on Mn
= (0 \ T1H )n ,

lim
y→0

1
`

∫ `

0
f
(
(α1 + x + iy, 0), (α2 + x + iy, 0), . . . , (αn + x + iy, 0)

)
dx

=
1

ν(M)n

∫
Mn

f (p1, . . . , pn) dν(pn) · · · dν(p1). (6.2)
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Remark 6.1
The condition (6.1) is also a necessary condition, for if Sα j −αk ∈ Comm(0) for some
j 6= k, then one easily checks that the whole subset {(Sα j p, Sαk p) | p ∈ T1H } of
(T1H )2 projects onto a closed submanifold of codimension 3 in (0 \ T1H )2, so that
(6.2) cannot hold for all f .

Proof of Theorem 4
We apply Shah, [Sh, Theorem 1.4], for the group L = Gn

= G × · · · × G, the lattice
3 = 0n

⊂ L , the expanding horospherical subgroup U+
=

(
1 ∗
0 1

)
⊂ G, and the

probability measure λ on U+ defined by λ(A) = `−1
· m

(
[0, `]∩

{
x

∣∣ ( 1 x
0 1

)
∈ A

})
for

any Borel set A ⊂ U+, where m(·) is the Lebesgue measure on R. Furthermore, we
take G to be imbedded as a closed Lie subgroup of L by the map

G 3 g 7→
(
Sα1 gS−α1, Sα2 gS−α2, . . . , Sαn gS−αn

)
∈ L .

Let π be the projection L → 3\L . We will prove below the following proposition.

PROPOSITION 6.2
Under assumption (6.1), π(G) is dense in 3\L .

Using this proposition, it is now easy to check that all assumptions in Shah’s Theorem
1.4 are fulfilled. The conclusion from Shah’s theorem is that, for any sequence of pos-
itive real numbers y j with lim j→∞ y j = 0 and for any bounded continuous function
f0 on 0n

\L , we have

lim
j→∞

1
`

∫ `

0
f0

(
Sx+α1 a(y j )S−α1, . . . , Sx+αn a(y j )S−αn

)
dx =

∫
0n\L

f0 dµL . (6.3)

Here µL is the unique L-invariant probability measure on 0n
\L .

We let T denote right multiplication by (Sα1, Sα2, . . . , Sαn ) on 0n
\L; then T is a

homeomorphism of 0n
\L onto itself preserving the measure µL . Given any bounded

continuous function f on 0n
\L , we now apply (6.3) to f0 = f ◦ T . Reinterpreting

the result via the identifications 0n
\L = (0\G)n

= Mn , we obtain (6.2).

It remains to prove Proposition 6.2. We first prove the following lemma.

LEMMA 6.3
Let g be the Lie algebra of G = PSL(2, R), and let h be a Lie subalgebra of the
direct sum l = g ⊕ g ⊕ · · · ⊕ g (n copies). Assume that h contains the diagonal
{(X, X, . . . , X) | X ∈ g}. Then there exists an equivalence relation ∼ on the set
{1, . . . , n} such that

h =
{
(X1, X2, . . . , Xn) ∈ l

∣∣ X i = X j whenever i ∼ j
}
.
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Proof
Given h as above, we define a relation ∼ on {1, . . . , n} by letting i ∼ j hold if and
only if X i = X j holds for all vectors (X1, . . . , Xn) ∈ h. Clearly, ∼ is an equivalence
relation, and

h ⊂
{
(X1, X2, . . . , Xn) ∈ l

∣∣ X i = X j whenever i ∼ j
}
. (6.4)

We have to prove that the opposite inclusion holds as well. Clearly, the right-hand
side of (6.4) is isomorphic to a direct sum of e copies of g, where e is the number of
equivalence classes of ∼. Using this isomorphism, we may reduce to the case when
n = e; that is, we may assume that i 6∼ j holds for all i 6= j . Our task is now to prove
that h = l.

We let H, R, L ∈ g be a standard basis with [R, L] = H, [H, L] = −2L ,
[H, R] = 2R. Also, we let d : g → l be the diagonal map X 7→ (X, X, . . . , X), so
that, by our assumption, d(X) ∈ h for all X ∈ g.

Step 1. For any given i 6= j in {1, . . . , n}, there exists a vector (t1 H, t2 H, . . . , tn H) ∈

h (tk ∈ R) such that ti 6= t j . To prove this claim, first note that since i 6∼ j , there is
a vector (X1, . . . , Xn) ∈ h with X i 6= X j . Thus, writing Xk = ak H + bk R + ck L ,
at least one of ai 6= a j , bi 6= b j , ci 6= c j must hold. Now the claim follows since the
following vectors belong to h:

ad d(L) ad d(H) ad d(R) (X1, X2, . . . , Xn) = (4a1 H, 4a2 H, . . . , 4an H),

ad d(L) ad d(H) (X1, X2, . . . , Xn) = (−2b1 H, −2b2 H, . . . ,−2bn H),

ad d(R) ad d(H) (X1, X2, . . . , Xn) = (−2c1 H, −2c2 H, . . . ,−2cn H).

Step 2. There is a vector (t1 H, t2 H, . . . , tn H) ∈ h such that all the numbers t1, . . . , tn
are nonzero and pairwise distinct. This follows easily by constructing a suitable linear
combination of the vector d(H) and the vectors that we obtained in Step 1.

Step 3. The Lie algebra h contains each vector (x1 H, x2 H, . . . , xn H) (x j ∈ R). To
prove this, let X (1)

= (t1 H, t2 H, . . . , tn H) ∈ h be a vector as in Step 2. Define the
vectors X (2), X (3), . . . ∈ h recursively by

X (k)
=

1
4

[
[d(L), X (1)

], [d(R), X (k−1)
]
]
.

We then find that

X (k)
= (tk

1 H, tk
2 H, . . . , tk

n H) for each k = 1.

Since all the t j ’s are nonzero and pairwise distinct, it follows using the Vandermonde
determinant that the vectors X (1), . . . , X (n) span the space {(x1 H, x2 H, . . . , xn H) |

x j ∈ R}, and the claim is proved.
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Applying now ad d(L) and ad d(R) to the h-vectors obtained in Step 3, we find that
h contains all vectors (x1L , x2L , . . . , xn L) and (x1 R, x2 R, . . . , xn R) as well. Hence
h = l, and the lemma is proved.

Proof of Proposition 6.2
It is convenient to alter the notation by a conjugation so as to make G imbedded in
L by the diagonal map G 3 g 7→ (g, g, . . . , g) ∈ L , and 3 = S−α10Sα1 × · · · ×

S−αn 0Sαn .

Notice that G is generated by (Ad-)unipotent one-parameter subgroups of L con-
tained in G. Hence Ratner’s result [R2, Corollary B] applies, and it follows that there
is a closed subgroup H ⊂ L such that G ⊂ H , H ∩ 3 is a lattice in H , and
π(G) = π(H) in 3\L . By Lemma 6.3 applied to the Lie algebra of H , the identity
component H0 has the following explicit form for some fixed equivalence relation ∼

on {1, . . . , n}:

H0
=

{
(g1, g2, . . . , gn) ∈ L

∣∣ gi = g j whenever i ∼ j
}
.

Clearly, if C1, . . . , Ce ⊆ {1, . . . , n} are the distinct equivalence classes of ∼, then
there is a natural isomorphism H0 ∼=

∏e
m=1 G under which H0

∩ 3 corresponds
to

∏e
m=1

(⋂
j∈Cm

S−α j 0Sα j
)
. Since H0

∩ 3 is a lattice in H0, it follows that⋂
j∈Cm

S−α j 0Sα j must be a lattice in G for each m. Hence |Cm | = 1 for each m
since, by assumption, Sα j −αk /∈ Comm(0) whenever j 6= k. Hence H0

= L , and thus
π(G) = 3\L .

Now Theorem 4 is completely proved. We give two corollaries concerning the sum
Sy,N (x).

As in the introduction, we define

Sy,N (x) =

N−1∑
j=0

F
( x + j

N
+ iy

)
,

where F : H → R is a fixed, bounded, continuous, and 0-invariant function. For
each y > 0 and N ∈ Z+, we view Sy,N as a random variable by taking x in the
probability space ([0, 1], m) with m = Lebesgue measure. We also let Y1, Y2, . . . be
independent, identically distributed random variables with distribution given by

Prob(Yn ∈ A) =
µ

{
z ∈ 0 \ H | F(z) ∈ A

}
µ(0 \ H )

(for each Borel set A ⊂ R).

Given D ∈ Z+, we define

Z+

D =
{

N ∈ Z+
∣∣ gcd(N , D) = 1

}
.
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COROLLARY 6.4
If 0 is nonarithmetic, then there exists a D = D(0) ∈ Z+ such that for each fixed
N ∈ Z+

D and each fixed bounded continuous function F : 0\H → R, Sy,N converges
in distribution to Y1 + Y2 + · · · + YN as y → 0.

Proof
Since 0 is nonarithmetic, 0 is of finite index in Comm(0) (cf. [Ma, Chapter IX,
Theorem 1.16]). In particular, since Sx10 = Sx20 ⇐⇒ Sx1−x2 ∈ 0 ⇐⇒ x1 −

x2 ∈ Z, there exist at most finitely many rational numbers q ∈ (0, 1) for which
Sq

∈ Comm(0). Let D = D(0) be the product of the denominators of all these
numbers q. (Let D = 1 if there are no such numbers q .)

We now fix some N ∈ Z+

D and some function F as above. We then have
S( j−k)/N /∈ Comm(0) for all j 6= k ∈ {1, . . . , N }.

Let k be a given positive integer, and define f (z1, . . . , zN ) =
(∑N

j=1 F(z j )
)k ;

then f is a bounded continuous function (0 \ H )N
→ R. The moments E Sk

y,N and
E (Y1 + · · · + YN )k can now be expressed as follows:

E Sk
y,N =

∫ 1

0
f
( x

N
+ iy,

x + 1
N

+ iy, . . . ,
x + N − 1

N
+ iy

)
dx;

E (Y1 + · · · + YN )k
= µ(0 \ H )−N

∫
(0\H )N

f (z1, . . . , zN ) dµ(zN ) · · · dµ(z1).

Hence by Theorem 4 (if N = 1, Theorem 1) and our remarks above regarding
Comm(0), we have E Sk

y,N → E (Y1 + · · · + YN )k as y → 0. This holds for each
fixed k ∈ Z+, and hence Sy,N converges in distribution to Y1 + · · · + YN as y → 0
(cf., e.g., [F, Example VIII.1(d)]).

COROLLARY 6.5
Let 0, D(0), F be as in Corollary 6.4, and assume furthermore that

∫
0\H F dµ = 0.

Then there exists a sequence {hN }N∈Z+

D
of positive numbers with limN→∞ hN = 0,

such that, for any sequence {yN }N∈Z+

D
of numbers satisfying 0 < yN 5 hN , the

random variable N−1/2SyN ,N converges in distribution to a Gaussian with mean zero
and variance σ 2

F = µ(0 \ H )−1 ∫
0\H F2 dµ as N ∈ Z+

D , N → ∞. (The sequence
{hN }N∈Z+

D
may depend on 0 and F .)

Proof
For each N ∈ Z+

D , Corollary 6.4 shows that we may take hN > 0 so small that, for all
y ∈ (0, hN ],

d
[
N−1/2Sy,N ; N−1/2(Y1 + · · · + YN )

]
5 N−1,

where d[· ; ·] is the Lévy distance between the corresponding distribution functions.
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But by the central limit theorem for sums of independent, identically distributed ran-
dom variables, we have

d
[
N−1/2(Y1 + · · · + YN ); N(0, σ 2

F )
]
→ 0 as N → ∞,

where N(0, σ 2
F ) denotes the normal distribution with mean zero and variance σ 2

F . The
corollary follows from this.

Remark 6.6
The numerical investigations of Sy,N in [He2, §5] were carried out on Hecke triangle
groups GL for L = 3, 5, 7. We let G′

L denote a conjugated version of GL , normalized
to have a cusp of standard width 1 at ∞, as in [He1, p. 569 (7.2)]. We remark that
if 0 is a nonarithmetic Hecke triangle group 0 = G′

L (i.e., L = 5 or L = 7), then
Comm(0) = 0 by [L], and hence Corollaries 6.4 and 6.5 hold with D = D(0) = 1.

7. Some further results, applications, and comments
(I) In the special case of f = φ a cusp form, Proposition 4.6 shows that the exponent
c(0) = 1/2 in Theorem 1 can be improved all the way up to c(0) = 1. In [St, §4],
we used this fact together with methods involving the incomplete Eisenstein series
to show that, for arbitrary f , (1.2) holds with c(0) = 1, so long as α (or β) is kept
generic. In precise terms, we have the following.

THEOREM 7.1
Let 0 be given as above, and fix a number 1/2 < γ < 1. Then there exists a family of
subsets G (y) ⊆ R such that for any fixed µ < ν,

lim
y→0+

m
(
[µ, ν] ∩ G (y)

)
= ν − µ

(m = Lebesgue measure), and for any bounded, continuous, and 0-invariant function
f : H → C,

1
β − α

∫ β

α
f (x + iy) dx →

1
µ(0 \ H )

∫
0\H

f (z) dµ(z)

uniformly as y → 0+ so long as α ∈ G (y) (or β ∈ G (y)) and β − α = yγ .

A result of similar nature can also be deduced from [DM, Theorem 3] (cf. [St, Remark
5.2.5]).

(II) Our result on the uniform equidistribution of horocycles can be applied to ob-
tain an asymptotic formula for the counting function Ck

µν(X) (cf. (2.12)) as X → ∞.
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THEOREM 7.2
Let 0 be given as above; let k ∈ {1, . . . , κ} and δ > 0. We then have

1
X2(ν − µ)

Ck
µν(X) −→

1
π µ(0 \ H )

uniformly as X → ∞ so long as ν − µ = X−1+δ .

This was proved in [St, §4.6] as a consequence of our main theorem, Theorem 1.
We remark that Theorem 7.2 can be interpreted as a statement concerning the

distribution of the cusps of 0 along the boundary ∂H = R ∪ {∞} of H . To see
this, we associate to each cusp η ∈ ∂H the unique horoball B = Bη which is
tangent to ∂H at η and for which 0η\B has hyperbolic area 1.

(
This means that B =

U N−1
k {z ∈ H | Im z = 1} for any U ∈ 0, k ∈ {1, . . . , κ} such that η = U (ηk).

)
We

then have

Ck
µν(X) = ]

{
η ∈ [µ, ν]

∣∣ η is a cusp equivalent to ηk,

and Bη intersects the line Im z = X−2}.
(III) Another application concerns the value distribution of the generalized theta

sum
2 f (x + iy) = y1/4

∑
n∈Z

f (ny1/2)e(n2x),

which was studied by Marklof in [Mar1]. Using our results on subsegments of closed
horocycles, we are able to give a more uniform version of one of the main theorems
in [Mar1], Theorem 7.1, as follows.

Let f be a function from R to C which satisfies f (x) = O((|x |+ 1)−η) for some
η > 1 and which is Riemann-integrable on every bounded interval. Let B ⊂ C be
an open convex set containing zero and with smooth boundary, and let, for w ∈ C,
R > 0,

B(w, R) =
{

Rz + w
∣∣ z ∈ B

}
.

Let 9(R) = 9B(w, R) be defined as in [Mar1, Theorem 7.1]. Then 9 is an increasing
function from R+ to [0, 1] with limR→∞ 9(R) = 1, and 9 is uniquely determined
by f, B, w. In the following, we keep f, B, w fixed.

THEOREM 7.3
There exists a countable subset E ⊂ R+ such that for each δ > 0, and for each R > 0
outside E, we have (with m = Lebesgue measure)

1
β − α

m
({

x ∈ [α, β]
∣∣ 2 f (x + iy) ∈ B(w, R)

})
→ 9(R) (7.1)

uniformly as y → 0+ so long as β − α = y1/2−δ .
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Notice here that [Mar1, Theorem 7.1] corresponds to keeping α = 0, β = 1 in Theo-
rem 7.3. Notice also that Theorem 7.3 implies that (7.1) actually holds for each R > 0
which is a point of continuity of 9(R).

Theorem 7.3 may in particular be applied to the classical theta sum SN (x) =∑N
n=1 e(n2x) (cf. [Mar1, page 152]). We then obtain a strengthened version of the

uniform central limit theorem for SN (x) which was proved by Jurkat and van Horne
in [JV]: There is a decreasing function 8 : [0, ∞) → [0, 1] such that for each λ = 0
which is a point of continuity of 8, we have

1
β − α

m
({

x ∈ [α, β]
∣∣ N−1/2

|SN (x)| = λ
})

→ 8(λ)

uniformly as N → ∞ so long as β − α = N−1+2δ . (In [JV] this was proved in the
case of fixed α, β.)

Sketch of the proof of Theorem 7.3
In [Mar1], 2 f is identified (for functions f of Schwarz class) as the restriction of a
function living on a space M which is a 4-fold cover of 01(4)\T1H . Our proof of
Theorem 2 in §3 can easily be carried over to the case of [α, β]-segments of closed
horocycles in M . Hence we obtain [α, β]-versions of [Mar1, Proposition 4.3, Corol-
lary 4.4, Theorem 5.3]. (We have to keep σ 5 1/2 in the [α, β]-version of [Mar1,
Proposition 4.3]). Our goal is to prove an [α, β]-version of [Mar1, Theorem 7.1], and
the only step in the proof in [Mar1] which does not carry over immediately is the
following. (Without loss of generalization, we take f even.) Given ε > 0 and an even
Schwartz function fε on R such that

∫
∞

−∞
| f (t) − fε(t)|2 dt < ε, we need to show

J =
1

β − α

∫ β

α

∣∣2 f (x + iy) − 2 fε (x + iy)
∣∣2 dx < 3ε (7.2)

for all sufficiently small y and all α, β such that β − α = y1/2−δ (cf. [Mar1, (86)]).
But J can be expanded as follows (writing g = f − fε):

J = y1/2
(
|g(0)|2 + 2

∑
n 6=0

|g(ny1/2)|2
)

(7.3)

+
y1/2

β − α

∑
n,m∈Z
n 6=±m

g(ny1/2)g(my1/2)

∫ β

α
e
(
(n2

− m2)x
)

dx .

Here the expression on the first line converges to 2
∫

∞

−∞
| f (t) − fε(t)|2 dt < 2ε as

y → 0. Using |g(x)| 5 O f, fε ((|x |+1)−η) (with η > 1) and
∣∣∫ β

α e((n2
−m2)x) dx

∣∣ 5
min(β − α, |n2

− m2
|
−1), and careful summation, the expression in the second line
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of (7.3) is seen to be, for 0 < y < 1 and α < β,

O f, fε

( y1/2

β − α

)((
log

2
y

)2
+ log+

( 1
β − α

))
.

This tends to zero as y → 0, β − α = y1/2−δ , and we thus obtain (7.2).
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