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ON THE DEVIATION OF ERGODIC AVERAGES FOR HOROCYCLE FLOWS

ANDREAS STRÖMBERGSSON
(Communicated by Jens Marklof)

ABSTRACT. We give effective bounds on the deviation of ergodic averages for
the horocycle flow on the unit tangent bundle of a noncompact hyperbolic
surface of finite area. The bounds depend on the small eigenvalues of the
Laplacian and on the rate of excursion into cusps for the geodesic correspond-
ing to the given initial point. We also prove Ω-results which show that in a
certain sense our bounds are essentially the best possible for any given initial
point.

1. INTRODUCTION

Let G denote the group PSL(2,R) and let Γ be a lattice in G . This means that
Γ is a discrete subgroup of G and the measure ν on the quotient space Γ\G
derived from the Haar measure on G is finite. We assume that ν is normalized,
i.e., ν(Γ\G) = 1.

The geodesic and the horocycle flows on Γ\G are defined by

g t (Γg ) = Γg

(
e t/2 0

0 e−t/2

)
ht (Γg ) = Γg

(
1 t
0 1

)
(g ∈G , t ∈R).

(1)

It was proved by Dani and Smillie [7, 8] that for each point p = Γg ∈ Γ\G that
does not belong to a closed orbit of the horocycle flow, the orbit {ht (p) | 05 t 5
T } becomes asymptotically equidistributed on Γ\G as T →∞. In other words,
for any such p and any bounded continuous function f : Γ\G →R, the ergodic
averages satisfy

1

T

∫ T

0
f (ht (p))d t →〈 f 〉 :=

∫
Γ\G

f dν, as T →∞.(2)

This result was later vastly generalized by Ratner [28] to the case of an arbitrary
unipotent flow on a general homogeneous space. As was pointed out by Mar-
gulis and others (cf., e.g., [21]), an important (and difficult) open problem is to
prove effective bounds on the rate of convergence in Ratner’s general result.

For G = PSL(2,R) and Γ cocompact, such effective bounds were obtained by
Burger in [6]. For Γ cocompact there are no closed horocycles on Γ\G , and the
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bound proved in [6] for the rate of convergence in (2) is uniform with respect to
p ∈ Γ\G .

In the present paper, we treat the case of noncocompact (but cofinite) Γ⊂G =
PSL(2,R). In this case the dynamics of the horocycle flow is more complicated
than for cocompact Γ, due to the presence of closed horocycles. Since the closed
horocycles form a dense set in Γ\G , it is clear that the rate of convergence in (2)
must be highly sensitive to the choice of p.

Our main result is Theorem 1 below. This theorem gives an effective version
of (2) for a restricted class of functions f ; it gives a bound on the deviation of
the ergodic average which depends on the small eigenvalues of the Laplacian
and on the excursion rate of the geodesic g t (p) as t →∞. We also prove that in
a certain sense this bound is essentially the best possible, for any given initial
point (see Theorem 2).

To state Theorem 1, we let H be the Poincaré upper half-plane, with G =
PSL(2,R) acting on H in the usual way, and let M = Γ\H, a hyperbolic surface
of finite area. Let π : Γ\G →M be the standard projection given by Γg 7→ Γg (i );
then Γ\G is naturally identified with the unit tangent bundle of M . Let η1, ...,ηκ
(where κ= 1) be the inequivalent cusps of M , and fix a neighborhood C j ⊂ Γ\G
of each η j in such a way that C1, ...,Cκ are pairwise disjoint. Fix a point p0 ∈M .
For p ∈ Γ\G we let dist(p) denote the hyperbolic distance from p0 to π(p) on
M .

If there exist small eigenvalues λ ∈ (0, 1
4 ) in the discrete spectrum of the Lapla-

cian on M , then we let λ1 be the smallest of these, and define s1 ∈ ( 1
2 ,1) by λ1 =

s1(1− s1); otherwise let s1 = 1
2 . For each j ∈ {1, ...,κ} we also let λ( j )

1 ∈ [λ1, 1
4 ) be

the smallest positive eigenvalue for which there exists an eigenfunction which

has nonzero constant term at the cusp η j (i.e., c( j )
0 6= 0 in (18) below), and define

s( j )
1 ∈ ( 1

2 ,1) by λ( j )
1 = s( j )

1 (1− s( j )
1 ); if no such λ

( j )
1 exists we let s( j )

1 = 1
2 . Note that

by these definitions we have 1
2 5 s( j )

1 5 s1 < 1 for each j ∈ {1, ...,κ}, and s1 = 1
2 if

and only if M admits no small eigenvalues.
For f ∈ C k (Γ\G) we let ‖ f ‖Wk be the Sobolev L2 norm involving all the Lie

derivatives of f up to the kth order. We also introduce the following weighted
supremum norm, for f ∈C (Γ\G) and α= 0,

‖ f ‖Nα
= sup

p∈Γ\G
| f (p)| ·e−α·dist(p).(3)

THEOREM 1. Let 05 α < 1
2 . We then have, for all p ∈ Γ\G, T = 10, and all f ∈

C 4(Γ\G) such that ‖ f ‖W4 <∞ and ‖ f ‖Nα
<∞:

1

T

∫ T

0
f (ht (p))d t = 〈 f 〉+O

(
‖ f ‖W4

){
r−1/2 log3(r +2)+ r s( j )

1 −1 +T s1−1
}

+O
(
‖ f ‖Nα

)
· r−1/2,

(4)
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where r = r (p,T ) = T · e−dist(g logT (p)), and j = j (p,T ) is defined by g logT (p) ∈ C j

(if there is no such j , the term r s( j )
1 −1 is omitted in the bound above). The implied

constants depend only on Γ, α and p0,C1, ...,Cκ.

We remark that the implied constants are effective in the sense that they can
in principle be determined explicitly from the proof once Γ and the finite set
of small eigenvalues 0 < λ < 1

4 on Γ\H are known. Also, it is easy to see that
for each p ∈ Γ\G for which the horocycle {ht (p) | t ∈ R} is nonclosed, one has
r = T · e−dist(g logT (p)) → ∞ as T → ∞ (cf. (14) and Lemma 4.4 below). Hence
Theorem 1 is indeed an effective version of (2).

The entity r = T ·e−dist(g logT (p)) is directly related to the asymptotic excursion
rate of the geodesic {g t (p)}, a concept which is well studied in the literature. For
instance, let us define

αp = limsup
t→∞

dist(g t (p))

t
∈ [0,1];(5)

it then follows from Sullivan’s logarithm law for geodesics [34, §9] that αp = 0
for almost every point p ∈ Γ\G (with respect to the invariant volume measure).
One even knows that for each α0 ∈ [0,1] and each fiber π−1(q) ∈ Γ\G (a one-
dimensional circle), the subset

{
p ∈π−1(q) |αp =α0

}
has Hausdorff dimension

1−α0 (cf. [23, Thm. 1]).
From these facts and Theorem 1 we see that for each point p ∈ Γ\G outside a

“very small” set, the deviation of the ergodic average always decays like O(T −δ)
as T →∞, for some δ> 0. The next theorem shows that for each p, Theorem 1
gives the optimal exponent δ.

Let us define, for j ∈ {1, ...,κ},

αp, j = limsup
t→∞

(g t (p)∈C j )

dist(g t (p))

t
.(6)

(We let αp, j = 0 if g t (p) ∉C j for all large t .) Note that 05αp, j 5αp 5 1.

THEOREM 2. Let p ∈ Γ\G be given, and let

δp = min
(
1− s1, min

j
(1−αp, j )(1− s( j )

1 )
)
.

Then for any fixed δ< δp , and any fixed function f ∈C 4(Γ\G) such that ‖ f ‖W4 <
∞, we have

1

T

∫ T

0
f (ht (p))d t = 〈 f 〉+O(T −δ), as T →∞.(7)

On the other hand, there exists a function f of the above type such that (7) does
not hold for any δ> δp .

In particular, by the logarithm law for geodesics, for almost every p ∈ Γ\G the
exponent of optimal rate equals δp = 1− s1. Also, in each fiber π−1(q), δp > 0 for
every p ∈π−1(q) outside a set of Hausdorff dimension zero.

JOURNAL OF MODERN DYNAMICS VOLUME 7, NO. 2 (2013), 291–328



294 ANDREAS STRÖMBERGSSON

REMARK 1.1. It is immediate from Theorem 1 that (7) holds for all δ< δp and
all functions f ∈ C 4(Γ\G) satisfying ‖ f ‖W4 <∞ and ‖ f ‖Nα

<∞ for some α< 1
2 .

Theorem 2 tells us that (7) even holds without the assumption ‖ f ‖Nα
<∞. On

the other hand, by studying special nonclosed horocycles with δp = 0 one can
show that in Theorem 1 some assumption on f beyond ‖ f ‖Wk <∞ is necessary,
cf. Proposition 4.1.

The proof of Theorem 1 is based on an explicit identity for ergodic averages of
the horocycle flow which was developed and used by Burger in [6]. However, we
cannot use invariant norms on L2(Γ\G) in the same direct way as was possible
in [6]; instead we use Sobolev imbedding inequalities with explicit dependence
on the point in Γ\G . Extra care is required to treat initial points p with δp = 0;
for such points p we first make a careful splitting of the horocycle into several
parts, and then deal with each part separately, cf. pp. 305–308. (This argument
was inspired by Ratner, [29, p. 20].)

The last statement in Theorem 2 is a consequence of more precise Ω-results
which we prove in §4 and §5. The proofs in §5 involve use of the Fourier expan-
sions of the individual eigenfunctions on Γ\H.

For Γ a congruence subgroup of PSL(2,Z), Theorem 2 allows a more explicit
formulation, as we will now show. Recall that an irrational number r ∈R is said
to be of (Diophantine) type K if there exists a constant C > 0 such that |r −
m/n| >C n−K for all m,n ∈Z with (m,n) = 1, n > 0. The smallest possible value
of K is K = 2. Let g = (

a b
c d

) ∈ G be a representative for a point p ∈ Γ\G ; then
a
c ∈R∪ {∞} = ∂H is the end-point at infinity of the horocycle {ht (g )} (projected
from G to H). If Γ is any subgroup of finite index in PSL(2,Z) then the horocycle
{ht (p)} is nonclosed if and only if c 6= 0 and a

c is irrational. For general Γ, there is
a well-known correspondence between the excursion rate of the geodesic g t (p)
and the well-approximability of a

c by cusps of Γ, cf. [34, 23, 36]; in particular, if
Γ is any subgroup of finite index in PSL(2,Z) and {ht (p)} is nonclosed, then

αp = 1−2/Kp ,

where Kp ∈ [2,∞)∪ {∞} is the infimum of all numbers K = 2 such that a
c is of

type K . (This formula remains true if we define Kp =∞ when {ht (p)} is closed.)
Recall also that if Γ is a congruence subgroup of PSL(2,Z) then there is no resid-

ual spectrum on Γ\H, i.e., s( j )
1 = 1

2 for all j . Hence:

COROLLARY 1. If Γ is a congruence subgroup of PSL(2,Z) then the optimal ex-
ponent δp in Theorem 2 is

δp = min
(
1− s1, K −1

p

)
, for all p ∈ Γ\G .

In this connection, recall that the fundamental eigenvalue conjecture by Sel-
berg is the statement that for each congruence subgroup Γ, there are no small
eigenvalues 0 < λ < 1

4 on Γ\H. Hence, by the corollary, Selberg’s conjecture is
true if and only if, for each congruence subgroup Γ, there exists at least one
point p ∈ Γ\G such that δp = 1

2 (and if so, then δp = 1
2 for almost all p ∈ Γ\G ,

and δp = K −1
p for all p ∈ Γ\G).
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1.1. Related work. The present work was completed as a preprint in 2003, but
was not submitted for publication at the time.

In a closely related paper, Flaminio and Forni [10] give a precise classifica-
tion of the invariant distributions for the horocycle flow on Γ\G , and use this
to prove, among other things, a more precise asymptotic version of Burger’s re-
sult for cocompact Γ, and also, for noncocompact Γ, an asymptotic formula for
ergodic averages of the push-forward of a given finite horocycle arc under the
action of the geodesic flow. The classification and tools developed in [10] could
also be easily applied to give alternative proofs of some of the main results ob-
tained in the present paper; in particular the upper bound (7) in Theorem 2
as well as some of our lower bounds; I am indebted to Flaminio and Forni for
explaining this alternative approach to me in some detail [11].

We also mention some later work in related settings with G = PSL(2,R). For
the case of Γ\G compact, Bufetov and Forni [4] (building on [10]) recently ob-
tained precise results on the limit distribution of the appropriately rescaled er-
godic averages for the horocycle flow. Also for Γ\G compact, Venkatesh [37, Thm.
3.1] has proved an effective equidistribution result for discrete orbits of the horo-
cycle flow. For the case of the modular group Γ= PSL(2,Z), Sarnak and Ubis [31],
independently of the present paper, proved an effective rate of equidistribution
for both continuous and discrete orbits of the horocycle flow on Γ\G , and ap-
plied this to the study of orbits of the form {hp (Γg )} with p running through the
prime numbers. Also for Γ= PSL(2,Z), Athreya and Cheung in [1] constructed
a Poincaré section for the horocycle flow on Γ\G , and made a careful study of
its first-return map. Recently also effective results on the asymptotic equidistri-
bution of closed horocycle orbits for noncofinite (but finitely generated) Γ have
been obtained, by Kontorovich and Oh [16] and Lee and Oh [18].

Important results on effective equidistribution in other homogeneous spaces
have been obtained by Einsiedler, Margulis and Venkatesh [9], and by Green and
Tao [12].

The main result of the present paper was recently applied in the study of the
orbits for the action of a lattice Γ⊂G on the plane R2, cf. Maucourant and Weiss
[22].

2. DECOMPOSITION OF L2(Γ\G) AND SOBOLEV NORMS

We start by introducing necessary notation and recalling some basic facts
regarding unitary representations of G , Sobolev norms, and the geometry of
Γ\G .

We let G = PSL(2,R), g = sl(2,R). For x ∈ R, y > 0, θ ∈ R/πZ we define the
following elements in G :

n(x) =
(
1 x
0 1

)
, a(y) =

(
y1/2 0

0 y−1/2

)
, r(θ) =

(
cosθ sinθ
−sinθ cosθ

)
.

Then each g ∈G has a unique factorization g = n(x)a(y)r(θ) (Iwasawa decom-
position). Using these coordinates, the bi-invariant Haar-measure d g on G is
given by d g = y−2d xd ydθ.
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We define H , X−, X+ ∈ g by

H =
(
1 0
0 −1

)
, X− =

(
0 0
1 0

)
, X+ =

(
0 1
0 0

)
.

Then the Casimir element in the universal enveloping algebra U (g) is

�=−1
4 (H 2 +2X+X−+2X−X+).(8)

If (H ,π) is an irreducible unitary representation of PSL(2,R) then there is an
orthonormal basis {φn}n∈Σ in H such that Σ is a subset of the set 2Z of even
integers, each φn is a smooth vector, and π(r(θ))φn = e i nθφn for all n ∈Σ, θ ∈R.
The Casimir element acts as a scalar, π(�) =λ · Id, on the set of smooth vectors
in H . One knows that either λ> 0 and Σ= 2Z (then (H ,π) is a representation
of the principal series or the complementary series), or λ = 0 and Σ = {0} (the
trivial representation), or else λ = m

2 (1− m
2 ) for some even integer m = 2, and

Σ= {m,m +2,m +4, ...} or Σ= {−m,−m −2,−m −4, ...} (the discrete series).
Now let π be an arbitrary unitary representation of G on a (separable) Hilbert

space H . It is known that any such representation is unitarily equivalent to a
direct integral

(π,H ) ∼=
(∫ ⊕

Z
πζdν(ζ),

∫ ⊕

Z
H (ζ)dν(ζ)

)
,

where Z is a locally compact Hausdorff space, ν is a positive Radon measure on
Z, and for almost every ζ ∈Z, πζ is an irreducible unitary representation of G in
a separable Hilbert space H (ζ). The Hilbert space

∫ ⊕
Z H (ζ)dν(ζ) is the L2-space

of all measurable functions f on Z with f (ζ) ∈ H (ζ) and
∫
Z ‖ f (ζ)‖2

H (ζ) dν(ζ) <
∞, and the action of g ∈ G is given by (π(g ) f )(ζ) = (πζ(g ))( f (ζ)). Cf., e.g., [20,
§2.4] or [38, §§14.8, 14.9].

Using the notation introduced above for irreducible representations, we de-
fine, for almost all ζ, λ=λ(ζ) so that πζ(�) =λ(ζ)·Id in H (ζ), Σ=Σ(ζ) ⊂ 2Z, and
an orthonormal basis {φn(ζ)}n∈Σ(ζ) in H (ζ) consisting of smooth vectors φn =
φn(ζ) satisfying πζ(r(θ))φn = e i nθφn . We define φn(ζ) = 0 for all n ∈ 2Z−Σ(ζ).
Then λ(ζ) is a measurable function of ζ, and by [27, Lemma 1.1] the basis ele-
ments φn may be chosen in such a way that φn(ζ) is a measurable function of
ζ ∈Z for each n ∈ 2Z, and also so that a function f on Z with f (ζ) ∈Hζ is mea-
surable if and only if the function Z 3 ζ 7→ 〈

f (ζ),φn(ζ)
〉
H (ζ) ∈ C is measurable

for each n ∈ 2Z.
We also define s = s(ζ) as the unique complex number such that λ= s(1− s)

and Re s = 1
2 , Im s = 0. We then have s ∈ 1

2 + iR=0 if λ= 1
4 , s ∈ ( 1

2 ,1] if 05λ< 1
4 ,

and s ∈Z+ if λ5 0.
For k ∈Z=0 we denote by C k (π) is the space of vectors f ∈H such that the

function G 3 g 7→π(g )v ∈H is of class C k . We let H ∞ =C∞(π) be the space of
smooth vectors. This is a dense subspace in H .

We next define the Sobolev norms which we will use. Fix any basis X1, X2, X3

in g and let ∆=−∑
i X 2

i ∈U (g). Then π(∆) (the closure of π(∆)) is a self-adjoint

JOURNAL OF MODERN DYNAMICS VOLUME 7, NO. 2 (2013), 291–328
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operator on H (cf. [25]). The (L2) Sobolev space Wk (H ) of order k ∈ R+ is de-

fined to be the domain of the operator
(
I +π(∆)

)k/2. We define the Sobolev

norm ‖ · ‖Wk on Wk (H ) by ‖v‖Wk = ‖(I +π(∆)
)k/2v‖. The space Wk (H ) with

norm ‖ · ‖Wk is in fact a Hilbert space, containing the space of smooth vectors
H ∞ as a dense subspace.

A straightforward computation shows that the norm ‖ · ‖Wk is equivalent to
the norm ‖ ·‖W ′

k
defined by

‖v‖2
W ′

k
=

∫
Z

∑
n∈Σ(ζ)

(1+n2 +|s(ζ)|2)k ·
∣∣∣〈v(ζ),φn(ζ)

〉
H (ζ)

∣∣∣2
dν(ζ),(9)

and a vector v ∈H belongs to Wk (H ) if and only if the right-hand side above
is finite. (The constants of equivalence between ‖ ·‖Wk and ‖ ·‖W ′

k
depend only

on k ∈R+ and the choice of basis X1, X2, X3 in g.)
If k is an integer, then on the subspace C k (π) ⊂ Wk (H ) the norm ‖ · ‖Wk is

also equivalent to the norm ‖ ·‖W ′′
k

defined by ‖v‖2
W ′′

k
=∑‖π(Xα)v‖2, where the

sum runs over all monomials Xα = Xi1 Xi2 ...Xil ∈ U (g) of degree 5 k. As usual,
H ∞ is given the topology induced by all the norms ‖ · ‖Wk , k ∈Z+. This makes
H ∞ into a Fréchet space. (Cf., e.g., [38, Lemma 1.6.4].)

From now on we let Γ⊂G = PSL(2,R) be a cofinite Fuchsian group such that
the hyperbolic surface M = Γ\H has at least one cusp.

Concerning the cusps and the fundamental domain, we will use the same
notation as in [14, p. 268]. Specifically: we let F ⊂ H be a canonical (closed)
fundamental domain for Γ\H , and let η1, ...,ηκ (where κ= 1) be the vertices of
F along ∂H=R∪ {∞}. Since F is canonical, η1, ...,ηκ are Γ−inequivalent.

For each j ∈ {1, ...,κ} we choose N j ∈ G such that N j (η j ) =∞ and such that
the stabilizer Γη j is [T j ], where T j := N−1

j

(
1 −1
0 1

)
N j . Since F is canonical, by

modifying N j we can also ensure that for all B large enough,

N j (F )
⋂

{z ∈H | Im z =B} = {z ∈H | 05Re z 5 1, Im z =B}.(10)

We recall the definition of the invariant height function, YΓ(z):

YΓ(z) = sup
{

Im N j W (z)
∣∣ j ∈ {1, ...,κ}, W ∈ Γ

}
.(11)

(Cf. [15, (3.8)].) This definition is in fact independent of the choice of F and
of the maps N j . One knows that the supremum in (11) is always attained for
some j ,W ; we then write jΓ(z) = j (this makes jΓ(z) uniquely determined for
each z with YΓ(z) large). The function YΓ(z) is well-known to be continuous
and Γ-invariant; hence YΓ(·) can be viewed as a function on M .

In the lemmas below, we will also use YΓ(·) and jΓ(·) as functions on G or on
Γ\G , defined via composition with the standard projection maps G → Γ\G →M

(i.e., g 7→ Γg and Γg 7→ Γg (i )). Thus

YΓ(g ) = sup

{
1

c2 +d 2

∣∣∣ (∗ ∗
c d

)
=N j W g , j ∈ {1, ...,κ}, W ∈ Γ

}
.

JOURNAL OF MODERN DYNAMICS VOLUME 7, NO. 2 (2013), 291–328
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We record the following inequalities for later use:

YΓ(g a(y))5max(y,1/y) ·YΓ(g ) ∀y > 0,(12)

YΓ(g n(t ))5 (1+|t |)2 ·YΓ(g ) ∀t ∈R.(13)

These follows from the inequalities (c2 y +d 2/y)−15max(y,1/y)(c2 +d 2)−1 and
(c2+(ct+d)2)−15 (1+|t |)2(c2+d 2)−1, true for all (c,d) ∈R2à{(0,0)}. Furthermore,
recalling the definition of the function dist(p) in the introduction, one easily
checks that there are positive constants C1 =C1(Γ, p0), C2 =C2(Γ, p0) such that

C1edist(p)5YΓ(p)5C2edist(p), ∀p ∈M .(14)

From now on in this paper, we will always let π denote the right regular repre-
sentation of G on H = L2(Γ\G). This is a unitary representation. Since Γ\G is of
finite volume, the direct integral decomposition H ∼= ∫ ⊕

Z πζdν(ζ) can in fact be
constructed in such a way that Z is a disjoint union of three measurable subsets,
Z=Zo ∪Zct ∪Zr s , such that the following hold (cf., e.g., [17, 3]):

(a) Writing H = Ho ⊕Hct ⊕Hr s for the corresponding decomposition of H

as an orthogonal sum of closed subspaces, the space Ho coincides with the
space oL2(Γ\G) of cuspidal elements in L2(Γ\G).

(b) Zo ∪Zr s is a discrete measure space, and we may thus assume ν({ζ}) = 1 for
all ζ ∈Zo ∪Zr s .

(c) For each ζ ∈ Zo , πζ is nontrivial, and {ζ ∈ Zo | |s(ζ)| < S} is finite for each
S > 0.

(d) Zr s is finite. There is exactly one ζ ∈Zr s such that πζ is the trivial represen-
tation, and for all other ζ ∈Zr s we have s(ζ) ∈ ( 1

2 ,1).
(e) For all ζ ∈ Zct , πζ is a principal series representation (and thus s(ζ) ∈ 1

2 +
iR=0).

We can give more precise statements than (c) and (d) as follows: The set
{λ(ζ) | ζ ∈Zo ,Re s(ζ) < 1} coincides (with multiplicities) with the set of cuspidal
eigenvalues of the Laplace operator −y2( ∂2

∂x2 + ∂2

∂y2 ) on Γ\H ; the set {λ(ζ) | ζ ∈Zr s}

coincides with the set of residual eigenvalues of −y2( ∂2

∂x2 + ∂2

∂y2 ) on Γ\H ; and for

each m ∈ 2Z+ the number of elements ζ ∈ Zo with s(ζ) = m/2 is equal to twice
the dimension of the space of holomorphic cusp forms of weight m on Γ\H.

Note that by (b) above, we have Ho
∼= ⊕

ζ∈Zo
H (ζ) and Hr s

∼= ⊕
ζ∈Zr s

H (ζ),
and in particular for each ζ ∈Zo∪Zr s , H (ζ) may be viewed as a closed subspace
in H . Note also that if f ∈H ∞ and if fo , fct , fr s are the projections of f to Ho ,
Hct and Hr s , then fo , fct , fr s ∈H ∞, and ‖ f ‖2

Wk
= ‖ fo‖2

Wk
+‖ fct‖2

Wk
+‖ fr s‖2

Wk
for

any k > 0. Furthermore, if f ∈ H ∞, then each projection of f to a subspace
H (ζ) (ζ ∈Zo ∪Zr s) remains in H ∞.

LEMMA 2.1. If f ∈W2(H ) then f is a continuous function on Γ\G, and

| f (p)|¿
Γ
‖ f ‖W2 ·YΓ(p)1/2, ∀p ∈ Γ\G .(15)

Proof. Cf. [10, Lemma 5.3]. (Cf. also [2, p. 349 Prop B.2]; note that the function
“w(x)” in [2] is comparable with YΓ(x).)
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LEMMA 2.2. If f ∈W3(H ) and f is cuspidal then we also have the bound

| f (p)|¿
Γ
‖ f ‖W3 , ∀p ∈ Γ\G .

Proof. This is [2, Prop 4.1]. As a preparation for the next lemma, we recall the
proof from [2, pp. 350–351]. In view of Lemma 2.1 and the density of H ∞ in
W3(H ) we may assume f ∈H ∞. In particular, dπ(X ) f and the pointwise (right)
Lie derivative X f are now the same, for all X ∈ g.

Also because of Lemma 2.1, we need only treat the case when p’s projection
onto Γ\H lies in a cuspidal region F ∩ N−1

j {z ∈H | Im z = B}, cf. (10). After an

auxiliary conjugation, we may assume N j =
(

1 0
0 1

)
, so that the cusp is η j =∞, and

the stabilizer Γ∞ = [(
1 1
0 1

)]
. Then YΓ(p) = Im g (i )= B , for some representative

g ∈G of p.
Let g = n(x)a(y)r(θ) be the Iwasawa decomposition of g ; then y = YΓ(p).

Since f is cuspidal we have
∫ 1

0 f (n(u)g )du = 0. Writing nθ(t ) = r(θ)−1n(t )r(θ)
and using n(u)a(y) = a(y)n(u/y), we obtain∫ 1/y

0
f
(
g nθ(t )

)
d t = 0.(16)

Now {nθ(t ) | t ∈R} is a one-parameter subgroup in G generated by

Xθ = r(θ)−1X+ r(θ) ∈ g.

Clearly ‖Xθ f ‖W2 ¿ ‖ f ‖W3 , uniformly in θ. Note also that YΓ(g nθ(t )) = YΓ(p),
since g nθ(t ) = n(t y)g and Im n(t y)g (i ) = Im g (i ) = B . Hence by Lemma 2.1
applied to Xθ f , we have for all t ∈R,∣∣∣ d

d t
f (g nθ(t ))

∣∣∣= ∣∣∣[Xθ f
]
(g nθ(t ))

∣∣∣¿‖ f ‖W3 ·YΓ(p)1/2.(17)

Clearly, the desired bound follows from y = YΓ(p) and (16), (17). (In fact, we
even obtain the stronger bound | f (p)|¿

Γ
‖ f ‖W3 ·YΓ(p)−1/2.)

In the next lemma, we will prove a similar bound when f ∈ Hr s . Assume
ζ ∈ Zr s and s = s(ζ) ∈ ( 1

2 ,1). Recall the definition on p. 296 of the orthonormal
basis {φn(ζ)} in H(ζ). We write φn =φn(ζ). Now φ0 can be viewed as a function φ

on Γ\H (since π(r(θ))φ0 =φ0 for all θ), and φ is an eigenfunction of the Laplace
operator of eigenvalue λ= s(1− s). Hence for each j ∈ {1, ...,κ} we have a Fourier
expansion [14, Ch. 6, §4]

φ(z) = c( j )
0 y1−s

j + ∑
n 6=0

c( j )
n

√
y j Ks− 1

2
(2π|n|y j )e(nx j ),(18)

where x j + i y j :=N j (z). (Since ζ ∈ Zr s we know that c( j )
0 6= 0 for at least one j .)

Note that if c( j )
0 = 0 for some j then

∫ 1
0 φ0(N−1

j n(u)g )du = 0 for all g ∈ G , and

then
∫ 1

0

[
π(X )φ0

]
(N−1

j n(u)g )du = 0 for all g ∈G and all X ∈U (g). Since the set{
π(X )φ0

}
spans H (ζ) in Hilbert space sense, it follows that for any f ∈ H (ζ),

we have
∫ 1

0 f (N−1
j n(u)g )du = 0 for almost all g ∈G . (Cf. [3, proof of Prop. 8.2].)

Recall the definition of jΓ(·), just below (11).
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LEMMA 2.3. Let ζ ∈ Zr s and s = s(ζ) be as above. We then have for each f ∈
W3(H )∩H (ζ),

| f (p)|¿
Γ
‖ f ‖W3 ·YΓ(p)1−s , ∀p ∈ Γ\G .

Furthermore, if c( j )
0 = 0 for some j ∈ {1, ...,κ} then for all p ∈ Γ\G with jΓ(p) = j

we also have the stronger bound
∣∣ f (p)

∣∣¿
Γ
‖ f ‖W3 .

Proof. The second statement follows from the proof of Lemma 2.2, in view of
our remarks above. We now prove the first statement. Let φn = φn(ζ) be as
above.

As before, we may assume f ∈H ∞∩H (ζ), N j =
(

1 0
0 1

)
and YΓ(p) = Im g0(i )=

B , where g0 ∈ G is a representative for p. Assume f = ∑
n∈2Zdnφn . Each φn

belongs to C∞(G) ∩ L2(Γ\G) and satisfies φn(g r(θ)) = φn(g )e i nθ and �φn =
λφn , where λ = s(1− s) ∈ (0, 1

4 ). Now let Fn(g ) = ∫ 1
0 φn(n(u) g )du. Then �Fn =

λFn , and since Fn(n(x)a(y)r(θ)) = Fn(a(y))e i nθ for all x, y,θ, and �=−y2
(
∂2

∂x2 +
∂2

∂y2

)+ y ∂2

∂x∂θ in these coordinates, we obtain −y2 ∂2

∂y2 Fn(a(y)) = λFn(a(y)), that

is, ∂
∂y y2s ∂

∂y y−sFn(a(y)) = 0. Hence Fn(a(y)) = An y s + A′
n y1−s for some constants

An , A′
n ∈C.

Using N j =
(

1 0
0 1

)
, (10) and Cauchy’s inequality, we now have

1 =
∫
Γ\G

|φn(g )|2 d g =
∫
F

∫
R/πZ

|φn(n(x)a(y)r(θ))|2 dθ
d xd y

y2

=π
∫ ∞

B

∫ 1

0
|φn(n(x)a(y))|2 d x

d y

y2 =π
∫ ∞

B
|Fn(a(y))|2 d y

y2 .

This forces An = 0 and A′
n ¿

Γ
1 (uniformly in n).

Now write g0 = n(x)a(y)r(θ) so that y =YΓ(p) and Fn(g0) = A′
n y1−se i nθ, and

let nθ(t ) be as in the proof of Lemma 2.2. We then have

y
∣∣∣∫ 1/y

0
f (g0nθ(t ))d t

∣∣∣= ∣∣∣∫ 1

0
f (n(u)g0)du

∣∣∣= ∣∣∣ ∑
n∈2Z

dnFn(g0)
∣∣∣

¿ ∑
n∈2Z

|dn | · y1−s ¿‖ f ‖W1 · y1−s
(19)

by Cauchy’s inequality, since
∑

n∈2Z(1+n2)|dn |2 ¿‖ f ‖2
W1

by (9).
The proof is now completed as the proof of Lemma 2.2, using (17) and (19).

3. BOUNDING THE DEVIATION OF ERGODIC AVERAGES

As before, we let Γ ⊂ G = PSL(2,R) be a cofinite Fuchsian group such that
M = Γ\H has at least one cusp, and we let π denote the representation of G
on H = L2(Γ\G) given by right translations. For any f ∈ H we write (noting
H ⊂ L1(Γ\G))

〈 f 〉 = 1

vol(Γ\G)

∫
Γ\G

f (g )d g .
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This agrees with the definition in (2). Also recall the definition of s1 and s( j )
1

given in the introduction.

PROPOSITION 3.1. For all f ∈ W4(H ), p ∈ Γ\G and T = 10 we have, if j =
jΓ(p a(T )),

1

T

∫ T

0
f (pn(t ))d t = 〈 f 〉+O

(
‖ f ‖W4

){( T

YΓ
(
p a(T )

))−1/2 · (logT )2

+
( T

YΓ
(
p a(T )

))s( j )
1 −1 +T s1−1

}
.

(20)

The implied constant depends only on Γ.

Proof. For fixed p and T , note that 1
T

∫ T
0 f (p n(t ))d t depends continuously on

f ∈W4(H ) with respect to the norm ‖ ·‖W4 , by Lemma 2.1. The same is clearly
true for 〈 f 〉, since ‖ · ‖W4 is stronger than ‖ · ‖. Hence by the density of H ∞ in
W4(H ), we may assume from start that f ∈H ∞.

Using H =Ho ⊕Hct ⊕Hr s we may assume from start that f ∈Ho , f ∈Hct

or f ∈ Hr s . Let Z+
o = {ζ ∈ Zo | s(ζ) ∈ ( 1

2 ,1)} and H +
o = ⊕

ζ∈Z+
o
H (ζ) ⊂ Ho , and

let H −
o be the orthogonal complement of H +

o in Ho . Since Z+
o and Zr s are

finite, we may in fact assume that one of the following holds: f ∈H (ζ) for some
ζ ∈Z+

o ∪Zr s , or f ∈H −
o , or f ∈Hct . (We still have f ∈H ∞.)

In the case when f is a constant function (i.e., f ∈H (ζ) for the unique ζ ∈Zr s

with s(ζ) = 1), (20) is trivial, and the error term vanishes. Hence, from now on,
we may assume that f is orthogonal to the space of constant functions.

We will now recall the integral formula in [6] which lies at the heart of the
proof of [6, Theorem 2]1. We first have to recall the definition of some auxiliary
intertwining operators. Fix a number Y = 1 (we will later take Y = T ). For each
y = 1 we define Fy and Sy to be the intertwining operators H →H which are
determined, via the integral decomposition of H , by the following functions
Z→C (we write s = s(ζ)):

fy (ζ) =


s y s−1−(1−s)y−s

2s−1 , if Re s < 1, s 6= 1
2

2+log y
2
p

y , if s = 1
2

y−s , if s ∈Z+,

sy (ζ) =


y s−1−y−s

2s−1 , if Re s < 1, s 6= 1
2

log yp
y , if s = 1

2

0, if s ∈Z+.

1We modify Burger’s formula to “T−1 ∫ T
0 ” instead of “(2T )−1 ∫ T

−T ”. Also, we correct a minor

mistake in the case “α= 1
2 ” in [6, pp. 788(**), 790(2),(3), etc.].
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Also, for each y > 0 we define Ty to be the intertwining operator H →H deter-
mined by

ty (ζ) =


sy (ζ), if Re s < 1, y = 1

0, if Re s < 1, y < 1

y s−1
(max(1,y)1−2s−Y 1−2s

1−2s

)
, if s ∈Z+.

(21)

We record the following bounds (write Z−
o =Zo −Z+

o ):

sup
ζ∈Z−

o ∪Zct

| fy (ζ)|5 2+ log y

2
p

y
, sup

ζ∈Z−
o ∪Zct

|sy (ζ)|5 log yp
y

(∀y = 1);

sup
ζ∈Z−

o ∪Zct

|ty (ζ)|5 2log(y +10)√
y +1

(∀y ∈ (0,Y ]).
(22)

These bounds are easy to verify from the definitions, using the fact that ζ ∈
Z−

o ∪Zct implies either s = 1
2 + i t (t = 0) or s ∈ Z+, and for s = 1

2 + i t (t > 0) we

have fy (ζ) = cos(t log y)p
y + sin(t log y)

2t
p

y and sy (ζ) = y−s
∫ y

1 x2s−2 d x.

It follows from the bounds (22), and the fact that Z+
o and Zr s are finite, that

Fy , Sy and Ty are bounded operators H → H for each y , and also bounded
operators Wk (H ) → Wk (H ) for each k > 0, as well as continuous operators
H ∞ → H ∞. One easily verifies that ty (ζ) is continuous in y , uniformly with
respect to ζ, viz., for each fixed y0 > 0 we have supζ∈Z |ty (ζ)−ty0 (ζ)|→ 0 as y → y0.
It follows from this that Ty is continuous in y with respect to the operator norm
in each space Wk (H ) (k > 0): ‖Ty −Ty0‖Wk → 0 as y → y0.

Since our function f ∈ H ∞ is orthogonal to the constants, the integral for-
mula from [6, Lemma 1 and pp. 790–791] now applies as follows:

1

T

∫ T

0
π(n(t )) f d t = 1

T

∫ T

0
π(n(t )a(Y ))FY ( f )d t

− 1

2T

∫ T

0
π(n(t )a(Y ))SY

(
dπ(H) f

)
d t

+ 1

T

∫ Y

0

[
1−π(n(T ))

]
π(a(y))Ty

(
dπ(X−) f

)
d y.

(23)

The first three integrals are well-defined as integrals of H ∞-valued functions,
since the integrands therein are continuous functions from [0,T ] to H ∞. Simi-
larly, the last integrand is a continuous function from (0,Y ] to H ∞, and hence
if we replace

∫ Y
0 by

∫ Y
ε for any ε > 0, the last integral is well-defined in H ∞.

Also, as ε→ 0, the last integral certainly converges in H , since the ‖ ·‖-norm of
the integrand is uniformly bounded for y ∈ (0,Y ].

We first treat the case f ∈ Hct . Since s ∈ 1
2 + iR for all ζ ∈ Zct , we may here

replace
∫ Y

0 by
∫ Y

1 in the last line of (23), and all the integrals then converge
in H ∞. For each fixed point p ∈ Γ\G the map v 7→ v(p) is a continuous linear
functional on H ∞, by Lemma 2.1. Applying this functional to both sides of (23)
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we obtain∫ T

0
f (p n(t ))d t =

∫ T

0

[
FY f

]
(p n(t )a(Y ))d t

− 1

2

∫ T

0

[
SY dπ(H) f

]
(p n(t )a(Y ))d t

+
∫ Y

1

([
Ty dπ(X−) f

]
(p a(y))− [

Ty dπ(X−) f
]
(p n(T )a(y))

)
d y.

By Lemma 2.1 we have |v(x)| ¿ ‖v‖W3YΓ(x)1/2 for all v ∈ H ∞ and all x ∈ Γ\G .

Using (22) we also have ‖FY f ‖W3 5
2+logY

2
p

Y
‖ f ‖W3 . Similarly, ‖SY dπ(H) f ‖W3 ¿

logYp
Y
‖ f ‖W4 and ‖Ty dπ(X−) f ‖W3 ¿ log yp

y ‖ f ‖W4 for all y = 1 (cf. (21)).

Let us now take Y = T . Using the relation n(u)a(y) = a(y)n(u/y) and (12),
(13), we see that for all t ∈ [0,T ] and all y ∈ [1,T ]:

YΓ(p n(t )a(Y )) =YΓ(pa(T )n(t/T ))5 4 ·YΓ(p a(T ));

YΓ(p n(T )a(y)) =YΓ(p a(T )n(1)a(y/T ))5
4T

y
·YΓ(p a(T ));

YΓ(p a(y))5
T

y
·YΓ(p a(T )).

Using these inequalities, we obtain∣∣∣∣ 1

T

∫ T

0
f (p n(t ))d t

∣∣∣∣¿ 1

T

∫ T

0

1+ logTp
T

‖ f ‖W4 ·
√

YΓ(p a(T ))d t

+ 1

T

∫ T

1

log yp
y

· ‖ f ‖W4 ·
√

T

y
·YΓ(p a(T ))d y

¿‖ f ‖W4 ·
( T

YΓ(p a(T ))

)−1/2
(logT )2.

This completes the proof in the case f ∈Hct .
Now assume f ∈H (ζ) for some ζ ∈Z+

o ∪Zr s , and that f is orthogonal to the
constant functions. Let s = s(ζ) ∈ ( 1

2 ,1). In (23), the intertwining operator FY

is now simply multiplication with fy (ζ), and similarly for SY and Ty . We may
apply the above argument, with the only differences that now by Lemma 2.2
and Lemma 2.3, |v(x)|¿ ‖v‖W3YΓ(x)1−s for all v ∈H (ζ)∩H ∞ and all x ∈ Γ\G ,
and furthermore ‖FY f ‖W3 ¿Γ

Y s−1‖ f ‖W3 , ‖SY dπ(H) f ‖W3 ¿Γ
Y s−1‖ f ‖W4 , and

‖Ty dπ(X−) f ‖W3 ¿Γ
y s−1‖ f ‖W4 for all y = 1. We obtain∣∣∣∣ 1

T

∫ T

0
f (p n(t ))d t

∣∣∣∣¿Γ
‖ f ‖W4

( T

YΓ(p a(T ))

)s−1
.(24)

This implies the desired bound whenever 1
2 < s 5 s( j )

1 , since, by writing r =
T /YΓ(p a(T )), we then have r s−15max(r−1/2,r s( j )

1 −1). Clearly, (24) also implies
the desired bound whenever YΓ(p a(T )) ¿ 1, since s5 s1.
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Next, assume s( j )
1 < s < 1 and YΓ(p a(T )) large. By the definition of s( j )

1 and the
second bound in Lemma 2.3 (or by Lemma 2.2, if ζ ∈Z+

o ) we have v(x) ¿
Γ
‖v‖W3

for all v ∈H (ζ)∩H ∞ and all x ∈ Γ\G with jΓ(x) = j = jΓ(p a(T )).
Let us take B > 1 as in (10) so large that the cuspidal regions N−1

k

(
[0,1]×

[B ,∞)
)⊂F are pairwise disjoint. Clearly jΓ(z) = j for all z ∈H with Im N j (z)=

B . We may assume Im N j g a(T )(i ) = 4B for some representative g ∈ G for p,
since YΓ(p a(T )) is large and jΓ(p a(T )) = j . By the proof of (13), we then have

Im N j g n(t )a(T )(i ) = Im N j g a(T )n(t/T )(i )=B

for all t ∈ [0,T ], and thus v(p n(t )a(T )) ¿
Γ
‖v‖W3 for all t ∈ [0,T ] and all v ∈

H (ζ)∩H ∞.
Furthermore, if Im N j g n(T )a(y)(i ) < B for some y ∈ [1,T ] then y < T by what

we have just noted, and we may find y0 ∈ (y,T ] such that

YΓ(g n(T )a(y0)) = Im N j g n(T )a(y0)(i ) = B ,

and thus by (12), YΓ(g n(T )a(y)) 5 B y0/y ¿
Γ

T /y . Hence we conclude that
v(p n(T )a(y)) ¿

Γ
(T /y)1−s‖v‖W3 for all y ∈ [0,T ] and v ∈H (ζ)∩H ∞. Similarly,

v(p a(y)) ¿
Γ

(T /y)1−s‖v‖W3 . Using these inequalities and computing as above,
we obtain ∣∣∣∣ 1

T

∫ T

0
f (pn(t ))d t

∣∣∣∣¿Γ
‖ f ‖W4 T s−1.(25)

This implies the desired bound, since s5 s1.
Finally we treat the case f ∈ H −

o , by a similar argument as in [6, p. 791]: It
follows from Lemma 2.2 that the supremum norm N ( f ) = supp∈Γ\G | f (p)| is a
well-defined and continuous function on H −

o ∩H ∞. Write

vε = 1

T

∫ Y

ε

[
1−π(n(T ))

]
π(a(y))Ty

(
dπ(X−) f

)
d y ∈H −

o ∩H ∞;

then the last line in (23) is the same as v0 = limε→0+ vε (limit in the norm ‖ · ‖).
The norm N is clearly invariant under π(g ), for all g ∈G , and hence by Lemma
2.2 and (22),

N (vε)5
2

T

∫ Y

ε
N

(
Ty dπ(X−) f

)
d y

¿Γ
2

T

∫ Y

ε
‖Ty dπ(X−) f ‖W3 d y ¿

p
Y log(Y +1)

T
· ‖ f ‖W4 .

Similar estimates also show that {v j−1 }∞j=1 is a Cauchy sequence with respect to
the norm N (·). Hence there is a function w in Cb(Γ\G), the space of bounded
continuous functions on Γ\G , such that N (v j−1−w) → 0 as j →∞. But using the

fact that ‖v‖5p
vol(Γ\G) ·N (v) for all v ∈ Cb(Γ\G), we see that we must have

w = v0, and hence N (v0) = lim j→∞ N (v j−1 ) ¿ T −1
p

Y log(Y +1) · ‖ f ‖W4 .
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The other integrals in (23) are dealt with more easily, since they are conver-
gent in H ∞. We obtain∣∣∣∣ 1

T

∫ T

0
f (pn(t ))d t

∣∣∣∣5N
( 1

T

∫ T

0
π(n(t )) f d t

)
¿ 1+ logYp

Y
· ‖ f ‖W4 +

p
Y log(Y +1)

T
· ‖ f ‖W4 .

(26)

Taking Y = T again gives the desired result, and the proof is complete.

Note that Proposition 3.1 does not imply the fact that each nonclosed horo-
cycle goes asymptotically equidistributed. The problem is that there exist non-

closed horocycles for which
(
T /YΓ(pa(T ))

)−1/2(logT )2 does not tend to 0. We
will now prove Theorem 1 (cf. p. 292), which rectifies this problem, at the price
of also having to use the weighted supremum norm ‖ · ‖Nα

in the bounds. The
proof is carried out by splitting the long horocycle into several pieces, and ap-
plying Proposition 3.1 to each piece except possibly one. On the exceptional
piece we instead use a supremum bound. We first prove a simple lemma.

LEMMA 3.2. For any given g ∈G, j ∈ {1, ...,κ} and W ∈ Γ we have

YΓ(g )5max
(
Im N j W g (i ), (Im N j W g (i ))−1),

with equality whenever Im N j W g (i )= 1.

Proof. Writing z =N j W g (i ) we need to prove

Im N j ′W
′g (i )5max(Im z, (Im z)−1),

for any given j ′ ∈ {1, ...,κ} and W ′ ∈ Γ. Now if U = (∗ ∗
c d

) = N j ′W ′W −1N−1
j we

have either |c| = 1 or U = (
1 ∗
0 1

)
(cf., e.g., [33, Lemma 2.3]) and hence either

Im N j ′W ′g (i ) = Im U (z) = Im z
|cz+d |2 5 |c|−2(Im z)−1 5 (Im z)−1 or Im N j ′W ′g (i ) =

Im U (z) = Im z.

Proof of Theorem 1. Without loss of generality we may take α close to 1
2 ; in par-

ticular, we may assume that α> 1− s(ζ) for all ζ ∈Zr s . Note that by (1), (14), the
variable r in (4) satisfies

C1
T

YΓ(p a(T ))
5 r 5C2

T

YΓ(p a(T ))
(27)

for some constants C1 =C1(Γ, p0), C2 =C2(Γ, p0). By the proof of Proposition 3.1
(cf. (24), (25), (26)), it now follows that (4) holds whenever f ∈Ho ⊕Hr s . Note
also that if f0 denotes the projection of f to Ho ⊕Hr s , then ‖ f0‖Nα

¿
Γ,α ‖ f ‖W4

(and thus ‖ f − f0‖Nα
¿
Γ,α ‖ f ‖W4 +‖ f ‖Nα

). This follows from Lemma 2.2, Lemma
2.3 and our assumption α> 1−s(ζ) for all ζ ∈Zr s . Because of these facts we may
from now on assume that f ∈Hct .

Let p ∈ Γ\G and T = 10 be given. In view of Proposition 3.1, we may assume
T = 1010 and YΓ(p a(T ))= T 9/10 from start. Now there is a representative g ∈G
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for p and some j = jΓ(p a(T )) ∈ {1, ...,κ} such that YΓ(p a(T )) = Im N j g a(T )(i ).
Then

YΓ(p a(T )) = 1

c2T +d 2/T
, where N j g =

(∗ ∗
c d

)
.(28)

We choose signs so that c = 0. It then follows from YΓ(p a(T ))= T 9/10 that c2T 5
T −9/10, d 2/T 5 T −9/10 and thus 05 c 5 T −19/20 < 10−9 and |d |5 T 1/20.

Below, we will make a specific choice of points 0 = τ0 < τ1 < ... < τn = T , for
some n ∈Z+. Writing Tk = τk+1 −τk we then have

1

T

∫ T

0
f (p n(t ))d t =

n−1∑
k=0

Tk

T

( 1

Tk

∫ Tk

0
f (p n(τk + t ))d t

)
.(29)

Assuming Tk = 10 for each k we may apply Proposition 3.1 to each term, obtain-
ing

1

T

∫ T

0
f (p n(t ))d t =O

(
‖ f ‖W4

)n−1∑
k=0

Tk

T
·
√

YΓ
(
p n(τk )a(Tk )

)
Tk

· (logTk )2.(30)

(Note that 〈 f 〉 = 0, and that the last two terms in (20) may be ignored, since
f ∈Hct .) Let us define dk = d + cτk , so that N j g n(τk ) = (∗ ∗

c dk

)
. Then

Im N j g n(τk )a(Tk )(i ) = (c2Tk +d 2
k /Tk )−1,

and c2Tk 5 c2T 5 10−9. We will choose the sequence τ0, ...,τn in such a way that
for all k ∈ {0,1, ...,n −1} except at most one k, we have

1
5 5 d 2

k /Tk 5
1
2 .(31)

Let us call the exceptional index k0, if it exists. Write M = {0,1, ...,n − 1}à {k0}
if k0 exists, and otherwise M = {0,1, ...,n −1}. It then follows from Lemma 3.2
that YΓ(pn(τk )a(Tk )) 5 5 for all k ∈ M. Note also that for all k ∈ M we have
Tk 5 5d 2

k 5 5(|d |+ cT )2. Hence we obtain from (29) and (30),

1

T

∫ T

0
f (p n(t ))d t =O

(
‖ f ‖W4

)
· log2(|d |+ cT +2)

T
· ∑

k∈M
|dk |

+
[

If k0 exists:
1

T

∫ Tk0

0
f (p n(τk0 + t ))d t

]
.

(32)

The last conditions which we impose on the sequence 0 = τ0 < τ1 < ... < τn = T
are the following:

∀k ∈M : [dk ,dk+1]∩ (−100,100) =;;(33)

If k0 exists: [dk0 ,dk0+1] ⊂ [−200,200].(34)

Before giving the detailed verification that a sequence {τk } satisfying our condi-
tions does indeed exist, we will show how to prove (4) using all our assumptions.

Note that (31) implies 2cd 2
k 5 dk+1−dk 5 5cd 2

k for all k ∈M, and here c|dk |5
c(|d |+cT )5 2T −9/10 < 10−8. Hence for all k ∈M, the numbers dk and dk+1 have
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the same sign, and |x| < 2|dk | for all x ∈ [dk ,dk+1]. Hence,∫ dk+1

dk

|x|−1 d x > dk+1 −dk

2|dk |
= c|dk | for all k ∈M.

If c > 0, we may now conclude that the first error term in (32) is

5O
(
‖ f ‖W4

)
· log2(|d |+ cT +2)

cT
·
∫

[d0,dn ]à(−100,100)

d x

|x| .

But d0 = d and dn = d + cT . Note that∫
[d ,d+cT ]à(−100,100)

d x

|x| ¿
{

cT /|d | if |d | > 2cT

log(cT +2) if |d |5 2cT.

Hence, using (28), we see that the first error term in (32) is

5O
(
‖ f ‖W4

)
·
√

YΓ(p a(T ))

T
· log3

( T

YΓ(p a(T ))
+2

)
.(35)

In the remaining case, c = 0, we have dk = d for all k, YΓ(p a(T )) = T /d 2 by (28),
and by adding 2d 2 5 Tk (cf. (31)) over k ∈M we see that |M|5 T /2d 2. Hence
the first error term in (32) is bounded by (35) also when c = 0.

We now turn to the k0-term in (32). Assuming that k0 exists, we have by (34)

−2005 dk0 + ct 5 200 for all t ∈ [0,Tk0 ].

Hence Im N j g n(τk0 + t )(i ) = (c2 + (dk0 +ct )2)−1 À 1 (for recall 05 c < 10−9), and
by Lemma 3.2, YΓ(p n(τk0 + t )) ¿ (c2 + (dk0 +ct )2)−1 for all t ∈ [0,Tk0 ]. But by (3)
and (14) we have

∣∣ f (p n(τk0 + t ))
∣∣ ¿

Γ
‖ f ‖Nα

·YΓ(p n(τk0 + t ))α. If c > 0, then it
follows that the k0-term in (32) is

¿‖ f ‖Nα
· 1

T

∫ Tk0

0
(c2+(dk0+ct )2)−αd t 5

‖ f ‖Nα

T

∫ 200/c

−200/c
(c2+(ct )2)−αd t ¿ ‖ f ‖Nα

cT
,

where we used α< 1
2 . If |d | < 104cT then by (28) we obtain

¿‖ f ‖Nα

√
YΓ(p a(T ))

T
,

and hence (4) holds.
The remaining case, |d | = 104cT , is easy: In this case dk0 ∈ [d ,d + cT ] and

(34) imply |d + ct | 5 201 for all t ∈ [0,T ] (in particular |d | 5 201). This gives
YΓ(p n(t )) ¿|d |−2, by the same argument as above, and hence

| f (p n(t ))|¿ ‖ f ‖Nα
· |d |−2α¿‖ f ‖Nα

· |d |−1, ∀t ∈ [0,T ].

We also have YΓ(p a(T ))= T /2d 2 by (28); hence (4) is true by simple inspection
(without using (32)).

We now conclude the proof by showing that it is indeed possible to choose a
sequence satisfying all the assumptions made above.

If c = 0 and |d | > 100 then one easily checks that we may take n as the largest
integer 5 T /2d 2 (thus n = 108) and τk = kT /n for k = 0,1, ...,n. If c = 0 and
|d |5 100 we may clearly take simply n = 1, τ0 = 0, τ1 = T . Otherwise, if c > 0, it
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suffices to construct a sequence {dk }n
k=0 satisfying d = d0 < d1 < ... < dn = d +cT

and (33), (34) and

∀k ∈M : 2cd 2
k 5 dk+1 −dk 5 5cd 2

k .(36)

(For, if τk := (dk −d)/c and Tk := τk+1 −τk , then 1
5 5 d 2

k /Tk 5
1
2 , ∀k ∈M, by (36),

and also Tk = 10, ∀k ∈M, by (33), (36).)
The existence of such a sequence {dk }n

k=0 is now quite obvious, once we ob-
serve (in connection with (36)) that 5cx2 5 5c(|d | + cT )|x| 5 10−8|x| for any
x ∈ [d ,d + cT ].

For example, if d 5−200 and d + cT = 200 we may define dk recursively by
d0 = d and dk+1 = dk+2cd 2

k for k = 0,1, ... until we get dk ∈ [−200,−199] for some
k; then set k0 = k, dk0+1 = 100. We continue by letting (again) dk+1 = dk +2cd 2

k
for k = k0+1,k0+2, ... until we obtain dk 5 d+cT < dk+1 for some k = n. We may
then redefine dn as dn = d +cT (leaving d0,d1, ...,dn−1 intact); it is easy to verify
that (36) remains true also for k = n−1, and that the sequence {dk }n

k=0 has all the
desired properties. On the other hand, if d 5−200 and −1005 d +cT < 200, we
apply the above construction up until the definition of dk0 ∈ [−200,−199], and
then simply let dk0+1 = d + cT and n = k0 +1, again obtaining a valid sequence
{dk }n

k=0. Similar constructions can be made in all the remaining cases.

REMARK 3.3. Note that Proposition 3.1 remains true if the left side in (20) is
replaced by 1

T

∫ 0
−T f (p n(t ))d t and the right side is left unchanged. To see this

we need merely apply Proposition 3.1 to the point q = p n(−T ), and observe
that YΓ(q a(T )) =YΓ(p a(T )n(−1)) = c ·YΓ(p a(T )) for some 1

4 5 c 5 4, by (13). A
similar remark holds for Theorem 1.

REMARK 3.4. Note that Proposition 3.1 and Theorem 1 apply also when {ht (p)}
is a closed horocycle. In particular they can be used to derive stronger versions
of the main theorem in [33], concerning subsegments of long closed horocycles.
To see this, let us assume that N1 =

(
1 0
0 1

)
, so that ∞ is a cusp with Γ∞ = [(

1 1
0 1

)]
,

and let p ∈ Γ\G be the point represented by the element n(x)a(y) ∈G , for some
x ∈ R, 0 < y < 0.1. Then {ht (p)} is a closed horocycle of length 1/y . For any
105 T 5 1/y we now have YΓ(p a(T )) =YΓ(n(x)a(yT ))5 (yT )−1, by Lemma 3.2,
and hence Theorem 1 gives (using (27))

1

T

∫ T

0
f (p n(t ))d t = 〈 f 〉+O

(
‖ f ‖W4

){
T −1 y−1/2 log3(T 2 y+2)+T 2s′1−2 y s′1−1+T s1−1

}
+O

(
‖ f ‖Nα

)
·T −1 y−1/2,

and Proposition 3.1 gives

1

T

∫ T

0
f (p n(t ))d t = 〈 f 〉+O

(
‖ f ‖W4

){
T −1 y−1/2(logT )2 +T 2s′1−2 y s′1−1 +T s1−1

}
.

Here s′1 = max j s( j )
1 . Both these estimates give effective versions of [33, Thm. 1];

for any given δ > 0, the error terms tend uniformly to 0 as y → 0 if we keep

y− 1
2−δ5 T 5 y−1.
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4. Ω-RESULTS DUE TO CUSPIDAL EXCURSIONS

In this section we will prove various Ω-results for the deviation of ergodic
averages for the horocycle flow, using comparatively elementary observations
on the cuspidal excursions made by the horocycle orbit.

First, we give an example which shows that the norm ‖·‖Nα
in the right-hand

side of (4) in Theorem 1 cannot be replaced by a Sobolev norm of any order. For
convenience, let us make a specific choice of the operator ∆ in the definition of
the Sobolev norm ‖ ·‖Wk on p. 296:

∆=−1
4

(
H 2 +2(X+)2 +2(X−)2)=�− 1

2 (X+−X−)2,

cf. (8). This operator acts as the Laplace operator −y2( ∂2

∂x2 + ∂2

∂y2 ) on any function

G →C which factors through the standard projection G →H.
Now fix a constant δ ∈ ( 1

2 ,1), and let F ∈ C∞(R+) be a smooth nonnegative
function such that F (y) = 0 for 0 < y 5 2 and

F (y) =p
y (log y)−δ for y = 3.

We then define a function f ∈C (Γ\G) by

f (g ) = F (YΓ(g )).

Given any g0 ∈ G for which f (g0) > 0, we have Im N j W g0(i ) = YΓ(g0) > 2 for
some j ∈ {1, ...,κ} and W ∈ Γ. Hence by Lemma 3.2, YΓ(g ) = Im N j W g (i ) for all
g in some neighborhood of g0. It follows from this that f is smooth, and that

∆k f (g ) = Fk (YΓ(g )) for k = 1,2, ..., where Fk (y) = (−y2 ∂2

∂y2 )k F (y). One checks by

a quick computation that for each k we have |Fk (y)|¿k
p

y (log y)−δ for all y = 2,
and of course Fk (y) = 0 for 0 < y 5 2. It now follows that∫

Γ\G
|∆k f (g )|2 d g <∞ for each k ∈Z+,

as one verifies by splitting the fundamental region F into a compact part and κ
cuspidal regions (cf. (10)), and using

∫ ∞
2 y(log y)−2δd y/y2 <∞. Hence ‖ f ‖Wk <

∞ for each k, and it also follows that f ∈H ∞.
Note, however, that ‖ f ‖Nα

=∞ for each α ∈ (0, 1
2 ).

PROPOSITION 4.1. Let f ∈C∞(G)∩C (Γ\G) be as above. Then there exists a point
p ∈ Γ\G for which

limsup
T→∞

1

T

∫ T

0
f (p n(t ))d t =∞.(37)

In particular, (37) implies that {p n(t ) | t ∈ R} is not a closed horocycle on
Γ\G , and hence by Theorem 1, for any function f1 ∈ C (Γ\G)∩C 4(G) such that
‖ f1‖W4 <∞ and ‖ f1‖Nα

<∞ for some α < 1
2 , we have 1

T

∫ T
0 f1(p n(t ))d t → 〈 f1〉

as T →∞. Proposition 4.1 shows that the corresponding statement for f does
not hold.
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Proof. After an auxiliary conjugation we may assume that N j =
(

1 0
0 1

)
for some j ,

so that Γ\G has a cusp at ∞, and Γ∞ = [(
1 1
0 1

)]
.

It is well-known that the cusps equivalent to ∞ are dense on the real line (cf.,
e.g., [26]). In other words one knows that for any nonempty open interval I ⊂R
there is some g ∈ Γ such that g−1(∞) ∈ I . Note that g−1(∞) = −d

c if g = (
a b
c d

)
,

and that by Shimizu’s lemma, |c|= 1 (cf. [32, Lemma 4], or [24, Lemma 1.7.3]).
We will use these facts in the construction below.

By definition F (y)= 0 and
∫ ∞

4 F (y)d y/y3/2 =∞. Hence there exists a decreas-
ing function h : R+ → (0, 1

2 ) such that

∀B > 0 : 0 < `5 h(B) =⇒
∫ `−2

4
F (y)

d y

y3/2
> B.

Of course, we necessarily have limB→∞ h(B) = 0.
We now make a recursive definition of a sequence of elements gk = ( ∗ ∗

ck dk

) ∈ Γ
and open nonempty intervals (1,2) ⊇ I1 ⊇ I2 ⊇ .... We first take g1 = ( ∗ ∗

c1 d1

) ∈ Γ
arbitrary with 1 < g−1

1 (∞) < 2, and let

I1 =
(
1,2

) ⋂(
g−1

1 (∞), g−1
1 (∞)+|c1|−1h(|d1|)

)
.

Clearly, (1,2) ⊇ I1 6= ;. For k = 2, assuming g1, ...gk−1 and (1,2) ⊇ I1 ⊇ ... ⊇ Ik−1 6=
; have already been defined, we take gk = ( ∗ ∗

ck dk

) ∈ Γ arbitrary with g−1
k (∞) ∈

Ik−1, and then let

Ik = Ik−1
⋂(

g−1
k (∞), g−1

k (∞)+|ck |−1h(k|dk |)
)
.

Clearly then (1,2) ⊇ I1 ⊇ ... ⊇ Ik−1 ⊇ Ik 6= ;, and the definition may be iterated
indefinitely.

We have |ck | = 1 by Shimizu’s lemma, for all k, and hence |dk | > 1, since

−dk
ck

= g−1
k (∞) ⊆ (1,2). We choose signs so that ck = 1 and dk <−1. Hence |Ik | =

c−1
k h(k|dk |) → 0 as k →∞.

It follows that there is a unique point α ∈ [1,2] which belongs to the closure
of each interval Ik . Now let p ∈ Γ\G be the point given by g = (

α 0
1 α−1

) ∈ G . We
will prove that (37) holds for this point p.

Since f is Γ-invariant we have, for any k and any T > 0,

1

T

∫ T

0
f (p n(t ))d t = 1

T

∫ T

0
f (gk g n(t ))d t .

Let us define γk = ckα+dk and δk = dk /α, so that

gk g n(t ) =
( ∗ ∗
γk γk t +δk

)
.

Then dk 5 δk 5 dk /2 <−1
2 . It follows from our construction that the sequence

of lower end-points of the intervals I1, I2, ... is strictly increasing, and hence α is
larger than each of these. Hence by the definition of Ik we must have g−1

k (∞) <
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α5 g−1
k (∞)+ c−1

k h(k|dk |) for all k, and thus 0 < γk 5 h(k|dk |) < 1
2 . This implies∫ γ−2

k

4
F (y)

d y

y3/2
> k|dk |.

Taking T = (−δk +1/2)/γk > 0 and writing T ′ = (−δk −1/2)/γk ∈ (
0,T

)
, we find

by using Lemma 3.2 with N j =
(

1 0
0 1

)
,

1

T

∫ T

0
f (p n(t ))d t =

1

T

∫ T

T ′
F (YΓ(

( ∗ ∗
γk γk t+δk

)
))d t

= 2

T

∫ 1/2γk

0
F ((γ2

k + (γk t )2)−1)d t = 1

Tγk

∫ γ2
k+1/4

γ2
k

F (u−1)
du√
u −γ2

k

=
1

Tγk

∫ γ2
k+1/4

γ2
k

F (u−1)
dup

u
=

1

Tγk

∫ γ−2
k

4
F (y)

d y

y3/2

> k|dk |
Tγk

= k|dk |
|δk |+1/2

=
k|dk |

|dk |+1/2
> 2k

3
→∞,

as k →∞. We also have T →∞ as k →∞. Hence p satisfies (37).

The next proposition shows that at least if there are no small eigenvalues
present, then the error terms in Theorem 1 (and in Proposition 3.1) are in a
certain sense close to being optimal, at least for one of the limits T →∞ and
T →−∞ (recall Remark 3.3).

PROPOSITION 4.2. Given a continuous function f ∈C (Γ\G) of compact support
and with 〈 f 〉 6= 0, there exist positive constants C1 = C1(Γ, f ) and C2 = C2(Γ, f )
such that the following holds. For any p ∈ Γ\G and any u0 >C2 such that

YΓ(p a(u0))5 u0

and such that the function u 7→ YΓ(p a(u)) takes a local maximum at u = u0,
there exists some T ∈ [u0,2u0] such that either∣∣∣ 1

T

∫ T

0
f (p n(t ))d t −〈 f 〉

∣∣∣=C1

( T

YΓ(p a(T ))

)−1/2
(38)

or ∣∣∣ 1

T

∫ 0

−T
f (p n(t ))d t −〈 f 〉

∣∣∣=C1

( T

YΓ(p a(T ))

)−1/2
.(39)

REMARK 4.3. In Proposition 4.2, and in several of the propositions in Section
5, we consider the ergodic average at time T ≈ u0 with u0 being such that
YΓ(p a(u)) reaches a local maximum at u = u0. This choice is relevant for the
proof of Theorem 2 (cf. p. 325 below) since, for any fixed α ∈ [0,1), a local

minimum of uα/YΓ(p a(u)) occurs at u =
√

1−α
1+αu0, provided that YΓ(p a(u0))

is sufficiently large. Furthermore, in the proof of Proposition 4.2 we use the fact
that such a local maximum for the geodesic flow gives a local maximum for
YΓ(p n(t )) at either t = u0 or t =−u0, and around this t the horocycle spends a
lot of time in the cusp.
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Before proving Proposition 4.2, we note that for any nonclosed horocycle
there are arbitrarily large numbers u0 satisfying the conditions in the statement:

LEMMA 4.4. Given p ∈ Γ\G such that the horocycle {p n(t )} is nonclosed, we have
limu→∞ u/YΓ(p a(u)) =∞, and there exist arbitrarily large numbers u0 > 0 such
that the function u 7→YΓ(p a(u)) takes a local maximum at u = u0.

Proof. By [29, Prop. 1.1]) there exists a compact subset K ⊂ Γ\G such that for
any p for which the horocycle {p n(t )} is nonclosed, the geodesic {p a(u)} keeps
returning to K as u →∞. Hence limu→∞ u/YΓ(p a(u)) =∞ (using (12)).

To prove the second statement, we may assume that YΓ(p a(u)) stays bounded
for all u > 0 (for otherwise the desired statement follows directly using continu-
ity and the fact that {p a(u)} keeps returning to K ). Then

K1 =
⋂

u1>0
{p a(u) | u= u1}

is a compact nonempty subset of Γ\G , and hence there is a point q ∈ K1 such
that YΓ(q) = YΓ(q ′) for all q ′ ∈ K1. Clearly q a(t ) ∈ K1 for all t > 0. Also, the
function t 7→YΓ(q a(t )) is easily seen to be nonconstant on any nonempty open
interval t ∈ I ⊂ R+, for if I is of finite length then there exists a finite subset
M⊂ PSL(2,R) (depending on Γ, q, I ) such that

YΓ(q a(t )) = max
{
(c2t +d 2/t )−1

∣∣ (
a b
c d

) ∈M}
, ∀t ∈ I .

Hence we may fix some numbers 0 < t1 < 1 < t2 such that YΓ(q a(t`)) < YΓ(q)
for `= 1,2. By continuity, we now have

YΓ(q ′ a(t`)) <YΓ(q ′) (`= 1,2)(40)

for all points q ′ ∈ Γ\G lying sufficiently close to q . Hence by the definition of K1

we see that for each U > 0 there exists some number u2 >U such that (40) holds
for q ′ = p a(u2). It then follows that u 7→ YΓ(p a(u)) takes a local maximum for
some u0 ∈ [u2t1,u2t2].

Proof of Proposition 4.2. Let m
Γ
= infg∈G YΓ(g ) > 0. Since f has compact sup-

port on Γ\G , we may fix C3 > 1 such that f (g ) = 0 whenever YΓ(g ) = C3. Let
C2 =C3/m

Γ
.

Take p,u0 such that the assumptions hold. Now we can find a representative
g ∈G for p and some j ∈ {1, ...,κ} such that

YΓ(p a(u0)) = Im N j g a(u0)(i ) = 1

c2u0 +d 2/u0
, N j g =

(∗ ∗
c d

)
, c = 0.

By (11) we also have YΓ(p a(u)) = (c2u + d 2/u)−1 for all u > 0. Hence since
YΓ(p a(u)) takes a local maximum at u = u0, we necessarily have

c > 0, d 6= 0, u0 = |d |
c

, YΓ(p a(u0)) = 1

2c|d | .

Now m
Γ
5YΓ(p a(u0))5 u0 and u0 > C2 = C3/m

Γ
imply c < 1/

p
2C3 and |d |=

1/
p

2. Note that Im N j g n(t )(i ) = (c2 + (ct +d)2)−1 > ((2C3)−1 + (ct +d)2)−1, and
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hence for each t ∈R with |t +d/c|5 (c
p

2C3)−1 we have Im N j g n(t )(i ) >C3, so
that YΓ(g n(t )) >C3, and thus f (g n(t )) = 0. Hence, writing

T1 = u0 = |d |
c

and T2 = u0 + 1

c
p

2C3
,

we have f (g n(t )) = 0 either for all t ∈ [T1,T2] (if d < 0), or for all t ∈ [−T2,−T1] (if
d > 0). Let us assume d < 0; we then conclude

∫ T1
0 f (g n(t ))d t = ∫ T2

0 f (g n(t ))d t ,
and hence

〈 f 〉
c
p

2C3
=

(∫ T1

0
f (g n(t ))d t −T1〈 f 〉

)
−

(∫ T2

0
f (g n(t ))d t −T2〈 f 〉

)
.

It follows that ∣∣∣∫ T`

0
f (g n(t ))d t −T`〈 f 〉

∣∣∣= |〈 f 〉|
2c

p
2C3

(41)

for at least one ` ∈ {1,2}. But using C3 > 1 and |d |= 1/
p

2 one checks that u0 =
T1 < T2 < 2u0. Hence by (12), we also have YΓ(p a(T2))5 2YΓ(p a(T1)) = (c|d |)−1.
Hence, for the same ` as in (41),∣∣∣ 1

T`

∫ T`

0
f (g n(t ))d t −〈 f 〉

∣∣∣= ∣∣〈 f 〉∣∣
4|d |p2C3

=

∣∣〈 f 〉∣∣
4
p

2C3
·
( T`
YΓ(p a(T`))

)−1/2
.

This means that (38) holds with C1 = |〈 f 〉|
4
p

2C3
and T = T` ∈ [u0,2u0]. In the other

case, d > 0, exactly the same argument leads to (39).

It seems that these elementary methods do not allow us to prove a similar
lower bound separately for the two cases T → ∞ and T → −∞; such a lower
bound (only slightly weaker by a logarithm factor) will be obtained in Propo-
sition 5.1 below using more difficult methods. However, as seen in the next
proposition, studying only cuspidal excursions we can obtain a lower bound as
in Proposition 4.2 along some sequence of T -values tending to ∞; in particular
this implies that the deviation of the ergodic average is Ω(T −1/2) as T →∞.

PROPOSITION 4.5. Given a continuous function f ∈C (Γ\G) of compact support
and with 〈 f 〉 6= 0, there exists a positive constant C1 =C1(Γ, f ) such that for any
p ∈ Γ\G for which {p n(t )} is a nonclosed horocycle, there is a sequence 1 < T1 <
T2 < ... with limk→∞ Tk =∞ such that∣∣∣ 1

T

∫ T

0
f (p n(t ))d t −〈 f 〉

∣∣∣=C1

( T

YΓ(p a(T ))

)−1/2
(42)

for each T = Tk .

Proof. We first introduce some new notation. Write µ(g ) := a2 +b2 +c2 +d 2= 2
for g = (

a b
c d

) ∈G , and µ j (g ) := infn∈Zµ(gTn
j ) (recall Γη j = [T j ], cf. p. 297). Let A

be the linear fractional map A(z) = (z−i )/(z+i ) which maps H onto the unit disk.
We define a metric ρ on ∂H = R∪ {∞} by ρ(z, w) := |A(z)− A(w)| for z, w ∈ ∂H
(here A(z), A(w) lie on the unit circle). Note that ρ(g (z), g (w)) ¿g ρ(z, w) for all
g ∈G , z, w ∈ ∂H. We agree to write z ≺ w to indicate that z, w ∈ ∂H, ρ(z, w) < 1

10
and A(w) is obtained from A(z) by a short rotation in the positive direction
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along the unit circle. Note that if w ∈ R lies sufficiently close to a fixed point
z ∈R, then z ≺ w ⇐⇒ z < w .

By Patterson, [26, p. 545, Thm. 1], there exists a constant CΓ > 0 such that for
all α ∈ ∂H and all X = 2 there are some j ∈ {1, ...,κ} and γ ∈ Γ such that

µ j (γ)5 X and ρ(γ(η j ),α)5
CΓ√
µ j (γ)X

.(43)

By the same theorem there also exists a constant C ′
Γ > 0 such that for all j , j ′ ∈

{1, ...,κ} and γ,γ′ ∈ Γ one has

γ′(η j ′) 6= γ(η j ) =⇒ ρ(γ′(η j ′),γ(η j )) > C ′
Γ√

µ j ′(γ′)µ j (γ)
.(44)

(In [26, p. 545, Thm. 1] these two facts are stated with µ in place of µ j , µ j ′ , but
this is clearly equivalent to (43), (44), since γTn

j (η j ) = γ(η j ) for all n.)
Now fix p ∈ Γ\G , let g0 ∈G be a representative for p, and let α= g0(∞) ∈ ∂H.

We assume that {p n(t ) | t ∈R} is not a closed horocycle. This means that α is not
a cusp, i.e., γ(η j ) 6=α for all γ ∈ Γ, j ∈ {1, ...,κ}. We wish to prove that there exist
good approximations γ(η j ) to α with γ(η j ) ≺ α. More precisely, we claim that
there exists a constant C ′′

Γ > 0 such that for any given X0 > 0 there exist some
X = X0, j ∈ {1, ...,κ} and γ ∈ Γ such that

µ j (γ)5 X ; γ(η j ) ≺α; and ρ(γ(η j ),α)5
C ′′
Γ√

µ j (γ)X
.(45)

To prove this, let us assume from start that X0 > 104(1+C 2
Γ) ·max(1,1/C ′

Γ); this
ensures that all points on ∂H considered in the argument below lie close to each
other in the ρ-metric, so that the relation ≺ is well-defined. To start with, we
choose j ∈ {1, ...,κ} and γ ∈ Γ so that (43) holds with X0 in place of X , and so
that µ j (γ) is minimal with respect to this property. (This is possible since the set
{γ ∈ Γ/[T j ] |µ j (γ)5 X0} is finite for each j , by a compactness argument.) After
making a proper choice of X = X0, we now have:

µ j (γ)5 X ; ρ(γ(η j ),α) = CΓ√
µ j (γ)X

(equality!)(46)

and ∀ j ′, ∀γ′ ∈ Γ : µ j ′(γ
′) <µ j (γ) =⇒ ρ(γ′(η j ′),α) > CΓ√

µ j ′(γ′)X
.

If γ(η j ) ≺α then we are done; (45) holds with C ′′
Γ =CΓ. Now assume α≺ γ(η j ).

We then let α′ ∈ ∂H be the unique point satisfying ρ(α′,α) = C 2
Γ+1

C ′
ΓX and α′ ≺α. By

(43), there exist j ′ ∈ {1, ...,κ} and γ′ ∈ Γ such that µ j ′(γ′)5 X and

ρ(γ′(η j ′),α′)5
CΓ√

µ j ′(γ′)X
.(47)
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Now γ′(η j ′) ≺ γ(η j ), for otherwise α′ ≺α≺ γ(η j ) ¹ γ′(η j ′) and thus ρ(γ(η j ),α) <
ρ(γ′(η j ′),α′), which by (46), (47) leads to µ j ′(γ′) <µ j (γ), and in view of the sec-
ond line of (46) and ρ(γ′(η j ′),α′) > ρ(γ′(η j ′),α) this contradicts (47).

Further, if α≺ γ′(η j ′) then α≺ γ′(η j ′) ≺ γ(η j ) so ρ(γ′(η j ′),γ(η j )) < ρ(α,γ(η j )),
and using (44) and (46) we get µ j ′(γ′) > (C ′

Γ/CΓ)2 ·X , and hence, via (47),

C 2
Γ+1

C ′
ΓX

= ρ(α′,α) < ρ(α′,γ′(η j ′))5
CΓ√

µ j ′(γ′)X
< C 2

Γ

C ′
Γ ·X

,

which is a contradiction. Hence γ′(η j ′) ≺α. We have

ρ(γ′(η j ′),α)5 ρ(γ′(η j ′),α′)+ρ(α′,α)5
(
CΓ+

C 2
Γ+1

C ′
Γ

) 1√
µ j ′(γ′)X

.

Hence (45) holds for j ′,γ′, with C ′′
Γ =

(
CΓ+ C 2

Γ+1
C ′
Γ

)
.

To reformulate (45), note that (using [19, p. 105 (Ex. 2)]) we may assume that
the representative g0 for the fixed point p ∈ Γ\G has been chosen in such a
way that α ∈ R, |α| 5 1 and |α−η j | > (2κ)−1 for all j ∈ {1, ...,κ}. Then N j (α) 6=
∞, and whenever ρ(γ(η j ),α) is sufficiently small we have N j (γ(η j )) 6= ∞ and∣∣N j (γ(η j )) −N j (α)

∣∣ ¿ ρ(γ(η j ),α), where the implied constant depends on Γ

and N j , but not on α; furthermore γ(η j ) ≺ α implies N j (γ(η j )) < N j (α) on R.
Writing

(
a b
c d

) =N jγN
−1
j we have c 6= 0 since N j (γ(η j )) 6= ∞. Hence N j (γ(η j )) =

N jγN
−1
j (∞) = a/c, and |c| = 1 by Shimizu’s lemma. Using µ(N j gN−1

j ) ¿ µ(g ),
∀g ∈G (where the implied constant depends on N j ), we also have

µ j (γ) = inf
n∈Z

µ
(
γN−1

j

(
1 n
0 1

)
N j

)À inf
n∈Z

µ
((

a b
c d

)(
1 n
0 1

))
= c2.

In view of these observations, it follows from (45) that there exists a constant
C3 > 0 (which depends on Γ,N1, ...,Nκ but not on α) such that for any X0 > 0
there exist some X > X0, j ∈ {1, ...,κ} and γ ∈ Γ such that if

(
a b
c d

)=N jγN
−1
j then

15 |c|5 X and 0 <N j (α)− a

c
5

C3

X |c| .(48)

We are now able to conclude the proof fairly quickly. Given j ,γ as in (48) we

write
(

a j b j

c j d j

)
=N j g0, so that N j (α) =N j g0(∞) = a j

c j
and c j 6= 0. We also write(

a b
c d

)
=N jγ

−1g0 =
(

a b
c d

)−1 (
a j b j

c j d j

)
so that

c =−ca j +ac j = cc j
( a

c
− a j

c j

)= cc j

( a

c
−N j (α)

)
,(49)

and, if X is sufficiently large (cf. (48)),

d = c
(−b j + a

c
d j

)= (1+ν)
c

c j
(for some |ν| < 0.1),(50)

since −b j +a j d j /c j = 1/c j .
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Now take C2 > 1 so large that f (g ) = 0 whenever YΓ(g ) = C2. If X is large
enough, then c2 < 1/2C2, so Im N jγ

−1g0n(t )(i ) = (c2 + (ct +d)2)−1 > C2 for all
t ∈R satisfying

∣∣t+d/c
∣∣< (

p
2C2c)−1. Hence, for these t we have YΓ(g0 n(t )) >C2

and f (g0 n(t )) = 0. Note that d/c < 0, by (48), (49), (50)! We now let

T1 =
∣∣∣d

c

∣∣∣ and T2 =
∣∣∣d

c

∣∣∣+ 1p
2C2|c|

.

One has 0 < T1 < T2 < 2T1, provided that X is sufficiently large. (To see this
one uses (50), (48), and the fact that for each j ∈ {1, ...,κ} and each X > 0 there
exist only a finite number of double cosets [T j ]γ[T j ] ⊂ Γ for which |c|5 X in(

a b
c d

) = N jγN
−1
j , cf., e.g., [15, Prop. 2.8].) As in the proof of Proposition 4.2 we

now obtain∣∣∣ 1

T`

∫ T`

0
f (g0n(t ))d t −〈 f 〉

∣∣∣= |〈 f 〉|
2
p

2C2
· 1

|c|T`
=

|〈 f 〉|
4
p

2C2
· 1

|d|(51)

for at least one ` ∈ {1,2}. Note also that

Im N jγ
−1g0a(T1)(i ) = T1∣∣cT1i +d

∣∣2 = 1

2
∣∣cd

∣∣ > (2.2C3)−1,

where the last inequality follows from (48), (49) and (50). Hence, using also (12),
we have YΓ(pa(T`)) 5 C4|cd|−1 for both ` ∈ {1,2}, where C4 > 0 is a constant
which depends only on Γ,N1, ...,Nκ,C3. Therefore

1

|d| =C
− 1

2
4

( T`
YΓ(p a(T`))

)−1/2
,(52)

for both ` ∈ {1,2}. The desired conclusion follows from (51) and (52), by repeat-
ing the above argument for a sequence of X -values tending to ∞.

5. Ω-RESULTS FROM FOURIER EXPANSIONS

In this section we obtain further Ω-results, using more difficult methods
than those in §4. Our proofs here exploit the fact that the horocycle segment
{p n(t ) | 05 t 5 T } for given T can be shown to lie close to a subsegment of a
closed horocycle, and then use explicit computations together with known facts
about the Fourier coefficients of the individual eigenfunctions on Γ\H in a way
reminiscent of what was done in [33]. We conclude the section by giving the
proof of Theorem 2, using our results from this section and the preceding one.

PROPOSITION 5.1. There exists a function f ∈ H ∞ with 〈 f 〉 = 0 and positive
constants C1, C2, C3 which only depend on Γ, such that the following holds. For
any p ∈ Γ\G and any u0=C1 such that C1(logu0)5/25YΓ(p a(u0))5 u0/C1 and
such that the function u 7→YΓ(p a(u)) takes a local maximum at u = u0, we have
for T = u0/C2:∣∣∣ 1

T

∫ T

0
f (p n(t ))d t

∣∣∣= C3p
r · log(r +2)

, where r = T

YΓ(p a(T ))
.
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We let Ek (z, 1
2 + i R) denote the Eisenstein series on Γ\H associated to the

cusp ηk (cf., e.g., [14, p. 280]). Recall that for each j ∈ {1, ...,κ} we have a Fourier
expansion

Ek (z, 1
2 + i R) = δk j y

1
2+i R
j +ϕk j ( 1

2 + i R)y
1
2−i R
j +∑

n 6=0
cn

√
y j Ki R (2π|n|y j )e(nx j ),(53)

where x j + i y j := N j (z), the coefficients cn depend on R, j ,k, and ϕk j (s) is an
element of the scattering matrix Φ(s) = (ϕk j (s))k, j=1,...,κ (cf. [14, pp. 280–281]).

The following lemma gives information on the size of the contribution from
the constant terms in (53) to the horocycle integral.

LEMMA 5.2. Given Γ, there exists a bounded piecewise continuous function h(R)
on [1,10], complex constants β1, ...,βκ, and a constant 0 < C4 < 1 such that for
each j ∈ {1, ...,κ}, T > 0, and for each positive function y(t ) satisfying 0 < y(0) <C4

and |y(t )− y(0)| <C4 · y(0) for all t ∈ [0,T ], we have

(54)
∣∣∣ 1

T

∫ T

0

∫ 10

1
h(R)

(
β j y(t )1/2+i R +

κ∑
k=1

βkϕk j ( 1
2 + i R)y(t )1/2−i R

)
dR d t

∣∣∣
=C4 ·

√
y(0)

| log y(0)| .

Proof. Let h0(R) be a fixed C∞-function on [0,1] satisfying 05 h0(R)5 1 and
h0(0) = 1, h0(1) = 0. Take constants R0 ∈ [2,4] and α ∈C, and define

h(R) =


h0(R −R0) if R ∈ [R0,R0 +1]

α ·h0(R −2R0) if R ∈ [2R0,2R0 +1]

0 otherwise.

By repeated integration by parts one then finds that, as y → 0,∫ 10

1
h(R)

(
β j y1/2+i R +

κ∑
k=1

βkϕk j ( 1
2 + i R)y1/2−i R

)
dR = i

p
y

log y

(
A j (y)+o(1)

)
,(55)

where

A j (y) =β j y i R0−
κ∑

k=1
βkϕk j ( 1

2+i R0)y−i R0+α
(
β j y2i R0−

κ∑
k=1

βkϕk j ( 1
2+2i R0)y−2i R0

)
.

Note that A j (y) is periodic in the sense that A j (ye2π/R0 ) = A j (y) for all y > 0;
note also that |A′

j (y)|¿ y−1 as y → 0. Hence we see that to prove the lemma it
suffices to show that there is a choice of R0,β1, ...,βκ,α such that

inf
y>0

∣∣A j (y)
∣∣> 0, for all j ∈ {1, ...,κ}.(56)

Let us write δ j := |β j |−
∣∣∑

k βkϕk j ( 1
2 + i R0)

∣∣ and let M be the set of those j for
which there exists some k 6= j such that ϕk j (s) 6≡ 0. We have ϕ j j (s) 6≡ 0 for each
j , since ϕ j j (s) has a simple pole at s = 1 (cf., e.g., [15, §6.4] or [14, pp. 286–287]).
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Hence, for any generic choice of R0,β1, ...,βκ with R0 ∈ [2,4], βk ∈C, 0 < |βk |5 1,
we have δ j 6= 0 for all j ∈M. Then, for each j ∈M and all y > 0 we have∣∣∣β j y i R0 −∑

k
βkϕk j ( 1

2 + i R0)y−i R0

∣∣∣= ∣∣δ j
∣∣> 0.

This implies (56) for each j ∈M, provided |α| < (κ+1)−1 inf j∈M |δ j |. (Recall that∣∣ϕk j ( 1
2 +2i R0)

∣∣5 1, since Φ(s) = (ϕk j (s)) is unitary for Re s = 1
2 .)

Finally, if j ∉M, then
∣∣ϕ j j ( 1

2 + i R)
∣∣= 1 for all R ∈R since Φ( 1

2 + i R) is unitary,
and hence δ j = 0. Take α1,α2 ∈C such that α2

`
=−ϕ j j ( 1

2 + i`R0), `= 1,2. Then

A j (y) = 2β j
(
α1 ·Re(y i R0 /α1)+αα2 ·Re(y2i R0 /α2)

)
,

so (56) follows if αα2/α1 ∉ R and α4
1 6= −α2

2, viz., ϕ j j ( 1
2 + i R0)2 6= ϕ j j ( 1

2 +2i R0).
Note that since ϕ j j (s) has a simple pole at s = 1 but is analytic for Re s > 1 we
certainly have ϕ j j (2s − 1

2 )ϕ j j (s)−2 6≡ 1. Hence, by choosing R0,β1, ...,βκ generic
as above, and then taking α ∈C generic subject to |α| < (κ+1)−1 inf j∈M |δ j |, we
obtain (56) for all j and are done.

Proof of Proposition 5.1. We take h,β1, ...,βκ,C4 as in Lemma 5.2. We may as-
sume |h(R)|5 1 and |βk |5 1 for all R, k. Now define

f (z) =
∫ 10

1
h(R)

κ∑
k=1

βk ·Ek
(
z, 1

2 + i R
)

dR.(57)

As usual, f is viewed as a function on Γ\G via the projection Γ\G 3 g 7→ g (i ) ∈
Γ\H.

We will choose C1 and C2 at the end of the proof, but we will assume C1 =
C2 = 1000 from start. Arguing as in the proof of Proposition 4.2, we find that
whenever p ∈ Γ\G and u0 =C1 satisfy all our assumptions, there exist a repre-
sentative g ∈G for p and some j ∈ {1, ...,κ} such that

N j g =
(

a b
c d

)
, 0 < c <C−1

1 , |d |=
√

C1/2,(58)

u0 = |d |
c

, YΓ(p a(u0)) = Im N j g a(u0)(i ) = 1

2c|d | .

In particular, u0 = |d | > 10, and thus the condition C1(logu0)5/2 5 YΓ(p a(u0))
implies

c|d |(log |d |)5/25
1

2C1
.(59)

Given j , g as above, we define x(t ), y(t ) ∈R by

x(t )+ i y(t ) :=N j g n(t )(i ).(60)
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Then for f0(z) = Ek (z, 1
2 + i R) with Fourier expansion (53) and T > 0, we have

1

T

∫ T

0
f0(g n(t )(i ))d t = 1

T

∫ T

0

(
δk j y(t )1/2+i R +ϕk j ( 1

2 + i R)y(t )1/2−i R
)

d t

+ ∑
n 6=0

cn
1

T

∫ T

0

√
y(t )Ki R (2π|n|y(t ))e(nx(t ))d t .

(61)

By a direct computation one finds that

y(t ) = ((ct +d)2 + c2)−1, x(t ) = b

d
+ 1

d
(ct 2 +d t + c)y(t );

y ′(t ) =−2c(ct +d)y(t )2, x ′(t ) = (d 2 +2ctd + c2t 2 − c2)y(t )2;
(62)

x ′′(t ) =−2c(d + ct )(d 2 +2ctd + c2t 2 −3c2)y(t )3.

We now let T = u0/C2 = |d |/C2c. Then ct 5 cT = |d |/C2 for all t ∈ [0,T ]. Note
also that T = 1, i.e., c 5 |d |/C2. Recall C2= 1000. It now follows that for t ∈ [0,T ],∣∣y(t )−1 −d 2

∣∣= ∣∣c2t 2 +2ctd + c2
∣∣< 3

C2
d 2,

and likewise, ∣∣y(t )−1/d 2
∣∣5 4

C2d 2 ;
∣∣x ′(t )−1/d 2

∣∣5 20

C2d 2 .(63)

Similarly, using C2= 1000 and (62), we find that for all t ∈ [0,T ],∣∣x ′(t )−1
∣∣¿ d 2,

∣∣y ′(t )
∣∣¿ c/|d |3,

∣∣x ′′(t )
∣∣¿ c/|d |3,(64)

where the implied constants are absolute. (These inequalities express in a pre-
cise way the fact that the horocycle segment {x(t )+ i y(t ) | t ∈ [0,T ]} is “almost
horizontal”.)

We now consider the last integral in (61). Since x ′(t ) > 0 for all t ∈ [0,T ] (by
(63)) we may integrate by parts as follows:

(65)
1

T

∫ T

0

√
y(t )Ki R (2π|n|y(t ))e(nx(t ))d t

= 1

T

[√
y(t )Ki R (2π|n|y(t )) x ′(t )−1 · e(nx(t ))

2πi n

]T

0

− 1

T

∫ T

0

d

d t

(√
y(t )Ki R (2π|n|y(t )) x ′(t )−1

) e(nx(t ))

2πi n
d t .

We have the following convenient bounds, uniformly for 15 R 5 10 and v > 0
(cf. [39, pp. 77(2), 78(6), 202(1)]),∣∣Ki R (v)

∣∣¿ e−v ,
∣∣K ′

i R (v)
∣∣¿ v−1e−v/2.

Note also 2π|n|y(t ) > 2|n|/d 2 for all t ∈ [0,T ] by (63). Using these facts and (64),
we obtain ∣∣∣√y(t )Ki R (2π|n|y(t )) x ′(t )−1

∣∣∣¿|d |e−|n|/d 2
,∣∣∣ d

d t

(√
y(t )Ki R (2π|n|y(t )) x ′(t )−1

)∣∣∣¿ c e−|n|/d 2
.
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These bounds hold for all t ∈ [0,T ], and the implied constants are absolute.
Hence, by (65) (and using c ¿|d |/T ),∣∣∣ 1

T

∫ T

0

√
y(t )Ki R (2π|n|y(t ))e(nx(t ))d t

∣∣∣¿ |d |
T

· e−|n|/d 2

|n| .(66)

The coefficients cn in (53) satisfy
∑

15|n|5X |cn |¿Γ
X

√
log(1+X ) for all X > 0,

uniformly for j ,k ∈ {1, ...,κ} and R ∈ [1,10], cf. [33, Prop. 4.1]. Using this fact, (66),
|d | > 10 (cf. (58)), and summation by parts, we obtain∑

n 6=0

∣∣∣cn
1

T

∫ T

0

√
y(t )Ki R (2π|n|y(t ))e(nx(t ))d t

∣∣∣¿
Γ

|d |
T

(
log |d |)3/2.

Combining this with (57), (61), and |h(R)|5 1, |βk |5 1, we get∣∣∣∣∫ T

0

∫ 10

1
h(R)

(
β j y(t )1/2+i R+

κ∑
k=1

βkϕk j ( 1
2+i R)y(t )1/2−i R

)
dR d t−

∫ T

0
f (p n(t ))d t

∣∣∣∣
5C5|d |(log |d |)3/2,

where C5 is a positive constant which only depends on Γ.
On the other hand, it is clear from (58) and (63) that if both C1 and C2 are

sufficiently large (depending on C4), then 0 < y(0) <C4 and |y(t )−y(0)| <C4 ·y(0)
for all t ∈ [0,T ], and hence (54) holds. By (58) and (63), the right side in (54) is
> (C4/10)|d |−1

(
log |d |)−1. Furthermore, if C1,C2 have also been chosen so that

C1 > 10C2C5/C4, then it follows using (59) and T = |d |/C2c that

C5
|d |
T

(
log |d |)3/2 < C4

20
|d |−1(log |d |)−1.

Hence we obtain ∣∣∣ 1

T

∫ T

0
f (p n(t ))d t

∣∣∣> C4

20
|d |−1(log |d |)−1.(67)

Regarding the right side in this inequality, note that YΓ(p a(T ))5C2/(2c|d |) (by
T = u0/C2 and (12), (58)), and thus r = T /YΓ(p a(T ))= 2d 2/C 2

2 . Hence (67) im-
plies the desired inequality.

The next two propositions give relevant Ω-results in the presence of small
eigenvalues on Γ\H.

PROPOSITION 5.3. Assume that φ (6≡ 0) is a Maass waveform on Γ\H of eigenva-
lue λ ∈ (0, 1

4 ). Write λ= s(1− s), s ∈ ( 1
2 ,1). Then there exists a positive constant C

such that for any p ∈ Γ\G for which {p n(t )} is a nonclosed horocycle, there is a
sequence 1 < T1 < T2 < ... with limk→∞ Tk =∞ such that for each T = Tk ,∣∣∣ 1

T

∫ T

0
φ(p n(t ))d t

∣∣∣=C ·T s−1.(68)

As usual, φ is viewed as a function on Γ\G via the standard projection Γ\G →
Γ\H.
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Proof. Let m
Γ
= infg∈G YΓ(g ) > 0. Consider u0= 1000 such that YΓ(p a(u0))5 u0

and u 7→YΓ(p a(u)) takes a local maximum at u = u0.
Then by arguing as before, there is a representative g ∈ G for p and some

j ∈ {1, ...,κ} such that

N j g =
(

a b
c d

)
, c > 0, |d |= 2−1/2, u0 = |d |

c
,(69)

YΓ(p a(u0)) = Im N j g a(u0)(i ) = 1

2c|d | , c|d |5 (2m
Γ

)−1.

For each j ∈ {1, ...,κ} we have a Fourier expansion

φ(z) = c( j )
0 y1−s

j + ∑
n 6=0

c( j )
n

√
y j Ks− 1

2
(2π|n|y j )e(nx j )(70)

(cf. (18); if φ is a cusp form then c( j )
0 = 0), where x j +i y j :=N j (z). As in the proof

of Proposition 5.1 we now have, for any T > 0,

∫ T

0
φ(g n(t )(i ))d t =

∫ T

0

(
c( j )

0 y(t )1−s + ∑
n 6=0

c( j )
n

√
y(t )Ks− 1

2
(2π|n|y(t ))e(nx(t ))

)
d t ,

(71)

where x(t ), y(t ) are as in (60), (62). We introduce the following notation

F1(X ) =√
y(T )Ks− 1

2
(2πX y(T )) · x ′(T )−1 ·X −1.

F2(X ) =√
y(0)Ks− 1

2
(2πX y(0)) · x ′(0)−1 ·X −1.

F3(X , t ) = d

d t

(√
y(t )Ks− 1

2
(2πX y(t )) · x ′(t )−1

)
·X −1,

At (X ) = ∑
15|n|5X

c( j )
n e(nx(t )) · sgn(n).

Now assume 0 < T 5 10−3u0. Then (63), (64) hold with “C2 = 1000”, and in par-
ticular x ′(t ) > 0 for all t ∈ [0,T ]. Integrating by parts first as in (65) and then with
respect to X , we obtain for each M ∈Z+:

(72)
∑

|n|>M
c( j )

n

∫ T

0

√
y(t )Ks− 1

2
(2π|n|y(t ))e(nx(t ))d t

= 1

2πi

[∫ ∞

M+0
F1(X )d AT (X )−

∫ ∞

M+0
F2(X )d A0(X )

−
∫ T

0

(∫ ∞

M+0
F3(X , t )d At (X )

)
d t

]
= 1

2πi

[
−F1(M)AT (M)−

∫ ∞

M
F ′

1(X ) AT (X )d X

+F2(M)A0(M)+
∫ ∞

M
F ′

2(X ) A0(X )d X

+
∫ T

0

(
F3(M , t )At (M)+

∫ ∞

M

( d

d X
F3(X , t )

)
At (X )d X

)
d t

]
.
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The above manipulations are easily justified using the absolute bounds below.
Since 1

2 < s < 1, we have for all v > 0:∣∣Ks− 1
2

(v)
∣∣¿ v

1
2−se−v/2,

∣∣K ′
s− 1

2
(v)

∣∣¿ v− 1
2−se−v/2,

∣∣K ′′
s− 1

2
(v)

∣∣¿ v− 3
2−se−v/2.(73)

(Cf. [39, pp. 77(2), 78(6), 202(1)]. The implied constants depend on s.) Using
these bounds and (63), (64) (with “C2 = 1000”), we find by a direct computation:∣∣F1(X )

∣∣¿|d |2s X − 1
2−s ,

∣∣F ′
1(X )

∣∣¿|d |2s X − 3
2−s ;∣∣F2(X )

∣∣¿|d |2s X − 1
2−s ,

∣∣F ′
2(X )

∣∣¿|d |2s X − 3
2−s ;∣∣F3(X , t )

∣∣¿ c|d |2s−1X − 1
2−s ,

∣∣∣ d

d X
F3(X , t )

∣∣∣¿ c|d |2s−1X − 3
2−s .

(74)

Furthermore, we have
∣∣At (X )

∣∣¿ X 3/2−s for all X > 0 and all t (cf. [33, Prop. 5.1];
if φ is a cusp form the exponent 3/2−s can be replaced by 1/2+ε, cf. [13]). Using
this bound together with (74) and (72) we obtain∣∣∣ ∑

|n|>M
c( j )

n

∫ T

0

√
y(t )Ks− 1

2
(2π|n|y(t ))e(nx(t ))d t

∣∣∣5K |d |2s M 1−2s ,(75)

where K depends only on Γ and φ.
On the other hand, we have the following lemma:

LEMMA 5.4. There exist positive constants C1 =C1(Γ,φ) and M0 = M0(Γ,φ) such
that for each integer M =M0 there is some C2 > 1 such that for any j ∈ {1, ...,κ}
and any numbers b,c,d ∈R with c > 0, |d |=C2 and c|d |5 (2m

Γ
)−1, there is some

positive number T 5 10−3m
Γ

d 2 such that∣∣∣∫ T

0

(
c( j )

0 y(t )1−s + ∑
15|n|5M

c( j )
n

√
y(t )Ks− 1

2
(2π|n|y(t ))e(nx(t ))

)
d t

∣∣∣=C1|d |2s .(76)

(Here x(t ), y(t ) are defined as in (62) for the given b,c,d.)

We first complete the proof of Proposition 5.3 using Lemma 5.4. Let K be as
in (75) and C1, M0 as in Lemma 5.4. We fix some integer M =M0 so large that
K M 1−2s 5 1

2C1, and then let C2 be as in Lemma 5.4.
By assumption {p n(t ) | t ∈R} is not a closed horocycle. Hence, for any given

number C3 > 0 we can find some u0 = 1000 such that YΓ(p a(u0))5C3u0 and
such that u 7→ YΓ(p a(u)) takes a local maximum at u = u0 (cf. Lemma 4.4).
Assume C3 < 1

2C−2
2 . Defining j , g ,c,d as in (69) we then obtain |d |= (2C3)−1/2 >

C2. Hence by Lemma 5.4 there is some T ∈ (
0,10−3m

Γ
d 2

]
such that (76) holds.

Note that T 5 10−3m
Γ

d 2 < 10−3u0, because of (69); hence (75) holds, and in

view of (71) and K M 1−2s 5 1
2C1 we now obtain∣∣∣∫ T

0
φ(g n(t )(i ))d t

∣∣∣= C1

2
|d |2s =

C1

2

(103

m
Γ

)s
T s .(77)

In other words, (68) holds, with C = 1
2C1(103/m

Γ
)s . We may now repeat the

above construction for a sequence of values of C3 satisfying C3 → 0. We will
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then have |d |= (2C3)−1/2 →∞, and hence because of the first inequality in (77),
we must have T →∞ for the corresponding sequence of T -values. This com-
pletes the proof.

It remains to prove Lemma 5.4. We first prove an auxiliary result.

LEMMA 5.5. Let Γ, φ, s be as above, fix j ∈ {1, ...,κ} and some r ∈C, and define

f (x) = r x + ∑
n 6=0

cn |n|−
1
2−ssgn(n)e(nx), (cn = c( j )

n ).

Then f (x) is nonconstant on every nonempty open interval in R.

Proof. Note that the sum defining f (x) is uniformly absolutely convergent, be-
cause of 1

2 < s < 1 and the Rankin–Selberg bound
∑

15|n|5N |cn |2 ¿ N . Hence
f (x) is continuous. Note also that f (x)− r x is periodic with period 1.

Now assume that there are numbers α< β<α+1 such that f (x) =C for all
x ∈ (α,β). We let KM (x) be Fejer’s kernel function, KM (x) =∑

|n|5M
M−|n|

M e(nx) =
1

M

( sinπM x
sinπx

)2. We then have, for all x0 ∈R, M ∈Z+,∫ 1

0

(
f (x)− r x

)
K′

M (x0 −x)d x = 2πi · ∑
15|n|5M

M −|n|
M

· cn |n|1/2−se(nx0).(78)

Fix some η< (β−α)/2, and keep x0 ∈ [α+η,β−η]. By periodicity, we may rewrite

the integral as
∫ β
α +∫ α+1

β . By our assumption, f (x)− r x is differentiable in x ∈
(α,β) with constant derivative −r . We integrate by parts once in

∫ β
α and use

0 5 KM (x) ¿η M−1,
∣∣K′

M (x)
∣∣ ¿η 1 for all x with ‖x‖ = η (where ‖x‖ denotes

distance to the nearest integer), and
∫ β
α KM (x0 − x)d x 5

∫ 1
0 KM (x)d x = 1. We

then find that the expression in (78) is uniformly bounded for all M ∈ Z+ and
x0 ∈ [α+η,β−η].

Now define, for X > 0,

Sx0 (X ) = ∑
15|n|5X

cn |n|1/2−se(nx0);

Ax0 (X ) =
∫ X

0
Sx0 (Y )dY = ∑

15|n|5X

(X −|n|)cn |n|1/2−se(nx0).(79)

Then by what we have proved,
∣∣Ax0 (M)

∣∣ ¿ M for all M ∈ Z+ and all x0 ∈ [α+
η,β−η]. Furthermore, Ax0 (X ) = 0 for 0 < X 5 1, and if M 5 X < M +1 for some
M ∈Z+ then∣∣Ax0 (X )− Ax0 (M)

∣∣= |X −M | ·
∣∣∣ ∑
15|n|5M

cn |n|1/2−se(nx0)
∣∣∣¿ M 2−2s

by [33, Prop. 5.1] (or [13], if φ is a cusp form) and integration by parts. Hence∣∣Ax0 (X )
∣∣¿ X ,(80)

uniformly for all X > 0 and x0 ∈ [α+η,β−η].
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After an auxiliary conjugation, we may assume that N j =
(

1 0
0 1

)
. We now have

(cf. (70) and (79)),

φ(x0 + i y) = c0 y1−s +p
y
∫ ∞

1/2
Ks− 1

2

(
2πy X

) ·X s− 1
2 dSx0 (X )

= c0 y1−s +p
y
∫ ∞

1/2

d 2

d X 2

(
Ks− 1

2

(
2πy X

) ·X s− 1
2

)
Ax0 (X )d X .

But
∣∣∣ d 2

d X 2

(
Ks− 1

2

(
2πy X

) · X s− 1
2

)∣∣∣ ¿ y1/2−s X −2e−y X (cf. (73)). Using this and (80),

we obtain
∣∣φ(x0 + i y)

∣∣ ¿ y1−s log(1/y) for y small, so φ(x0 + i y) → 0 as y → 0
uniformly for x0 ∈ [α+ η,β− η]. This contradicts φ 6≡ 0 and the fact that the
horocycle segment [α+η,β−η]+ i y becomes asymptotically equidistributed in
Γ\H as y → 0 (cf., e.g., [33], and recall our assumption N j =

(
1 0
0 1

)
).

Proof of Lemma 5.4. To start with, let j ∈ {1, ...,κ}, M ∈ Z+ and b,c,d ∈ R be ar-

bitrary numbers such that c > 0, |d |=
√

103/m
Γ

and c|d |5 (2m
Γ

)−1. We write

T0 = 10−3m
Γ

d 2, and let x(t ), y(t ) be defined by (62). Note that 15 T0 < 10−3|d |/c,
and hence (63) and (64) hold for all t ∈ [0,T0] with “C2 = 1000”.

Let us denote the integral in (76) by JM (T ). Introduce the new variable u(t ) :=
x(t )−x(0) in JM (T ). By (63), 1

2 < d 2u′(t ) < 2 for all t ∈ [0,T0], and hence u = u(t )
gives a bijective C 1-correspondence between t ∈ [0,T0] and u ∈ [0,U0], where
U0 = u(T0) ∈ (1

2 · 10−3m
Γ

,2 · 10−3m
Γ

)
. Using this together with y(t ) 5 2/d 2 (cf.

(63)) and

Ks− 1
2

(2πv) = ks · v
1
2−s +Os(v s− 1

2 ) as v → 0,(81)

(cf. [39, pp. 77(2), 78(6)]; ks ∈R and ks 6= 0), we obtain, for all T ∈ [0,T0]:∣∣∣JM (T )− IM
(
u(T )

)∣∣∣5C (M) · |d |2−2s ,(82)

where

IM (v) :=
∫ v

0

[
c( j )

0 +ks ·
∑

15|n|5M

c( j )
n |n|1/2−s e

(
n(x(0)+u)

)]
· y(t )1−s

x ′(t )
du,

and C (M) is a positive constant which only depends on Γ,φ, s, M .
Let us now define, for u,U ∈ [0,U0],

h(u) := y(t )1−s

x ′(t )
and IM (U ) :=

∫ U

0

I ′M (u)

h(u)
du.

It then follows directly from our definitions that

IM (U ) = ks

2πi

[
f (M)(x(0)+U

)− f (M)(x(0)
)]

,(83)

where

f (M)(x) = 2πi c( j )
0

ks
· x + ∑

15|n|5M

c( j )
n |n|− 1

2−ssgn(n)e(nx).(84)
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But f (M)(x) → f (x) as M →∞ uniformly in x ∈R, where f (x) is as in Lemma 5.5

with r = 2πi c( j )
0 /ks . By Lemma 5.5 there are constants C3 > 0 and M0 > 0, which

only depend on Γ,φ, s, such that for all integers M =M0 we have

inf
x∈R/Z

sup
{∣∣ f (M)(x +U )− f (M)(x)

∣∣ ∣∣∣ 05U 5 1
2 ·10−3m

Γ

}
=C3.(85)

On the other hand, integrating by parts in the definition of IM (U ), we get

IM (U ) = IM (U )

h(U )
− IM (0)

h(0)
+

∫ U

0

h′(u)

h(u)2 IM (u)du,(86)

and using (63), (64) one checks that
∣∣h(u)

∣∣−1 ¿|d |−2s and
∣∣h′(u)

∣∣¿ c|d |2s+1 for
all u ∈ [0,U0], and we also have cU0 ¿Γ

c ¿
Γ
|d |−1. This implies∣∣IM (U )

∣∣5C4|d |−2s sup
u∈[0,U ]

∣∣IM (u)
∣∣, ∀U ∈ [0,U0],(87)

where C4 is a constant that only depends on Γ. But (83), (85) and (87) imply that
for any integer M =M0, there is a u ∈ (0,U0] such that

∣∣IM (u)
∣∣=C3|ks ||d |2s/2πC4.

Now recall (82). Given M = M0 we take C2 > max
(
1,

√
103/m

Γ

)
so large that

|d |=C2 implies C (M)·|d |2−2s 5C3|ks ||d |2s/4πC4. It then follows that for any j ∈
{1, ...,κ} and any numbers b,c,d ∈R satisfying c > 0, |d |=C2 and c|d |5 (2m

Γ
)−1,

there exists some T ∈ (
0,10−3m

Γ
d 2

]
such that

∣∣JM (T )
∣∣=C3|ks ||d |2s/4πC4.

PROPOSITION 5.6. Assume φ ( 6≡ 0) is a residual eigenfunction on Γ\H of eigenva-

lue λ ∈ (0, 1
4 ). Write λ= s(1− s), s ∈ ( 1

2 ,1). Let j ∈ {1, ...,κ} be such that c( j )
0 6= 0 (cf.

(70)). Then there exist positive constants C1,C2 such that the following holds. For
any p ∈ Γ\G and any u0 = C1 such that jΓ(p a(u0)) = j , C1 5 YΓ(p a(u0))5 u0

and such that the function u 7→YΓ(p a(u)) takes a local maximum at u = u0, we
have for T = u0/1000:∣∣∣ 1

T

∫ T

0
φ(p n(t ))d t

∣∣∣>C2 ·
( T

YΓ(p a(T ))

)s−1
.

Proof. This is similar to the proof of Proposition 5.3, but easier. Introducing
g , j , a,b,c,d as usual, we repeat the argument from (72) to (75) to prove∣∣∣ ∑

n 6=0
c( j )

n
1

T

∫ T

0

√
y(t )Ks− 1

2
(2π|n|y(t ))e(nx(t ))d t

∣∣∣¿ T −1|d |2s .(88)

We now have c( j )
0 6= 0 in (70), and the term |c( j )

0 |y1−s
j À |c( j )

0 | · |d |2s−2 will domi-
nate over (88), provided that we have taken C1 sufficiently large.

Proof of Theorem 2. The first assertion in Theorem 2 follows from Proposition
3.1, using (1), (6), (14). If {p n(t )} is a closed horocycle then δp = 0, and the
second assertion in Theorem 2 is obvious.

From now on we assume that {p n(t )} is not closed. Note that we always
have 05 δp 5 1

2 , and if δp = 1
2 then the second assertion in Theorem 2 follows

from Proposition 4.5. If δp = 1− s1 < 1
2 then the same assertion follows from

Proposition 5.3.
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It now remains to treat the case where δp = (1−αp, j )(1− s( j )
1 ) < 1− s15 1

2 for
some j . Note that we then necessarily have 0 <αp, j 5 1.

First assume s( j )
1 = 1

2 . Then take C1,C2,C3 and f as in Proposition 5.1. Let
some δ> δp be given; we may then find a number 0 <α′ <αp, j such that δp <
1
2 (1−α′) < δ. It now follows from (6) and (14) that there exist arbitrarily large

numbers u1 for which jΓ(p a(u1)) = j and YΓ(p a(u1)) = uα′
1 > 1000. As usual,

given such a number u1 there is a representative g ∈G for p such that

YΓ(p a(u1)) = Im N j g a(u1)(i ) = 1

c2u1 +d 2/u1
, N j g =

(∗ ∗
c d

)
, c > 0

(c = 0 is impossible since {p n(t )} is nonclosed). Letting u0 = |d |/c we have (by
Lemma 3.2) YΓ(p a(u0)) = (2c|d |)−1=YΓ(p a(u1)), and, if u15 u0,

u0

YΓ(p a(u0))
= 2d 25 2(c2u2

1 +d 2) = 2u1

YΓ(p a(u1))
5 2u1−α′

1 5 2u1−α′
0 ,

whereas if u05 u1, exactly the same conclusion is reached as follows:

u0

YΓ(p a(u0))
= 2u2

0

u2
1

c2u2
1 5

2u2
0

u2
1

u1

YΓ(p a(u1))
5

2u2
0

u2
1

u1−α′
1 5 2u1−α′

0 .

It also follows from YΓ(p a(u0)) = YΓ(p a(u1)) = uα′
1 that u0 → ∞ as u1 → ∞.

Hence u0/YΓ(p a(u0)) →∞ as u1 →∞ (cf. Lemma 4.4), and it is now clear that
for each sufficiently large number u1 as above, the corresponding u0 satisfies
all the assumptions in Proposition 5.1, and hence we have for T = u0/C2:∣∣∣ 1

T

∫ T

0
f (p n(t ))d t

∣∣∣= C3p
r · log(r +2)

, where r = T

YΓ(p a(T ))
.

But by the above inequalities and (12),

r 5 u0/YΓ(p a(u0))5 2u1−α′
0 = 2C 1−α′

2 T 1−α′
,

and hence ∣∣∣ 1

T

∫ T

0
f (p n(t ))d t

∣∣∣À T − 1
2 (1−α′)

logT
À T −δ.

The argument shows that there exist arbitrarily large values of T for which this
holds.

The proof in the remaining case, i.e., 1
2 < s( j )

1 < 1, is entirely similar except
that we use Proposition 5.6 instead of Proposition 5.1.
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