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Abstract. Using the paths of steepest descent, we prove precise bounds with
numerical implied constants for the modified Bessel function Kir(x) of imaginary
order and its first two derivatives with respect to the order. We also prove pre-
cise asymptotic bounds on more general (mixed) derivatives without working out
numerical implied constants. Moreover, we present an absolutely and rapidly con-
vergent series for the computation of Kir(x) and its derivatives, as well as a formula
based on Fourier interpolation for computing with many values of r. Finally, we
have implemented a subset of these features in a software library for fast and
rigorous computation of Kir(x).

1. Introduction

“If we can qualify a special function as being important when it appears in mathe-
matical and physical applications, then the modified Bessel function of the third kind
of imaginary orders is a quite important one” [17]. In mathematics, this function
plays an important role in analytic number theory [27, 19, 35, 5], and in the spectral
theory of automorphic forms [23]. It appears in the study of harmonic analysis on
arithmetic manifolds [22], and in ergodic theory [43]. In physics, we encounter it in
arithmetic quantum chaos [4, 39], and in cosmology, Kir(x) enters when studying
metric perturbations in hyperbolic universes with a horned topology [33, 2].

In view of upcoming applications in analytic number theory [6], we need precise
bounds with numerical implied constants on Kir(x) and algorithms for its rigorous
computation at an accuracy of several hundred decimal places for a vast range of
arguments and imaginary orders.

Plenty of literature exists for Kir(x) [42, 15, 1, 12], some of which present uniform
asymptotic expansions [3, 13, 17]. In particular, [3] gives precise bounds on the error
terms and one could in principle follow [29] to get quite precise numerical bounds
on the error in the asymptotic expansions of Kir(x) and its derivative with respect
to x. Besides, a whole range of methods have been employed to bring the numer-
ical integration forward [24, 16], for instance, deforming the contour of integration
[26], rearranging the oscillatory integrand [25], using Fourier transform methods [9],
using the method of steepest descent [20], [21, pages 117(bottom)–123]. Moreover,
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a generalised Simpson rule for numerical quadrature of oscillatory integrals was de-
veloped [14], a variety of series and continued fraction expansions have been utilized
[41, 10, 11], and hypergeometric expansions established [32].

However, we could not locate a reference that readily satisfies our demanding re-
quests concerning precise bounds with explicit numerical implied constants on Kir(x)
and its derivatives. In particular in the forthcoming work [6] we also need precise
bounds on the derivatives of Kir(x) with respect to the order, and on mixed deriva-
tives; such bounds are underrepresented in the literature and we aim to close this
gap.

While better and better algorithms for computing higher transcendental functions
become available, they still seem to be off from our goals of being highly accurate,
rigorous, and fast. Difficulties arise especially when the imaginary order of Kir(x)
becomes large. We seek to advance the subject by deriving absolute and rapidly
convergent series for Kir(x), and to boost the speed of rigorous high accuracy com-
putations by Fourier interpolation.

The modified Bessel function of the third kind is defined by

Kir(x) =
1

2

∫ ∞
−∞

eφ(t)dt, where φ(t) := −x cosh t+ irt,(1)

see [42, p. 181]. It satisfies the modified Bessel differential equation

x2y′′ + xy′ + (r2 − x2)y = 0(2)

and decays exponentially for large arguments

Kir(x) ∼
√

π

2x
e−x for x→∞.

A second linearly independent solution of the differential equation is the modified
Bessel function of the first kind

Iir(x) =
(x

2

)ir ∞∑
j=0

(x
2
)2j

j!Γ(1 + j + ir)
,(3)

which grows exponentially for large arguments

Iir(x) ∼
√

1

2πx
ex for x→∞.

We assume that r > 0, x > 0. While Iir(x) is complex, Kir(x) is real and an even
function with respect to r. In fact, it is the imaginary part of Iir(x), up to a factor,

Im Iir(x) = −sinhπr

π
Kir(x).

Guided by an unpublished manuscript of Hejhal [20] and by the literature [37],
we use the paths of steepest descent to convert (1) into non-oscillatory integrals.
For reasons of convenience, however, we deviate from some piece of the path of
steepest descent and replace it by a simpler one on which the absolute value of
the integrand is sufficiently small [20]. Exponential bounds on the integrands as
well as the resulting bounds on Kir(x) and its derivatives are stated in section 2
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and are proven in the Appendix. Section 3 focuses on the computational aspects of
Kir(x). Applying the Poisson summation formula to the imaginary part of the power
series (3) results in an absolutely and rapidly convergent series for Kir(x), which, by
bounding the exponentially small truncation errors, serves as an algorithm for the
rigorous high-accuracy computation of Kir(x) and its derivatives. We also describe
a second algorithm based on Fourier interpolation for computing Kir(x) for fixed x
and many values of r. Finally, a subset of these findings has been implemented and
can be downloaded as a software library from [8].

2. Bounds

2.1. Paths of steepest descent. The saddle point contours of (1) can be found in
Temme [37] and we recapitulate them here. Saddle points follow from solving the
equation φ′(t) = 0 which yields

tn = i
(

(−1)n arcsin
( r
x

)
+ nπ

)
, n ∈ Z, if r ≤ x,

t±n = ± arcosh
( r
x

)
+ iπ(2n+ 1

2
), n ∈ Z, if r ≥ x.

2.1.1. The monotonic case: x ≥ r > 0. In this case we set

α := arcsin
( r
x

)
∈ (0, π

2
],

and it suffices to consider the saddle point t0 = iα. The path of steepest descent is
defined by the equation Imφ(t) = Imφ(t0) which gives

t =: u+ iv where v(u) = arcsin
(

sinα
u

sinhu

)
, −∞ < u <∞.

Integrating with respect to this path yields the representation

Kir(x) =
1

2

∫ ∞
−∞

eφ(u+iv(u))
dt

du
du =

∫ ∞
0

eη(u)du(4)

where η(u) := φ(u+ iv(u)) = −x coshu cos v(u)− rv(u), [37, eq. (2.7.)].

2.1.2. The oscillatory case: 0 < x < r. In this case we set

µ := arcosh
( r
x

)
> 0.

The saddle point contour through the saddle t±n is defined by the equation Imφ(t) =
Imφ(t±n ) which results in

t =: u+ iv with sin v =
Tu∓ S
sinhu

,(5)

where T := r/x = coshµ > 1, S := µ coshµ− sinhµ > 0. Note that the dependence
on n is implicit upon solving for v(u).

The path of steepest descent is a countable union of pieces of saddle point contours
(5) and runs from −∞ through the saddle points {t−n }n≥0 up to i∞ and from there
symmetrically down through the saddle points {t+n }n≥0 to +∞, see [37]. Since r > 0,
the integrand eφ(t) is exponentially small in v and vanishes at i∞. Using the path
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of steepest descent results in the integral representations [37, eqs. (3.3), (3.5)] which
could be used to bound Kir(x).

However, when proving our bounds we have found it more convenient to not follow
the path of steepest descent all the way up to i∞, but to use the pieces with imaginary
part less than some positive constant, only, and to replace the omitted part by a
straight line [20]. The price to pay for this simplification is that we will not bound
Kir(x) for x < 1. (Fortunately, other representations of Kir(x), such as the series
(25), are easy to bound for x < 1; see the proof of Prop. 5 on page 35 for an example
of this in practice.)

We set uπ := S
T
> 0. Then the path of steepest descent for u ≥ uπ reads t = u+ iv

with

v(u) =

{
π − arcsin

(
Tu−S
sinhu

)
if u ∈ [uπ, µ],

arcsin
(
Tu−S
sinhu

)
if u ∈ [µ,∞).

(6)

One checks by differentiation that v(u) is strictly decreasing for all u ∈ [uπ,∞). We
remark that v(u) is smooth for all u > uπ; the fact that it is smooth at u = µ follows
from the construction and basic principles of complex analysis. Note also the special
values v(uπ) = π, v(µ) = π

2
, and v′(µ) = −1; the last identity follows e.g. from the

fact that φ′′(t+0 ) = −i
√
r2 − x2, a negative imaginary number.

If we now fix some uc ∈ [uπ, µ], we can define

tc(u) :=

{
u+ iv(|u|) if |u| ≥ uc,

u+ iv(uc) if |u| ≤ uc,
(7)

which is a continuous path from −∞ to +∞. If u 6= ±uc the path is smooth, and for
|u| ≥ uc it coincides with the path of steepest descent. Replacing in (1) the contour
of integration by the path tc(u) results in the representation

Kir(x) =
1

2

∫ ∞
−∞

eφ(tc(u))
dtc
du
du.

The justification of this step via Cauchy’s integral theorem is easy, since limu→∞ v(u) =
0 and Reφ(u+ iv) = −x coshu cos v− rv is rapidly decaying as u→ ±∞, uniformly
with respect to v in any compact subset of [0, π

2
) (and x, r fixed).

Utilizing the symmetries tc(−u) = −tc(u) and φ(−t) = φ(t), we arrive at the
integral representation

Kir(x) = Re

{∫ uc

0

eφ(u+iv(uc))du+

∫ ∞
uc

eφ(u+iv(u))(1 + iv′(u))du

}
,(8)

which we are going to bound.

2.2. Bounds.

2.2.1. The monotonic case: x ≥ r > 0. The integrand of (4) reads eη(u) with

η(u) = −x coshu cos v(u)− rv(u).(9)
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By construction, we know that η(u) has a maximum at u = 0 and we easily compute

η(0) = −x cosα− rα, η′(0) = 0, η′′(0) = −x cosα = −
√
x2 − r2.

It turns out that η(u) lies below the parabola described by η(0), η′(0), η′′(0).

Lemma 1. Assume x ≥ r > 0. Then for all u ∈ R we have

η(u) ≤ −x cosα− rα− 1

2

√
x2 − r2u2.

The proof is given in the Appendix on pages 14–15.
In the case of x/r near 1, we also need another bound, to show that once u gets

larger than 0 by a not too small amount, η(u) decays quite a bit more rapidly than
what is given by Lemma 1. To appreciate the following Lemma, note that for any
fixed x = r > 0, we have,

η(u) = −r
(

coshu

√
1− u2

sinh2 u
+ arcsin

( u

sinhu

))
= −π

2
r − 4

√
3

27
ru3 +O(u7), as u→ 0+.(10)

Lemma 2. Assume x ≥ r > 0. Then for all u ≥ 0 we have

η(u) ≤ −x cosα− rα− 4
√

3

27
ru3.(11)

The proof is given in the Appendix on page 15.
For bounding the partial derivatives of Kir(x) we will also need bounds on v′(u).

Lemma 3. (Cf. [20].) Assume x ≥ r > 0. Then for all u > 0 we have

0 > v′(u) > −3−
1
2 ,(12)

and

0 > uv′(u) > −
√

3.(13)

The proof is given in the Appendix on page 15.
Based on (4) and Lemmata 1, 2 and 3, we can bound Kir(x) and its derivatives

for x ≥ r > 0.

Proposition 1. For all x ≥ r > 0 we have:

0 < Kir(x) ≤ e−
π
2
re−
√
x2−r2+r arccos(r/x) min

( √
π/2

4
√
x2 − r2

,
Γ(1

3
)

2
2
3 3

1
6

r−
1
3

)
,(14)

∣∣∣ ∂
∂r
Kir(x)

∣∣∣ < e−
π
2
re−
√
x2−r2+r arccos(r/x) min

( √3π/2
4
√
x2 − r2

,
3

1
3 Γ(1

3
)

2
2
3

r−
1
3

)
,(15)
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and

(16)
∣∣∣ ∂2
∂r2

Kir(x)
∣∣∣ < e−

π
2
re−
√
x2−r2+r arccos(r/x)

×min
( 1

2
π

3
2 (
√

3− π
4
)

(x2 − r2)1/4
+

√
π/2

(x2 − r2)3/4
,
π(
√

3− π
4
)Γ(1

3
)

2
2
3 3

1
6

r−
1
3 +

3
3
2

4
r−1
)
.

Furthermore, for any fixed integers j1, j2 ≥ 0 and any ε > 0, the following holds for
all r > 0, x ≥ max(ε, r):∣∣∣∣ ∂j1+j2∂rj1∂xj2

Kir(x)

∣∣∣∣�j1,j2,ε e
−π

2
re−
√
x2−r2+r arccos(r/x)max

(
4
√
x2 − r2, r 1

3

)2j2−1
xj2

.(17)

The proof is given in the Appendix on pages 16–17. We remark that a �µ1,µ2,... b
means that there exists a positive function C(µ1, µ2, . . .), independent of all other
variables, such that |a| ≤ C(µ1, µ2, . . .)b holds true.

2.2.2. The oscillatory case: 0 < x < r. For u ≥ uπ, we study η(u) := Reφ(u+ iv(u))
along the curve (6), (7). As before,

η(u) = −x coshu cos v(u)− rv(u).(18)

This function has a maximum at u = µ and we compute

η(µ) = −π
2
r, η′(µ) = 0, η′′(µ) = −2x sinhµ = −2

√
r2 − x2.

Lemma 4. Assume 0 < x < r. Then for all u ≥ uπ we have

η(u) ≤ −π
2
r −
√
r2 − x2(u− µ)2,(19)

and for all u ≥ µ:

η(u) ≤ −π
2
r − 4

√
3

27
r(u− µ)3.(20)

The proof is given in the Appendix on pages 17–24. Note that the constant 4
√
3

27
in

(20) is also optimal, as is seen by considering the limiting case µ = 0 (cf. (10)).
For bounding Kir(x) we need bounds on v′(u) as well. As we have already pointed

out, v(u) is strictly decreasing, and in particular v′(u) ≤ 0 for all u ≥ uπ.

Lemma 5. Assume 0 < x < r. Then:

(a) v′(u) is strictly increasing for all u ≥ uπ.
(b) If 0 < µ ≤ 1.8 then −2.9 < v′(u) ≤ −1 for all u ∈ [1

2
µ, µ].

(c) If µ ≥ 1.8 then −3.3 < v′(u) ≤ −1 for all u ∈ [uπ, µ].

The proof is given in the Appendix on pages 24–27.
Based on (8) and Lemmata 4 and 5, we can bound Kir(x) and its derivatives for

1 ≤ x < r.
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Proposition 2. For all 1 ≤ x < r we have∣∣Kir(x)
∣∣ < e−

π
2
r

{
5

4√r2−x2
if x ≤ r − 1

2
r

1
3 ,

4r−
1
3 if x ≥ r − 1

2
r

1
3 ,

(21)

∣∣∣ ∂
∂r
Kir(x)

∣∣∣ < e−
π
2
r

{
17+5 log(r/x)

4√r2−x2
if x ≤ r − 1

2
r

1
3 ,

12r−
1
3 if x ≥ r − 1

2
r

1
3 ,

(22)

and ∣∣∣ ∂2
∂r2

Kir(x)
∣∣∣ < e−

π
2
r

{
44+8 log(r/x)2

4√r2−x2
if x ≤ r − 1

2
r

1
3 ,

22r−
1
3 if x ≥ r − 1

2
r

1
3 .

(23)

Furthermore, for any fixed integers j1, j2 ≥ 0 and any ε > 0, the following holds for
all r > x ≥ ε:∣∣∣∣ ∂j1+j2∂rj1∂xj2

Kir(x)

∣∣∣∣�j1,j2,ε e
−π

2
rmax

(
4
√
r2 − x2, r 1

3

)2j2−1
xj2

(
log

2r

x

)j1
.(24)

The proof is given in the Appendix on pages 27–30.
We remark that while the constant “

√
π/2” in the bound on Kir(x) in Prop. 1

is optimal in the limit of large r (cf. [3]), the constant “5” in the first bound in
Prop. 2 is about twice the asymptotically optimal constant

√
2π. Note that it would

be possible to use Lemma 4 to prove a sharper, but more complicated, bound of the

form e−
π
2
r
√
2π

4√r2−x2
plus an explicit correction term (of lower order of magnitude as

r → ∞ and (r − x)/r1/3 → ∞); the main work necessary to obtain such a bound
would be to replace Lemma 5 by an explicit bound on v′′(u) for u ≤ µ.

3. Absolutely convergent series

3.1. Small argument. Taking the imaginary part of the power series (3) results in
an absolutely convergent series for Kir(x),

e
π
2
rKir(x) =

πe
π
2
r

sinh(πr)
Im

[
∞∑
j=0

−(x/2)ir+2j

j!Γ(1 + ir + j)

]
, ∀x > 0.(25)

Using one term of Stirling’s expansion we have Γ(s) = (2π)
1
2 ss−

1
2 e−seR(s) where

|R(s)| ≤ 1
6|s| [30, p. 294]. Hence

∣∣j!Γ(1 + ir + j)
∣∣ ≥ 2π(j + 1)j+

1
2

∣∣j + 1 + ir
∣∣j+ 1

2 e−r arg(j+1+ir)e−2(j+1)e−
1

6(j+1)
− 1

6|j+1+ir| .

(26)

Using this, we can bound the contribution from all terms with j ≥ J in (25) as

follows, writing X = (xe/2)2

(J+1)|J+1+ir| and assuming X < 1:

πe
π
2
r

sinh(πr)

∣∣∣∣∣Im
[
∞∑
j=J

−(x/2)ir+2j

j!Γ(1 + ir + j)

]∣∣∣∣∣ < 11

(J + 1)(1− e−2πr)
XJ

1−X
.
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Hence, for sufficiently small x the series (25) converges rapidly.
For large x, however, Iir(x) increases exponentially, while Kir(x) decreases expo-

nentially. This discrepancy results in catastrophic cancellation of significant digits
in the summation of the finite parts of (25), making this series unsuitable once x
becomes large. This can be overcome by employing Poisson summation.

3.2. Large argument. Let F : R → C be a Schwartz function, and define F̂ (ξ) =
1
2π

∫
R F (t)e−iξt dt. Further let B > 0 and t0 ∈ R. Then the Poisson sum formula

yields

∑
k∈Z

F (t0 + 2πkB) =
1

B

∑
n∈Z

e−
int0
B F̂

(
− n
B

)
.(27)

Let us apply this with F (t) := Fs(t) := e
π
2
r+stKir

(
et
)

for some fixed s ∈ C with
Re(s) > 0. We get

F̂s(ξ) =
e
π
2
r

2π

∫
R
Kir

(
et
)
e(s−iξ)t dt =

e
π
2
r

2π

∫ ∞
0

Kir(x)xs−iξ
dx

x

=
e
π
2
r

2π
g(s− iξ + ir)g(s− iξ − ir),

where g(z) := 2z/2−1Γ(z/2). Thus, (27) reads

∑
k∈Z

Fs(t0 + 2πkB) =
e
π
2
r

2πB

∑
n∈Z

e−
int0
B g

(
s+ ir +

in

B

)
g

(
s− ir +

in

B

)
.(28)

Next, from (25), we have

Fs(t) =
πie

π
2
r2s−1

sinh(πr)

[
∞∑
j=0

(et/2)s+ir+2j

j!Γ(1 + ir + j)
−
∞∑
j=0

(et/2)s−ir+2j

j!Γ(1− ir + j)

]
.

Summing this over t = t0 − 2πkB for k = 1, 2, . . ., we obtain

∞∑
k=1

Fs(t0 − 2πkB) =
πie

π
2
r2s−1

sinh(πr)

[ ∞∑
j=0

(et0/2)s+ir+2j

j!Γ(1 + ir + j)

1

e2πB(s+ir+2j) − 1

−
∞∑
j=0

(et0/2)s−ir+2j

j!Γ(1− ir + j)

1

e2πB(s−ir+2j) − 1

]
,

and substituting into (28), this proves
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Lemma 6. For r > 0, s ∈ C with Re(s) > 0, t0 ∈ R, B > 0, we have

∞∑
k=0

Fs(t0 + 2πkB) =
e
π
2
r

2πB

∑
n∈Z

e−
int0
B g

(
s+ ir +

in

B

)
g

(
s− ir +

in

B

)

− πie
π
2
r2s−1

sinh(πr)

[ ∞∑
j=0

(et0/2)s+ir+2j

j!Γ(1 + ir + j)

1

e2πB(s+ir+2j) − 1

−
∞∑
j=0

(et0/2)s−ir+2j

j!Γ(1− ir + j)

1

e2πB(s−ir+2j) − 1

]
.

Although this was derived for Re(s) > 0 only, we see that both sides continue
to meromorphic functions of s on all of C, and hence the formula must be true
everywhere. Particularly nice values are s = 0 and s = 1. With the latter, we set
x = et0 , divide by x and substitute the definition of g(z), which proves

Proposition 3. For r > 0, x > 0, B > 0, we have

(29)
∞∑
k=0

e
π
2
r+2πkBKir

(
xe2πkB

)
=

e
π
2
r

4πBx

∑
n∈Z

(x
2

)−in/B
Γ

(
1

2
+
i

2

( n
B

+ r
))

Γ

(
1

2
+
i

2

( n
B
− r
))

+
πe

π
2
r

sinh(πr)
Im

[
∞∑
j=0

(x/2)ir+2j

j!Γ(1 + ir + j)

1

e2πB(2j+1+ir) − 1

]
.

Using the trivial inequality |Kir(x)| <
√

π
2x
e−x, for x ≥ 1 and B ≥ 1

2π
we have∣∣∣∣∣

∞∑
k=1

e
π
2
r+2πkBKir

(
xe2πkB

)∣∣∣∣∣ ≤
√

π

2x
e
π
2
r

∞∑
k=1

eπkB−x exp(2πkB) <
2√
x
e
π
2
r+πB−x exp(2πB).

Hence, by taking B sufficiently large, (29) can be used to compute an approximation
of e

π
2
rKir(x) to any desired level of accuracy.

Suppose now that we sum the terms of the right-hand side for |n| ≤ N . Using the
inequality ∣∣∣∣Γ(1

2
+ it

)∣∣∣∣ =

√
π

cosh(πt)
≤
√

2πe−π|t|/2,

the terms with |n| > N are bounded as follows:

e
π
2
r

4πBx

∣∣∣∣∣∣
∑
|n|>N

(x
2

)−in/B
Γ

(
1

2
+
i

2

( n
B

+ r
))

Γ

(
1

2
+
i

2

( n
B
− r
))∣∣∣∣∣∣

≤ e
π
2
r

2Bx

∑
|n|>N

e−
π|n|
2B <

2

πx
e
π
2
r−πN

2B .
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Utilizing (26), for B ≥ 1
2π

we can truncate the sum over j and bound the terms with
j ≥ J ,

πe
π
2
r

sinh(πr)

∣∣∣∣∣Im
[
∞∑
j=J

(x/2)ir+2j

j!Γ(1 + ir + j)

1

e2πB(2j+1+ir) − 1

]∣∣∣∣∣ < 17

(J + 1)(1− e−2πr)e2πB
XJ

1−X

assuming X = (xe/2)2e−4πB

(J+1)|J+1+ir| < 1. If we take B ≥ 1
2π

max(1, log(x/2)), the series (29)

converges rapidly for x ≥ 1.
Summing the finite part of (29) can result in significant cancellation of terms.

However, the point is that the terms of (29) do not grow exponentially large (as they
do in (25)), so even though there is cancellation, we can use the formula to achieve
a fixed absolute accuracy without substantially increasing the precision.

We have implemented a numerical software library for computing Kir(x) which
can be downloaded from [8]. For x ≤ 2 it uses (25) and for x > 2 it uses (29). We
take rigorous control over the error when summing the terms in the finite part. For
this, we increase the number of digits suitably and sum up using interval arithmetic
[28].

Formulas (25) and (29) were derived for r > 0. Because Kir(x) is an even function
with respect to r, it is straightforward to compute it for r < 0 as well. Values
of r very near 0 are more cumbersome to deal with, since the truncation bounds
given above blow up as r → 0. Fortunately, we can side-step this problem using the
algorithm presented in Section 3.4.

3.3. Derivatives. Using the inequality |∂Kir(x)/∂x| <
√

π
2x
e−x

(
1 + 1

x

)
, for x ≥ 1

and B ≥ 1
2π

we have∣∣∣∣∣ ∂∂x
∞∑
k=1

e
π
2
r+2πkBKir

(
xe2πkB

)∣∣∣∣∣
≤
√

π

2x
e
π
2
r

∞∑
k=1

e3πkB−x exp(2πkB)

(
1 +

1

x
e−2πkB

)
<

√
2π

x
e
π
2
r+3πB−x exp(2πB).

This, together with taking the derivative with respect to x on both sides of (29), can
be used to compute an approximation of ∂Kir(x)/∂x to any desired level of accuracy.
Here the terms with |n| > N are bounded as follows:

e
π
2
r

8πB

∣∣∣∣ ∑
|n|>N

−in/B − 1

2

(x
2

)−in/B−2
Γ

(
1

2
+
i

2

( n
B

+ r
))

Γ

(
1

2
+
i

2

( n
B
− r
))∣∣∣∣

<
2

πx2

(
N

B
+ 2

)
e
π
2
r−πN

2B ,

and for B ≥ 1
2π

we obtain

πe
π
2
r

sinh(πr)

∣∣∣∣∣Im
[
∞∑
j=J

ir+2j
2

(x/2)ir+2j−1

j!Γ(1 + ir + j)

1

e2πB(2j+1+ir) − 1

]∣∣∣∣∣ < 17

xe2πB

(
r

J+1

)1/2
+ 2

1− e−2πr
XJ

1−X
,
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assuming X = (xe/2)2e−4πB

(J+1)|J+1+ir| < 1. If we take B ≥ 1
2π

max(1, log(x/2)), the series

converges rapidly for x ≥ 1.
For small arguments, we take the derivative of (25) on both sides and get

e
π
2
r ∂

∂x
Kir(x) =

πe
π
2
r

sinh(πr)
Im

[
∞∑
j=0

− ir+2j
2

(x/2)ir+2j−1

j!Γ(1 + ir + j)

]
, ∀x > 0.

Using the bound

πe
π
2
r

sinh(πr)

∣∣∣∣∣Im
[
∞∑
j=J

− ir+2j
2

(x/2)ir+2j−1

j!Γ(1 + ir + j)

]∣∣∣∣∣ < 11

x

(
r

J+1

)1/2
+ 2

1− e−2πr
XJ

1−X
,

with X = (xe/2)2

(J+1)|J+1+ir| < 1, we see that that this series converges rapidly for suffi-

ciently small x.
Higher derivatives and integrals of Kir(x) with respect to x follow recursively from

the differential equation (2) upon inserting the values of Kir(x) and ∂Kir(x)/∂x as
initial conditions, while derivatives and integrals with respect to r are best computed
from the formulas given in the next section.

3.4. Fourier interpolation. The algorithms described in Sections 3.2 and 3.3 are
fast when one is interested in computing Kir(x) for a fixed r and many x. In this
section we present an algorithm for the opposite situation, i.e. for fixed x and many
r. It is particularly well-suited to computing Kir(x) for values of r that occur unpre-
dictably, using as input a pre-computed table for regularly spaced values of r and the
same x. This is useful, e.g., for computing eigenvalues of the Laplacian on hyperbolic
surfaces [38, 40].

The main idea is to use a Fourier interpolation. More precisely, suppose F : R→ C
is a Schwartz function. Then by a generalization of Shannon’s sampling theorem [34],
for any r, θ ∈ R, X > 0 and ` ∈ Z≥0, we have

∣∣∣∣∣F (`)(r)− d`

dr`

∑
m∈θ+Z

F
(m
X

)
sinc

(
π(Xr −m)

)∣∣∣∣∣ ≤ 2

∫
|u|≥πX

∣∣u`F̂ (u)
∣∣ du,(30)

where F̂ (u) = 1
2π

∫
R F (r)e−iru dr and sincx = sinx

x
. Note that if F decays rapidly

away from some r0 ∈ R then this gives a rapid method of computing F (`)(r0), pro-
vided that we can produce a good estimate for the right-hand side of (30). We will

apply this idea to an appropriately weighted version of K̃s(x) := 2 cos(πs/2)Ks(x).
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Let w be the Gaussian w(r) = e−(r−r0)
2/2h2 for some h > 0, r0 ∈ R, and set

F (r) := K̃ir(x)w(r). By (30), for ` ∈ {0, 1} we have

(31)
∂`

∂r`
K̃ir(x)

∣∣∣∣
r=r0

= F (`)(r0)

=
∑

m∈θ+Z

F
(m
X

)
(πX)` sinc(`)

(
π
(
Xr0 −m

))
+ 4β

∫ ∞
πX

u`
∣∣F̂ (u)

∣∣ du
=
∑

m∈θ+Z

K̃im/X(x) exp

(
−(m/X − r0)2

2h2

)
(πX)` sinc(`)

(
π
(
Xr0 −m

))
+ 4β

∫ ∞
πX

u`
∣∣F̂ (u)

∣∣ du
with −1 ≤ β ≤ 1, and formulas for higher derivatives may be worked out similarly
using the Leibniz rule.

Note that (31) is a convolution, so we can use it together with the FFT to “up-

sample” a course grid of values of K̃ir(x) to a finer grid, which can in turn be used
for rapid single-point evaluations. Moreover, choosing θ = 1/2, we can conveniently

compute K̃ir(x) and ∂K̃ir(x)/∂r for all r, including r = 0.

Our present task is to work out a bound for the error, 4
∫∞
πX

u`
∣∣F̂ (u)

∣∣ du. We begin
with the integral representation

K̃s(x) =

∫ ∞
−∞

cos(x sinh t)est dt,(32)

valid for all s with |Re(s)| < 1. The integral is only conditionally convergent, but we
can improve the convergence by integration by parts. More precisely, if we integrate
by parts n times, the result can be expressed in the form

K̃s(x) =

∫ ∞
−∞

cos(−n)(x sinh t)

(x cosh t)n
fn(tanh t, s)est dt,(33)

where cos(−n) = (−1)n cos(n) is the nth anti-derivative of the cosine function and
fn(ξ, s) is a polynomial function of ξ and s, defined by the recurrence

f0 = 1 and fn = (nξ − s)fn−1 + (ξ2 − 1)
∂fn−1
∂ξ

.

From this we see that fn is essentially a Jacobi polynomial,

fn(ξ, s) = n!P (−s,s)
n (ξ) =

n∑
k=0

(
ξ − 1

2

)k
(n+ k)!

k!(n− k)!

n∏
`=k+1

(`− s).

It is also related to the Legendre spherical function P s
n(ξ) via

fn(tanh t, s)est = Γ(n+ 1− s)P s
n(tanh t).

In particular, when s = 0 we get n! times the classical Legendre polynomials,
Pn(ξ), which satisfy the bound |Pn(ξ)| ≤ 1 = Pn(1) for ξ ∈ [−1, 1]. We conjecture
that this can be generalized as follows:
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Conjecture 1. Let n ∈ Z≥0. Then

(34)

∣∣∣∣∂jfn∂sj
(ξ, ir)

∣∣∣∣ ≤ ∣∣∣∣∂jfn∂sj
(1, ir)

∣∣∣∣
for all ξ ∈ [−1, 1], r ∈ R, j ∈ Z≥0.

We give the following evidence in favor of the conjecture.

Lemma 7. Inequality (34) is true if any of the following holds:

(i) r = 0,
(ii) j = 0,

(iii) n ≤ j + 100.

In particular, Conj. 1 is true for all n ≤ 101.

The proof is given in the Appendix on pages 30–33.
Remark. It is easy to check Conj. 1 for any given value of n, and thus we are free to
assume it as long as we include this verification as part of the algorithm for evaluating

(31). The key point is that
〈∣∣∂jfn

∂sj
(·, ir)

∣∣2, Pk〉 turns out to be non-negative; in fact

it has all non-negative coefficients as a polynomial in r, which can be verified in
every non-trivial case for a given n. To see that this implies Conj. 1, note that if
φ : [−1, 1]→ R is any smooth function such that 〈φ, Pk〉 ≥ 0 for all k then

|φ(ξ)| =

∣∣∣∣∣
∞∑
k=0

(
k +

1

2

)
〈φ, Pk〉Pk(ξ)

∣∣∣∣∣ ≤
∞∑
k=0

(
k +

1

2

)
〈φ, Pk〉Pk(1) = φ(1).

Proposition 4. Let F (r) = K̃ir(x)e−(r−r0)
2/2h2 for some x > 0, h > 0, r0 ∈ R, and

assume n is a positive integer for which Conj. 1 is true. Then for any positive real
number R ≥ |r0|, we have

(35) |F̂ (u)| ≤ (4n)1/4 exp

[
n(n+ 1)(2n+ 1)

12R2
+

1

2
n2

(
1

h
+
h

R

)2

+ n log
2R

x
− nu

]
.

The proof is given in the Appendix on pages 33–35.
Note that for ` ∈ {0, 1}, X > 0, this gives the estimate

4

∫ ∞
πX

u`
∣∣F̂ (u)

∣∣ du ≤ 4
√

2

n3/4

(
πX + n−1

)`
× exp

[
n(n+ 1)(2n+ 1)

12R2
+

1

2
n2

(
1

h
+
h

R

)2

+ n log
2R

x
− πnX

]
.

When R is large compared to h2, the right-hand side of the above is smallest for n ≈
h2
(
πX− log 2R

x

)
, where it is about exp

(
−h2

(
πX− log 2R

x

)2
/2
)
; this is consistent with

the Gaussian decay that F̂ would have if K̃ir(x) were band-limited with bandwidth
log 2R

x
.

Since the bound is valid for any R ≥ |r0|, we may estimate the error term in (31)
once and for all by taking R to be the largest value of r0 that we require. The final
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ingredient that we will need is a bound for the error incurred by truncating the sum
in (31).

Proposition 5. Let notation be as in Prop. 4. Then for any ` ∈ {0, 1}, θ ∈ R and
X,M ∈ R>0, we have

(36)
∑

m∈θ+Z
|m−Xr0|≥M

∣∣∣F(m
X

)
(πX)` sinc(`)

(
π
(
Xr0 −m

))∣∣∣
<

16

πMx1/3
(
X
√
π2 +M−2

)` e−
M2

2h2X2

1− e−
M

h2X2

.

The proof is given in the Appendix on page 35.

Appendix A. Proofs

Our first task is to prove Lemma 1. We first prove the following auxiliary result.

Sublemma 1. For all 0 ≤ τ ≤ 1 and u > 0 we have

√
1− τ 2

√
1− τ 2u2

sinh2 u
≤ 1− τ 2 +

1

6
τ 2u2.

Proof. Squaring and expanding, we see that our task is to prove

−36 + 12u2 + 36
u2

sinh2 u
+ τ 2

(
36− 12u2 + u4 − 36

u2

sinh2 u

)
≥ 0.

Clearly this holds for all 0 ≤ τ ≤ 1 if and only if it holds for both τ = 0 and
τ = 1. However for τ = 1 the inequality is trivial, and for τ = 0 the claim is
equivalent to (u2 − 3) sinh2 u + 3u2 ≥ 0 which is easily seen to hold for all u ≥ 0
using repeated differentiation; indeed the fourth derivative of the left hand side is
8u(8 sinhu coshu+ 2u cosh2 u− u), which is clearly non-negative for all u ≥ 0, while
all the lower order derivatives vanish at u = 0. �

Proof of Lemma 1. Dividing through by x and writing τ := r
x
∈ (0, 1], we see that

our task is to prove that the function

f(u) := coshu cos v(u) + τv(u)− cosα− τα− 1

2

√
1− τ 2u2

is non-negative for all real u. Note that f is even and f(0) = 0; hence it suffices to
prove f ′(u) ≥ 0 for all u > 0. We compute

f ′(u) =
sinh4 u+ τ 2(u2 + sinh2 u− 2u coshu sinhu)

sinh3 u
√

1− τ2u2

sinh2 u

−
√

1− τ 2 u.

Clearing the denominator and using Sublemma 1, we see that it suffices to prove

sinh4 u+ τ 2(u2 + sinh2 u− 2u coshu sinhu) ≥
(

1− τ 2 +
τ 2u2

6

)
u sinh3 u.
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Overestimating (1− τ 2)u sinh3 u by (1− τ 2) sinh4 u and then simplifying, we see that
it suffices to prove, for all u > 0:

6 sinh4 u+ 6 sinh2 u+ 6u2 − 12u coshu sinhu− u3 sinh3 u ≥ 0.

However this follows by noticing that the left hand side vanishes at u = 0, and that
its derivative is, for all u ≥ 0:

3(sinhu)2
(
8 sinhu coshu− u3 coshu− 8u− u2 sinhu

)
= 3(sinhu)2

{
2 sinhu

(
coshu− 1

2
u2
)

+ 6 coshu
(

sinhu− 1

6
u3
)
− 8u

}
≥ 3(sinhu)2

{
2 sinhu+ 6u coshu− 8u

}
≥ 0.

�

Proof of Lemma 2. Let us write f(u) for the difference between the right and the
left hand side of (11). Arguing as in the proof of Lemma 1 we see that it suffices to
prove f ′(u) ≥ 0 for all u > 0, viz. to prove

sinh4 u+ τ 2(u2 + sinh2 u− 2u coshu sinhu)

sinh3 u
√

1− τ2u2

sinh2 u

≥ 4
√

3

9
τu2.

Here we again write τ := r
x
∈ (0, 1]. Clearing the denominator and squaring, we see

that it suffices to prove τ 4a(u) + τ 2b(u) + c(u) ≥ 0 for all u > 0, where

a(u) =
(
u2 + sinh2 u− 2u coshu sinhu

)2
+ 16

27
u6 sinh4 u;

b(u) = 2(sinhu)4
(
u2 + sinh2 u− 2u coshu sinhu

)
− 16

27
u4 sinh6 u;

c(u) = sinh8 u.

Using Taylor expansions and interval arithmetic one checks that

a(u) + b(u) + c(u) > 0 and 2a(u) + b(u) < 0,(37)

for all u > 0 (cf. [7]; for this and all later verifications using interval arithmetic, we
used the intpakX Maple package [18]). For fixed u > 0, the second of inequality
in (37) together with the obvious fact that a(u) > 0 imply that the function τ 7→
τ 4a(u)+ τ 2b(u)+ c(u) is decreasing for τ ∈ [0, 1]. In particular this function takes its
minimum at τ = 1, and using also the first inequality in (37) we conclude τ 4a(u) +
τ 2b(u) + c(u) > 0, as desired. �

Proof of Lemma 3. We have

v′(u) =
τ(sinhu− u coshu)

(sinhu)2
√

1− τ2u2

sinh2 u

=
sinhu− u coshu

(sinhu)
√
τ−2 sinh2 u− u2

,

where, again, τ := r
x
∈ (0, 1]. Hence v′(u) < 0 for all u > 0, since sinhu−u coshu < 0

for these u. Using τ−2 sinh2 u ≥ sinh2 u ≥ u2 + 1
3
u4 it also follows that

−v′(u) ≤
√

3
u coshu− sinhu

u2 sinhu
=
√

3

∑∞
m=1

2m
(2m+1)!

u2m+1∑∞
m=1

1
(2m−1)!u

2m+1
< 3−

1
2 .(38)
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since 2m
(2m+1)!

( 1
(2m−1)!)

−1 = 1
2m+1

≤ 1
3

for all m ≥ 1, with strict inequality for m ≥ 2.

Hence (12) is proved.
Using the first relation in (38) we also get

|uv′(u)| ≤
√

3(cothu− u−1).

Here the right hand side is strictly increasing for all u > 0, and has limit
√

3 as
u→∞. Hence also (13) holds. �

Proof of Proposition 1. First of all, using (4) and Lemmata 1 and 2 we have

0 < Kir(x) ≤ e−x cosα−rα min

(∫ ∞
0

e−
1
2

√
x2−r2u2 du,

∫ ∞
0

e−
4
√
3

27
ru3 du

)
.(39)

Evaluating the two integrals we obtain (14).
We next prove (17). Thus assume j1, j2 ∈ Z≥0, ε > 0 and r > 0, x ≥ max(ε, r).

By differentiating under the integration sign in (1) and then moving to the path of
steepest descent, we get

∂j1+j2

∂rj1∂xj2
Kir(x) = Re

∫ ∞
0

(iu− v(u))j1
(
− cosh(u+ iv(u))

)j2eη(u)(1 + iv′(u)
)
du.

(40)

We continue to write τ := r
x
∈ (0, 1]. Using Lemma 3 and cosh(iv(0)) =

√
1− τ 2 we

see that
∣∣cosh(u + iv(u)) −

√
1− τ 2

∣∣ � u for all u ∈ [0, 1]. On the other hand for

u ≥ 1 we use
∣∣cosh(u+ iv(u))

∣∣ ≤ eu. It follows that, again using Lemma 3,∣∣∣∣ ∂j1+j2∂rj1∂xj2
Kir(x)

∣∣∣∣� ∫ 1

0

(√
1− τ 2 + u

)j2eη(u) du+

∫ ∞
1

uj1ej2u+η(u) du.

Let us first assume x ≥ r + r
1
3 . Then since also x ≥ ε we have x − r �ε x

1/3 and
x2 − r2 �ε x

4/3 �ε 1. We now get, using Lemma 1,∣∣∣∣ ∂j1+j2∂rj1∂xj2
Kir(x)

∣∣∣∣� e−
π
2
re−
√
x2−r2+r arccos(r/x)

×
{∫ ∞

0

(
(1− τ 2)j2/2 + uj2

)
e−

1
2

√
x2−r2u2 du+

∫ ∞
1

e(j2+1)u− 1
2

√
x2−r2u2 du

}
� e−

π
2
re−
√
x2−r2+r arccos(r/x)

{
(x2 − r2)

j2
2
− 1

4x−j2 + (x2 − r2)−
j2+1

4

}
� e−

π
2
re−
√
x2−r2+r arccos(r/x)(x2 − r2)

j2
2
− 1

4x−j2 .

(Recall that we allow the implied constant to depend on j1, j2, ε only.) In the re-

maining case, r ≤ x < r + r
1
3 , we necessarily have r �ε 1 because of x ≥ ε, and we
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now get, using Lemma 2 and writing c = 4
√
3

27
,∣∣∣∣ ∂j1+j2∂rj1∂xj2

Kir(x)

∣∣∣∣� e−
π
2
re−
√
x2−r2+r arccos(r/x)

×
{∫ ∞

0

(
(1− τ 2)j2/2 + uj2

)
e−cru

3

du+

∫ ∞
1

e(j2+1)u−cru3 du

}
� e−

π
2
re−
√
x2−r2+r arccos(r/x)

{
(x2 − r2)

j2
2 x−j2r−

1
3 + r−

j2+1
3

}
� e−

π
2
re−
√
x2−r2+r arccos(r/x)r−

j2+1
3 .

Noticing also that x < r + r
1
3 implies x �ε r we have now completed the proof of

(17).
Finally we prove (15) and (16). By (40) we have

∂

∂r
Kir(x) = −

∫ ∞
0

(uv′(u) + v(u))eη(u) du.

and

∂2

∂r2
Kir(x) =

∫ ∞
0

(
v(u)2 + 2uv(u)v′(u)− u2

)
eη(u) du.

Note that −
√

3 < uv′(u) + v(u) < π
2

for all u > 0, because of 0 < v(u) < π
2

and

Lemma 3. Hence, using Lemmata 1 and 2, we see that
∣∣ ∂
∂r
Kir(x)

∣∣ is bounded from

above by
√

3 times the right hand side in (39). We thus obtain (15). Similarly, for

all u > 0 we have v(u)2 + 2uv(u)v′(u) < v(u)2 < π2

4
and v(u)2 + 2uv(u)v′(u) >

v(u)2 − 2
√

3v(u) > π(π
4
−
√

3), and hence by Lemmata 1 and 2,∣∣∣∣ ∂2∂r2Kir(x)

∣∣∣∣ ≤ e−x cosα−rα min

(∫ ∞
0

(
π
(√

3− π

4

)
+ u2

)
e−

1
2

√
x2−r2u2 du,∫ ∞

0

(
π
(√

3− π

4

)
+ u2

)
e−

4
√
3

27
ru3 du

)
.

Evaluating the two integrals we obtain (16). �

We next turn to the proof of Lemma 4. Unfortunately we have not been able to
find an elegant proof of this result; our proof is lengthy (it goes from here to p. 24),
it splits into several cases, and at several steps we make use of (rigorous) machine
computations.

Proof of Lemma 4, the inequality (19). After dividing through by x, our task is to
prove that for any µ > 0 and any u ≥ uπ, we have

coshu cos v + (coshµ)
(
v − π

2

)
≥ (u− µ)2 sinhµ.

Case I: Assume 0 < µ ≤ u.
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Then v ∈ (0, π
2
]; thus π

2
− v = arcsin(cos v). Hence, writing h := u − µ ≥ 0, our

task is to prove that for all µ > 0 and h ≥ 0,

(cosh(µ+ h))A
1
2 − (coshµ) arcsin(A

1
2 ) ≥ h2 sinhµ,(41)

where A = A(µ, h) is given by

A(µ, h) = cos2 v = 1− (Tu− S)2

sinh2 u
= 1− (sinhµ+ h coshµ)2

sinh2(µ+ h)
.(42)

It is natural to also set A(0, 0) := 0; then A(µ, h) is a continuous function of (µ, h) ∈
(R≥0)2, and 0 ≤ A(µ, h) ≤ 1 everywhere. We will repeatedly need the following
facts.

Sublemma 2. A(µ, h) is an increasing function of µ ≥ 0 for any fixed h ≥ 0, and
an increasing function of h ≥ 0 for any fixed µ ≥ 0. We have limµ→∞A(µ, h) =
1− (1 + h)2e−2h for any fixed h ≥ 0.

Proof. Immediate by differentiation and direct computation. �

Case I, Step 1: Proof of (41) when 0 ≤ h ≤ 0.3.
One checks that arcsin(x) ≤ x+ 1

6
x3 + 1

2
x5 for all x ∈ [0, 1] (cf. [7]). Furthermore

for 0 ≤ h ≤ 0.7 we have
√

1− (1 + h)2e−2h ≤ h− 1
3
h2 (cf. [7]), and hence A(µ, h)

1
2 ≤

h− 1
3
h2 for all µ ≥ 0 (cf. Sublemma 2). Hence for µ ≥ 0 and 0 ≤ h ≤ 0.7, (41) will

follow if we can prove

(43)

h2 sinhµ + 1
6
(h− 1

3
h2)3 coshµ + 1

2
(h− 1

3
h2)5 coshµ ≤ (cosh(µ + h)− coshu)A

1
2 .

Next note that, for all h ∈ R,

(h− 1
3
h2)5 −

(
h5 − 5

3
h6 + 10

9
h7
)

= −3−5h8
(

(h− 15
2

)2 + 135
4

)
≤ 0.

Furthermore, by the Taylor expansion of h 7→ cosh(µ+ h) we have

cosh(µ+ h)− coshµ ≥ h sinhµ+ 1
2
h2 coshµ+ 1

6
h3 sinhµ,

and by the definition of A and the Taylor expansion of h 7→ sinh2(µ+ h) we have

(sinh(µ+ h))2A ≥ h2 sinh2 µ+ 4
3
h3 sinhµ coshµ+ 1

3
h4
(
2 sinh2 µ+ 1

)
+ 4

15
h5 sinhµ coshµ+ 2

45
h6
(
2 sinh2 µ+ 1

)
.

Furthermore, we have

sinh(µ+ h) ≤ sinhµ+ h coshµ+ 1
2
h2 sinhµ+ 1

5
h3 coshµ, ∀µ ≥ 0, h ∈ [0, 0.6].

(44)

This is proved in [7], by verifying that if f(µ, h) denotes the difference between
the right and the left hand side of (44) then f ≥ ∂

∂µ
f for all µ, h ≥ 0, and

limµ→∞ e
−µf(µ, h) > 0 for all h ∈ (0, 0.6].
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Using the above facts, we see that for µ ≥ 0 and 0 ≤ h ≤ 0.6, (43) will follow if
we can prove

(45)
(
h2 sinhµ+ 1

6
(h− 1

3
h2)3 coshµ+ 1

2
(h5 − 5

3
h6 + 10

9
h7) coshµ

)2
×
(

sinhµ+ h coshµ+ 1
2
h2 sinhµ+ 1

5
h3 coshµ

)2
≤
(
h sinhµ+ 1

2
h2 coshµ+ 1

6
h3 sinhµ

)2(
h2 sinh2 µ+ 4

3
h3 sinhµ coshµ

+ 1
3
h4
(
2 sinh2 µ+ 1

)
+ 4

15
h5 sinhµ coshµ+ 2

45
h6
(
2 sinh2 µ+ 1

))
.

The difference between the right and the left hand side in (45) is clearly a polynomial
of degree 20 in h, say

∑20
j=0 cj(µ)hj, where each cj(µ) is a rational linear combination

of e4µ, e2µ, 1, e−2µ, e−4µ. In fact it turns out that c0, c1, c2, c3, c4, c5 are identically zero,
and c6(0) = c7(0) = 0 while c8(0) = 1

18
(cf. [7]). In fact

c6(µ) = 1
72
e−4µ(e2µ − 1)2

(
(e2µ − 1)2 + 7(e2µ − 1) + 4

)
and

c7(µ) = − 57
1440

e−4µ(e2µ − 1)(e2µ + 1)
(
e2µ + 5

√
757−172
57

)(
e2µ − 172+5

√
757

57

)
(cf. [7]), from which we see that c6(µ) ≥ 0 for all µ ≥ 0 and (noticing also 5

√
757−172
57

>
5·23−172

57
= −1) that c7(µ) ≥ 0 for all 0 ≤ µ ≤ 1

2
log
(
172+5

√
757

57

)
= 0.84606 . . . . In

particular for 0 ≤ µ ≤ 0.8 and h ≥ 0 it follows that (45) will follow if we can prove

12∑
j=0

cj+8(µ)hj ≥ 0.

Using interval arithmetic this inequality is verified to hold, with strict inequality, for
all 〈µ, h〉 ∈ [0, 0.2]× [0, 0.35], cf. [7]. (This computation is quite quick: The positivity
is obtained by computing

∑12
j=0 cj+8(µ)hj in interval arithmetic for just 10 boxes of

the form [Uj, Uj+1]× [0, 0.35], 0 = U1 < U2 < . . . < U11 = 0.2.)

Also using interval arithmetic,
∑14

j=0 cj+6(µ)hj > 0 is verified to hold for all 〈µ, h〉 ∈
[0.2, 2] × [0, 0.35] and all 〈µ, h〉 ∈ [2,∞) × [0, 0.3], cf. [7]. (In fact we first divide
through by e4µ, i.e. we actually verify that

∑14
j=0(e

−4µcj+6(µ))hj > 0; the point is

that each e−4µck(µ) can be bounded from above and below also for µ in intervals
extending to ∞.)

This concludes the proof that (41) holds whenever 0 ≤ h ≤ 0.3. (And in fact we
have also proved that (41) holds whenever 0 ≤ µ ≤ 2 and 0 ≤ h ≤ 0.35.)

Case I, Step 2: Proof of (41) when h ≥ 3.
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For any µ ≥ 0 and h ≥ 3 we have A(µ, h) ≥ A(0, 3) = 1− 32

sinh2 3
= 0.910 . . . > 9

10
,

by Sublemma 2. Hence also A(µ, h)
1
2 > 9

10
, and

cosh(µ+ h)A
1
2 − (coshµ) arcsin(A

1
2 )− h2 sinhµ

> 9
10

cosh(µ+ h)− π
2

coshµ− h2 sinhµ

=
(

9
10

coshh− π
2

)
coshµ+

(
9
10

sinhh− h2
)

sinhµ.

However one checks that 9
10

coshh > π
2

and 9
10

sinhh > h2 for all h ≥ 3; hence the
above expression is positive and we have proved that (41) holds whenever h ≥ 3.

Case I, Step 3: Proof of (41) when µ ≥ 2 and 0.3 ≤ h ≤ 3.

Sublemma 3. For any fixed µ, h ≥ 0, the function

x 7→ (cosh(µ+ h))x− (coshµ) arcsinx

is increasing for 0 ≤ x ≤ (1− cosh2 µ
cosh2(µ+h)

)
1
2 and decreasing for (1− cosh2 µ

cosh2(µ+h)
)
1
2 ≤ x ≤ 1.

In particular the function is increasing for 0 ≤ x ≤ A(µ, h)
1
2 .

Proof. The statement in the first sentence is immediate by differentiation. Now to

prove the last statement we only have to check that A(µ, h)
1
2 ≤ (1− cosh2 µ

cosh2(µ+h)
)
1
2 . A

sufficient condition for this is, by Sublemma 2: 1 − (1 + h)2e−2h ≤ 1 − cosh2 µ
cosh2(µ+h)

.

This inequality is verified to hold using cosh(µ+ h) = coshµ coshh+ sinhµ sinhh ≥
coshµ coshh and (1 + h) coshh− eh = h coshh− sinhh ≥ 0. �

Sublemma 4. If 0 ≤ h0 < h1 and U > 0 are any numbers such that the quantity

M(h0, h1, U) :=
√
A(U, h0)e

h0 − arcsin
√
A(U, h0)− h21

− (1− tanhU) max
{

0,
√
A(U, h0) sinhh1 − h20

}
is non-negative, then the inequality (41) holds for all µ, h satisfying µ ≥ U and
h ∈ [h0, h1].

Proof. Assume that 0 ≤ h0 < h1 and U > 0 satisfy M(h0, h1, U) ≥ 0, and fix
arbitrary numbers µ, h satisfying µ ≥ U and h ∈ [h0, h1]. By Sublemma 2 we have
A(U, h0) ≤ A(µ, h). Hence by Sublemma 3,

(46) (cosh(µ+ h))A(µ, h)
1
2 − (coshµ) arcsin

(
A(µ, h)

1
2

)
≥ (cosh(µ+ h))A(U, h0)

1
2 − (coshµ) arcsin

(
A(U, h0)

1
2

)
,

and to prove (41) for our µ, h it now suffices to prove that the right hand side of (46)
is ≥ h2 sinhµ, or equivalently to prove

A
1
2
0 coshh− arcsin

(
A

1
2
0

)
≥
(
h2 − A

1
2
0 sinhh

)
tanhµ,(47)
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where A0 := A(U, h0). But tanhU ≤ tanhµ < 1, and hence the following inequality
implies (47):

A
1
2
0 coshh− arcsin

(
A

1
2
0

)
≥ h2 − A

1
2
0 sinhh+ (1− tanhU) max

{
0, A

1
2
0 sinhh− h2

}
.

(48)

Using A
1
2
0 (coshh + sinhh) = A

1
2
0 e

h and h ∈ [h0, h1] ⊂ R≥0, we see that (48) follows
from our assumption M(h0, h1, U) ≥ 0. �

In [7] we check that there is a sequence 0.3 = h1 < h2 < . . . < hn = 3 such that
M(hj, hj+1, 2) > 0 for each j ∈ {1, 2, . . . , n− 1}. (In fact the sequence which we find
in [7] has n = 199 and smallest step size minj(hj+1 − hj) = 2−8 · 5−1.) Hence, in
view of Sublemma 4, we have now proved that the inequality (41) holds for all 〈µ, h〉
satisfying µ ≥ 2 and 0.3 ≤ h ≤ 3.

In fact, we also check in [7] that there is a sequence 0.35 = h1 < h2 < . . . < hn = 3
(with n = 273) such that M(hj, hj+1, 1.3) > 0 for each j ∈ {1, 2, . . . , n−1}. Hence we
also have: the inequality (41) holds for all (µ, h) satisfying µ ≥ 1.3 and 0.35 ≤ h ≤ 3.

Case I, Step 4: Proof of (41) when 0 < µ ≤ 2 and 0.3 ≤ h ≤ 3.
We do this in [7] using brute force interval arithmetic. In fact we prove that (41)

holds, with strict inequality, for all 〈µ, h〉 ∈ [0, 2]× [0.3, 3], by splitting this box into
several smaller boxes, and computing the interval arithmetic version of the difference
of the two sides in (41) for each such small box.

To calculate the difference of the two sides in (41) reasonably efficiently in inter-
val arithmetic we make strong use of the monotonicity properties recorded both in
Sublemma 2 and Sublemma 3.

The computation in [7] to prove the above claim takes about 32 minutes on a 2.2
GHz PC. The successful splitting of [0, 2] × [0.3, 3] found in [7] consists of 292530
boxes, the majority of which have size 2−95−1 × 2−95−1.

Note that Steps 1–4 together prove that (41) holds for all µ, h ≥ 0.
We remark that a considerable amount of computer time may be saved by recalling

that in Step 1 we also proved (41) for all 〈µ, h〉 ∈ [0, 2]× [0, 0.35], and in Step 3 we
also proved (41) for all 〈µ, h〉 ∈ [1.3,∞) × [0.35, 3]. Hence in Step 4 it actually
suffices to prove that (41) holds for all 〈µ, h〉 ∈ [0, 1.3]× [0.35, 3]. Using brute force
interval arithmetic as before this only takes about 4 minutes on a 2.2 GHz PC, using
a splitting of [0, 1.3]× [0.35, 3] into 38721 boxes, cf. [7].

Case II: Assume uπ ≤ u ≤ µ.
Then v ∈ [π

2
, π] and thus cos v ≤ 0 and π

2
− v = arcsin(cos v). Hence, writing

h := µ− u, our task is to prove that for all µ > 0 and h ∈ [0, tanhµ],

−(cosh(µ− h))B
1
2 + (coshµ) arcsin(B

1
2 ) ≥ h2 sinhµ,(49)

where

B = B(µ, h) = cos2 v = 1− (sinhµ− h coshµ)2

sinh2(µ− h)
.

Note that sinhµ−h coshµ ≥ 0 and 0 ≤ B(µ, h) ≤ 1 for all µ > 0 and h ∈ [0, tanhµ].
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Sublemma 5. For fixed µ > 0, B(µ, h) is an increasing function of h ∈ [0, tanhµ].
For fixed 0 ≤ h < 1, B(µ, h) is a decreasing function of µ ∈ [artanhh,∞) ∩ R>0

satisfying limµ→∞B(µ, h) = 1− (1− h)2e2h.

Proof. Again immediate by differentiation and direct computation. �

Case II, Step 1: Proof of (49) when [0 < µ ≤ 0.58 and 0 ≤ h ≤ tanhµ] or [µ ≥ 0.58
and 0 ≤ h ≤ 0.5].

One checks that arcsin(x) ≥ x+ 1
6
x3 + 3

40
x5 for all x ∈ [0, 1] (cf. [7]). Furthermore

for 0 ≤ h ≤ 0.55 we have
√

1− (1− h)2e2h ≥ h + 1
4
h2 (again cf. [7]), and hence

B(µ, h)
1
2 ≥ h + 1

4
h2 for all µ ≥ artanhh (µ > 0), by Sublemma 5. Hence for any

µ > 0 and 0 ≤ h ≤ min(0.55, tanhµ), (49) will follow if we can prove

h2 sinhµ ≤
(
coshµ− cosh(µ− h)

)
B

1
2 + 1

6
(h+ 1

4
h2)3 coshµ+ 3

40
h5 coshµ.(50)

Next, from the Taylor expansion of h 7→ cosh(µ−h) we see that, for any 0 ≤ h ≤ µ,

coshµ− cosh(µ− h) ≥ h sinhµ− 1
2
h2 coshµ+ 1

6
h3 sinhµ− 1

24
h4 coshµ.

Note that the right hand side in this inequality is certainly non-negative whenever
0 ≤ h ≤ tanhµ, since then 1

2
h2 coshµ ≤ 1

2
h sinhµ and 1

24
h4 coshµ ≤ 1

24
h3 sinhµ.

Hence, by squaring and using the definition of B(µ, h), we see that (50) will follow
if we can prove

(51)
(
h2 sinhµ− 1

6
(h+ 1

4
h2)3 coshµ− 3

40
h5 coshµ

)2
sinh2(µ− h)

≤
(
h sinhµ−1

2
h2 coshµ+1

6
h3 sinhµ− 1

24
h4 coshµ

)2(
sinh2(µ−h)−(sinhµ−h coshµ)2

)
.

Next, from the Taylor expansion of h 7→ sinh2(µ−h) we see that, for any 0 ≤ h ≤ µ,

0 ≤ sinh2(µ−h)−
{

sinh2 µ−2h sinhµ coshµ+h2
(
2 sinh2 µ+1

)
− 4

3
h3 sinhµ coshµ

+ 1
3
h4
(
2 sinh2 µ+ 1

)
− 4

15
h5 sinhµ coshµ

}
≤ 2

45
h6
(
2 sinh2 µ+ 1

)
.

Hence we conclude that, for any µ > 0 and 0 ≤ h ≤ min(0.55, tanhµ), (49) will
follow if we can prove

(52)
{
h2 sinhµ− 1

6
(h+ 1

4
h2)3 coshµ− 3

40
h5 coshµ

}2

×
{

sinh2 µ− 2h sinhµ coshµ+ h2
(
2 sinh2 µ+ 1

)
− 4

3
h3 sinhµ coshµ

+ 1
3
h4
(
2 sinh2 µ+ 1

)
− 4

15
h5 sinhµ coshµ+ 2

45
h6
(
2 sinh2 µ+ 1

)}
≤
{
h sinhµ− 1

2
h2 coshµ+ 1

6
h3 sinhµ− 1

24
h4 coshµ

}2

×
{
h2 sinh2 µ− 4

3
h3 sinhµ coshµ+ 1

3
h4
(
2 sinh2 µ+ 1

)
− 4

15
h5 sinhµ coshµ

}
.

The difference between the right and the left hand side in (52) is clearly a poly-
nomial of degree 18 in h, say

∑18
j=0 cj(µ)hj, where each cj(µ) is a rational linear

combination of e4µ, e2µ, 1, e−2µ, e−4µ. In fact it turns out that c0, c1, c2, c3, c4, c5 are
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identically zero, and c6(0) = c7(0) = 0 while c8(0) = 1
18

(cf. [7]). In particular (52) is
equivalent with f(µ, h) ≥ 0, where

f(µ, h) :=
12∑
j=0

cj+6(µ)hj.

Now using interval arithmetic one proves that ∂2

∂h2
f(µ, h) > 0 whenever 0 ≤ h ≤ µ ≤

0.6, and also, if g(µ, h) := ∂
∂h
f(µ, h) then d

dh
g(h, h) < 0 for all h ∈ [0, 0.6] (cf. [7]).

Since g(0, 0) = c7(0) = 0, it follows that g(h, h) ≤ 0 for all h ∈ [0, 0.6], and also
g(µ, h) = ∂

∂h
f(µ, h) ≤ 0 whenever 0 ≤ h ≤ µ ≤ 0.6.

Next, from our description of {cj(µ)}, it is clear that the function

F (µ) := f
(
µ, tanhµ

)
(coshµ)12e16µ

is a polynomial of degree ≤ 16 in e2µ. Hence F (1
2
(log(x + 1))) is a polynomial of

degree ≤ 16 in x. It turns out that F (1
2
(log(x + 1))) is divisible by x4, and one

verifies that the quotient polynomial is positive for all 0 ≤ x ≤ 2.25 (cf. [7]). Hence
F (µ) ≥ 0 whenever 0 ≤ µ ≤ 1

2
log(3.25) = 0.5893 . . .. It follows that f(µ, tanhµ) ≥ 0

for all µ ∈ [0, 0.58], and combining this with the fact that ∂
∂h
f(µ, h) ≤ 0 whenever

0 ≤ h ≤ µ ≤ 0.6, we conclude that f(µ, h) ≥ 0, i.e. (52) holds, whenever 0 ≤ µ ≤ 0.58
and 0 ≤ h ≤ tanhµ. Using tanh(0.58) < 0.55 it follows that also (49) holds for all
such (µ, h) with µ > 0.

Finally, using interval arithmetic (first dividing through by e4µ) we also prove that
∂
∂h
f(µ, h) < 0 for all µ ≥ 0.58, 0 ≤ h ≤ 0.5, and also that f(µ, 0.5) > 0 for all

µ ≥ 0.58 (cf. [7]). Combining these two facts it follows that f(µ, h) > 0 whenever
µ ≥ 0.58 and 0 ≤ h ≤ 0.5. Using tanh(0.58) > 0.5 it follows that also (49) holds for
all such (µ, h).

Case II, Step 2: Proof of (49) when µ ≥ 1.5 and 0.5 ≤ h ≤ tanhµ.

Sublemma 6. For any fixed 0 ≤ h ≤ µ, the function

x 7→ −(cosh(µ− h))x+ (coshµ) arcsinx

is increasing for x ∈ [0, 1].

Proof. Immediate by differentiation or otherwise. �

Combining this sublemma with the fact that β(h) ≤ B(µ, h)
1
2 ≤ 1 where β(h) :=

(1− (1− h)2e2h)
1
2 (cf. Sublemma 5), we see that (49) certainly holds at every point

(µ, h) with 0 ≤ h ≤ tanhµ where the following function is non-negative:

f(µ, h) := −(cosh(µ− h))β(h) + (coshµ) arcsin(β(h))− h2 sinhµ.

Using interval arithmetic we prove that f(1.5, h) > 0 and ∂f
∂µ

(1.5, h) > 0 for all

h ∈ [0.5, 1], cf. [7]. However we also note that ∂2f
∂µ2
≡ f . Hence for every fixed

h ∈ [0.5, 1], it follows that f(µ, h) > 0 holds for all µ ≥ 1.5. Hence (49) indeed holds
for all µ ≥ 1.5 and all 0.5 ≤ h ≤ tanhµ.

Case II, Step 3: Proof of (49) when 0.58 ≤ µ ≤ 1.5 and 0.5 ≤ h ≤ tanhµ.
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This is verified in [7] using brute force interval arithmetic; in fact we prove that
(49) holds with strict inequality for all these µ, h. This verification takes a few
seconds on a 2.2 Ghz PC. In order to calculate the difference of the two sides in (49)
reasonably efficiently in interval arithmetic we make strong use of the monotonicity
properties recorded in Sublemma 5 and Sublemma 6.

Note that Steps 1–3 together prove that (49) holds for all µ > 0, h ∈ [0, tanhµ].
This completes the treatment of Case II, and hence also completes the proof of
(19). �

Proof of Lemma 4, the inequality (20). As in the proof of (19) (Case I) we see that
our task is to prove

(cosh(µ+ h))A
1
2 − (coshµ) arcsin(A

1
2 ) ≥ 4

√
3

27
h3 coshµ,(53)

for all µ, h ≥ 0, where A = A(µ, h) is again given by (42). Using Sublemmata 2 and
3 we see that (53) would follow if we could prove

(cosh(µ+ h))A(0, h)
1
2 − (coshµ) arcsin(A(0, h)

1
2 ) ≥ 4

√
3

27
h3 coshµ.

But we have cosh(µ + h) = coshµ coshh + sinhµ sinhh ≥ coshµ coshh; hence it
suffices to prove that the following one-variable inequality holds for all h ≥ 0:

(coshh)A(0, h)
1
2 − arcsin(A(0, h)

1
2 ) ≥ 4

√
3

27
h3.(54)

We handle h large by a crude analysis: From the Taylor series for coshh we know
that coshh ≥ 1

24
h4 for all h ≥ 0. Hence, using again Sublemma 2 and A(0, 10)

1
2 =

0.999 . . . > 99
100

, we see that for every h ≥ 10 the left hand side of (54) is

≥ 1

24
h4A(0, 10)

1
2 − π

2
>

h4 − 50

25
≥ 9h3 + h3 − 100

25
>

9h3

25
>

4
√

3

27
h3.

Hence (54) holds when h ≥ 10.
For 1 ≤ h ≤ 10 we verify that (54) holds, with strict inequality, using interval

arithmetic, cf. [7]. Finally for 0 ≤ h ≤ 1 we verify (54) by making appropriate use
of Taylor expansions; again cf. [7]. �

Proof of Lemma 5a. From (6) it follows that for u ≥ uπ, u 6= µ, we have

v′(u) = sgn(u− µ)
T sinhu− (Tu− S) coshu

sinhu
√

sinh2 u− (Tu− S)2
.(55)

We will prove that v′(u) is strictly increasing by proving that v′′(u) > 0 for all u ≥ uπ,
u 6= µ. (We remark that also v′′(µ) = 2

3
cothµ > 0.)

Case I: Assume 0 < µ < u.
Differentiating once more in (55) we get

v′′(u) =
f(µ, h)

(sinh(µ+ h))2
(
sinh2(µ+ h)− (h coshµ+ sinhµ)2

) 3
2

,
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where h := u−µ > 0, and where f(µ, h) is a certain polynomial in eµ, e−µ, eh, e−h, h.
It now suffices to prove that f(µ, h) > 0 for all h > 0.

However, it turns out that f(µ, 0), ∂
∂h
f(µ, 0) and ∂2

∂h2
f(µ, 0) all vanish identically,

while ∂k

∂hk
f(µ, 0) for k = 3, 4, 5, 6, 7 have simple factorization which immediately show

that they are positive for all µ > 0 (cf. [7]). Furthermore computing ∂8

∂h8
f(µ, h) and

inspecting the formula immediately shows that ∂8

∂h8
f(µ, h) > 0 for all µ, h > 0 (cf.

[7]). It follows from these facts that f(µ, h) > 0 for all µ, h > 0, as desired.

Case II: Assume uπ ≤ u < µ.
Then again from (55) we get

v′′(u) =
f(µ, h)

(sinh(µ− h))2
(
sinh2(µ− h)− (sinhµ− h coshµ)2

) 3
2

,

where h := µ − u > 0 and f(µ, h) is a polynomial in eµ, e−µ, eh, e−h, h (not the
same as in Case I), and it now suffices to prove that f(µ, h) > 0 for all µ > 0 and
all h ∈ (0, tanhµ]. We remark that this case is rather delicate; for instance the
inequality fails for all small µ if we increase h by O(µ3) from h = tanhµ to h = µ:
we have f(µ, µ) < 0 for all small µ > 0!

We start by proving that

∂

∂µ

(
e−5µf(µ, h)

)
≥ 0, for all µ > 0, 0 ≤ h ≤ min(1, µ).(56)

For this we use the Taylor expansion of g(µ, h) := e2µ ∂
∂µ

(e−5µf(µ, h)) with respect

to h, with Lagrange’s error term:

g(µ, h) =
N−1∑
n=0

cn(µ)hn + FN(µ, ξ)hN ,(57)

where

cn(µ) =
1

n!
e2µ

∂n+1

∂hn∂µ
(e−5µf(µ, h))|h=0,

FN(µ, h) =
1

N !
e2µ

∂N+1

∂hN∂µ
(e−5µf(µ, h)),

and ξ = ξ(µ, h) ∈ [0, h]. It turns out that c3(µ), c4(µ), c5(µ), . . . are polynomials of
degree ≤ 4 in e−2µ, and c0(µ) ≡ c1(µ) ≡ c2(µ) ≡ 0 (cf. [7]); thus g(µ, h) = 0 at h = 0
while for h > 0 we have

h−3g(µ, h) =
N−1∑
n=3

cn(µ)hn−3 + FN(µ, ξ)hN−3.(58)

Using interval arithmetic and splitting into sufficiently small µ, h-boxes we prove
that the right hand side of (58) (with N = 12) is positive for all (µ, h) ∈ [0.9,∞)×
[0, 1

2
], cf. [7]. Similarly using the Taylor expansion around h = 1

2
we also prove that

∂
∂µ

(e−5µf(µ, h)) > 0 for all (µ, h) ∈ [0.9,∞)× [1
2
, 1], cf. [7].
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Hence to prove (56) it now remains to deal with the case µ < 0.9. The case of (µ, h)
near (0, 0) is somewhat delicate, since c3(0) = c4(0) = c5(0) = c6(0) = c7(0) = 0 and
c8(0) < 0 in (58); we have also noted experimentally that ∂

∂µ
(e−5µf(µ, 3

2
µ)) < 0 for

all small µ > 0! To deal with this situation we substitute µ = −1
2

log(1 − x) (viz.
x = 1 − e−2µ) and h = tx in (58). Then c3(µ), c4(µ), . . . are polynomials in x of
degree ≤ 4, and it turns out that for N = 12 we have

N−1∑
n=0

cn(µ)hn =
N−1∑
n=0

cn

(
−1

2
log(1− x)

)
· (tx)n =

15∑
j=6

Pj(t)x
j,(59)

where each Pj(t) is a polynomial in t (with rational coefficients) which is divisible
by t3 and in particular P6(t) = 1

3
t3(1 − 9

4
t + t2). It is crucial for our approach to

work that 1 − 9
4
t + t2 is bounded from below by a positive constant uniformly over

0 ≤ t ≤ 1
2
.

We get

g(−1
2

log(1− x), tx)

t3x6
=

15∑
j=6

(
t−3Pj(t)

)
xj−6 + F12

(
−1

2
log(1− x), ξ

)
t9x6,(60)

where ξ ∈ [0, tx], and where each t−3Pj(t) is a polynomial in t.
Using interval arithmetic and splitting the t, x-region into sufficiently small boxes

we prove that the right hand side of (60) is positive for all

(x, t) ∈
(
[0, 0.3]× [0, 0.6]

)
∪
(
[0.3, 0.5]× [0, 0.7]

)
∪
(
[0.5, 0.7]× [0, 0.86]

)
∪
(
[0.7, 0.8]× [0, 1.01]

)
∪
(
[0.8, 0.85]× [0, 1.12]

)
;

and one checks that this union in particular contains all (x, t) with 0 ≤ x ≤ 0.85
and 0 ≤ t ≤ −1

2
x−1 log(1 − x) (cf. [7]). Hence it follows that g(µ, h) > 0 holds for

all (µ, h) with 0 < µ ≤ −1
2

log(1− 0.85) = 0.948 . . . and 0 < h ≤ µ, and the proof of
(56) is complete.

Next, we prove in [7], using Taylor expansion and interval arithmetic, that

f(h+ 1
3
h3, h) > 0, ∀h ∈ (0, 1].(61)

Combining (61) and (56) we conclude that

f(µ, h) > 0, ∀0 < h ≤ 1, µ ≥ h+ 1
3
h3.

However artanhh =
∑∞

k=0(2k + 1)−1h2k+1 > h + 1
3
h3 for all h ∈ (0, 1), and hence it

follows that f(µ, h) > 0 holds whenever 0 < h < 1 and µ ≥ artanhh. This completes
the proof of Lemma 5a. �

Proof of Lemma 5b. In view of Lemma 5a and the fact that v′(µ) = −1 (cf. Sec-
tion 2.1.2), Lemma 5b will be proved if we can only show that v′(1

2
µ) > −2.9, or

equivalently (cf. (55)),

coshµ sinh(1
2
µ)−

(
sinhµ− 1

2
µ coshµ

)
cosh(1

2
µ)

< 29
10

sinh(1
2
µ)

√
sinh2(1

2
µ)−

(
sinhµ− 1

2
µ coshµ

)2
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for all 0 < µ ≤ 1.8. In [7] we prove this inequality by squaring, repeated differentia-
tion and interval arithmetic. �

Proof of Lemma 5c. By Lemma 5a it suffices to prove that v′(uπ) > −3.3 holds for
all µ ≥ 1.8. Note that

−v′(uπ) =
T

sinhuπ
=

coshµ

sinh(µ− tanhµ)
,

and this function is decreasing as a function of µ, since

d

dµ

( coshµ

sinh(µ− tanhµ)

)
=

sinhµ cosh(µ− tanhµ)

sinh2(µ− tanhµ)

(
tanh(µ− tanhµ)− tanhµ

)
< 0

for all µ > 0. Hence the lemma follows from the fact that in the case when µ = 1.8,
we have v′(uπ) = −3.23 . . . > −3.3. �

Proof of Proposition 2. By differentiating under the integration sign in (1) and then
moving to the path in (7) we get

∂j1+j2

∂rj1∂xj2
Kir(x) = Re

{∫ uc

0

(iu− v(uc))
j1
(
− cosh(u+ iv(uc))

)j2eφ(u+iv(uc)) du
+

∫ ∞
uc

(iu− v(u))j1(− cosh(u+ iv(u)))j2eφ(u+iv(u))(1 + iv′(u)) du

}
.

We have cos v(uc) ≤ 0 since uc ∈ [uπ, µ], and from this it follows that Reφ(u +
iv(uc)) ≤ η(uc) for all u ∈ [0, uc]. Also note that | cosh(u + iv)| is an increasing
function of u ≥ 0 for any fixed v ∈ R. Hence we obtain

(62)

∣∣∣∣ ∂j1+j2∂rj1∂xj2
Kir(x)

∣∣∣∣ ≤ uc
∣∣uc + iv(uc)

∣∣j1∣∣cosh(uc + iv(uc))
∣∣j2eη(uc)

+

∫ ∞
uc

∣∣1 + iv′(u)
∣∣∣∣u+ iv(u)

∣∣j1∣∣cosh(u+ iv(u))
∣∣j2eη(u) du.

We will now prove (24). Thus we assume ε ≤ x < r. We will take uc ≥ 1
2
µ if

µ < 1.8 and uc = uπ otherwise; hence by Lemma 5 we always have |1 + iv′(u)| � 1
for all u ≥ uc.

Let us first assume µ ≥ 1.8. Then uc := uπ; thus (µ − uc)
2 ≥ (tanh 1.8)2 > 1

2
.

Using also | cosh(u+ iv)| ≤ e|u| and the first bound in Lemma 4, we get that (62) is

� µj1+1ej2µe−
π
2
r− 1

2

√
r2−x2 + e−

π
2
r

∫ ∞
uc

uj1ej2u−
√
r2−x2(u−µ)2 du.

Recall here that we allow the implied constant to depend on ε, j1, j2 only. Replacing
u by u+ µ+ 1

2
j2(r

2 − x2)− 1
2 in the integral, and using µ ≤ log(2r

x
) ≤ log(2ε−1r) and
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r2 − x2 � r2 ≥ ε2 (which holds since µ ≥ 1.8), we get

� e−
π
2
r

{
e−

1
4

√
r2−x2 + ej2µ

∫ ∞
−∞

(µj1 + |u|j1)e−
√
r2−x2u2 du

}
� e−

π
2
r
( r
x

)j2{
(r2 − x2)−

1
4

(
log

2r

x

)j1
+ (r2 − x2)−

j1+1
4

}
,

and hence (24) holds in this case.
We now turn to the case µ < 1.8. Let us first take uc := 1

2
µ. Recall t+0 = µ + iπ

2
;

thus cosh t+0 = i sinhµ, and for |t− t+0 | bounded we have
∣∣cosh t− cosh t+0

∣∣� |t− t+0 |
(since µ < 1.8). Hence for all u ∈ [uc, 2] we have

∣∣cosh(u+ iv(u))
∣∣� u. Using again

the first bound in Lemma 4, we now get that (62) is:

�µ1+j2e−
π
2
r− 1

4

√
r2−x2µ2 + e−

π
2
r

∫ 2

1
2
µ

uj2e−
√
r2−x2(u−µ)2du+ e−

π
2
r

∫ ∞
2

uj1ej2u−
√
r2−x2(u−µ)2du

�e−
π
2
r

{
µ1+j2e−

1
4

√
r2−x2µ2 +

∫ ∞
−∞

(µj2 + |u|j2)e−
√
r2−x2u2du+

∫ ∞
2−µ

uj1ej2u−
√
r2−x2u2du

}
.

(63)

Here ∫ ∞
−∞

(µj2 + |u|j2)e−
√
r2−x2u2 du� µj2

4
√
r2 − x2

+ (r2 − x2)−
j2+1

4(64)

Note that µ �
√

r−x
x
�
√
r2−x2
x

, since µ < 1.8. Let us now also assume x ≤ r − r 1
3 .

Then in the right hand side of (64), the first term dominates the second. Using the

fact that ae−a
2

is uniformly bounded for all a > 0 it follows that µ1+j2e−
1
4

√
r2−x2µ2 is

dominated by the right hand side of (64); and since r2 − x2 � r
4
3 ≥ ε

4
3 it follows

that the last integral in (63) is also dominated by the same expression. Hence we
conclude that (24) holds also in the present case.

It now remains to treat the case when µ < 1.8 and r − r 1
3 < x < r. By repeating

the argument which led to (63) but taking uc = µ and using the second bound in

Lemma 4 instead of the first, we get that (62) is, writing c = 4
√
3

27
,

� e−
π
2
r

{
µ1+j2 +

∫ 2

µ

uj2e−cr(u−µ)
3

du+

∫ ∞
2

uj1ej2u−cr(u−µ)
3

du

}
.

Here the first integral is�
∫∞
0

(µj2 +uj2)e−cru
3
du� µj2r−

1
3 + r−

1
3
(j2+1), and the last

integral is � r−
1
3
(j2+1), since r ≥ ε. Note also that µ �

√
r−x
x
� r−

1
3 because of

µ < 1.8 and r− r 1
3 < x < r. Hence we conclude that (24) holds also in this last case.

We now turn to the proof of (21), (22) and (23). By Lemma 5a we have −1 ≤
v′(u) < 0 for all u ≥ µ. Assume that we have chosen uc ∈ [uπ, µ] in such a way that
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−C < v′(u) ≤ −1 for all u ∈ [uc, µ]. Then for any j ≥ 0 we have, by (62),

(65)

∣∣∣∣ ∂j∂rjKir(x)

∣∣∣∣ ≤ uc
∣∣uc + iv(uc)

∣∣jeη(uc)
+
∣∣1 + iC

∣∣∣∣µ+ iπ
∣∣j ∫ µ

uc

eη(u) du+
√

2

∫ ∞
µ

∣∣∣u+ i
π

2

∣∣∣jeη(u) du.
For j = 1 we use here |µ + iπ| < µ + π and |u + iπ

2
| < u + π

2
. Then, using the first

bound in Lemma 4 and extending the integral
∫ µ
uc

to
∫ µ
−∞, we find that the last line

in (65) is bounded above by e−
π
2
r times

1
2
|1 + iC|

√
π +

√
π
2

4
√
r2 − x2

(j = 0),

1
2
|1 + iC|(µ+ π)

√
π +

√
π
2
µ+ (π

2
)
3
2

4
√
r2 − x2

+
1√

2
√
r2 − x2

(j = 1),

1
2
|1 + iC|(µ2 + π2)

√
π +

√
π
2
µ2 + (π

2
)
5
2

4
√
r2 − x2

+

√
2µ√

r2 − x2
+

2−
3
2
√
π

(r2 − x2) 3
2

(j = 2).

Let us first assume µ ≥ 1.8. In this case we take uc = uπ. Now (65) holds with

C = 3.3, by Lemma 5c. We also have r
x

= coshµ > 3; thus
√
r2 − x2 >

√
8/9 r;

also (µ− uc)2 = tanh2 µ > 0.89 so that η(uc) < −π
2
r − 0.89

√
r2 − x2, and uc < µ <

log(2 r
x
) ≤ log(2r). Hence we see that the first term in the right hand side of (65) is

bounded above by (cf. [7]):

log(2r)e−
π
2
r−0.89

√
8/9r < e−

π
2
r 0.4√

r
< e−

π
2
r 0.4

4
√
r2 − x2

(if j = 0);

log(2r)
(
π + log(2r)

)
e−

π
2
r−0.89

√
8/9r < e−

π
2
r 1.7

4
√
r2 − x2

(if j = 1);

log(2r)
(
π2 + (log 2r)2

)
e−

π
2
r−0.89

√
8/9r < e−

π
2
r 4.4

4
√
r2 − x2

(if j = 2).

Adding up these, and using (for j = 1, 2) 4
√
r2 − x2 > 4

√
(32 − 1)x2 ≥ 4

√
8 and (for

j = 2) log(r/x) ≤ 1
2

+ 1
2
(log(r/x))2, we obtain:

|Kir(x)| < e−
π
2
r 5

4
√
r2 − x2

;(66) ∣∣∣∣ ∂∂rKir(x)

∣∣∣∣ < e−
π
2
r 17 + 5 log(r/x)

4
√
r2 − x2

;∣∣∣∣ ∂2∂r2Kir(x)

∣∣∣∣ < e−
π
2
r 44 + 8 log(r/x)2

4
√
r2 − x2

.

Next assume µ < 1.8. We then take uc = 1
2
µ, and by Lemma 5b, (65) holds with

C = 2.9. Also, the first term in the right hand side of (65) is now bounded above
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by, if j = 0:

µ

2
e−

π
2
r− 1

4
µ2
√
r2−x2 ≤ e−

π
2
r (2e)−

1
2

4
√
r2 − x2

,

where we used the fact that te−t
2 ≤ (2e)−

1
2 for all t > 0. In the case j = 1 (j = 2)

we get the same bound times a factor µ
2

+ π < 0.9 + π, (times a factor (µ/2)2 + π2 <
0.81 + π2). Adding up our bounds for j = 0 we obtain again that the first line of
(66) holds, i.e. this bound on

∣∣Kir(x)
∣∣ holds for all 1 ≤ x < r. For j = 1, 2 we make

the further assumption that x ≤ r− 1
2
r

1
3 ; then we have r2 − x2 ≥ r2 −

(
r− 1

2
r

1
3

)2
=

r
4
3

(
1− 1

4
r−

2
3

)
> 3

4
; using this and adding up the bounds we find that also the second

and third line of (66) hold.

It now remains to treat the case r − 1
2
r

1
3 ≤ x < r. Then

µ = arcosh(T ) <
√

2(T − 1) =

√
2(r − x)

x
≤

√
2 · 1

2
r

1
3

1
2
r

=
√

2 r−
1
3 .

(In particular µ < 1.8 holds automatically.) In this case we take uc = µ in (65).

Now for j = 0 the first term in the right hand side of (65) is <
√

2 r−
1
3 e−

π
2
r. For

j = 1 (j = 2) we get the same bound times a factor µ+ π
2
<
√

2 + π
2

(times a factor
µ2 + (π

2
)2 < 2 + (π

2
)2). Also the middle term in (65) vanishes, and in the last term

we use the second bound in Lemma 4, and for j = 1 we also use |u + iπ
2
| ≤ u + π

2
;

after this the integral can be evaluated in exact terms. Adding up the contributions
we obtain the bounds stated in Proposition 2. �

Our next task is to prove Lemma 7. We first prove some auxiliary results.

Sublemma 7. The generating function of the Jacobi polynomials P
(s,−s)
n (x) can be

expressed in terms of the Legendre polynomials as follows:
∞∑
n=0

P (s,−s)
n (x)tn =

∞∑
n=0

Pn(x)tn exp
(
s

∫ t

0

∞∑
m=0

Pm(x)um du
)
.

Proof. The generating function of the Jacobi polynomials reads [36, eq. (4.4.5)]
∞∑
n=0

P (s,−s)
n (x)tn = (1− 2xt+ t2)−

1
2

(1 + t+ (1− 2xt+ t2)
1
2

1− t+ (1− 2xt+ t2)
1
2

)s
.(67)

Identifying

∂

∂t
log
(1 + t+ (1− 2xt+ t2)

1
2

1− t+ (1− 2xt+ t2)
1
2

)
= (1− 2xt+ t2)−

1
2

with the generating function of the Legendre polynomials
∞∑
n=0

Pn(x)tn = (1− 2xt+ t2)−
1
2

gives the desired result. �
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Sublemma 8. (a) For each n, j ∈ Z≥0, ∂j

∂sj
P

(s,−s)
n (x)

∣∣
s=0

is a non-negative linear
combination of products of Legendre polynomials.

(b) Any product of Legendre polynomials is a non-negative linear combination of
Legendre polynomials.

Proof. Using Sublemma 7 we get

∂j

∂sj

∞∑
n=0

P (s,−s)
n (x)tn

∣∣∣
s=0

=
∞∑
n=0

Pn(x)tn
( ∞∑
m=0

Pm(x)
tm+1

m+ 1

)j
.

Equating coefficients with respect to tn proves part (a) of Sublemma 8.
Using

〈
PnPm, Pk

〉
≥ 0 iteratively yields part (b) of the Sublemma. �

Proof of Lemma 7. According to Sublemma 8, ∂j

∂sj
P

(s,−s)
n (x)

∣∣∣
s=0

is a non-negative

linear combination of Legendre polynomials. Applying the bound |Pk(x)| ≤ 1 =
Pk(1) for x ∈ [−1, 1] results in∣∣∣∣ ∂j∂sjP (s,−s)

n (x)
∣∣∣
s=0

∣∣∣∣ ≤ ∂j

∂sj
P (s,−s)
n (1)

∣∣∣
s=0

.

This establishes the Lemma for r = 0.
Writing

fn,j(x, s) := n!
∂j

∂sj
P (−s,s)
n (x) for n ∈ Z≥0, j ∈ Z≥0,

f ′n,j(x, s) =
∂

∂x
fn,j(x, s), f ′′n,j(x, s) =

∂2

∂x2
fn,j(x, s),

and using the convention fn,−1(x, s) = 0, we have

(1− x2)f ′′n,j + 2jf ′n,j−1 + (2s− 2x)f ′n,j + n(n+ 1)fn,j = 0, ∀n ≥ 0, j ≥ 0,(68)

cf. [36, eq. (4.2.1)].
If n = 0 then fn,j(x, s) is a constant and (34) holds trivially.
Now assume that n ≥ 1 and let

n(n+ 1)g(x) = n(n+ 1)|fn,j(x, s)|2 + (1− x2)|f ′n,j(x, s)|2.

Then we have |fn,j(x, s)|2 ≤ g(x) for x ∈ [−1, 1], and g(1) = g(−1) = |fn,j(1, s)|2.
Thus, it suffices to show that g(x) attains its maximum on [−1, 1] at the endpoints.
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Now on account of (68), cf. [36, p. 160],

n(n+ 1)g′(x) =f ′n,j{n(n+ 1)fn,j − xf ′n,j + (1− x2)f ′′n,j}
+ f ′n,j{n(n+ 1)fn,j − xf ′n,j + (1− x2)f ′′n,j}

=f ′n,j{−2jf ′n,j−1 + (x− 2s)f ′n,j}

+ f ′n,j{−2jf ′n,j−1 + (x− 2s)f ′n,j}

=


2x|f ′n,0|2 if s ∈ iR and j = 0,

x
(
(n+ 1)!

)2 (n2+n−1)
2

if s ∈ iR and j = n− 1,

0 if s ∈ iR and j ≥ n,

so that g(x) is decreasing for x < 0 and increasing for x > 0, provided s ∈ iR and
j = 0 or j ≥ n− 1. This establishes the Lemma for j = 0 and also for j ≥ n− 1.

Let Sl, l = 0, 1, 2, . . . be the Stirling polynomials, defined via the generating func-
tion

∞∑
l=0

Sl(x)

l!
tl =

(
t

1− e−t

)1+x

.

Then for any integer n ≥ l we have

Sl(n)

(
n

l

)
=

[
n+ 1

n+ 1− l

]
,

where the brackets are unsigned Stirling numbers of the first kind, given by
n∑
l=0

[
n+ 1

n+ 1− l

]
sn−l =

n∏
`=1

(`+ s).

Turning to the Jacobi polynomials, we have

P (s,−s)
n (x) =

n∑
k=0

(
x− 1

2

)k (
n+ k

k

)
1

(n− k)!

n−k∏
`=1

(`+ k + s)

=
n∑
k=0

(
x− 1

2

)k (
n+ k

k

) n−k∑
l=0

Sl(n− k)

l!

(s+ k)n−k−l

(n− k − l)!
.

Taking the j-th derivative and writing j = n−m ≥ 0, we get( ∂
∂s

)n−m
P (s,−s)
n (x) =

m∑
k=0

(
x− 1

2

)k (
n+ k

k

)m−k∑
l=0

Sl(n− k)

l!

(s+ k)m−k−l

(m− k − l)!

which is a polynomial in n and s of total degree ≤ m. Therefore,〈∣∣∣( ∂
∂r

)n−m
P (−ir,ir)
n

∣∣∣2, Pk〉
is an even polynomial in r of degree ≤ 2m. With the aid of computer algebra [7]
(here we used PARI/GP [31]), we have verified that the coefficients of this polynomial
are all non-negative for m ≤ 100, m ≤ n ≤ 3m, k ≤ 2m. Moreover, since the
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coefficients are themselves polynomials in n of degree ≤ 2m, we may employ the
method of successive differences to prove that they are non-negative for any n ≥ m,
m = n − j ≤ 100. This establishes the Lemma for n ≤ j + 100 and completes the
proof. �

Proof of Proposition 4. Let us consider the integral
∫∞
−∞ cos(x sinh t)g(t)est dt for some

test function g of Schwartz class. Writing g(t) =
∫∞
−∞ ĝ(r)eirt dr, this is

(69)

∫ ∞
−∞

cos(x sinh t)g(t)est dt

=

∫ ∞
−∞

∫ ∞
−∞

cos(x sinh t)ĝ(r)e(s+ir)t dr dt

=

∫ ∞
−∞

ĝ(r)

∫ ∞
−∞

cos(x sinh t)e(s+ir)t dt dr, cf. (32),

=

∫ ∞
−∞

ĝ(r)

∫ ∞
−∞

cos(−n)(x sinh t)

(x cosh t)n
fn(tanh t, s+ ir)e(s+ir)t dt dr, cf. (33),

=

∫ ∞
−∞

cos(−n)(x sinh t)

(x cosh t)n
est
∫ ∞
−∞

ĝ(r)fn(tanh t, s+ ir)eirt dr dt

=

∫ ∞
−∞

cos(−n)(x sinh t)

(x cosh t)n
est
∫ ∞
−∞

ĝ(r)
n∑
j=0

∂jfn
∂sj

(tanh t, s)
(ir)j

j!
eirt dr dt

=

∫ ∞
−∞

cos(−n)(x sinh t)

(x cosh t)n
est

n∑
j=0

g(j)(t)

j!

∂jfn
∂sj

(tanh t, s) dt.

With w(r) = e−(r−r0)
2/2h2 and F (r) = K̃ir(x)w(r), we have

F̂ (u) =

∫ ∞
−∞

cos(x sinh t)ŵ(u− t) dt =
h√
2π
e−ir0u

∫ ∞
−∞

cos(x sinh t)gu(t)e
ir0t dt,

where ŵ(t) = h√
2π
e−ir0te−h

2t2/2 and gu(t) = e−h
2(u−t)2/2. Now, g

(j)
u (t) = hjHj(h(u −

t))gu(t), where Hj is the jth Hermite polynomial. Thus, by (69), we get

F̂ (u) =
h√
2π

∫ ∞
−∞

cos(−n)(x sinh t)

(x cosh t)n

n∑
j=0

hj

j!
Hj(h(u− t))e−h2(u−t)2/2

× ∂jfn
∂sj

(tanh t, ir0)e
−ir0(u−t) dt

=
x−n√

2π

∫ ∞
−∞

cos(−n)(x sinh(u− t/h))

cosh(u− t/h)n

n∑
j=0

hj

j!
Hj(t)e

−t2/2

× ∂jfn
∂sj

(tanh(u− t/h), ir0)e
−ir0t/h dt.
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By Cauchy-Schwarz and Conj. 1, for any a > 0 we have

x2n
∣∣F̂ (u)

∣∣2 ≤ ∫ ∞
−∞

n∑
j=0

(
(ah)j

j!
Hj(t)

)2
e−t

2/2

cosh(u− t/h)n
dt√
2π

×
∫ ∞
−∞

n∑
j=0

a−2j
∣∣∣∣∂jfn∂sj

(1, ir0)

∣∣∣∣2 e−t
2/2

cosh(u− t/h)n
dt√
2π
.

Using the crude bound cosh(u− t/h)−1 ≤ 2e−u+t/h, we have∫ ∞
−∞

Hj(t)
2 e−t

2/2

cosh(u− t/h)n
dt√
2π
≤ 2ne−nu

∫ ∞
−∞

Hj(t)
2e−t

2/2+nt/h dt√
2π

= 2ne−nu+n
2/2h2

∫ ∞
−∞

Hj(t+ n/h)2e−t
2/2 dt√

2π
.

Using the identity Hj(x+y) =
∑j

k=0

(
j
k

)
yj−kHk(x) and orthogonality of the Hermite

polynomials, the last line equals

2ne−nu+n
2/2h2

∫ ∞
−∞

(
j∑

k=0

(
j

k

)(n
h

)j−k
Hk(t)

)2

e−t
2/2 dt√

2π

= 2ne−nu+n
2/2h2

∫ ∞
−∞

j∑
k=0

(
j

k

)2 (n
h

)2j−2k
Hk(t)

2e−t
2/2 dt√

2π

= 2ne−nu+n
2/2h2

j∑
k=0

(
j

k

)2

k!
(n
h

)2j−2k
= 2ne−nu+n

2/2h2j!Lj(−n2/h2),

where Lj is the jth Laguerre polynomial. Taking j = 0 gives the bound 2ne−nu+n
2/2h2

for
∫

e−t
2/2

cosh(u−t/h)n
dt√
2π

. On the other hand, from the identity
∑∞

j=0
zj

j!
Lj(−x) = ezI0(2

√
xz),

we get∫ ∞
−∞

n∑
j=0

(
(ah)j

j!
Hj(t)

)2
e−t

2/2

cosh(u− t/h)n
dt√
2π

≤ 2ne−nu+n
2/2h2

n∑
j=0

(ah)2j

j!
Lj(−n2/h2) ≤ 2ne−nu+n

2/2h2+a2h2I0(2an)

≤ 2ne−nu+n
2/2h2+2an+a2h2 .

Thus, we have

∣∣F̂ (u)
∣∣ ≤ 2nx−ne−nu+(n/h+ah)2/2

√√√√ n∑
j=0

a−2j
∣∣∣∣∂jfn∂sj

(1, ir0)

∣∣∣∣2,
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Next, it is not hard to see that∣∣∣∣∂jfn∂sj
(1, ir0)

∣∣∣∣ ≤ n!

(n− j)!

n∏
`=j+1

|`+ ir0| ≤
n!

(n− j)!
R−j

n∏
`=1

|`+ iR|,

for any R ∈ R>0 with R ≥ |r0|. Thus,

n∑
j=0

a−2j
∣∣∣∣∂jfn∂sj

(1, ir0)

∣∣∣∣2 n∏
`=1

(`2 +R2)−1 ≤
n∑
j=0

(
n!

(n− j)!

)2

(aR)−2j.

Now take a = n/R; then the last formula becomes

n∑
j=0

(
n!

(n− j)!nj

)2

≤
n∑
j=0

exp

(
−j(j − 1)

n

)
≤ 2
√
n.

Using also the estimate
∏n

`=1(`
2 + R2) ≤ R2n exp(n(n + 1)(2n + 1)/6R2), we finally

have∣∣F̂ (u)
∣∣ ≤ (4n)1/4 exp

[
n(n+ 1)(2n+ 1)

12R2
+

1

2
n2

(
1

h
+
h

R

)2

+ n log
2R

x
− nu

]
.

�

Proof of Proposition 5. Suppose that we have an inequality of the form
∣∣K̃ir(x)

∣∣ ≤
Cx−1/3 for an absolute constant C; we will return to this point below. Using this

bound for K̃ir(x) together with the estimate

| sinc(`)(x)| ≤ |x|−1(1 + x−2)`/2, ` ∈ {0, 1},

the left-hand side of (36) is majorized by

2C

πMx1/3
(
X
√
π2 +M−2

)` ∞∑
m=0

e−
(m+M)2

2h2X2

<
2C

πMx1/3
(
X
√
π2 +M−2

)`
e−

M2

2h2X2

∞∑
m=0

e−
2Mm
2h2X2

=
2C

πMx1/3
(
X
√
π2 +M−2

)` e−
M2

2h2X2

1− e−
M

h2X2

.(70)

Turning to the inequality for K̃ir, by symmetry we may assume that r ≥ 0. Let
us suppose first that r ≥ 1. Then when x ≥ r we have from Prop. 1 that

0 < K̃ir(x)x1/3 ≤ 2 cosh
(πr

2

)
e−

π
2
r Γ(1

3
)

2
2
3 3

1
6

e−ru(x/r)
(x
r

)1/3
<

3

2
e−u(x/r)

(x
r

)1/3
,

where u(t) =
√
t2 − 1 − arctan

√
t2 − 1 for t ≥ 1. It is not hard to see that the

function 3
2
t1/3e−u(t) is maximum at t =

√
10/9, and its value there is comfortably

less than 2.
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In the case 1 ≤ x < r we apply Prop. 2. Note that x ≤ r − 1
2
r

1
3 implies r2 − x2 ≥

r
4
3 (1− 1

4
r−

2
3 ) > 3

4
r

4
3 ; hence for any 1 ≤ x < r we have∣∣K̃ir(x)
∣∣ < 2 cosh

(πr
2

)
e−

π
2
r · 5

(4

3

)1/4
r−1/3 < 6r−1/3 < 6x−1/3.

For r ≥ 1, x < 1 we use the identity |Γ(1 + ir)| =
√
πr/ sinh(πr) in the defining

series (25) to derive the bound

|K̃ir(x)| ≤

√
2π

r tanh(πr/2)
I0(x) < 4x−1/3.

It remains only to handle the case of r < 1. Applying (33) with n = 1 (for which
fn(ξ, s) = ξ − s) we get∣∣K̃ir(x)

∣∣ ≤ √1 + r2

x

∫ ∞
−∞

dt

cosh t
≤ π
√

2x−1 < 5x−1/3,

for r < 1 and x ≥ 1. For x < 1 we have

K0(x) =

∫ ∞
0

e−x cosh t dt ≤
∫ ∞
0

e−
x
2
exp t dt =

∫ ∞
x/2

e−u
du

u

≤
∫ 1

x/2

du

u
+

∫ ∞
1

e−u du = log
2

x
+ e−1.

Moreover, it is easy to check that x1/3(log 2
x

+ e−1) < 1.58 for x ∈ (0, 1). Thus,

K0(x) ≤ 1.58x−1/3 for x < 1, and this gives∣∣K̃ir(x)
∣∣ ≤ 2 cosh

(πr
2

)
K0(x) ≤ 2 cosh

(π
2

)
· 1.58x−1/3 < 8x−1/3,

for r < 1 and x < 1. We have thus proved that |K̃ir(x)| < 8x−1/3 for all r ∈ R,
x > 0, i.e. we can take C = 8 in (70). �
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cadas Kis(X) et Iis(X) y sus derivadas, Stochastica 11 (1987), 53–61.

[11] A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland and W. B. Jones, Handbook of
Continued Fractions for Special Functions, Springer, 2008.

[12] Digital Library of Mathematical Functions, Release date 2011-08-29. National Institute
of Standards and Technology from http://dlmf.nist.gov/10

[13] T. M. Dunster, Bessel functions of purely imaginary order, with an application to second-
order linear differential equations having a large parameter, SIAM J. Math. Anal. 21
(1990), 995–1018.

[14] U. T. Ehrenmark, The numerical inversion of two classes of Kontorovich-Lebedev trans-
form by direct quadrature, J. Comput. Appl. Math. 61 (1995), 43–72.
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[35] A. Strömbergsson, On the zeros of L-functions associated to Maass waveforms, Int. Math.
Res. Not. 1999 (1999), 839–851.
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