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Abstract

The Lorentz gas is one of the simplest and most widely-studied models for
particle transport in matter. It describes a cloud of non-interacting gas particles
in an infinitely extended array of identical spherical scatterers. The model was
introduced by Lorentz in 1905 who, following the pioneering ideas of Maxwell and
Boltzmann, postulated that in the limit of low scatterer density, the macroscopic
transport properties of the model should be governed by a linear Boltzmann equa-
tion. The linear Boltzmann equation has since proved a useful tool in the description
of various phenomena, including semiconductor physics and radiative transfer. A
rigorous derivation of the linear Boltzmann equation from the underlying particle
dynamics was given, for random scatterer configurations, in three seminal papers by
Gallavotti, Spohn and Boldrighini-Bunimovich-Sinai. The objective of the present
study is to develop an approach for a large class of deterministic scatterer con-
figurations, including various types of quasicrystals. We prove the convergence of
the particle dynamics to transport processes that are in general (depending on the
scatterer configuration) not described by the linear Boltzmann equation. This was
previously understood only in the case of the periodic Lorentz gas through work of
Caglioti-Golse and Marklof-Strömbergsson. Our results extend beyond the classical
Lorentz gas with hard sphere scatterers, and in particular hold for general classes
of spherically symmetric finite-range potentials. We employ a rescaling technique
that randomises the point configuration given by the scatterers’ centers. The lim-
iting transport process is then expressed in terms of a point process that arises as
the limit of the randomised point configuration under a certain volume-preserving
one-parameter linear group action.
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CHAPTER 1

Introduction

The Lorentz gas describes the dynamics of a cloud of point-particles in an array
of spherical scatterers in Rd (d ≥ 2), each of radius ρ > 0, which are centered at a
given infinite point set P . Each particle moves with constant speed along straight
lines in between scattering events. The point particles do not interact with each
other, and their interaction with the scatterers is defined by specular reflection (as
in Lorentz’ orginal setting) or by scattering potentials. The main challenge posed
by Lorentz’ 1905 paper [40] is, whether or not in the limit ρ→ 0 the dynamics of a
macroscopic particle cloud is approximated by a solution of the linear Boltzmann
equation.

Since the gas particles are assumed to be non-interacting, the problem is equiva-
lent to the study of the one-particle dynamics. In this framework the initial particle
density in phase space is interpreted as the probability density of the random initial
condition of the single particle. Although the dynamics is governed by Hamilton’s
equations and therefore deterministic, the random initial condition means that the
particle trajectory is now expressed as a random flight process, the Lorentz pro-
cess. The question is, under which assumptions on the scatterer configuration the
Lorentz process converges, as ρ → 0, to a limiting process. This of course requires
a suitable rescaling of time and space units in terms of the mean collision time and
free path length, respectively. The Kolmogorov forward equation (Fokker-Planck-
Kolmogorov equation) of the limiting process describes the macroscopic transport
of the initial particle cloud, and the key question is whether this equation coincides
with the linear Boltzmann equation, as postulated by Lorentz.

There are two non-trivial instances where the problem is fully understood.
The first is the case when P is a fixed realisation of a Poisson point process. Here
Boldrighini, Bunimovich and Sinai [12] proved that the Lorentz process converges
to a limit that is consistent with the linear Boltzmann equation. Their work is pre-
ceded by two important papers by Gallavotti [29], who established convergence on
average over the point configuration, and Spohn [58], who considered more general
random point configurations (still on average) and scattering potentials. Although
the paper [12] is restricted to dimension d = 2 and hard sphere scatterers, we will
show here that its results generalise to general dimensions and “soft” potentials.

The second instance is when the scatterer configuration P is given by a Eu-
clidean lattice L of full rank, for example P = Zd. Here Marklof and Strömbergsson
[43, 44, 45, 46] proved convergence of the Lorentz process to a random flight pro-
cess which, perhaps surprisingly, is independent of the choice of L. The limit process
is Markovian only on an extended phase space which, in addition to position and
momentum, also includes the impact parameter and distance to the next collision.
The corresponding transport equation is in particular not consistent with the linear
Boltzmann equation. This new transport equation was obtained independently in
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2 1. INTRODUCTION

dimension d = 2 for P = Z2 by Caglioti and Golse [17, 18], subject to a heuristic
assumption that was proved (in any dimension) in [44]. The fact that the linear
Boltzmann equation must fail in the periodic setting already follows from the heavy,
power-law tail of the distribution of free path lengths [19, 13, 32, 16, 11, 46], as
pointed out by Golse [30, 31]. In the periodic setting, the limit transport process
in fact satisfies a superdiffusive central limit theorem [51], with a mean-square dis-
placement proportional to t log t (where t is time measured in units of the mean
collision time), rather than the standard linear scaling which appears in the case of
random scatterer configurations.

In the present paper we develop a general framework which, under suitable
hypotheses on the scatterer configuration P (see Section 1.1), allows the proof of
convergence to a limiting transport process. The latter will in general depend on
the choice of P . Admissible choices of P include the Poisson and lattice setting
discussed above, as well as new examples including more general periodic point sets
and certain classes of quasicrystals. Our theory applies not only to the classical
case of hard sphere scatterers (Section 1.2), but also radial potentials with compact
support (Section 1.3). The assumption of compact support is crucial for our work,
as is the assumption that there are no external force fields, which ensures that
in-between collisions the particles move along straight lines. We refer the reader to
Section 5.6 for a survey of open questions that naturally follow on from this study.

1.1. Outline of assumptions on the scatterer configuration

The scatterers are centered at the points of a locally finite subset P of Rd . We
assume that P has constant asymptotic density cP > 0. This means that for any
bounded subset B ⊂ Rd with boundary of Lebesgue measure zero,

lim
T→∞

#(P ∩ TB)

T d
= cP vol(B).(1.1)

Rather than following the particle trajectory in a coordinate system in which the
environment (i.e., the scatterer configuration) remains static, we will use the par-
ticle’s coordinate frame in which the particle is at rest at the origin, with direction
of travel along the first coordinate axis, and the environment is changing. As we
will see, lengths in the direction of travel are naturally measured in units of ρ1−d

(which is proportional to the mean free path length); the natural length scale per-

pendicular to the direction of travel is ρ, the radius of a scatterer. Let Sd−1
1 be the

unit sphere in Rd centered at the origin. If q ∈ Rd and v ∈ Sd−1
1 are the particle

position and direction of travel in physical space, then in the particle frame the
scattering configuration appears as the translated, rotated and rescaled point set1

(P − q)R(v)Dρ(1.2)

with the diagonal matrix

Dρ = diag(ρd−1, ρ−1, · · · , ρ−1) ∈ SL(d,R)

providing the required rescaling of length units, and a map R : Sd−1
1 → SO(d)

which rotates the direction of travel v to the unit vector e1 = (1, 0, . . . , 0) ; that

is vR(v) = e1 for all v ∈ Sd−1
1 . We furthermore assume that R is continuous

when restricted to Sd−1
1 minus one point; the choice of R is otherwise arbitrary

1We identify points in Rd with row vectors, and linear transformations are represented by
matrix multiplication from the right.
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but will remain the same in all subsequent statements. We write ω := volSd−1
1

for

the Lebesgue measure on Sd−1
1 , and ω1 := ω(Sd−1

1 )−1 ω for the uniform probability

measure on Sd−1
1 . We also let Pac(S

d−1
1 ) be the space of Borel probability measures

on Sd−1
1 that are absolutely continuous with respect to ω.
Our proof will require the understanding of the point set (1.2) for q ∈ P (this

corresponds to the case when the particle has just hit a scatterer at position q),

and v randomly distributed according to a Borel probability measure λ on Sd−1
1

which is absolutely continuous with respect to the uniform measure on Sd−1
1 . The

point set (1.2) is therefore a random point set, and a natural assumption is that it
converges in distribution for ρ → 0 to a limiting random point set.2 The limit will
in general depend on q, and we need to require some regularity in its dependence
on q, as well as some uniformity in the convergence.

To this end we equip P with a marking as follows. Let ς be a map from P to
a compact metric space Σ, and set

X = Rd × Σ, P̃ = {(p, ς(p)) : p ∈ P} ⊂ X .
We refer to ς as a marking, and Σ, P̃ as the corresponding space of marks and
marked point set, respectively; P will be called the underlying point set.

In order to provide a first intuition for the concept of marking, let us already
here mention some key examples: If P is a realisation of a Poisson point process
with constant intensity, then the marking can be taken to be trivial, i.e. Σ can be
taken to be a singleton set (cf. Section 5.1). The same is true if P is a Euclidean
lattice; however, if P is a more general periodic point set in Rd, i.e. a finite union
of translates of a fixed lattice L, then it is typically necessary to use a nontrivial
marking, and the natural choice is to let the space of marks Σ contain one element
for each translate of L, with the marking of each point q ∈ P indicating which
translate of L it belongs to (cf. Section 5.2). Finally, in the more general case when
P is a quasicrystal of cut-and-project type, the natural choice is to let Σ equal the
closure of the window set used in the cut-and-project construction; see Section 5.3
below for details.

For x ∈ Rd, T ∈ R and A ∈ GL(d,R) we extend the natural action on Rd to
X by setting (w, ς) + x := (w + x, ς), T (w, ς) := (Tw, ς) and (w, ς)A := (wA, ς).
Thus in particular

P̃A+ x = {(pA+ x, ς(p)) : p ∈ P}.
For q ∈ P , we furthermore define (P̃ − q)∗ = {(p, ς(p)) : p ∈ (P − q) \ {0}}.

The main assumption on the scatterer configuration P in the present work is
that there is a marking ς and a Borel probability measure m on Σ such that:

[P1] Uniform density: The marks of the points in P̃ are asymptotically equidis-
tributed in (Σ,m). That is, for any bounded B ⊂ X with µX (∂B) = 0, we
have

lim
T→∞

#(P̃ ∩ TB)

T d
= cPµX (B)(1.3)

where TB = {(Tw, ς) : (w, ς) ∈ B} and µX = vol×m. Relation (1.3) thus
generalizes (1.1).

2We will provide a precise framework for the notion of random sets and their convergence
via the theory of point processes in Section 2.



4 1. INTRODUCTION

[P2] Spherical equidistribution: There exist a subset E ⊂ P of asymptotic density
zero, and a continuous family {Ξς : ς ∈ Σ} of random marked point sets, such

that for any q ∈ P\E and λ ∈ Pac(S
d−1
1 ), the sequence ((P̃−q)∗R(v)Dρ)ρ>0,

with v random according to λ, converges in distribution to Ξς(q) as ρ → 0;

the convergence is uniform for q in a ball of radius Tρ1−d for any fixed T ≥ 1.
[P3] No escape of mass: For every bounded Borel set B ⊂ Rd,

lim
ξ→∞

lim sup
ρ→0

[vol×ω]
({

(q,v) ∈ B × Sd−1
1 : (P − ρ1−dq)R(v)Dρ ∩ Zξ = ∅

})
= 0,

with the open cylinder Zξ = {x = (x1, . . . , xd) : 0 < x1 < ξ, x22+· · ·+x2d < 1}.

Among these three assumptions [P1-3], the key assumption is [P2]. It postu-
lates, in a more precise form, the convergence discussed above; namely, the conver-
gence in distribution for ρ → 0 of the random point set in (1.2). This condition
[P2] is also the one which, by far, is the most difficult to verify, at least for every
example of P satisfying [P1-3] which we are aware of.

Note that in [P2] we allow a subset E ⊂ P of “exceptional” points for which
the convergence may fail. We remark here that if P is a periodic point set in Rd,
then [P2] in fact holds with E = ∅, and the same is true if P is a quasicrystal
of cut-and-project type (cf. Sections 5.2–5.3). However, if P is a realisation of a
Poisson point process with constant intensity, then [P2] does not hold with E = ∅,
but we will prove in Section 5.1 that [P2] holds when E is chosen as the set of points
q in P which, in an appropriate sense, lie exceptionally near some other point in P
(cf. Proposition 5.1 and Remark 5.1).

The condition [P3] will be used in one single, important, step of our de-
velopment, namely in the derivation of a macroscopic analogue of the spheri-
cal equidistribution [P2], i.e. a version of [P2] for initial conditions of the form
(q,v) = (ρ1−dq′,v) with (q′,v) random according to a probability measure on
T1(Rd) which is absolutely continuous with respect to Liouville measure, vol×ω
(cf. Section 2.5).

We will furthermore require the following invariance and regularity assumptions
on Ξς . Denote by Ξ′

ς the underlying random point set in Rd. Bd(x, R) denotes the
open ball of radius R centered at x, and we use the notation SO(d − 1) for the
subgroup of K ∈ SO(d) such that e1K = e1.

[Q1] SO(d− 1)-invariance: Ξς and ΞςK have the same distribution for every K ∈
SO(d− 1).

[Q2] Coincidence-free first coordinates: For every ς ∈ Σ, the probability that [Ξ′
ς

has two (or more) points with the same first coordinate] is zero.
[Q3] Small probability of large voids: For every ε > 0 there exists R > 0 such that

the probability that [Ξ′
ς has no point in Bd(x, R)] is less than ε, uniformly

for all x ∈ Rd and ς ∈ Σ.

The above hypotheses will be restated in a more concise measure-theoretic form
in Section 2.3. In the following, a locally finite set P ⊂ Rd is called admissible if
there exists a marking such that [P1-3] and [Q1-3] hold. Examples of admissible
sets include realisations of Poisson point processes, locally finite periodic point sets,
and Euclidean model sets. These examples are discussed in detail in Section 5.
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1.2. The Lorentz process for hard sphere scatterers

The setting of the classical Lorentz gas is that of a point particle moving with
constant velocity v ∈ Rd \ {0} in an array of hard-sphere scatterers of radius ρ,
where the scattering is given by specular reflection: The incoming and outgoing
particle trajectories are contained in the same two-dimensional plane through the
center of the scatterer, and the angle of incidence equals the angle of reflection.
The scattering map is independent of the particle speed ‖v‖, and a simple scaling
argument shows that we therefore may assume without loss of generality that ‖v‖ =
1. With this convention, the scattering process is defined by the map

(1.4) Ψ : S− → S+, (v, b) 7→ (v+, b) = (v − 2(v · b)b, b),
with the set of incoming data

S− := {(v, b) ∈ Sd−1
1 × Sd−1

1 : v · b < 0}
describing the velocity and position (measured in units of the radius ρ) with which
the particle enters the interaction region, and the corresponding set of outgoing
data

S+ := {(v, b) ∈ Sd−1
1 × Sd−1

1 : v · b > 0}.
Note that

b =
v+ − v
‖v+ − v‖ .

Let Bd−1
1 be the open unit ball in Rd−1 centered at the origin. The impact

parameter w ∈ Bd−1
1 is defined as the projection of b onto the hyperplane perpen-

dicular to the incoming velocity v. The differential cross section σ(v,v+) is defined
as the Jacobian of the inverse of the map

Bd−1
1 → Sd−1

1 , w 7→ v+ (v fixed),

so that dw = dvol(w) = σ(v,v+) dv+, where dv+ := dω(v+). The total scattering

cross section is thus given by the volume vd−1 = vol(Bd−1
1 ) of the unit ball in Rd−1.

In the present setting we have the explicit formula

(1.5) σ(v,v+) =
1

4
‖v − v+‖3−d,

see (3.40) below.
The configuration space for the dynamics is given by

Kρ = Rd \
⋃

p∈P

Bd(p, ρ),(1.6)

where Bd(p, ρ) denotes the open ball with center p and radius ρ. For definiteness,
at the time of any collision, we will consider the particle to be in outgoing position,
i.e. belong to the set

T1(∂Kρ)out :=
{
(q,v) ∈ ∂Kρ × Sd−1

1 : [∀p ∈ P : ‖q − p‖ = ρ⇒ (q − p) · v ≥ 0]
}
.

If two or more balls overlap then it is often unclear how to continue the particle
path if it hits an intersection point. In this situation we agree that the particle

gets trapped and stays motionless for all future time. Let Φt = Φ
(ρ)
t be the billiard

flow on T1(Kρ) := Kρ × Sd−1
1 thus defined. It is standard to verify that the set

of initial conditions in T1(Kρ) for which the particle at some time point either
in the past or in the future collides with an intersection point of two or more
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scatterer boundaries, has measure zero with respect to Liouville measure, vol×ω.
Furthermore, for a dispersing billiard such as the Lorentz gas considered here, the
number of collisions in any finite time interval is finite [15, Thm. 1.1]3.

Set

w(ρ) = T1(K◦
ρ) ∪ T1(∂Kρ)out;(1.7)

this is the set of points that are not trapped. Indeed, by our conventions, if (q,v) ∈
w(ρ) then Φt(q,v) = (q + tv,v) for all sufficiently small t > 0, whereas if (q,v) ∈
T1(Kρ) \w(ρ) then Φt(q,v) = (q,v) for all t > 0.

For (q0,v0) ∈ w(ρ), let τ1(q0,v0; ρ) be the first time at which the particle
starting at (q0,v0) hits a scatterer, i.e.

τ1(q0,v0; ρ) = inf{t > 0 : q0 + tv0 /∈ Kρ}.(1.8)

Note that τ1 may equal ∞, and we also define τ1(q0,v0; ρ) = ∞ for all trapped
points, i.e. for all (q0,v0) ∈ T1(Kρ) \w(ρ). For j ≥ 1 we denote by

(qj ,vj) = (qj(q0,v0; ρ),vj(q0,v0; ρ)) ∈ T1(∂Kρ)out
the position and outgoing velocity of the particle at the jth collision, and let τj+1 =
τj+1(q0,v0; ρ) be the time which it travels between the jth and the (j+1)st collision.
Thus

(qj ,vj) = Φτ1(qj−1,vj−1;ρ)(qj−1,vj−1) and τj+1(q0,v0; ρ) = τ1(qj ,vj ; ρ).

If τj(q0,v0; ρ) = ∞ for some j (meaning either that (qj−1,vj−1) ∈ T1(Kρ) \ w(ρ)
or else qj−1 + tvj−1 ∈ Kρ for all t > 0) then for definiteness we set τj+1 = τj+2 =
· · · = ∞, and also qi = qj−1 and vi = vj−1 for all i ≥ j.

Let us denote by nt = nt(q0,v0; ρ) the number of collisions within time t, i.e.,

(1.9) nt = max
{
n ∈ Z≥0 : Tn ≤ t

}
, Tn :=

n∑

j=1

τj .

Note that for all t ≥ 0 such that Φt(q0,v0) ∈ w(ρ), we have

Φt(q0,v0) = (qnt
+ (t− Tnt)vnt ,vnt).

It will be convenient to extend the billiard flow trivially to all of T1(Rd) by also
taking all points in T1(Rd) \ T1(Kρ) to be trapped, i.e. by defining

Φt(q0,v0) = (q0,v0) if (q0,v0) ∈ T1(Rd) \w(ρ).

This is purely for notational reasons, since the relative measure of points not in
w(ρ) tends to zero as ρ→ 0.

Let us now describe the Boltzmann-Grad limit of the particle dynamics, where
the point set P describing the scatterer configuration is fixed, and the radius ρ
of each scatterer tends to zero. As we will explain in more detail in Section 3.3,
the mean free path length, i.e. the mean time between consecutive collisions, is
asymptotically given by ξρ1−d with

ξ =
1

vd−1cP
.(1.10)

This implies that, in order to see non-trivial dynamical phenomena emerge as ρ→ 0,
a rescaling of length and time units is necessary. The Boltzmann-Grad scaling,

3This theorem applies to our situation since P is locally finite.
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which we consider in this paper, considers length and time in units of the mean free
path length. That is, we consider the rescaled flow

(1.11) Φ̃
(ρ)
t = sρ ◦ Φ(ρ)

ρ1−dt
◦ s−1

ρ

where

sρ : T
1(Rd) → T1(Rd), sρ(q,v) = (ρd−1q,v).(1.12)

In this scaling, one expects a random flight process in the limit ρ→ 0. This is
confirmed by our central result which is stated below as Theorem 1.1. On larger
time and spacial scales one would expect diffusive or indeed superdiffusive limits.
Currently this is only understood in the case of random and lattice scatterer con-
figurations, when taking first the Boltzmann-Grad limit ρ → 0, and then the long
time limit [51].

For the purposes of the present study, we define a random flight process as a
stochastic process of the form

(1.13) Θ : t 7→ Θ(t) =

(
q0 +

nt∑

n=1

ξjvj−1 + (t− Tnt)vnt ,vnt

)

with random (q0,v0) ∈ T1(Rd), 〈ξj〉∞j=1 ∈ (R≥0 ∪ {∞})N and 〈vj〉∞j=1 ∈ (Sd−1
1 )N.

The quantities nt, Tn are defined as in (1.9) with τj replaced by ξj . We do not
assume any independence in the above. With this, we may view

(1.14) Θ(ρ) : t 7→ Θ(ρ)(t) = Φ̃
(ρ)
t (q0,v0)

as a random flight process, for random (q0,v0) distributed according to a fixed Borel

probability measure on T1(Rd), and the random processes 〈ξ(ρ)j 〉∞j=1 and 〈v(ρ)j 〉∞j=1

are defined through the deterministic functions ξ
(ρ)
j = ρd−1τj(ρ

1−dq0,v0; ρ) and

vj = vj(ρ
1−dq0,v0; ρ) of the random initial data (q0,v0). This means they are

highly correlated but nevertheless well-defined point processes.
We denote by Pac(T

1(Rd)) the space of Borel probability measures on T1(Rd)
that are absolutely continuous with respect to Liouville measure, vol×ω.

Theorem 1.1. Let P be admissible. Then, for any Λ ∈ Pac(T
1(Rd)), there is

a random flight process Θ with P(ξj = ∞) = 0 for all j, such that Θ(ρ) converges
to Θ in distribution, as ρ→ 0.

The key step in the proof of Theorem 1.1 is to establish the joint limit distri-
bution for

(1.15)
〈
τj(ρ

1−dq0,v0; ρ),vj(ρ
1−dq0,v0; ρ)

〉∞
j=1

,

with (q0,v0) random according to Λ. One of the central outcomes of our study
is that we obtain the Markov property for the limit distribution, if we consider
the joint distribution of (1.15) and the sequence of markings 〈ςj(ρ1−dq0,v0; ρ)〉∞j=1.

Here ςj(ρ
1−dq0,v0; ρ) = ς(pj) ∈ Σ is the marking of the centre pj ∈ P of the

scatterer involved in the jth collision; if this is not well-defined because scatterers
overlap, choose any marking.
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Theorem 1.2. Let P be admissible, and suppose Λ ∈ Pac(T
1(Rd)). If (q0,v0) ∈

T1(Rd) is distributed according to Λ, then the random process

N → (R>0 ∪ {+∞})× Σ× Sd−1
1

j 7→
(
ρd−1τj(ρ

1−dq0,v0; ρ), ςj(ρ
1−dq0,v0; ρ),vj(ρ

1−dq0,v0; ρ)
)

converges in distribution to the second-order Markov process

(1.16) j 7→
(
ξj , ςj ,vj

)
,

where for any Borel set A ⊂ R≥0 × Σ× Sd−1
1 ,

P

(
(ξ1, ς1,v1) ∈ A

∣∣∣ (q0,v0)
)
=

∫

A

p(v0; ξ, ς,v) dξ dm(ς) dv,

and for j ≥ 2,

P

(
(ξj , ςj ,vj) ∈ A

∣∣∣ (q0,v0),
〈
(ξi, ςi,vi)

〉j−1

i=1

)

=

∫

A

p0(vj−2, ςj−1,vj−1; ξ, ς,v) dξ dm(ς) dv.

The functions p, p0 are defined in Section 3.5; they depend on P but are independent
of Λ, and for any fixed v0, ς,v both p(v0; ·) and p0(v0, ς,v; ·) are probability densities

on R≥0 × Σ× Sd−1
1 . In particular P(ξj = ∞) = 0 for all j.

This theorem is restated in non-probabilistic notation and for general scattering
maps as Theorem 4.6 below. As we will see, the extension of the state space to
include marking is in general4 necessary to obtain the Markov property.

The collision kernels p, p0 can be written as

p
(
v; ξ, ς+,v+

)
=
σ(v,v+)

vd−1
kg

(
ξ, (w, ς+)

)
,(1.17)

p0
(
v0, ς,v; ξ, ς+,v+

)
=
σ(v,v+)

vd−1
k
(
(w′, ς), ξ, (w, ς+)

)
,(1.18)

where kg and k are transition kernels that quantify the probability of hitting the
next scatterer at distance ξ with impact parameter w (which is a function of v and
v+). The kernel k

g corresponds to the case of generic initial data, and k((w′, ς), · )
to the case of an initial condition relative to previous scattering event with marking
ς and exit parameter w′. The exit parameter can be viewed as the time-reversed
impact parameter and thus is a function of v0 and v. The transition kernels are
central to our work and will be discussed in detail in Section 3. The collision kernels
have the following important properties:

(1.19) p
(
vK; ξ, ς+,v+K

)
= p

(
v; ξ, ς+,v+

)
∀K ∈ SO(d),

(1.20) p0
(
v0K, ς,vK; ξ, ς+,v+K

)
= p0

(
v0, ς,v; ξ, ς+,v+

)
∀K ∈ SO(d),

4In the case of random (resp. periodic) scatterer configurations considered in previous studies,
the process j 7→ (ξj ,vj) is first-order (resp. second-order) Markovian and an extension of the state

space as in (1.16) is not necessary.
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(1.21)

p
(
v; ξ, ς+,v+

)
= cP

∫

[ξ,∞)×Σ×Sd−1
1

σ(v0,v) p0
(
v0, ς,v; ξ

′, ς+,v+
)
dξ′ dm(ς) dv0,

5

(1.22) p
(
v; ξ, ς+,v+

)
≤ cP σ(v,v+), p0

(
v0, ς,v; ξ, ς+,v+

)
≤ cP σ(v,v+),

and

(1.23) p
(
v; 0, ς+,v+

)
= lim

ξ→0
p
(
v; ξ, ς+,v+

)
= cP σ(v,v+).

Relations (1.19)–(1.21) follow from the corresponding properties of the transition
kernels, and are established in Section 3.6. The bounds in (1.22) follow directly
from definitions (3.5) and (3.8), and identity (1.23) from Corollary 3.24.

We can furthermore extend Θ to a Markov process Θ̂ by setting6

(1.24) Θ̂ : t 7→ Θ̂(t) =
(
q(t),v(t), ξ(t), ς(t),v+(t)

)
,

where

q(t) = q0 +

nt∑

n=1

ξjvj−1 + (t− Tnt)vnt (position at time t),

v(t) = vnt (velocity at time t),

ξ(t) = Tnt+1 − t (distance at time t to next scattering),

ς(t) = ςnt+1 (marking of next scatterer),

v+(t) = vnt+1 (velocity after next scattering).

Recall that Tn = ξ1 + . . .+ ξn. The Markov property of Θ̂ follows from the Markov
property of (1.16), see Section 4.6 for details.

1.3. The Lorentz process for potentials

In addition to the classic setting of hard spheres, our results will also apply
to “soft” scatterers described by a Hamiltonian flow with a compactly supported
potential. The Hamiltonian is

H(q, ξ) = 1
2‖ξ‖2 + Vρ(q)

with position q ∈ Rd, momentum ξ ∈ Rd, and potential

(1.25) Vρ(q) =
∑

p∈P◦

W

(
q − p
ρ

)
,

which is a superposition of translated and scaled copies of a single potential W ∈
C(Rd \ {0}) which vanishes outside the unit ball. Here P◦ = P◦(ρ) is an arbitrary
choice of a maximal subset of P subject to the property that ‖q − q′‖ > 2ρ for all
q 6= q′ ∈ P◦.

We use P◦ in place of P in (1.25) for simplicity of presentation, as this en-
sures that the flow Φt introduced below is well-defined without having to exclude
any singular trajectories, for example trajectories for which the particle escapes

5This relation requires that angular momentum is preserved (or reversed) by the scattering
map, which is the case for specular reflection and potential scattering, but which need not hold
for the more general scattering maps which we introduce in Section 3.4 (cf. Remark 3.7).

6The Markov property of Θ holds for Poisson scatterer configurations, but fails for all other
examples discussed in this paper, including the periodic setting.
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to infinity in finite time. We will see that the probability of the particle hitting
a scatterer which is not separated from all other scatterers tends to zero in the
Boltzmann-Grad limit; cf. Remarks 4.1 and 4.3 below. Therefore our main re-
sults hold independently of which convention is used to define the flow Φt for such
particle trajectories.

We assume that W is spherically symmetric and define (by a slight abuse of
notation) W ∈ C(R>0) by W (q) = W (r) with r = ‖q‖; we will always assume
lim infr→0 r

2W (r) ≥ 0 and that the restriction of W (r) to (0, 1] is C2; however we
allow W ′(r) and W ′′(r) to have discontinuities of the first kind at the point r = 1.
The Hamiltonian flow is defined through Hamilton’s equations

(1.26) q̇ = ∇ξH, ξ̇ = −∇qH.

The total energyH(q, ξ) = E is a constant of motion, and by adjusting the potential
by a scalar multiplier, we may assume without loss of generality that E = 1

2 ; this
corresponds to a particle speed ‖ξ‖ = 1 outside the support of Vρ. Under this
constraint, the accessible phase space is

(1.27)
{
(q, ξ) ∈ T(Rd) : ‖ξ‖2 + 2Vρ(q) = 1 and [ξ = 0 ⇒ ∇Vρ(q) 6= 0]

}
,

where T(Rd) = Rd × Rd is the tangent bundle of Rd. Let us also assume

lim sup
r→0

W (r) 6= 1

2
.

Now for any initial data (q0, ξ0) in (1.27), the solution to (1.26) is well defined for
all times. For ξ 6= 0, define the direction of travel by

v = ‖ξ‖−1ξ = (1− 2Vρ(q))
−1/2ξ,

and the accessible phase space of position and direction by

(1.28) w̃(ρ) =
{
(q,v) ∈ T1(Rd) : Vρ(q) <

1
2 or

[Vρ(q) =
1
2 and −∇Vρ(q) ∈ R>0 · v]

}
.

The map ξ 7→ v provides a bijection from (1.27) onto w̃(ρ), and the Hamiltonian

flow induces a flow on w̃(ρ) which we denote by Φt = Φ
(ρ)
t .7 As in the classical

Lorentz gas, we extend its definition to T1(Rd) by setting Φt(q,v) = (q,v) if
(q,v) /∈ w̃(ρ), and again define the rescaled flow by

(1.29) Φ̃
(ρ)
t (q,v) = sρ ◦ Φ(ρ)

ρ1−dt
◦ s−1

ρ ,

with sρ as in (1.12). For random initial data (q,v) ∈ T1(Rd) distributed according

to Λ ∈ Pac(T
1(Rd)), the quantity Θ(ρ)(t) = Φ̃

(ρ)
t (q,v) defines a continuous-time

random process.8

In our theorem we need to impose further conditions on the potentialW , which
ensure that the scattering map is dispersing; we discuss these in Section 5.4. The
following counterpart of Theorem 1.1 shows that in the Boltzmann-Grad limit, Θ(ρ)

converges, as in the case of the classical Lorentz gas, to a random flight process.

7The last condition in (1.28) means that, by convention, we select the outgoing position when
the speed is zero; this means that the orbits of Φt are right continuous but not necessarily left
continuous. However a discontinuity can only occur in the case when a particle hits a scatterer
with exactly vanishing impact parameter.

8Note that the typical orbits of Θ(ρ) are continuous curves in T1(Rd). This stands in contrast
to the random flight process in (1.14).
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Theorem 1.3. Let P be admissible, and assume that the potentialW is dispers-
ing in the sense of Definition 5.1 in Section 5.4. Then, for any Λ ∈ Pac(T

1(Rd)),
there is a random flight process Θ such that Θ(ρ) converges to Θ in distribution, as
ρ→ 0.

The proof of Theorem 1.3 reduces to a statement analogous to Theorem 1.2,
where the elastic reflection (1.4) is replaced by a map S− → S+ defined by the
scattering at the given potential W . We will in fact establish Theorem 1.2 for a
more general class of scattering maps, which include elastic reflections as well as
potential scattering. Relations (1.17)–(1.23) for the collision kernels p, p0 remain
valid in the present context. Note in particular that the transition kernels kg, k are
independent of the choice of scattering process, and therefore the only dependence of
the collision kernels on the choice of scattering potential (within the class considered
here) is via the differential cross section in (1.17) and (1.18).

1.4. The linear Boltzmann equation and generalisations

Let us now explain how the existence of the limiting random flight process Θ
yields information on the macroscopic time evolution of an initial particle density
f0 ∈ L1(T1(Rd)). We will use the shorthand notation dq = dvol(q) for q ∈ Rd

and, as before, dv = dω(v) for v ∈ Sd−1
1 . For fixed ρ > 0, the evolution of the

microscopic density under the rescaled flow Φ̃
(ρ)
t is given by the linear operator

L
(ρ)
t : L1(T1(Rd)) → L1(T1(Rd)) defined by

∫

A

[
L
(ρ)
t f0

]
(q,v) dq dv =

∫

Φ̃
(ρ)
−t (A)

f0(q,v) dq dv(1.30)

for every f0 ∈ L1(T1(Rd)) and every Borel set A ⊂ T1(Rd). To justify this defini-

tion, one should note that the flow Φ̃
(ρ)
t preserves the measure a ·vol×ω on T1(Rd),

where a ≡ 1 in the case of hard sphere scattering, while

a(q,v) =

{(
1
2 − Vρ(ρ

1−dq)
)(d−2)/2

if (ρ1−dq,v) ∈ w̃(ρ),

1 otherwise,

in the case of potential scattering9. Now since the two measures a · vol×ω and

vol×ω are equivalent, it follows that push-forward by Φ̃
(ρ)
t preserves the family of

signed Borel measures on T1(Rd) which are absolutely continuous with respect to

vol×ω; and the content of (1.30) is that L
(ρ)
t f0 equals the density (wrt. vol×ω) of

the push-forward by Φ̃
(ρ)
t of the measure f0 ·vol×ω. In fact L

(ρ)
t f0 can be expressed

by the following explicit, pointwise formula:

L
(ρ)
t f0 = a ·

((f0
a

)
◦ Φ̃(ρ)

−t

)
.

Note also that ‖L(ρ)
t f0‖L1 = ‖f0‖L1 for all f0 ∈ L1(T1(Rd)).

The following corollary of Theorem 1.1 and Theorem 1.3 affirms the weak con-

vergence of L
(ρ)
t to a limit Lt.

9This is closely related to the fact that Φ̃
(ρ)
t is a time change of the geodesic flow on the unit

tangent bundle of the region {q ∈ Rd : Vρ(ρ1−dq) < 1
2
} equipped with the Riemannian metric

( 1
2
− Vρ(ρ1−dq))1/2 ds; cf. [1, p. 247].
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Corollary 1.4. Let P be admissible. There is a family of linear operators
Lt : L

1(T1(Rd)) → L1(T1(Rd)) such that for any f0 ∈ L1(T1(Rd)), A ⊂ T1(Rd)
bounded with boundary of Lebesgue measure zero, and t > 0,

lim
ρ→0

∫

A

L
(ρ)
t f0(q,v) dq dv =

∫

A

Ltf0(q,v) dq dv.

To see why this holds, assume (without loss of generality) that f0 ≥ 0 and
that it is normalized as a probability density. Then, with the choice Λ(dq dv) =
f0(q,v) dq dv we have
∫

A

L
(ρ)
t f0(q,v) dq dv = P(Θ(ρ)(t) ∈ A),

∫

A

Ltf0(q,v) dq dv = P(Θ(t) ∈ A),

and the statement follows from Theorem 1.1 (resp. Therem 1.3). Since Θ is in
general not Markovian, we cannot expect the limiting operators Lt to form a linear
semi-group, and thus Ltf0 cannot be written as the solution of a transport equation.

This issue is resolved by considering the Markov process Θ̂ in (1.24). There exists
a corresponding evolution operator Kt : L1(X) → L1(X) on the extended phase

space X = T1(Rd)× R>0 × Σ× Sd−1
1 , such that

∫

A

Ktf0(q,v, ξ, ς,v+) dq dv dξ dm(ς) dv+ = P(Θ̂(t) ∈ A),

for functions of the form

f0(q,v, ξ, ς,v+) dq dv = Λ(dq dv) p(v; ξ, ς,v+).

Since Θ̂(t) is Markovian, the family (Kt)≥0 forms a semigroup, and the function

f(t, q,v, ξ, ς,v+) = Ktf0(q,v, ξ, ς,v+)

is the solution of the Cauchy problem (see Section 4.6 for details) for the forward

Kolmogorov equation (or Fokker-Planck-Kolmogorov equation) of Θ̂,

(1.31)
(
∂t + v · ∇q − ∂ξ

)
f(t, q,v, ξ, ς,v+)

=

∫

Σ×Sd−1
1

f
(
t, q,v0, 0, ς

′,v
)
p0(v0, ς

′,v; ξ, ς,v+) dm(ς ′) dv0,

subject to the initial condition

f(0, q,v, ξ, ς,v+) = f0(q,v, ξ, ς,v+).

The particle density f(t, q,v) = Ltf0(q,v) in the original phase space is recovered
by integrating over the auxiliary variables, i.e.,

f(t, q,v) =

∫

R>0×Σ×Sd−1
1

f(t, q,v, ξ, ς,v+) dξ dm(ς) dv+.

We note that, in view of (1.21) and (1.23), a stationary solution of (1.31) is given
by

f(t, q,v, ξ, ς,v+) = p(v; ξ, ς,v+).

Let us suppose for a moment that the limiting process has exponentially dis-
tributed flight times ξ, i.e. the collision kernel is of the form

p0(v0, ς
′,v; ξ, ς,v+) = ξ

−1
p0(v0, ς

′,v; ς,v+) e
−ξ/ξ,
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with ξ the mean free path (1.10). Then the ansatz

f(t, q,v, ξ, ς,v+) = ξ
−1
f(t, q,v, ς,v+) e

−ξ/ξ

reduces (1.31) to

(1.32)
(
∂t + v · ∇q + ξ

−1)
f(t, q,v, ς,v+)

= ξ
−1

∫

Σ×Sd−1
1

f
(
t, q,v0, ς

′,v
)
p0(v0, ς

′,v; ς,v+) dm(ς ′) dv0.

In case of a Poisson scatterer configuration, we have in fact that

p0(v0, ς
′,v; ς,v+) =

σ(v,v+)

vd−1
.

In this case (1.32) reduces further, with the ansatz

f(t, q,v, ς,v+) = v−1
d−1f(t, q,v)σ(v,v+),

to (
∂t + v · ∇q + ξ

−1)
f(t, q,v) = cP

∫

Sd−1
1

f
(
t, q,v0)σ(v0,v) dv0,

which can be written in the standard form of the linear Boltzmann equation,

(1.33)
(
∂t + v · ∇q

)
f(t, q,v) = cP

∫

Sd−1
1

(
f
(
t, q,v0)− f(t, q,v)

)
σ(v0,v) dv0.

This illustrates that the transport equation (1.31) may indeed be viewed as a gener-
alisation of the linear Boltzmann equation (1.33). In contrast to random scatterer
configurations, we will see that other examples discussed in this study lead to trans-
port equations of the form (1.31) that do not reduce to (1.33) or even (1.32).

1.5. Outline of the paper

The assumptions on the scatterer configuration P are stated above in terms
of convergence properties of random point sets. Section 2 provides the measure-
theoretic background for a rigorous formulation of these assumptions. In particular,
we explain how to identify point sets in Rd with counting measures, i.e., locally
finite Borel measures that are superpositions of Dirac masses. The space M(X ) of
locally finite Borel measures on X (with X = Rd in this instance) is equipped with
the vague topology, which in turn allows us to define Borel probability measures
on M(X ), and thus define the notion of a random counting measure, which is
synonymous with random point process. This, as well as the extension to marked
point sets and point processes (where X = Rd × Σ in the above), is explained
in Section 2.2, following a technical discussion of uniform convergence properties
of families of general Borel probability measures in Section 2.1. Section 2.3 then
proceeds to translate the assumptions of Section 1.1 on the scattering configuration
P into the language of random counting measures. Section 2.4 provides a number
of immediate consequences of the assumptions made in Section 2.3 through a series
of technical lemmas. The assumptions on P are stated in terms of point processes
Ξς that are constructed relative to points q ∈ P . Section 2.5 constructs a new point
process Ξ relative to almost all points q ∈ Rd, which will be relevant for the particle
dynamics in the case of macroscopic initial conditions (in contrast to microscopic
initial data on or near a scatterer). The properties of Ξ are further analysed in
Section 2.6.
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Section 3 provides the first milestone in understanding the Boltzmann-Grad
limit of the Lorentz process. It establishes limit theorems for the time and loca-
tion of the first collision for a particle with random initial velocity, and a given
(deterministic) initial point either (a) on or near a scatterer (Theorem 3.6), or (b)
in generic position outside a scatterer (Theorem 3.14). The preparatory Section
3.1 defines the transition kernel, which provides the joint limit distribution of the
first hitting time and impact parameter. The limit theorems are stated and proved
in Section 3.2. Invariance properties and relations between the transition kernels
for on-scatterer vs. generic initial data are derived in Section 3.3. The discussion
then turns to the velocity after the first collision, which of course depends on the
choice of scattering map at an individual scatter. Our hypotheses on the scattering
map include spherical symmetry and differentiability, and are listed in Section 3.4.
They are sufficiently general to allow for elastic hard-sphere scattering (specular
reflection) as in the orginal Lorentz gas, but also scattering by a general class of
spherically symmetric potentials, which are discussed in detail in Section 5.4. The
limit distribution for the post-collision velocities are expressed in terms of collision
kernels, which are defined in Section 3.5 and further analysed in Section 3.6. The
corresponding limit theorems are stated in Section 3.7 as Theorems 3.32 and 3.33,
for near-scatterer and macroscopic initial conditions, respectively. In preparation
for the proof of the convergence of the full Lorentz process, we furthermore need
to bound the probability of near-grazing collisions and other singular trajectories.
This is carried out in Section 3.8.

The key results of this work, the convergence of the Lorentz process to a ran-
dom flight process, are stated and proved in Section 4. We first establish the
corresponding results in the discrete-time setting, where time is measured in terms
of the number of collisions. This is captured in Theorem 4.1 in Section 4.1, with
Section 4.2 and Section 4.3 dedicated to its proof. Theorem 4.1 assumes initial data
near a scatterer, and the analogous result for macroscopic initial conditions, stated
as Theorem 4.6, is derived in Section 4.4 as a consequence of Theorem 4.1. The
extension of these results to the continuous-time setting follows from a number of
technical estimates, which are given in Section 4.5. This completes the proof of
the main results of this work, which are stated in the introduction as Theorems 1.1
and 1.3. Section 4.6 shows that the limiting random flight process has a Markovian
extension, and that the transport equation (1.31) is indeed the forward Kolmogorov
equation of that Markov process. Theorem 4.11 states the existence and unique-
ness of the solution to the Cauchy problem, under the assumption that the collision
kernel is continuous.

The final part of this paper, Section 5, provides a detailed discussion of point
sets for which the assumptions on the scatterer configuration P (as stated in Sec-
tion 2) are satisfied. Section 5.1 explores the case when P is the realisation of a
Poisson process with constant intensity. Even in this classic setting, checking the
validity of the required assumptions is not straightforward. Section 5.2 confirms the
required assumptions in the case of general locally finite periodic point sets P . The
convergence of the Lorentz process was, in the periodic setting, previously known
only for Euclidean lattices. The most interesting new examples to which the results
of the present study apply, are Euclidean model sets (also known as cut-and-project
sets), which are discussed in Section 5.3. Model sets are point sets which are often
aperiodic, and they serve as mathematical models for quasicrystals. Section 5.4
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discusses the relationship between the scattering potential and the scattering map
and differential cross section. In particular Lemma 5.24 describes a general class of
repulsive potentials for which the assumptions in Section 3.4 are satisfied. Section
5.5 gives an outline of how the methods of Sections 3 and 4 can be extended to
deal with more general potentials, for which the scattering map does not satisfy
the assumptions in Section 3.4. Finally, Section 5.6 comprises a selection of open
questions and directions for future work.

Acknowledgment. We would like to thank the referee for carefully reading the
paper and valuable suggestions on improvements of the exposition.





CHAPTER 2

Point sets, point processes and key assumptions

The aim of this section is to state and discuss the list of assumptions on the
point set P in a more precise and general form, compared to the outline in Section
1.1. We will require a notion of uniform weak convergence of random point sets. The
most natural framework for this is to identify point sets with counting measures,
and define a random counting measure (point process) in a suitable probability
space. We thus need to deal with probability measures on spaces of locally finite
Borel measures and their convergence. Section 2.1 explains the concept of uniform
weak convergence on general topological spaces, which we then specialise to point
processes and marked point processes in Section 2.2. The main assumptions of this
paper are stated in full generality in Section 2.3. They are explored in detail in
Section 2.4.

2.1. Uniform convergence of families of probability measures

For S any topological space, we write P (S) for the set of Borel probability
measures on S, equipped with the weak topology. From now on we will always
assume that S is separable and metrizable. Then P (S) is also metrizable [7, pp.
72-73].

An important notion for us will be a certain general version of uniform conver-
gence in P (S). The setting is as follows.

Let J be a fixed index set, and let C be a compact subset of P (S). For each
0 < ρ < 1, let J(ρ) be a subset of J , and let {µj,ρ}j∈J(ρ) be a family of probability
measures in P (S). Let {νj}j∈J be a family of probability measures contained in C.
Then we say that

µj,ρ converges weakly to νj (µj,ρ
w−−→ νj) as ρ→ 0, uniformly over j ∈ J(ρ),

(2.1)

if, for some metric d on P (S) realizing the weak topology, we have

∀ε > 0 : ∃ρ0 ∈ (0, 1) : ∀ρ ∈ (0, ρ0) : ∀j ∈ J(ρ) : d(µj,ρ, νj) < ε.(2.2)

Note that this definition is independent of the choice of d: If (2.2) holds for
one metric d realizing the weak topology of P (S), then it holds for all such metrics.
This is a consequence of the following lemma.

Lemma 2.1. If d1, d2 are two metrics on a set M inducing the same topology,
and C ⊂M is a compact set with respect to that topology, then for any ε > 0 there
is some ε′ > 0 such that

∀x ∈M, y ∈ C : d1(x, y) < ε′ ⇒ d2(x, y) < ε.

Proof. Let ε > 0 be given, and assume that there does not exist any cor-
responding ε′ > 0. Then there are sequences x1, x2, . . . in M and y1, y2, . . . in C

17
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such that d1(xn, yn) → 0 but d2(xn, yn) ≥ ε for all n. By passing to a subsequence
we may assume that there is y ∈ C such that yn → y. This notion is indepen-
dent of the choice of metric, i.e. we have both d1(yn, y) → 0 and d2(yn, y) → 0.
Now d1(xn, yn) → 0 and d1(yn, y) → 0 imply d1(xn, y) → 0, i.e. xn → y, and
thus d2(xn, y) → 0. Combined with d2(yn, y) → 0 this implies d2(xn, yn) → 0,
contradicting the fact that d2(xn, yn) ≥ ε for all n. �

We next give some criteria for the uniform convergence in (2.1) to hold.

Lemma 2.2. The uniform convergence in (2.1) holds if and only if the following
condition is satisfied: For any sequence P = {ρn} ⊂ (0, 1), ρn → 0, and any choice

of j(ρ) ∈ J(ρ) for ρ ∈ P , if there is some ν ∈ C such that νj(ρ)
w−−→ ν as ρ → 0

through P , then also µj(ρ),ρ
w−−→ ν as ρ→ 0 through P .

Proof. The uniform convergence in (2.1) clearly implies the stated condition
(by using (2.2) and the triangle inequality). Now assume that the stated condition
holds, but the uniform convergence in (2.1) does not hold. Then there exist c > 0,
a sequence P = {ρn} ⊂ (0, 1), ρn → 0, and for each ρ ∈ P some j(ρ) ∈ J(ρ), such
that

d(µj(ρ),ρ, νj(ρ)) > c for each ρ ∈ P.(2.3)

Since νj(ρ) ∈ C for all ρ ∈ P , after replacing P with an appropriate subsequence we

may also assume that there is some ν ∈ C such that νj(ρ)
w−−→ ν as ρ→ 0 through

P . Hence by our assumption we must also have µj(ρ),ρ
w−−→ ν as ρ → 0 through

P . These together imply d(µj(ρ),ρ, νj(ρ)) → 0 as ρ → 0 through P , contradicting
(2.3). �

Lemma 2.3. The uniform convergence in (2.1) holds if and only if, for every
fixed f ∈ Cb(S), we have µj,ρ(f) → νj(f) as ρ→ 0, uniformly over j ∈ J(ρ).

Here “µj,ρ(f) → νj(f) as ρ → 0, uniformly over j ∈ J(ρ)” is the standard
notion of uniform convergence in R: ∀ε > 0: ∃ρ0 ∈ (0, 1): ∀ρ ∈ (0, ρ0): ∀j ∈ J(ρ):
|µj,ρ(f)− νj(f)| < ε.

Proof. Assume that for every fixed f ∈ Cb(S) we have µj,ρ(f) → νj(f) as
ρ→ 0, uniformly over j ∈ J(ρ). Consider any sequence P = {ρn} ⊂ (0, 1), ρn → 0

and any choice of j(ρ) ∈ J(ρ) for ρ ∈ P such that νj(ρ)
w−−→ ν ∈ C as ρ→ 0 through

P . Then for every fixed f ∈ Cb(S) we have νj(ρ)(f) → ν(f) as ρ → 0 through P ,
and combined with our assumption this implies µj(ρ),ρ(f) → ν(f) as ρ→ 0 through

P . Hence µj(ρ),ρ
w−−→ ν as ρ → 0 through P , and in view of Lemma 2.2 it follows

that (2.1) holds.
Conversely, assume now that there is some f ∈ Cb(S) for which µj,ρ(f) → νj(f)

does not hold uniformly over j ∈ J(ρ) as ρ→ 0. Then there exist c > 0, a sequence
P = {ρn} ⊂ (0, 1), ρn → 0, and for each ρ ∈ P some j(ρ) ∈ J(ρ), such that

∣∣µj(ρ),ρ(f)− νj(ρ)(f)
∣∣ > c for each ρ ∈ P.(2.4)

Replacing P with an appropriate subsequence we may also assume that there is

some ν ∈ C such that νj(ρ)
w−−→ ν as ρ → 0 through P . Then νj(ρ)(f) → ν(f) as

ρ → 0 through P , and together with (2.4) this implies that µj(ρ),ρ(f) 6→ ν(f) as

ρ→ 0 through P . Hence we do not have µj(ρ),ρ
w−−→ ν as ρ→ 0 through P , and by

Lemma 2.2, (2.1) does not hold. �
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Remark 2.1. The proof of Lemma 2.3 immediately extends to show that if
(2.1) holds, and if f : S → R is a bounded Borel measurable function whose set of
discontinuities has measure zero with respect to each ν ∈ C, then µj,ρ(f) → νj(f)
as ρ → 0, uniformly over j ∈ J(ρ). In particular, letting f be a characteristic
function, it follows that if B ⊂ S is any Borel set satisfying ν(∂B) = 0 for all
ν ∈ C, then µj,ρ(B) → νj(B) as ρ → 0, uniformly over j ∈ J(ρ). The reverse
implication is covered by the following lemma.

Lemma 2.4. In the above setting, let B be a family of Borel subsets of S such
that ν(∂B) = 0 for all B ∈ B, ν ∈ C, and also, for any sequence ν1, ν2, . . . ∈ P (S)

and any ν ∈ C, if νn(B) → ν(B) for every B ∈ B then νn
w−−→ ν. Then a sufficient

condition for the uniform convergence in (2.1) to hold is that for every B ∈ B, we
have µj,ρ(B) → νj(B) as ρ→ 0, uniformly over j ∈ J(ρ).

Proof. Let d be a metric on P (S) which induces the weak topology. Assume
that for every B ∈ B we have µj,ρ(B) → νj(B) as ρ → 0 uniformly over j ∈ J(ρ),
but that the uniform convergence in (2.1) does not hold. Then there exist c > 0,
a sequence P = {ρn} ⊂ (0, 1), ρn → 0, and for each ρ ∈ P some j(ρ) ∈ J(ρ), such
that

d(µj(ρ),ρ, νj(ρ)) > c for each ρ ∈ P.(2.5)

Since νj(ρ) ∈ C for all ρ ∈ P , there exist ν ∈ C and an infinite subsequence

P ′ ⊂ P such that νj(ρ)
w−−→ ν as ρ → 0 through P ′. Hence for every B ∈ B we

have νj(ρ)(B) → ν(B) as ρ → 0 through P ′, since ν(∂B) = 0 [35, Thm. 4.25];
and combining this with our assumption we conclude µj(ρ),ρ(B) → ν(B) as ρ → 0
through P ′. Because of the convergence determining property of B assumed in the

statement of the lemma, this implies µj(ρ),ρ
w−−→ ν as ρ → 0 through P ′. Now

νj(ρ)
w−−→ ν and µj(ρ),ρ

w−−→ ν together imply that d(µj(ρ),ρ, νj(ρ)) → 0 as ρ → 0
through P ′, contradicting (2.5). �

2.2. Point processes and marked point processes

Given a locally compact second countable Hausdorff (lcscH) space X , we let
M(X ) be the set of locally finite Borel measures on X . Recall that a Borel measure
µ on X is said to be locally finite if µB < ∞ for every relatively compact Borel
set B ⊂ X . We equip M(X ) with the vague topology. Then M(X ) is a Polish
space (i.e. separable and has a complete metrization). We write M for the Borel
σ-algebra of M(X ). We let N(X ) be the set of counting measures in M(X ), and
let Ns(X ) := {ν ∈ N(X ) : supx∈X ν{x} ≤ 1} be the subset of simple counting
measures. Then N(X ) is a closed subset ofM(X ) (hence also Polish), and Ns(X ) is
a Borel subset of N(X ). Define N = {B∩N(X ) : B ∈ M}, which yields the Borel
σ-algebra of N(X ). The elements of Ns(X ) may be identified with the family of
locally finite subsets of X through ν 7→ supp(ν). The inverse map is {xi} 7→ ∑

i δxi .
We will use this identification between point sets and simple counting measures
throughout this work, often using the same notation for point set and counting
measure.

A point process is, by definition, a random element ξ in (N(X ),N ). It is called
simple if ξ ∈ Ns(X ) almost surely. We identify P (Ns(X )) with the set of probability
measures ν ∈ P (N(X )) with ν(Ns(X )) = 1. Then a point process ξ is simple if and
only if its law is in P (Ns(X )). The intensity measure of ξ, Eξ, is the Borel measure
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on X given by (Eξ)B = E(ξB) for any Borel set B ⊂ X . By abuse of notation,
for ν ∈ P (N(X )), we call “the intensity of ν” the intensity measure of any point
process whose distribution is ν; i.e. the Borel measure B 7→

∫
N(X )

ηB dν(η) on X .

From Section 2.3 onwards we will make the choice X = Rd × Σ, with Σ a
compact metric space. A point process ξ in X = Rd × Σ can be thought of as
a marked point processes with locations in Rd and marks in Σ. Let p1 be the
projection map X → Rd. Note that since Σ is compact, the “ground process”,
p1∗ξ, automatically becomes a point process in Rd. We call ξ simple as a marked
point process if the ground process p1∗ξ is simple. We refer the reader to [20, Ch.
6.4] for further background.

The following lemma gives a criterion for uniform convergence of sequences in
P (S×N(X )), for S a lcscH space, which will be useful for us. We will need it later

in the case S = Sd−1
1 . Let J be a fixed index set, and for each 0 < ρ < 1, let J(ρ)

be a subset of J ,

Lemma 2.5. Let S be a lcscH space, let S′ = S×N(X ), and let C be a compact
subset of P (S′). Define

Ff,g(µ) =

∫

S′

g(p, η(f)) dµ(p, η) (f ∈ Cc(X ), g ∈ Cb(S × R), µ ∈ P (S′)).

(2.6)

Let {µj,ρ}j∈J(ρ) and {νj}j∈J be families of probability measures in P (S′), such that
νj ∈ C for all j ∈ J . Then the following two conditions are equivalent:

(a) µj,ρ
w−−→ νj as ρ→ 0, uniformly over j ∈ J(ρ);

(b) for any f ∈ Cc(X ) and g ∈ Cc(S × R), Ff,g(µj,ρ) → Ff,g(νj) as ρ → 0,
uniformly over j ∈ J(ρ).

Proof. For f ∈ Cc(X ) we define the map Tf : S′ → S × R by Tf (p, η) =
(p, η(f)); then Ff,g(µ) = µ(g ◦ Tf ) for any g ∈ Cb(S × R), µ ∈ P (S′). The map
Tf is continuous; hence g ◦ Tf ∈ Cb(S

′) for any f, g. Now the implication (a)⇒(b)
follows from Lemma 2.3.

Conversely, assume (b). In order to prove (a), by Lemma 2.2 it suffices to
prove that for a given sequence P = {ρn} ⊂ (0, 1) with ρn → 0, and given ν ∈ C

and j(ρ) ∈ J(ρ) (ρ ∈ P ) subject to νj(ρ)
w−−→ ν as ρ → 0 through P , we have

µj(ρ),ρ
w−−→ ν as ρ→ 0 through P . For any f ∈ Cc(X ) and g ∈ Cc(S × R) we have

νj(ρ)(g ◦ Tf ) → ν(g ◦ Tf ) as ρ→ 0 through P ; combined with (b), this implies that
µj(ρ),ρ(g ◦ Tf ) → ν(g ◦ Tf), as ρ → 0 through P . But g is arbitrary in Cc(S × R);

hence we conclude Tf∗(µj(ρ),ρ)
w−−→ Tf∗(ν) as ρ→ 0 through P (cf., e.g., [28, Prop.

3.4.4]). The fact that this holds for all f ∈ Cc(X ) implies, via a simple extension

of [35, Thm. 16.16 (ii)⇒(i)], that µj(ρ),ρ
w−−→ ν as ρ → 0 through P . Hence (a)

holds. �

Lemma 2.6. Let C be a compact subset of P (Ns(X )) such that every ν ∈ C has
the same intensity µ̃ (a fixed locally finite Borel measure on X ). Let {µj,ρ}j∈J(ρ)
and {νj}j∈J be families of probability measures in P (N(X )), such that νj ∈ C for
all j ∈ J . Assume that, for any relatively compact Borel set B ⊂ X with µ̃(∂B) = 0
and any r ∈ Z+,

µj,ρ({η ∈ N(X ) : ηB ≥ r}) → νj({η ∈ N(X ) : ηB ≥ r})
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as ρ → 0, uniformly over j ∈ J(ρ). Then µj,ρ
w−−→ νj as ρ → 0, uniformly over

j ∈ J(ρ).

Proof. Let S = N(X ) and let B be the family of Borel subsets of S of the
form A = {η ∈ S : ηB ≥ r}, where r ∈ Z+ and B is a relatively compact Borel
subset of X with µ̃(∂B) = 0. Note that ∂A ⊂ {η ∈ S : η(∂B) ≥ 1}; thus
ν(∂A) ≤

∫
S
η(∂B) dν(η) = µ̃(∂B) = 0 for each ν ∈ C. Furthermore, if ν ∈ C and

B is a relatively compact Borel set in X satisfying η(∂B) = 0 for ν-a.e. η ∈ N(X ),
then also µ̃(∂B) =

∫
N(X ) η(∂B) dν(η) = 0. Hence by [35, Thm 16.16 (iv)⇒(i)], for

any sequence ν1, ν2, . . . ∈ P (S) and any ν ∈ C, if νn(A) → ν(A) for every A ∈ B
then νn

w−−→ ν. Hence Lemma 2.4 applies, and shows the desired implication. �

2.3. The list of assumptions

As in Section 1.1, let P be a fixed locally finite subset of Rd (d ≥ 2) with
constant asymptotic density cP . Recall also the definitions of X = Rd × Σ, µX =
vol×m and

P̃ = {(p, ς(p)) : p ∈ P} ⊂ X
from Section 1.1. Furthermore, for any q ∈ Rd, v ∈ Sd−1

1 and 0 < ρ < 1, we set1

(2.7) P̃q =

{
P̃ \ {(q, ς(q))} (q ∈ P)

P̃ (q /∈ P)

and

Qρ(q,v) = (P̃q − q)R(v)Dρ.(2.8)

Given any λ ∈ P (Sd−1
1 ), if we take v random in (Sd−1

1 , λ) then Qρ(q,v) be-

comes a random point set. We write µ
(λ)
q,ρ ∈ P (Ns(X )) for the distribution of the

corresponding point process. In other words, µ
(λ)
q,ρ is the push-forward of λ by the

map

Sd−1
1 → N(X ), v 7→

∑

p∈Qρ(q,v)

δp.

The following are our hypotheses on P . These will generalise and make precise
the outline assumptions from Section 1.1 (we will use the same labelling).

Our standing assumption is that there exists a continuous map ς 7→ µς from Σ
to P (N(X )), a Borel probability measure m on Σ with the following properties:

[P1] Uniform and zero density: For any bounded B ⊂ X with µX (∂B) = 0, we
have

lim
T→∞

#(P̃ ∩ TB)

T d
= cPµX (B).(2.9)

[P2] Spherical equidistribution: There exists a subset E ⊂ P of asymptotic density

zero such that for any fixed T ≥ 1 and λ ∈ Pac(S
d−1
1 ), we have2

µ(λ)
q,ρ

w−−→ µς(q) as ρ→ 0, uniformly for q ∈ PT (ρ) := P ∩ BdTρ1−d \ E .(2.10)

1In the notation of the introduction, P̃q − q = (P̃ − q)∗.
2For uniform convergence in P (N(X )), use (2.1)–(2.2) with q, P, PT (ρ) in place of j, J, J(ρ).

Indeed, {µς : ς ∈ Σ} is a compact subset of P (N(X )), since it is the continuous image of the
compact set Σ.
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[P3] No escape of mass: For every bounded Borel set B ⊂ Rd,

lim
ξ→∞

lim sup
ρ→0

[vol×ω]
({

(q,v) ∈ B × Sd−1
1 : Qρ(ρ

1−dq,v) ∩ (Zξ × Σ) = ∅
})

= 0.

We will explain the assumption [P3] further in Section 2.5, where we prove the
existence of a limit of Qρ(ρ

1−dq,v) for (q,v) random in T1(Rd) with respect to an
arbitrary absolutely continuous probability measure.

Furthermore, we impose the following assumptions on the limiting distributions
µς :

[Q1] SO(d− 1)-invariance: For every ς ∈ Σ,

µς is invariant under the action of SO(d− 1) := {k ∈ SO(d) : e1k = e1}.
[Q2] Coincidence-free first coordinates: For every ς ∈ Σ,

µς({ν ∈ N(X ) : ∃x1 ∈ R s.t. ν({x1} × Rd−1 × Σ) > 1}) = 0.

[Q3] Small probability of large voids: For every ε > 0 there exists R > 0 such that
for all ς ∈ Σ and x ∈ Rd we have

µς
({
ν ∈ N(X ) : ν

(
Bd(x, R)× Σ

)
= 0

})
< ε.

Note that the assumption [Q1] is content-free for d = 2. For general d, [Q1] is
equivalent to requiring that the convergence in [P2] does not depend on our choice

of the map R : Sd−1
1 → SO(d); cf. Remark 2.4 below. We will denote by Ξς a

point process in X with distribution µς . Ξς corresponds precisely to the family of
random sets in the list of assumptions outlined in Section 1.1. Assumption [Q2]
says that almost surely, the points of Ξς have pairwise distinct e1-coordinates. In
particular Ξς is simple as a marked point process, viz., the ground process p1∗(Ξς)
in Rd is simple. The assumption [Q3] says that the probability of Ξς having empty
intersection with a large ball, at arbitrary position, is uniformly small.

2.4. First consequences of the assumptions

We here derive some first consequences of the assumptions imposed on the
point set P in Section 2.3.

The following is an immediate consequence of [P1].

Lemma 2.7. Let f : X → R be a bounded measurable function of compact
support whose set of discontinuities has measure zero with respect to µX . Then

lim
T→∞

T−d
∑

y∈P̃

f(T−1y) = cP

∫

X

f dµX .(2.11)

Proof. Take R > 0 so that supp f ⊂ XR := BdR × Σ, where BdR is the open
ball of radius R centered at the origin. For T > 0, let NT := #(P ∩ BdRT );
then T−dNT → cPµX (XR) as T → ∞. For T > 0 large (thus NT > 0) we let
XT := T−1y where y is chosen uniformly at random among the NT points in

P̃ ∩ XRT ; then XT is a random point in X , and using T−dNT → cPµX (XR) and
[P1] it follows that

lim
T→∞

P(XT ∈ B) =
µX (B)

µX (XR)
for any B ⊂ BdR×Σ with µX (∂B) = 0. Hence if we let X∞ be a random point in XR
with distribution µX (XR)−1µX|XR

then XT tends in distribution to X∞ as T → ∞,
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and so by the Portmanteau Theorem, limT→∞ Ef(XT ) = Ef(X∞). Again using
T−dNT → cPµX (XR), the last relation is seen to be equivalent with (2.11). �

From now on we fix, once and for all, a choice of a subset E ⊂ P as in [P2].
We also set

Σ′ = {ς(q) : q ∈ P \ E}.(2.12)

This is clearly a closed subset of Σ, hence compact. Once the basic results of the
present section are established, it will transpire that we may assume without loss
of generality that Σ′ = Σ; cf. Remark 2.6 below.

Lemma 2.8. m(Σ′) = 1.

Proof. Assume the opposite, i.e. m(U) > 0 where U := Σ \ Σ′. Let d be the
metric in Σ. Then there is some open ball B = BΣ(ς, r) = {ς ′ ∈ Σ : d(ς ′, ς) < r}
satisfying B ⊂ U and m(B) > 0. Take 0 < r′ < r so that also m(BΣ(ς, r

′)) > 0.
Note that the boundaries ∂BΣ(ς, r

′′) for r′′ ∈ [r′, r] are pairwise disjoint; hence
there is some r′′ ∈ (r′, r) with m(∂BΣ(ς, r

′′)) = 0. Set B′ := BΣ(ς, r
′′); thus

B′ ⊂ U , m(B′) > 0 and m(∂B′) = 0. Hence, by [P1],

lim
R→∞

R−d#(P̃ ∩ (BdR ×B′)) = cP vol(Bd1)m(B′) > 0.

Using also the fact that E has asymptotic density zero (cf. [P2]), it follows that
{q ∈ P ∩ BdR \ E : ς(q) ∈ B′} must be nonempty for all sufficiently large R. In
particular Σ′ ∩B′ 6= ∅, contradicting B′ ⊂ U = Σ \ Σ′. �

Lemma 2.9. For every ς ∈ Σ′, µς is invariant under the action of Dr, for all
r > 0.

Proof. Fix r > 0. Take any sequence (qn) ⊂ P \ E such that ς(qn) → ς ;
then take (ρn) ⊂ (0, 1) such that ρn → 0 and qn ∈ P1(ρn) for each n. Fix

any λ ∈ Pac(S
d−1
1 ). Then µ

(λ)
qn,ρn

w−−→ µς as n → ∞, by [P2]. We also have

qn ∈ PT (rρn) for each n, where T = max(1, rd−1), and hence µ
(λ)
qn,rρn

w−−→ µς as

n→ ∞. But note that Qrρ(q,v) = Qρ(q,v)Dr, and hence µ
(λ)
qn,rρn = µ

(λ)
qn,ρn ◦D−1

r ,
where “D−1

r ” denotes the continuous map Y 7→ Y D−1
r from Ns(X ) to itself. Hence

µ
(λ)
qn,rρn

w−−→ µς ◦D−1
r as n→ ∞, and so µς ◦D−1

r = µς . �

Next we will show that since our key convergence assumption, [P2], is required

to hold for all λ ∈ Pac(S
d−1
1 ), it can in fact be upgraded to a convergence state-

ment concerning the joint distribution of v and Qρ(q,v). Given λ ∈ P (Sd−1
1 ), we

write µ̃
(λ)
q,ρ ∈ P (Sd−1

1 ×N(X )) for the distribution of (v,Qρ(q,v)) for v random in

(Sd−1
1 , λ).

Lemma 2.10. Let T ≥ 1 and λ ∈ Pac(S
d−1
1 ). Then µ̃

(λ)
q,ρ

w−−→ λ×µς(q) as ρ→ 0,
uniformly over all q ∈ PT (ρ).

Proof. Let f ∈ Cc(N(X )) and g ∈ Cc(S
d−1
1 × R) be given. By Lemma 2.5 it

suffices to prove that Ff,g(µ̃
(λ)
q,ρ)− Ff,g(λ× µς(q)) → 0 as ρ→ 0, uniformly over all

q ∈ PT (ρ). Let ε > 0 be given. Since g is continuous with compact support, there

is a partition of Sd−1
1 into Borel subsets S1, . . . , Sr such that for each j ∈ {1, . . . , r}

we have

|g(v, y)− g(v′, y)| < ε, ∀y ∈ R, v,v′ ∈ Sj .(2.13)
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Let J be the set of j ∈ {1, . . . , r} with λ(Sj) > 0. For each j ∈ J we set λj =

λ(Sj)
−1λ|Sj

∈ P (Sd−1
1 ), fix a point vj ∈ Sj , and define gj ∈ Cc(R) through gj(y) =

g(vj , y). Applying [P2] for λj , together with Lemma 2.5 (with S as a “dummy”

singleton set), we see that Ff,gj (µ
(λj)
q,ρ ) − Ff,gj (µς(q)) → 0 as ρ → 0, uniformly

over all q ∈ PT (ρ). (Here Ff,gj (µ) =
∫
N(X ) gj(η(f)) dµ(η) for any µ in P (N(X )).)

Hence there is some ρ0 ∈ (0, 1) such that
∣∣Ff,gj (µ

(λj)
q,ρ )− Ff,gj (µς(q))

∣∣ < ε, ∀ρ ≤ ρ0, q ∈ PT (ρ), j ∈ J.(2.14)

Now note that by definition,

Ff,gj (µ
(λj)
q,ρ ) =

∫

Sj

g

(
vj ,

∑

y∈Qρ(q,v)

f(y)

)
dλj(v)

and

Ff,g(µ̃
(λj)
q,ρ ) =

∫

Sj

g

(
v,

∑

y∈Qρ(q,v)

f(y)

)
dλj(v);

hence using (2.13) we have
∣∣Ff,gj (µ

(λj)
q,ρ )− Ff,g(µ̃

(λj)
q,ρ )

∣∣ ≤ ε.

Multiplying this inequality by λ(Sj) and adding over all j we obtain
∣∣∣Ff,g(µ̃(λ)

q,ρ)−
∑

j∈J

λ(Sj)Ff,gj (µ
(λj)
q,ρ )

∣∣∣ ≤ ε, ∀ρ ∈ (0, 1), q ∈ P .(2.15)

By a similar argument we also have∣∣∣Ff,g(λ× µς)−
∑

j∈J

λ(Sj)Ff,gj (µς)
∣∣∣ ≤ ε, ∀ρ ∈ (0, 1), ς ∈ Σ.(2.16)

Using (2.14), (2.15) and (2.16), we conclude that
∣∣Ff,g(µ̃(λ)

q,ρ)− Ff,g(λ× µς(q))
∣∣ ≤ 3ε, ∀ρ ≤ ρ0, q ∈ PT (ρ).

Since ε > 0 is arbitrary, this establishes the desired uniform convergence. �

Remark 2.2. Let us take λ to be normalized Lebesgue measure, i.e. λ = ω1 =
ω(Sd−1

1 )−1ω. In this case, Lemma 2.10 says

µ̃(ω1)
q,ρ

w−−→ ω1 × µς(q) as ρ→ 0, uniformly over all q ∈ PT (ρ).(2.17)

Let us note that the convergence stated in Lemma 2.10 for a general λ ∈ Pac(S
d−1
1 ),

is in fact a simple consequence of the special case (2.17): it follows from the fact

that C(Sd−1
1 ) is dense in L1(Sd−1

1 , ω). Of course also the convergence in Lemma 2.10
implies the convergence assumed in [P2]. Hence (2.17) is an equivalent reformulation
of the assumption [P2].

For later use, we will next prove that the convergence in Lemma 2.10 can be
upgraded by including a “β-shift”. For any open subset U ⊂ Sd−1

1 , we let Cb(U,R
d)

be the space of all bounded continuous functions β : U → Rd, provided with the
supremum norm. For any q ∈ P , β ∈ Cb(U,R

d), v ∈ U and 0 < ρ < 1, we set

Qρ(q,β,v) = (P̃q − q − ρβ(v))R(v)Dρ.(2.18)

Thus Qρ(q,β,v) gives the scattering configuration when viewed in the particle
frame of a particle at the point q + ρβ(v) in direction v (cf. the discussion at
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the beginning of Section 1.1). We will ultimately be interested in the case when

β(v) ∈ Sd−1
1 and β(v) · v > 0 for all v. In this case, considering a fixed q ∈ P and

random v means that we are considering a particle which is just about to leave the
boundary of the scatterer q+Bdρ in a random direction, with β specifying how the
exact starting position depends on the random direction.

Given λ ∈ P (Sd−1
1 ) with λ(U) = 1, let us write µ̃

(β,λ)
q,ρ ∈ P (Sd−1

1 × N(X )) for

the distribution of (v,Qρ(q,β,v)) for v random in (Sd−1
1 , λ) (equivalently, for v

random in (U, λ|U )). We define the projection map x 7→ x⊥ on Rd by

x⊥ := (0, x2, . . . , xd) for x = (x1, x2, . . . , xd) ∈ Rd.(2.19)

The limit of Qρ(q,β,v) as ρ → 0 will turn out to be the point process Ξς −
(β(v)R(v))⊥, with v random in (Sd−1

1 , λ) and independent from Ξς . Let µ
(β,λ)
ς ∈

P (N(X )) be the distribution of this point process, and let µ̃
(β,λ)
ς ∈ P (Sd−1

1 ×N(X ))
be the distribution of (v,Ξς − (β(v)R(v))⊥). Thus for any measurable function

f ≥ 0 on Sd−1
1 ×N(X ),

∫

Sd−1
1 ×N(X )

f dµ̃(β,λ)
ς =

∫

U

∫

Ns(X )

f
(
v, Y − (β(v)R(v))⊥

)
dµς(Y ) dλ(v),(2.20)

and in case f(v, Y ) is independent of v this also equals
∫
N(X )

f dµ
(β,λ)
ς . In particular

Ξς − (β(v)R(v))⊥ is a simple (marked) point process, just as Ξς . It will be useful
for us to prove a limit statement which is uniform both over β in compacta and
over q in PT (ρ).

Lemma 2.11. Let U be an open subset of Sd−1
1 , and let λ ∈ Pac(S

d−1
1 ) be such

that λ(U) = 1. Then for any T ≥ 1 and any compact subset K ⊂ Cb(U,R
d), we

have µ̃
(β,λ)
q,ρ

w−−→ µ̃
(β,λ)
ς(q) as ρ→ 0, uniformly over all q ∈ PT (ρ) and all β ∈ K.

Remark 2.3. The uniform convergence in the lemma takes place in P (Sd−1
1 ×

N(X )), recall (2.1). Note that {µ̃(β,λ)
ς : ς ∈ Σ,β ∈ K} is a compact subset of

P (Sd−1
1 × N(X )), since it is the continuous image of the compact set Σ × K; cf.

footnote 2.

Proof. Take v0 ∈ Sd−1
1 so that R is continuous on Sd−1

1 \ {v0}. Note that
λ(U \ {v0}) = λ(U) = 1, since λ is absolutely continuous with respect to ω; thus
we may replace U by U \ {v0} without affecting the content of the statement of
the lemma. Hence from now on we may assume that R is continuous on U . Let
ρn ∈ (0, 1), qn ∈ PT (ρn), βn ∈ Cb(U,R

d) for n = 1, 2, . . ., and assume that ρn → 0,
ς(qn) → ς and βn → β as n → ∞, with ς ∈ Σ and β ∈ K. We then claim that

µ̃
(βn,λ)
qn,ρn

w−−→ µ̃
(β,λ)
ς as n → ∞. By the same argument as in Lemma 2.2, this will

imply the lemma.
We extend β and each βn to all Sd−1

1 by setting β(v) = βn(v) = 0 (say) for

all v ∈ Sd−1
1 \ U . Consider the maps

Fn : Sd−1
1 ×Ns(X ) → Sd−1

1 ×Ns(X ), Fn(v, Y ) = (v, Y − ρnβn(v)R(v)Dρn)

and

F : Sd−1
1 ×Ns(X ) → Sd−1

1 ×Ns(X ), F (v, Y ) = (v, Y − (β(v)R(v))⊥).

Using λ(U) = 1 we have µ̃
(βn,λ)
qn,ρn = µ̃

(λ)
qn,ρn ◦F−1

n and µ̃
(β,λ)
ς = (λ×µς)◦F−1. Now for

any points (v, Y ), (v1, Y1), (v2, Y2), . . . ∈ Sd−1
1 ×Ns(X ) subject to (vn, Yn) → (v, Y )
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and v ∈ U , we have Fn(vn, Yn) → F (v, Y ) as n → ∞. Furthermore µ̃
(λ)
qn,ρn

w−−→
λ×µς , by Lemma 2.10. Hence µ̃

(λ)
qn,ρn ◦F−1

n
w−−→ (λ×µς) ◦F−1 as n→ ∞ (cf. [35,

Thm. 4.27]), and the lemma is proved. �

The following lemma shows that, in the presence of [Q1], the assumption [P2]
is independent of the choice of the map R.

Lemma 2.12. Suppose that R̂ : Sd−1
1 → SO(d) is any map satisfying the same

conditions as R, i.e. vR̂(v) = e1 for all v ∈ Sd−1
1 , and R̂ is continuous when

restricted to Sd−1
1 minus one point. Define Ξ̂ρ(q,v) = (P̃q − q) R̂(v)Dρ, and write

µ̂
(λ)
q,ρ ∈ P (N(X )) for the distribution of Ξ̂ρ(q,v) for v random in (Sd−1

1 , λ). Then

for any fixed T ≥ 1 and λ ∈ Pac(S
d−1
1 ), we have µ̂

(λ)
q,ρ

w−−→ µς(q) as ρ→ 0, uniformly
over all q ∈ PT (ρ).

Proof. Define K : Sd−1
1 → SO(d) by K(v) = R(v)−1R̂(v). Then e1K(v) =

e1, i.e. K(v) ∈ SO(d − 1) for each v ∈ Sd−1
1 . It follows that K(v) commutes with

Dρ, and so

Ξ̂ρ(q,v) = Qρ(q,v)K(v).

We introduce the map

F : Sd−1
1 ×Ns(X ) → Ns(X ), F (v, Y ) = Y K(v),

and note that µ̂
(λ)
q,ρ = µ̃

(λ)
q,ρ ◦ F−1.

Let ρn ∈ (0, 1) and qn ∈ PT (ρn) for n = 1, 2, . . ., and assume that ρn → 0

and ς(qn) → ς ∈ Σ as n → ∞. We then claim that µ̂
(λ)
qn,ρn

w−−→ µς as n → ∞.
This will complete the proof of the lemma, by the same argument as in Lemma

2.2. We have µ̃
(λ)
qn,ρn

w−−→ λ × µς , by Lemma 2.10. By the assumptions on R and

R̂, there exist points v0,v
′
0 ∈ Sd−1

1 such that K is continuous on Sd−1
1 \ {v0,v′0}.

Now for any sequence of points (v, Y ), (v1, Y1), (v2, Y2), . . . ∈ Sd−1
1 ×Ns(X ) subject

to (vn, Yn) → (v, Y ) and v /∈ {v0,v′0}, we have F (vn, Yn) → F (v, Y ) as n → ∞.

Hence by [35, Thm. 4.27], µ̂
(λ)
q,ρ = µ̃

(λ)
q,ρ ◦F−1 w−−→ (λ×µς) ◦F−1 as n→ ∞. Finally

(λ× µς) ◦ F−1 = µς by [Q1], and the proof is complete. �

Remark 2.4. Note that Lemma 2.12 was proved using only the key convergence
assumption [P2] together with the assumption that each Ξς is SO(d− 1)-invariant,
[Q1]. Conversely it is easy to see that assuming Lemma 2.12, the SO(d − 1)-
invariance [Q1] follows as a consequence, for each ς ∈ Σ′.

The next lemma is a simple variant of the previous one.

Lemma 2.13. Let T ≥ 1 and let ν be the (left and right) Haar measure on
SO(d), normalized to be a probability measure. Let µq,ρ ∈ P (Ns(X )) be the distri-

bution of (P̃q−q)KDρ for K random in (SO(d), ν). Then µq,ρ
w−−→ µς(q) as ρ→ 0,

uniformly over all q ∈ PT (ρ).

Proof. Let ρn ∈ (0, 1) and qn ∈ PT (ρn) for n = 1, 2, . . ., and assume that

ρn → 0 and ς(qn) → ς ∈ Σ as n → ∞. We then claim that µqn,ρn
w−−→ µς as

n → ∞; as usual this will complete the proof of the lemma. Let f ∈ Cb(Ns(X )).
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For any K ∈ SO(d− 1) we have
∫

Sd−1
1

f((P̃qn
− qn)R(v)KDρn) dω1(v) → µς(f), as n→ ∞,(2.21)

by Lemma 2.12 (or directly from [P2] and [Q1], using KDρ = DρK). Let ν1 be the
normalized Haar measure on SO(d − 1). By Lebesgue’s Dominated Convergence
Theorem, it follows from (2.21) that
∫

SO(d−1)

∫

Sd−1
1

f((P̃qn
− qn)R(v)KDρn) dω1(v) dν1(K) → µς(f), as n→ ∞.

However here the left hand side equals µqn,ρn(f), since the push-forward of the

measure ω1× ν1 on Sd−1
1 ×SO(d− 1) under the map 〈v,K〉 7→ R(v)K equals ν (cf.,

e.g., [37, Thm. 8.36]). Hence the proof is complete. �

A symmetry related to the SO(d− 1) invariance is the following.

Lemma 2.14. Fix K ∈ SO(d) with e1K = −e1. Then for each ς ∈ Σ′, µς is
K-invariant.

Proof. Let ς ∈ Σ′ be given. As in the proof of Lemma 2.9, take sequences
(qn) ⊂ P \ E and (ρn) ⊂ (0, 1) so that qn ∈ P1(ρn) for each n, and ρn → 0

and ς(qn) → ς as n → ∞. Fix any λ ∈ Pac(S
d−1
1 ). Define λ̂ ∈ P (Sd−1

1 ) by

λ̂(B) = λ(−B) for any Borel set B ⊂ Sd−1
1 , and define R̂ : Sd−1

1 → SO(d) through

R̂(v) = R(−v)K. Also let µ̂
(λ̂)
q,ρ be the distribution of (P̃q−q)R̂(v)Dρ for v random

in (Sd−1
1 , λ̂), as in Lemma 2.12. Now for each n, and for any Borel subset A ⊂

Ns(X ), we have, with q = qn, ρ = ρn,

µ̂(λ̂)
q,ρ(A) = λ̂({v ∈ Sd−1

1 : (P̃q − q)R̂(v)Dρ ∈ A})
= λ({v ∈ Sd−1

1 : (P̃q − q)R(v)KDρ ∈ A})
= λ({v ∈ Sd−1

1 : (P̃q − q)R(v)Dρ ∈ AK−1}) = µ(λ)
q,ρ(AK

−1).

Hence µ̂
(λ̂)
qn,ρn = µ

(λ)
qn,ρn ◦K−1 for each n, where “K−1” denotes the map Ns(X ) →

Ns(X ), A 7→ AK−1. We have µ
(λ)
qn,ρn

w−−→ µς , by [P2], and thus µ̂
(λ̂)
qn,ρn

w−−→ µς◦K−1.

On the other hand, µ̂
(λ̂)
qn,ρn

w−−→ µς , by Lemma 2.12. Hence µς ◦K−1 = µς . �

Next we prove that the intensity measure of Ξς is bounded above by cPµX .

Lemma 2.15. For any ς ∈ Σ′ and any Borel set B ⊂ X ,
∫
Ns(X )

#(Y ∩
B) dµς(Y ) ≤ cPµX (B).

Remark 2.5. The proof of Lemma 2.15 should be compared with the first half
of the proof of the Siegel-Veech formula in [49, Thm. 5.1]. Cf. also Veech, [60].

Proof. Let ς ∈ Σ′ be given. It suffices to prove that for any given f ∈ Cc(X ),
f ≥ 0, we have

∫

Ns(X )

∑

q∈Y

f(q) dµς(Y ) ≤ cP

∫

X

f dµX .(2.22)
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Take sequences (qj) ⊂ P \ E and (ρj) ⊂ (0, 1) so that qj ∈ P1(ρj) for each j, and
ρj → 0 and ς(qj) → ς as j → ∞. By further shrinking each ρj if necessary, we may
also assume that

ρ
3
2−d
j > ‖qj‖+

∑

q∈P\{qj}

‖q‖≤2‖qj‖

‖q − qj‖1−d.(2.23)

By Lemma 2.13 we have µqj ,ρj
w−−→ µς as j → ∞, and hence since F : Y 7→∑

q∈Y f(q) is a nonnegative continuous function on Ns(X ) (unbounded if f 6≡ 0),

µς(F ) ≤ lim infj→∞ µqj ,ρj (F ). In other words, writing ν for the normalized Haar

measure on SO(d),

∫

Ns(X )

∑

y∈Y

f(y) dµς(Y ) ≤ lim inf
j→∞

∫

SO(d)

∑

y∈(P̃qj
−qj)KDρj

f(y) dν(K)

= lim inf
j→∞

∑

y∈P̃qj

∫

SO(d)

f((y − qj)KDρj ) dν(K)

= lim inf
j→∞

ρ
d(d−1)
j

∑

q∈P\{qj}

hρj (ρ
d−1
j ‖q − qj‖, ς(q)),(2.24)

where hρ ∈ Cc(R≥0 ×X ) is given by

hρ(r, ς) := ρ−d(d−1)

∫

SO(d)

f(ρ1−dre1KDρ, ς) dν(K).(2.25)

Set B = supX f and take R > 0 so that supp f ⊂ BdR × Σ. Then for each
ρ ∈ (0, 1), the support of hρ is contained in [0, R]× Σ. Writing x = e1K in (2.25)
we have

hρ(r, ς) = ρ−d(d−1)

∫

Sd−1
1

f(r(x1, ρ
−dx2, . . . , ρ

−dxd), ς) dω1(x).

It follows that

hρ(r, ς) → h0(r, ς) :=
1

ω(Sd−1
1 )

∑

s∈{1,−1}

∫

Rd−1

f(sr(1,y), ς) dy, as ρ→ 0,

(2.26)

with uniform convergence over all (r, ς) ∈ [η,R]×Σ, for any fixed η ∈ (0, R). Note
that h0 by definition is a continuous function on R>0×Σ with support contained in
(0, R]×Σ. Note also that ρd−1

j qj → 0 as j → ∞; cf. (2.23). Using [P1], Lemma 2.7,
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and the uniform convergence just pointed out, it now follows that for any η ∈ (0, R),

lim
j→∞

ρ
d(d−1)
j

∑

q∈P\{qj}

I(‖ρd−1
j q‖ ≥ η)hρj (ρ

d−1
j ‖q − qj‖, ς(q))

= lim
j→∞

ρ
d(d−1)
j

∑

q∈P\{qj}

I(‖ρd−1
j q‖ ≥ η)h0(ρ

d−1
j ‖q − qj‖, ς(q))

= lim
j→∞

ρ
d(d−1)
j

∑

q∈P

I(‖ρd−1
j q‖ ≥ η)h0(ρ

d−1
j ‖q‖, ς(q))

= cP

∫

X

I(‖x‖ ≥ η)h0(‖x‖, ς) dµX (x, ς)

= cP ω(S
d−1
1 )

∫

Σ

∫ ∞

η

h0(r, ς) r
d−1 dr dm(ς) = cP

∫

X\((−η,η)×Rd−1×Σ)

f dµX .

To handle the contribution from r ∈ [0, η], note that

hρ(r, ς) ≤ Bρ−d(d−1)

∫

Sd−1
1

I
(
r‖(x1, ρ−dx2, . . . , ρ−dxd)‖ ≤ R

)
dω1(x)

≤ CB
(R
r

)d−1

,

where C > 0 only depends on d. (This bound is accurate for (R/r)ρd small,
otherwise wasteful.) It follows that

lim sup
j→∞

ρ
d(d−1)
j

∑

q∈P\{qj}

I(‖ρd−1
j q‖ < η)hρj (ρ

d−1
j ‖q − qj‖, ς(q))

≤ lim sup
j→∞

CBRd−1ρd−1
j

∑

q∈P\{qj}

‖q‖<ηρ1−d
j

‖q − qj‖1−d

≤ lim sup
j→∞

2d−1CBRd−1ρd−1
j

∑

q∈P

2‖qj‖<‖q‖<ηρ1−d
j

‖q‖1−d ≤ C′η,

where C′ is a constant which only depends on P , B,R. Here we used (2.23) in the
second inequality, and for the third inequality we used [P1] and a dyadic decom-
position of the relevant annulus. Adding the two bounds it follows that the right
hand side of (2.24) is bounded above by cP

∫
X f dµX + C′η. This is true for each

η ∈ (0, R); hence we conclude that (2.22) holds, and the lemma is proved. �

Next we will prove a lemma saying that for ρ small, each point in PT (ρ) is well
separated from all other points in P , when measured in the length scale of ρ. For
q ∈ Rd we set

dP(q) = inf{‖p− q‖ : p ∈ P \ {q}}.(2.27)

Lemma 2.16. For any T ≥ 1, the quantity infq∈PT (ρ) dP(q)/ρ tends to ∞ as
ρ→ 0.

Proof. Assume the opposite; then there exist a constant C > 0 and sequences
(ρn) and (qn) such that ρn → 0, qn ∈ PT (ρn), and dP(qn) < Cρn for all n. Passing

to a subsequence we may also assume ς(qn) → ς ∈ Σ′. Fix any λ ∈ Pac(S
d−1
1 ). Then
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µ
(λ)
ρn,qn

w−−→ µς as n → ∞, by [P2]. For ε > 0 set Bε = (−ε, ε) × Bd−1
C × Σ. Then

µX (∂Bε) = 0, and thus
∫
Ns(X )#(Y ∩ ∂Bε) dµς(Y ) = 0, by Lemma 2.15. Hence

µ(λ)
ρn,qn

({
Y ∈ Ns(X ) : Y ∩Bε = ∅

})
→ µς

({
Y ∈ Ns(X ) : Y ∩Bε = ∅

})
.(2.28)

But for each n there is some pn ∈ P \{qn} with ‖pn−qn‖ < Cρn; hence if Cρ
d
n < ε

then (pn − qn)R(v)Dρn ∈ (−ε, ε) × Bd−1
C for all v ∈ Sd−1

1 . It follows that the left
hand side of (2.28) is zero for all large n; hence also the right hand side must be
zero, and so

∫
Ns(X )#(Y ∩ Bε) dµς(Y ) ≥ 1 for all ε > 0. For ε small this yields a

contradiction against Lemma 2.15. �

The following lemma will be used later to show that the scatterers centered at
the points in the exceptional set E ⊂ P play a negligible role in the the Lorentz
process for the scatterer configuration P , as ρ→ 0.

Lemma 2.17. Let T ≥ 1, λ ∈ Pac(S
d−1
1 ), and let B ⊂ Rd be a bounded Borel

set. Then

λ({v ∈ Sd−1
1 : E ∩ (q +BD−1

ρ R(v)−1) 6= ∅}) → 0(2.29)

as ρ→ 0, uniformly over all q ∈ PT (ρ).
Proof. Enlarging B, we may assume B = BdR for some R > 1. Also by

a standard approximation argument, it suffices to prove (2.29) for those λ which
have a continuous density with respect to ω; and thus in fact it suffices to prove
(2.29) for the single case λ = ω1, normalized Lebesgue measure on Sd−1

1 .
Let T ≥ 1 and ε > 0 be given. Take 0 < r < 1 so small that cP vol(Bdr ) < ε.

Using then Lemma 2.15, [P2], and the same line of reasoning as in the proof of
Lemma 2.16, it follows that for each T ′ ≥ 1 there is some ρ0 ∈ (0, 1) such that

λ({v ∈ Sd−1
1 : Qρ(q,v) ∩ (Bdr × Σ) 6= ∅}) < 2ε, ∀ρ ∈ (0, ρ0), q ∈ PT ′(ρ).

(2.30)

Set k = 2R/r > 2, T ′ = kd−1T , and B̃ := BdrD−1
k . Replacing ρ by kρ in

(2.30) and using the definition of Qρ(q,v) it follows that for all ρ ∈ (0, ρ0/k) and
q ∈ PT ′(kρ) = PT (ρ) we have

λ({v ∈ Sd−1
1 : P ∩ (q + B̃D−1

ρ R(v)−1) \ {q} 6= ∅}) < 2ε.(2.31)

Recall B = BdR; one verifies that |x1| ≥ k1 := (r/2)dR1−d for all x ∈ B \ B̃, and
hence

(B \ B̃)D−1
ρ ⊂ A(ρ) := BdRρ1−d \ Bdk1ρ1−d , ∀ρ > 0.(2.32)

Now for any ρ ∈ (0, ρ0/k) and q ∈ PT (ρ) we have, using (2.31), (2.32) and E ⊂
P \ {q},

λ({v ∈ Sd−1
1 : E ∩ (q +BD−1

ρ R(v)−1) 6= ∅})
(2.33)

< 2ε+
∑

p∈E∩(q+A(ρ))

λ
({
v ∈ Sd−1

1 : p ∈ q +BD−1
ρ R(v)−1

})
.

But if p ∈ q + BD−1
ρ R(v)−1 then p has distance < Rρ from the line q + Rv; and

if also p ∈ q + A(ρ) then the angle ϕ(v,p − q) between the vectors v and p − q
satisfies sinϕ(v,p−q) < (R/k1)ρ

d. The measure of the set of such points v ∈ Sd−1
1
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with respect to λ = ω1 is bounded above by C1ρ
d(d−1), where C1 depends on d,R, r

but not on ρ or p. Hence (2.33) is

≤ 2ε+#(E ∩ (q + BdRρ1−d)) · C1ρ
d(d−1) ≤ 2ε+#(E ∩ Bd(T+R)ρ1−d) · C1ρ

d(d−1),

and using the fact that E has asymptotic density zero (cf. [P2]), this number is seen
to be < 3ε for all sufficiently small ρ. �

Remark 2.6. It follows from Lemma 2.17 that our key assumption, [P2], re-
mains valid if we change the marking of the E-points in an arbitrary way in the
definition of Qρ(q,v). In precise terms, if ς ′ is any map P → Σ which has the same
restriction as ς to P \ E , and if

P̃ ′ = {(p, ς ′(p)) : p ∈ P}, P̃ ′
q = P̃ ′ \ ({q} × Σ), Q′

ρ(q,v) = (P̃ ′
q − q)R(v)Dρ,

and if µ
′(λ)
q,ρ ∈ P (Ns(X )) is the distribution of Q′

ρ(q,v) for v random in (Sd−1
1 , λ),

then

µ′(λ)
q,ρ

w−−→ µς(q) as ρ→ 0, uniformly over all q ∈ PT (ρ).(2.34)

The same statement also holds if we remove some or all E-points in the definition

of P̃ ′
q.
In particular, we may choose ς ′ so that ς ′(p) ∈ Σ′ for all p ∈ E . Then in fact we

have ς ′(p) ∈ Σ′ for all p ∈ P , i.e. ς ′ can be viewed as a map from P to Σ′. In this
case, using Lemma 2.8 and (2.34) we see by direct inspection that all the assump-
tions in Section 2.3 remain true if we replace 〈P ,Σ, ς,m, E〉 by 〈P ,Σ′, ς ′,m|Σ′ , E〉.
Note also that Σ′ = {ς ′(q) : q ∈ P \ E}, since ς ′(q) = ς(q) for all q ∈ P \ E . In
other words, after having replaced 〈P ,Σ, ς,m, E〉 by 〈P ,Σ′, ς ′,m|Σ′ , E〉, the following
condition is satisfied:

Σ = Σ′ = {ς(q) : q ∈ P \ E}.(2.35)

In view of Remark 2.6, we may assume without loss of generality that (2.35)
holds. We will make this assumption in Sections 2.5 – 4.6, in addition to the
hypotheses [P1-3] and [Q1-3] as stated in Section 2.3.

2.5. A limiting process for macroscopic initial conditions

As a complement to our key limit assumption [P2] we also need to understand
the limit of Qρ(ρ

1−dq,v) when (q,v) is taken random in T1(Rd) with respect to

an arbitrary probability measure Λ ∈ Pac(T
1(Rd)). We will show in Theorem 2.19

that this limit exists and is independent of Λ. To simplify notation, we will in the
following use the shorthand dq = dvol(q) and dv = dω(v).

We start by defining, in (2.37) below, the limit process, which is an explicit
function of the point processes Ξς . The construction depends on the choice of a real
constant c and a nonempty bounded open set D ⊂ Rd−1 with boundary of Lebesgue
measure zero; we consider these to be fixed once and for all in the following. The
fact that the limit process which we define in (2.37) is independent of c and D

is far from obvious, but will follow from the proof of Theorem 2.19, where c and
D are used in the construction of a certain decomposition of the distribution of
Qρ(ρ

1−dq,v).
For τ > 0, let Cτ be the open cylinder

Cτ = (c, c+ τ)×D
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in Rd. For any fixed ς ∈ Σ and x ∈ Rd we write Ξς := Ξς ∪ {(0, ς)}, let µς be the

distribution of Ξς , and let µ
(x)
ς be the distribution of Ξς + x. Thus for any Borel

subset A ⊂ Ns(X ) we have µ
(x)
ς (A) = µς({Y : Y(x,ς) ∈ A}), where

Y(x,ς) := (Y + x) ∪ {(x, ς)}.
From now on and throughout the rest of the paper, it will be convenient to

allow the following abuse of notation: For any subsets A ⊂ Rd and B ⊂ X , we write
“A ∩ B” or “B ∩ A” for B ∩ (A × Σ). In particular in the following proposition,
“Y ∩ Cτ” denotes Y ∩ (Cτ × Σ).

Proposition 2.18.

cP

∫

Σ

∫ ∞

0

∫

D

µ(c+τ,b)
ς

({
Y ∈ Ns(X ) : Y ∩ Cτ = ∅

})
db dτ dm(ς) = 1.(2.36)

The proof of the proposition is given below. We remark that the integrand in
(2.36) is a continuous function of 〈ς, τ, b〉 ∈ Σ × R>0 × D; cf. Lemma 2.21 below
(applied with f ≡ 1).

We now define µ ∈ P (Ns(X )) by setting, for any Borel set A ⊂ Ns(X ),

µ(A) = cP

∫

Σ

∫ ∞

0

∫

D

µ(c+τ,b)
ς

({
Y ∈ Ns(X ) : Y ∩ Cτ = ∅ and Y ∈ A

})
db dτ dm(ς).

(2.37)

By Proposition 2.18, µ is indeed a Borel probability measure on Ns(X ). We denote
by Ξ a point process in X with distribution µ; we will call Ξ the macroscopic limit
process. In Proposition 2.27 in the next section we will deduce from (2.37) that Ξ
is compatible with the microscopic limit processes Ξς in the sense that the Palm
distributions of Ξ are given by the distributions of the appropriate translates of the
Ξς ’s.

The following is the main result of this section. For Λ ∈ P (T1(Rd)), let µ
(Λ)
ρ

be the distribution of Qρ(ρ
1−dq,v) for (q,v) random in (T1(Rd),Λ).

Theorem 2.19. Let Λ ∈ Pac(T
1(Rd)). Then µ

(Λ)
ρ

w−−→ µ as ρ→ 0.

The rest of this section is devoted to the proof of Proposition 2.18 and Theorem
2.19. We start by explaining the main ideas in the proof of Theorem 2.19. Let
Λ ∈ Pac(T

1(Rd)) be given, and let Λ′ ∈ L1(T1(Rd)) be the density of Λ with
respect to dq dv. Our task is to prove that for any fixed f ∈ Cb(Ns(X )), the
integral

(2.38)

∫

T1(Rd)

f(Qρ(ρ
1−dq,v)) Λ′(q,v) dq dv

= ρd(d−1)

∫

Sd−1
1

∫

Rd

f(Qρ(q,v)) Λ
′(ρd−1q,v) dq dv

tends to
∫
Ns(X ) f dµ as ρ → 0. In (2.38), we wish to express Qρ(q,v) in terms of

Qρ(q
′,v) for some appropriate choice of a point q′ in P , since we will then have a

hope of applying [P2] to get hold of the limit as ρ→ 0. The point q′ must of course
depend on q.

Our way to define q′ is similar to the free path length problem for the Lorentz
process, but working with the flat scatterer −ρ({0}×D)R(v)−1 (this is a relatively
open set contained in the orthogonal complement of v, of size proportional to ρ),
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and starting at the point q + cρ1−dv instead of q: For each q ∈ Rd and v ∈ Sd−1
1 ,

we define

τρ(q,v) := inf
{
ξ > 0 : q + (c+ ξ)ρ1−dv ∈ P − ρ({0} ×D)R(v)−1

}
.(2.39)

This is a well-defined number in R>0 ∪ {+∞}. For generic q and v we have τ =
τρ(q,v) < ∞, and there exist unique points q′ ∈ P and b ∈ D such that q + (c +
τ)ρ1−dv = q′ − ρ(0, b)R(v)−1, or equivalently,

q = q′ − (c+ τ, b)D−1
ρ R(v)−1.(2.40)

Let us write

Qρ(q,v) = (P̃ − q)R(v)Dρ.

(Thus Qρ(q,v) ⊇ Qρ(q,v), with equality unless q ∈ P .) Now for any q and q′

related by (2.40), if q /∈ P then

Qρ(q,v) = Qρ(q,v) = (P̃ − q)R(v)Dρ = Qρ(q
′,v) + (c+ τ, b),

and one verifies that in the above construction, q′ ∈ P arises from a given point
q ∈ Rd if and only if Qρ(q

′,v) + (c + τ, b) is disjoint from Cτ . Hence, using
(2.40) to replace the integration variable q by τ and b, and ignoring effects from
overlapping scatterers and the possibility that τρ(q,v) = ∞, the integral in (2.38)
can be rewritten as

ρd(d−1)

∫

Sd−1
1

∑

q′∈P

∫ ∞

0

∫

D

I
((

Qρ(q
′,v) + (c+ τ, b)

)
∩ Cτ = ∅

)
(2.41)

× f
(
Qρ(q

′,v) + (c+ τ, b)
)
Λ′(ρd−1q,v) db dτ dv.

With this, we have achieved the goal of expressing the integral using only point sets
Qρ(q

′,v) with q′ in P . Now, after moving the integration over v to the innermost

position in (2.41), and recalling the above definition of µ
(x)
ς ∈ P (Ns(X )), [P2]

heuristically suggests that for ρ small, (2.41) should be approximately equal to
(using also ρd−1q ≈ ρd−1q′ − (c+ τ)v):

ρd(d−1)
∑

q′∈P

∫ ∞

0

∫

D

(∫

Ns(X )

I
(
Y ∩ Cτ = ∅

)
f(Y ) dµ

(c+τ,b)
ς(q′) (Y )

)

× Λ̃
(
ρd−1q′ − (c+ τ)v

)
db dτ

with Λ̃(y) :=
∫
Sd−1
1

Λ′(y,v) dv. Finally, moving the summation over q′ inside the

first two integrals, Lemma 2.7 suggests that as ρ→ 0, the above expression should
tend to

∫ ∞

0

∫

D

cP

∫

Σ

∫

Ns(X )

I
(
Y ∩ Cτ = ∅

)
f(Y ) dµ(c+τ,b)

ς (Y ) dm(ς) db dτ.

This equals
∫
Ns(X )

f dµ, the desired limit!

It remains to make the above discussion rigorous. We will start by proving
several auxiliary results.
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For x ∈ Rd and λ ∈ P (Sd−1
1 ), let µ

(x,λ)
q,ρ be the distribution of Qρ(q,v) + x for

v random in (Sd−1
1 , λ). Given any f ∈ Cb(Ns(X )) and τ > 0, define the function

f (τ) : Ns(X ) → R through

f (τ)(Y ) := I
(
Y ∩ Cτ = ∅

)
f(Y ).(2.42)

Note that with this definition, the integrand in (2.41) equals f (τ)
(
Qρ(q

′,v) + (c+

τ, b)
)
.

Lemma 2.20. Let T ≥ 1 and λ ∈ Pac(S
d−1
1 ); let C be a compact subset of Rd,

and let f ∈ Cb(Ns(X )) and ξ1 > 0. Then µ
(x,λ)
q,ρ (f (τ)) − µ

(x)
ς(q)(f

(τ)) → 0 as ρ → 0,

uniformly over all q ∈ PT (ρ), x ∈ C, τ ∈ [0, ξ1].

Remark 2.7. In particular the lemma (applied with τ = 0) implies that

µ(x,λ)
q,ρ

w−−→ µ
(x)
ς(q) as ρ→ 0, uniformly over all q ∈ PT (ρ) and x ∈ C.(2.43)

It would be easy to give a more direct proof of (2.43); however in our proof of
Theorem 2.19 we need the more delicate convergence statement of Lemma 2.20.

Proof. Note that µ
(x,λ)
q,ρ (f (τ))−µ(x)

ς(q)(f
(τ)) = 0−0 = 0 whenever x ∈ Cτ ; hence

from now on we assume x /∈ Cτ . By a standard subsequence argument, it suffices
to prove that given any ρn ∈ (0, 1), qn ∈ PT (ρn), τn ∈ [0, ξ1] and xn ∈ C \ Cτn
(n = 1, 2, . . .) such that limn→∞ ρn = 0 and such that the limits

ς := lim
n→∞

ς(qn) ∈ Σ, τ := lim
n→∞

τn ∈ R, x := lim
n→∞

xn ∈ C ⊂ Rd

all exist, then

µ(xn,λ)
qn,ρn

(f (τn))− µ
(xn)
ς(qn)

(f (τn)) → 0 as n→ ∞.(2.44)

Using xn ∈ C \ Cτn and the definitions of µ
(x,λ)
q,ρ and µ

(x)
ς , (2.44) is seen to be

equivalent to

µ(λ)
qn,ρn

(fn)− µς(qn)
(fn) → 0 as n→ ∞,(2.45)

where

fn(Y ) := I
(
(Y + xn) ∩ Cτn = ∅

)
f
(
Y(xn,ς(qn))

)
.

Define F : Ns(X ) → R through

F (Y ) := I
(
(Y + x) ∩ Cτ = ∅

)
f(Y(x,ς)).

Note that for any Y, Y1, Y2, . . . ∈ Ns(X ), if Yn → Y , (0, ς) /∈ Y and (Y+x)∩∂Cτ = ∅,
then fn(Yn) → F (Y ) as n→ ∞. Hence, using also µ

(λ)
qn,ρn

w−−→ µς (cf. [P2]) and the
fact that

µς
({
Y ∈ Ns(X ) : (0, ς) /∈ Y and (Y + x) ∩ ∂Cτ = ∅

})
= 1

by Lemma 2.15, it follows that µ
(λ)
qn,ρn(fn) → µς(F ) as n→ ∞. (Indeed, apply [35,

Thm. 4.27] and then consider the expected value.) Similarly, using µς(qn)
w−−→ µς ,

we also have µς(qn)
(fn) → µς(F ) as n→ ∞. Hence (2.45) holds, and the lemma is

proved. �

Lemma 2.21. Fix f ∈ Cb(Ns(X )) and define f (τ) as in (2.42). Then 〈ς,x, τ〉 7→
µ
(x)
ς (f (τ)) is a continuous function on {〈ς,x, τ〉 ∈ Σ× Rd × R≥0 : x /∈ Cτ}.
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Proof. This is an immediate modification of the proof of Lemma 2.20. �

In the following proposition, we will prove the desired limit statement for the
following truncated version of the expression in (2.38):

Jρ(f, T1) := ρd(d−1)

∫

Sd−1
1

∫

Rd

I(τρ(q,v) < T1) f(Qρ(q,v)) Λ
′(ρd−1q,v) dq dv,

(2.46)

for any fixed T1 > 0.

Proposition 2.22. For any Λ ∈ Pac(T
1(Rd)), f ∈ Cb(Ns(X )) and T1 > 0,

lim
ρ→0

Jρ(f, T1) = cP

∫

Σ

∫ T1

0

∫

D

∫

Ns(X )

I(Y ∩ Cτ = ∅)f(Y ) dµ(c+τ,b)
ς (Y ) db dτ dm(ς).

(2.47)

Proof. Without loss of generality we may assume Λ′ ∈ Cc(T
1(Rd)), since

Cc(T
1(Rd)) is dense in L1(T1(Rd)).
Let us note that the definition of τρ(q,v), (2.39), can be equivalently expressed

as

τρ(q,v) = inf
{
ξ > 0 : Qρ(q,v) ∩ Cξ 6= ∅

}
.

Thus for any (q,v) ∈ T1(Rd) satisfying τ = τρ(q,v) < ∞, there exists a point
p ∈ P such that (p − q)R(v)Dρ ∈ {c + τ} ×D. If this point is unique, we call it
zρ(q,v). In the remaining cases (viz., when τ = ∞ or there are at least two points
p ∈ P with (p− q)R(v)Dρ ∈ {c+ τ} ×D) we take zρ(q,v) to be undefined. Thus

for each ρ ∈ (0, 1) we have defined a function zρ from T1(Rd) to P ⊔ {undef}.
Let SP be the set of v ∈ Sd−1

1 such that the inner products p · v for p ∈ P
are pairwise distinct. Then ω(Sd−1

1 \ SP) = 0, and for every v ∈ SP we have
zρ(q,v) ∈ P for all q ∈ Rd with τρ(q,v) < ∞ (since v ∈ SP implies that the
points (p − q)R(v)Dρ for p ∈ P have pairwise distinct e1-coordinates). Also

Qρ(q,v) = Qρ(q,v) for almost all (q,v). Therefore,

Jρ(f, T1) = ρd(d−1)
∑

q′∈P

∫

Sd−1
1

∫

Rd

I
(
τρ(q,v) < T1 and zρ(q,v) = q

′
)

(2.48)

×f(Qρ(q,v)) Λ
′(ρd−1q,v) dq dv.

Recall here that zρ(q,v) = q′ implies that there is some b ∈ D such that (q′ −
q)R(v)Dρ = (c+ τ, b) with τ = τρ(q,v), or equivalently:

q = q′ − (c+ τ, b)D−1
ρ R(v)−1 = q′ −

(
ρ1−d(c+ τ), ρb

)
R(v)−1.(2.49)

Conversely for any given q′ ∈ P , v ∈ SP , b ∈ D, τ > 0 and ρ ∈ (0, 1), if q is given
by (2.49) then the two relations τρ(q,v) = τ and zρ(q,v) = q′ hold if and only if

Qρ(q,v) ∩ Cτ = ∅. Hence, using also detD−1
ρ R(v)−1 = 1, it follows that

(2.50) Jρ(f, T1) = ρd(d−1)
∑

q′∈P

∫

Sd−1
1

∫ T1

0

∫

D

I
(
Qρ(q,v) ∩ Cτ = ∅

)

× f(Qρ(q,v)) Λ
′(ρd−1q,v) db dτ dv,
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with q as in (2.49). Note here that

Qρ(q,v) = Qρ(q
′,v) + (c+ τ, b).

Take R > 0 such that suppΛ′ ⊂ BdR × Σ, and set

T := R+ |c|+ T1 + sup
b∈D

‖b‖.

Note that (2.49) implies ‖q′ − q‖ < (|c+ τ |+supb∈D ‖b‖)ρ1−d; hence every q′ ∈ P
which gives a nonzero contribution to the sum in (2.50) satisfies ‖q′‖ < Tρ1−d.
Using the fact that E has asymptotic density zero (cf. [P2]), we then see that
restricting the sum in (2.50) to q′ ∈ PT (ρ) gives an error which tends to 0 as
ρ → 0. Furthermore, ρd−1q = ρd−1q′ − (c + τ, ρdb)R(v)−1 has distance ≪ ρd

from ρd−1q′ − (c+ τ)v; hence using #PT (ρ) ≪ ρ−d(d−1) (cf. [P1]) and the uniform
continuity of Λ′, and writing q in place of q′, we obtain

(2.51)

Jρ(f, T1) = ρd(d−1)
∑

q∈PT (ρ)

∫ T1

0

∫

D

∫

Sd−1
1

I
(
(Qρ(q,v)+(c+τ, b))∩Cτ = ∅

)

× f(Qρ(q,v) + (c+ τ, b)) Λ′(ρd−1q − (c+ τ)v,v) dv db dτ + o(1).

Here o(1) denotes a term that tends to zero as ρ→ 0.
Given any q ∈ PT (ρ), τ ∈ [0, T1] and b ∈ D, we set y = ρd−1q, x = (c + τ, b)

and ξ = c+ τ ; then the innermost integral in (2.51) can be expressed as
∫

Sd−1
1

f (τ)
(
Qρ(q,v) + x

)
Λ′(y − ξv,v) dv,(2.52)

with f (τ)(Y ) := I
(
Y ∩ Cτ = ∅

)
f(Y ) as in Lemma 2.20. For any y ∈ Rd and ξ ∈ R

we write

DΛ(y, ξ) :=

∫

Sd−1
1

Λ′
(
y − ξv,v

)
dv.

Then if DΛ(y, ξ) > 0, the integral in (2.52) equals DΛ(y, ξ)µ
(x,λ)
q,ρ (f (τ)), with λ ∈

P (Sd−1
1 ) given by

dλ(v) := DΛ(y, ξ)
−1Λ′(y − ξv,v) dv.(2.53)

Hence by Lemma 2.20, for any fixed y ∈ Rd and ξ ∈ R, we have
∫

Sd−1
1

f (τ)(Qρ(q,v) + x) Λ
′(y − ξv,v) dv −DΛ(y, ξ)µ

(x)
ς(q)(f

(τ)) → 0(2.54)

as ρ → 0, uniformly over all q ∈ PT (ρ), x ∈ [c, c + T1] × D and τ ∈ [0, T1].
Of course this convergence holds also when DΛ(y, ξ) = 0, trivially. By a standard
compactness argument, using Λ′ ∈ Cc, the same convergence statement is upgraded
to also hold uniformly over all y ∈ Rd and ξ ∈ [c, c+ T1]. Using this fact in (2.51),
and again using #PT (ρ) ≪ ρ−d(d−1), we conclude

Jρ(f, T1) = o(1) + ρd(d−1)
∑

q∈PT (ρ)

F (ρd−1q, ς(q)),(2.55)
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where F : X → R is given by

F (y, ς) =

∫ T1

0

∫

D

DΛ(y, c+ τ)µ(c+τ,b)
ς (f (τ)) db dτ.

It follows from Lemma 2.21 that F is a continuous function on X . Also F has
compact support since Λ′ has compact support; in fact, using suppΛ′ ⊂ BdR × Σ it
follows that suppF ⊂ BdR+T1

×Σ, and hence the sum in (2.55) remains unchanged if
we replace the summation range by P \E ; and since E has asymptotic density zero,
we can change this further to P at the price of an o(1) error. Hence by Lemma 2.7,

lim
ρ→0

Jρ(f, T1) = cP

∫

X

F dµX .(2.56)

Finally, using
∫
Sd−1
1

∫
Rd Λ

′ dy dv = 1 it follows that
∫
Rd DΛ(y, ξ) dy = 1 for every

ξ ∈ R. Hence

cP

∫

X

F dµX = cP

∫

Σ

∫ T1

0

∫

D

µ(c+τ,b)
ς (f (τ)) db dτ dm(ς),

and the proposition is proved. �

The following lemma is a simple consequence of the assumption [P3].

Lemma 2.23. For any bounded Borel set B ⊂ Rd,

lim
ξ→∞

lim sup
ρ→0

[vol×ω]
({

(q,v) ∈ B × Sd−1
1 : Qρ(ρ

1−dq,v) ∩ Cξ = ∅
})

= 0.(2.57)

Proof. Fix y ∈ Rd−1 and r > 0 so that D contains y + Bd−1
r , and set x =

(c,y) ∈ Rd. Then Cξ contains x + (0, ξ) × Bd−1
r . Noticing also Qρ(q,v) − x =

Qρ(q + xD
−1
ρ R(v)−1,v) it follows that the set considered in (2.57) is a subset of

{
(q,v) ∈ B × Sd−1

1 : Qρ

(
ρ1−dq + xD−1

ρ R(v)−1,v
)
∩ ((0, ξ)× Bd−1

r ) = ∅
}
.

Here ‖xD−1
ρ R(v)−1‖ ≤ ρ1−d‖x‖; hence by Fubini the measure considered in (2.57)

is bounded above by

M(ρ, ξ) := [vol×ω]
({

(q,v) ∈ B′ × Sd−1
1 : Qρ(ρ

1−dq,v) ∩ ((0, ξ)× Bd−1
r ) = ∅

})
,

where B′ is the ‖x‖-neighbourhood of B; this is still a bounded subset of Rd.
Now note (0, ξ) × Bd−1

r = Zrd−1ξD
−1
r , and Qρ(q,v)Dr = Qrρ(q,v). Hence the

assumption [P3] implies limξ→∞ lim supρ→0M(ρ, ξ) = 0, and the lemma is proved.
�

Proof of Proposition 2.18. Fix any Λ ∈ P (T1(Rd)) having a density Λ′ ∈
Cc(T

1(Rd)) with respect to dq dv. By Proposition 2.22, the left hand side of (2.36)
equals limT1→∞ limρ→0 Jρ(1, T1). Also by Lemma 2.23,

lim
T1→∞

lim sup
ρ→0

ρd(d−1)

∫

T1(Rd)

I(τρ(q,v) ≥ T1) Λ
′(ρd−1q,v) dq dv = 0,(2.58)

and hence recalling (2.46) we have

lim
T1→∞

lim
ρ→0

Jρ(1, T1) = lim
ρ→0

ρd(d−1)

∫

T1(Rd)

Λ′(ρd−1q,v) dq dv = 1.

�
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Proof of Theorem 2.19. It suffices to prove that for any given f ∈ Cb(Ns(X )),

µ
(Λ)
ρ (f) → µ(f), or in other words,

lim
ρ→0

ρd(d−1)

∫

T1(Rd)

f(Qρ(q,v)) Λ
′(ρd−1q,v) dq dv = µ(f).(2.59)

Without loss of generality we may assume Λ′ ∈ Cc(T
1(Rd)). Now (2.59) follows by

taking T1 → ∞ in Proposition 2.22 and changing the order of limits; this is justified
by (2.58). �

Remark 2.8. We used assumption [P3] for the derivation of Theorem 2.19; cf.
Lemma 2.23. On the other hand, let us note that if the statement of Theorem

2.19 holds for some fixed µ ∈ P (Ns(X )), i.e. µ
(Λ)
ρ

w−−→ µ as ρ → 0 for each fixed
Λ ∈ Pac(T

1(Rd)), and if furthermore µ({∅}) = 0, then the condition [P3] must hold.
Indeed, µ({∅}) = 0 implies that for any ε > 0 there exists R > 0 such that

µ({Y : Y ∩ ((−R,R)× Bd−1
R × Σ) = ∅}) < ε.(2.60)

Also Theorem 2.19 implies that µ is invariant under translations and under {Dr}r>0

(cf. the proof of Proposition 2.24 below); hence from (2.60) it follows that

µ(Aξ) < ε with Aξ = {Y : Y ∩ (Zξ × Σ) = ∅}, ξ = 2Rd.(2.61)

But Aξ is a closed subset ofNs(X ); hence µ
(Λ)
ρ

w−−→ µ implies lim supρ→0 µ
(Λ)
ρ (Aξ) ≤

µ(Aξ) < ε. Applying this for Λ = (vol×ω)(B)−1(vol×ω)|B and ε → 0, it follows
that [P3] holds.

2.6. Properties of the point process Ξ

In this section we prove some important properties of the point process Ξ with
distribution µ defined by (2.37). Our first result is that µ is invariant under the
group generated by translations, {Dr} and SO(d− 1).

Proposition 2.24. For any Borel subset A ⊂ Ns(X ), x ∈ Rd, r > 0 and
k ∈ SO(d− 1),

µ(A) = µ(A + x) = µ(ADr) = µ(Ak).

Proof. To prove translation invariance we prove that for any f ∈ Cb(Ns(X ))
and x ∈ Rd, if fx(Y ) := f(Y + x) then µ(fx) = µ(f). Take any Λ ∈ P (T1(Rd))
with Λ′ ∈ Cc(T

1(Rd)); then by Theorem 2.19,

µ(fx) = lim
ρ→0

∫

T1(Rd)

f
(
Qρ(ρ

1−dq,v) + x
)
Λ′(q,v) dq dv.

Writing xρ := (x1, ρ
dx2, . . . , ρ

dxd) we have Qρ(ρ
1−dq,v) + x = Qρ(ρ

1−d(q −
xρR(v)

−1),v) for almost all (q,v); hence we get

µ(fx) = lim
ρ→0

∫

T1(Rd)

f
(
Qρ(ρ

1−dq,v)
)
Λ′(q + xρR(v)

−1,v) dq dv,

= lim
ρ→0

∫

T1(Rd)

f
(
Qρ(ρ

1−dq,v)
)
Λ′(q + x1v,v) dq dv = µ(f),

where the second equality follows using limρ→0 xρ = x1e1 and Λ′ ∈ Cc, and the
third equality follows by again using Theorem 2.19.
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The invariance under {Dr} is proved by a similar argument using Theorem 2.19
and
Qρ(ρ

1−dq,v)Dr = Qrρ(ρ
1−dq,v).

Finally let k ∈ SO(d − 1) and let A be a Borel set in Ns(X ). It follows from
Theorem 2.19 that the measure µ does not depend on the choice of D and c. In
particular, taking c = 0 and replacing D by Dk−1 in (2.37), we have

µ(A) = cP

∫

Σ

∫ ∞

0

∫

Dk−1

µ(τ,b)
ς

({
Y : Y ∩ ((0, τ) ×Dk−1) = ∅ and Y ∈ A

})

× db dτ dm(ς).

It follows from [Q1] and the definition of µ
(x)
ς that µ

(x)
ς (B) = µ

(xk)
ς (Bk) for all

Borel sets B ⊂ Ns(X ) and all ς ∈ Σ, x ∈ Rd. Hence the integrand in the previous
expression can be replaced by

µ(τ,bk)
ς

({
Y : Y ∩ Cτ = ∅ and Y ∈ Ak

})
,

and substituting now b = bnewk
−1 we obtain µ(A) = µ(Ak). �

Also the property [Q2] extends to Ξ:

Lemma 2.25. µ({Y ∈ Ns(X ) : ∃x1 ∈ R s.t. #(Y ∩ ({x1} × Rd−1)) > 1}) = 0.

Proof. Let A = {Y : ∃x1 ∈ R s.t. #(Y ∩ ({x1} × Rd−1)) > 1}. Then by

(2.37), applied with c = 0 for simplicity, it suffices to prove that µ
(τ,b)
ς (A) = 0 for

all ς ∈ Σ, τ > 0, b ∈ D. However it follows from the definitions of A and µ
(τ,b)
ς that

µ(τ,b)
ς (A) = µς

({
Y : Y ∈ A or Y ∩ ({0} × Rd−1 × Σ) 6⊂ {(0, ς)}

})
.

Hence µ
(τ,b)
ς (A) = 0 follows as a consequence of [Q2] and Lemma 2.15 (applied with

B = {0} × Rd−1 × Σ \ {(0, ς)}; recall also Σ′ = Σ; cf. (2.35)). �

Next we prove that the probability of Ξ having empty intersection with a large
ball is small (just as for Ξς ; cf. [Q3]).

Lemma 2.26. For every ε > 0 there is some R > 0 such that, for every x ∈ Rd,

µ({Y ∈ Ns(X ) : Y ∩ Bd(x, R) = ∅}) < ε.

Proof. By the translation invariance of µ (cf. Proposition 2.24), it suffices to
prove the claim for x = 0. Now by (2.37), our task is to prove

(2.62) lim
R→∞

∫

Σ

∫ ∞

0

∫

D

µ(c+τ,b)
ς

({
Y ∈ Ns(X ) : Y ∩ Cτ = ∅ and Y ∩ BdR = ∅

})

× db dτ dm(ς) = 0.

However it follows from the definition of µ
(x)
ς and [Q3] that the integrand in the

last expression tends pointwise to 0 as R → ∞. Hence (2.62) follows by Lebesgue’s
Dominated Convergence Theorem, using the majorant coming from Proposition
2.18. �

Let N be the Borel σ-algebra of Ns(X ). The next proposition shows (when
applied with A = Ns(X )) that the intensity measure of Ξ equals cP · µX , and

furthermore that the function X ×N → [0, 1], ((x, ς), A) 7→ µ
(x)
ς (A) gives the Palm

distributions of Ξ (cf. [34, Ch. 10]).
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Proposition 2.27. For any Borel sets B ⊂ X and A ⊂ Ns(X ),
∫

A

#(Y ∩B) dµ(Y ) = cP

∫

(x,ς)∈B

µ(x)
ς (A) dx dm(ς).

Proof. By (2.37), applied with c = 0, we have
∫

A

#(Y ∩B) dµ(Y )

= cP

∫

Σ

∫ ∞

0

∫

D

∫

A

I(Y ∩ Cτ = ∅)#(Y ∩B) dµ(τ,b)
ς (Y ) db dτ dm(ς)

= cP

∫

Σ

∫

R>0×D

∫

Ns(X )

I
(
Y(x,ς) ∈ A

)
I
(
Y(x,ς) ∩ Cx1 = ∅

)
(2.63)

×#(Y(x,ς) ∩B) dµς(Y ) dx dm(ς).

Now assume B ⊂ (0, η) ×D × Σ for some η > 0. Set D′ := D −D (this is an
open bounded subset of Rd−1), and Eη := {Y ∈ Ns(X ) : Y ∩ ((−η, 0)×D′) = ∅}.
Then for every (x, ς) ∈ B and Y ∈ Eη, if Y(x,ς) ∈ A then the integrand in the last
expression in (2.63) is ≥ 1. Also µς(Eη) ≥ 1 − cPη vol(D

′), by Lemma 2.15 (and
(2.35)). Hence

∫

A

#(Y ∩B) dµ(Y ) ≥ cP

∫

(x,ς)∈B

∫

Eη

I
(
Y(x,ς) ∈ A

)
dµς(Y ) dx dm(ς)

≥ cP

∫

(x,ς)∈B

(
µς

({
Y : Y(x,ς) ∈ A

})
− cPη vol(D

′)
)
dx dm(ς)

≥ cP

∫

(x,ς)∈B

µ(x)
ς (A) dx dm(ς)− c2Pη

2 vol(D′) vol(D).

On the other hand, for any x ∈ R>0 ×D, ς ∈ Σ and Y ∈ Ns(X ), note that

#(Y(x,ς) ∩B) ≤ I((x, ς) ∈ B) + #((Y + x) ∩B).(2.64)

Using B ⊂ (0, η)×D × Σ we see that every point in the intersection (Y + x) ∩B
must come from a point y ∈ Y with 0 < y1 + x1 < η and (y2, . . . , yd) ∈ D′. If the
integrand in (2.63) is non-zero then for this point y we also have y+x /∈ Cx1 ; thus
y + x ∈ B \ Cx1 , which forces 0 < x1 < η. Hence
∫

A

#(Y ∩B) dµ(Y ) ≤ cP

∫

(x,ς)∈B

∫

Ns(X )

I
(
Y(x,ς) ∈ A

)
dµς(Y ) dx dm(ς)

+ cP

∫

(0,η)×D×Σ

∫

Ns(X )

#((Y + x) ∩B) dµς(Y ) dx dm(ς)

≤ cP

∫

(x,ς)∈B

µ(x)
ς (A) dx dm(ς) + c2Pη

2 vol(D)2,

where we again used Lemma 2.15.
Let us write

δ(A,B) :=

∫

A

#(Y ∩B) dµ(Y )− cP

∫

(x,ς)∈B

µ(x)
ς (A) dx dm(ς).

We have proved above that if B ⊂ (0, η)×D× Σ then
∣∣δ(A,B)

∣∣ ≤ c2Pη
2 vol(D) vol(D′).(2.65)
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However from the definition of µ
(x)
ς and the fact that µ is translation invariant (cf.

Prop. 2.24), it follows that for any Borel sets B ⊂ X and A ⊂ Ns(X ), and any
x ∈ Rd,

δ(A+ x, B + x) = δ(A,B).(2.66)

Using this relation it follows in particular that (2.65) holds whenever B ⊂ (c, c+η)×
D×Σ for some c ∈ R. Furthermore δ(A,B) is additive in the second argument, i.e.

δ(A,∪kj=1Bj) =
∑k

j=1 δ(A,Bj) whenever B1, . . . , Bk are pairwise disjoint. Combin-

ing the last two facts one shows that for any η > 0 and k ∈ Z+, if B ⊂ (0, kη)×D×Σ
then ∣∣δ(A,B)

∣∣ ≤ kc2Pη
2 vol(D) vol(D′).(2.67)

Now given any Borel sets B ⊂ (0, 1) × D × Σ and A ⊂ Ns(X ), applying (2.67)
with η = 1/k and k → ∞ we conclude that δ(A,B) = 0. Finally this relation is
extended to hold for general B, again using (2.66) and the additivity of δ(A,B)
with respect to B (which also holds for any countable collection of pairwise disjoint
sets B1, B2, . . .). �





CHAPTER 3

First collisions

As a first step in our proof of a limiting Markov process and limiting evolution
equation, we will prove a result on the limiting joint distribution of the free path
length, impact parameter and the mark of the scatterer which is hit when starting
from random initial conditions. The precise statement is given in Theorem 3.6 in
Section 3.2 below.

Throughout this section we assume the hypotheses [P1-3] and [Q1-3] stated in
Section 2.3; we fix once and for all, a choice of a subset E ⊂ P as in [P2], and we
furthermore assume, without loss of generality, that (2.35) holds.

3.1. The transition kernel

Our first goal is to define the transition kernel, which is the limiting density
function appearing in Theorem 3.6. We will identify Rd−1 with the subspace {0}×
Rd−1 of Rd; in particular for x = (x1, . . . , xd) ∈ Rd we view interchangeably the
point x⊥ (cf. (2.19)) as (0, x2, . . . , xd) or (x2, . . . , xd). We extend x 7→ x⊥ to a
map on X through (x, ς) 7→ (x, ς)⊥ := (x⊥, ς). Thus X⊥ can be identified with
Rd−1 × Σ. We set

Ω := Bd−1
1 × Σ ⊂ X⊥.

We endow X⊥ with the measure

µΩ =
1

vd−1
volRd−1 ×m,(3.1)

where vd−1 = vol(Bd−1
1 ). Note that µΩ restricts to a probability measure on Ω. We

introduce the reflection map

ι : X → X , ι(x1,x, ς) = (x1,−x, ς) (x1 ∈ R, x ∈ Rd−1, ς ∈ Σ).(3.2)

Note that ι preserves X⊥ and Ω, and using our identifications we have ι(x, ς) =

(−x, ς) for (x, ς) ∈ X⊥. Recall that Zξ = (0, ξ) × Bd−1
1 , where in the following

ξ ∈ (0,∞]. Recall also the convention introduced in Section 2.5, that for A ⊂ Rd

and B ⊂ X , we write “A ∩ B” or “B ∩ A” for B ∩ (A × Σ). In a similar vein, we
may often speak of a point in X referring just to its Rd-component; for example,
for (x, ς) ∈ X we may call the number x · e1 “the e1-coordinate of (x, ς)”.

We now define the map

z : Ns(X ) → ∆ := (R>0 × Ω) ⊔ {undef}(3.3)

as follows. Given Y ∈ Ns(X ), let z = z(Y ) be that point in Y ∩ Z∞ which
has minimal e1-coordinate; if there does not exist a unique such point1 then let

1i.e., if Y ∩ Z∞ is empty or if there are two or more points in Y ∩ Z∞ with minimal e1-
coordinate.

43
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z(Y ) = undef. Here “undef” is a dummy element not in R>0×Ω and we provide ∆
with the disjoint union topology. The motivation for the definition of the map z is
that when working in the particle’s coordinate frame described at the beginning of
Section 1.1, as ρ→ 0, the scatterers are thin ellipsoids which approach codimension
one unit discs orthogonal to e1, centered at the points of Qρ(q,v). Hence, formally,
in the limit ρ→ 0, the point z(Qρ(q,v)) corresponds to the center of the scatterer
which the particle will next collide with.

Lemma 3.1. The map z is Borel measurable, and µς({Y ∈ Ns(X ) : z(Y −x) =
undef}) = 0 for all x ∈ Rd and ς ∈ Σ.

Proof. For any Borel subset B ⊂ R>0×Ω and 0 < r < s, we set Zr,s := Zs\Zr
and

A[r, s, B] := {Y ∈ Ns(X ) : Y ∩ Zr = ∅ and #(Y ∩ Zr,s) = #((Y ∩B) ∩ Zr,s) = 1}.

Then z−1(B) = ∪∞
N=1 ∩∞

n=N ∪∞
k=1A

[
k
n ,

k+1
n , B

]
, which is a Borel subset of Ns(X ).

Also z−1({undef}) = Ns(X )\z−1(R>0×Ω). Hence the map z is Borel measurable.
Next, using Z∞ + x ⊃ Bd

(
Re1 + xD

−1
R , R

)
DR (∀R > 0) together with [Q3], (2.35)

and Lemma 2.9, it follows that µς({Y : (Y − x) ∩ Z∞ = ∅}) = 0 for any x ∈ Rd

and ς ∈ Σ. The second statement of the lemma follows from this fact and [Q2]. �

Lemma 3.2. The distribution of the random point z(Ξς−x) in R>0×Ω depends
continuously on (x, ς) ∈ X⊥.

Proof. Let C be the set of all Y ∈ Ns(X ) which satisfy z(Y ) 6= undef and
Y ∩ ∂Z∞ = ∅. Using Lemma 3.1, Lemma 2.15 and (2.35), it follows that µς({Y :
Y − x ∈ C}) = 0 for all (x, ς) ∈ X⊥. Furthermore one verifies that the map z is
continuous at each point in C, i.e. z(Yn) → z(Y ) holds whenever Yn → Y in Ns(X )
with Y ∈ C. In view of these observations, the lemma follows from the generalized
continuous mapping theorem, [35, Thm. 4.27]. �

Given ω′ = (x, ς) ∈ X⊥, let us write κ(ω
′; ·) for the distribution of the random

point ι(z(Ξς − x)) in R>0 × Ω; thus for any Borel set B ⊂ R>0 × Ω,

κ((x, ς);B) := µς({Y ∈ Ns(X ) : ι(z(Y − x)) ∈ B}).(3.4)

By Lemma 2.15 and (2.35), κ(ω′;B) ≤ cPµX (B) = cPvd−1

∫
B dξ dµΩ(ω) for every

Borel set B ⊂ R>0 × Ω. We define k(ω′, ·, ·) to be the corresponding probability
density; that is, we define the function

k : X⊥ × R>0 × Ω → [0, cPvd−1](3.5)

so that for each ω′ ∈ X⊥, k(ω
′, ·, ·) is uniquely defined as an element in L1(R>0 ×

Ω, dξ dµΩ), and κ(ω
′, B) =

∫
B
k(ω′, ξ,ω) dξ dµΩ(ω) for all Borel sets B ⊂ R>0×Ω.

Lemma 3.3. We have κ(ω′; [ξ,∞) × Ω) → 0 as ξ → ∞, uniformly over all
ω′ ∈ X⊥.

Proof. Using Bd
(
Re1 + xD−1

R , R
)
DR ⊂ Z2Rd + x (∀R > 0) together with

[Q3], Lemma 2.9 and (2.35), we have µς({Y : (Y − x) ∩ Zξ = ∅}) → 0 as ξ → ∞,
uniformly over all x ∈ Rd and ς ∈ Σ′. �
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Lemma 3.4. Let Cb(R>0 ×Ω) be the space of bounded continuous functions on
R>0 × Ω, equipped with the supremum norm. The integral∫

R>0×Ω

f(y)κ(ω′; dy)(3.6)

depends continuously on 〈ω′, f〉 in X⊥ × Cb(R>0 × Ω).

Proof. By Lemma 3.2, the integral in (3.6) depends continuously on ω′ for any
fixed f ∈ Cb(R>0×Ω). Now the desired conclusion follows by also noticing that for
fixed ω′, the expression in (3.6) is a bounded linear functional of f ∈ Cb(R>0 ×Ω)
of norm at most 1. �

Remark 3.1. In terms of k, Lemma 3.4 says that the integral∫

R>0×Ω

f(ξ,ω)k(ω′, ξ,ω) dξ dµΩ(ω)

depends continuously on 〈ω′, f〉 in X⊥ × Cb(R>0 × Ω).

We next introduce the corresponding notions for the macroscopic limit point
process Ξ introduced in Section 2.5. Recall that we write µ ∈ P (Ns(X )) for the
distribution of Ξ. The result of Lemma 3.1 carries over to the present situation:

Lemma 3.5. We have µ({Y ∈ Ns(X ) : z(Y ) = undef}) = 0.

Proof. Using Z∞ ⊃ Bd(Re1, R)DR (∀R > 0) together with Lemma 2.26 and
Prop. 2.24 it follows that µ({Y : Y ∩ Z∞ = ∅}) = 0. The lemma follows from this
fact and Lemma 2.25. �

Let us write κg ∈ P (R>0 ×Ω) for the distribution of the random point ι(z(Ξ))
in R>0 × Ω. (The “g” stands for “generic initial condition”.) Thus for any Borel
set B ⊂ R>0 × Ω,

κg(B) := µ({Y ∈ Ns(X ) : ι(z(Y )) ∈ B}).(3.7)

By Proposition 2.27 (applied with A = Ns(X )),

κ(B) ≤ cPµX (B) = cPvd−1

∫

B

dξ dµΩ(ω)

for every Borel setB ⊂ R>0×Ω. Hence as before, we can consider the corresponding
probability density

kg : R>0 × Ω → [0, cPvd−1],(3.8)

so that κg(B) =
∫
B
kg(ξ,ω) dξ dµΩ(ω) for all Borel sets B ⊂ R>0 × Ω. Note that

kg is uniquely defined as an element in L1(R>0 × Ω, dξ dµΩ).

3.2. Limit theorem for the first collision

From now on, we will say that a scatterer Bd(q, ρ) (q ∈ P) is separated if
‖q′ − q‖ > 2ρ for all q′ ∈ P \ {q}. Recall that

w(ρ) = T1(K◦
ρ) ∪ T1(∂Kρ)out.

Let w(1; ρ) be the set of those initial conditions (q,v) ∈ w(ρ) which lead to a
collision with a separated scatterer in finite time, viz., those (q,v) ∈ w(ρ) which
have τ1(q,v; ρ) < ∞ and for which q + τ1(q,v; ρ)v lies on the boundary of a
separated scatterer. For (q,v) ∈ w(1; ρ) we write q(1) = q(1)(q,v; ρ) for the center
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of the scatterer causing the first collision, and let w1 = w1(q,v; ρ) ∈ Bd−1
1 be the

normalized impact parameter, defined through w1 := (u1R(v))⊥, where u1 ∈ Sd−1
1

is the point given by q + τ1(q,v; ρ)v = q(1) + ρu1. We then set:

ω1 = ω1(q,v; ρ) := (w1, ς(q
(1))) ∈ Ω.

Let U be an open subset of Sd−1
1 and β ∈ Cb(U,R

d). For q ∈ P and v random
in U , we will consider a point particle starting at the point

q(v) = qρ,β(v) := q + ρβ(v).(3.9)

To avoid pathologies, we assume that U,β are chosen such that (β(v)+R>0v)∩Bd1 =
∅ for all v ∈ U . We set

wβ
q,ρ = {v ∈ U : (qρ,β(v),v) ∈ w(1; ρ)}.(3.10)

The following theorem gives the joint limit distribution of ω1(q(v),v; ρ) and the
normalized free path length ρd−1τ1(q(v),v; ρ).

Theorem 3.6. Let U be an open subset of Sd−1
1 ; let K be a relatively compact

subset of Cb(U,R
d) such that (β(v)+R>0v)∩Bd1 = ∅ for all β ∈ K, v ∈ U , and let

λ ∈ Pac(S
d−1
1 ) be such that λ(U) = 1. Then for any T ≥ 1 and f ∈ Cb(U×R>0×Ω),

∫

w
β
q,ρ

f
(
v, ρd−1τ1(qρ,β(v),v; ρ),ω1(qρ,β(v),v; ρ)

)
dλ(v)

(3.11)

→
∫

U

∫ ∞

0

∫

Ω

f(v, ξ,ω)k
((
(β(v)R(v))⊥, ς(q)

)
, ξ,ω

)
dµΩ(ω) dξ dλ(v)

as ρ→ 0, uniformly over all q ∈ PT (ρ) and β ∈ K.

Remark 3.2. Taking f ≡ 1 and using
∫
R>0×Ω

k(ω′, ξ,ω) dξ dµΩ(ω) = 1 (∀ω′),

one sees that the theorem implies in particular that λ(wβ
q,ρ) → 1 as ρ→ 0, uniformly

over all q ∈ PT (ρ) and β ∈ K.

Remark 3.3. Let K be as in Theorem 3.6, and let K be the closure of K in
Cb(U,R

d); this is a compact subset of Cb(U,R
d), and clearly every β ∈ K satisfies

(β(v) + R>0v) ∩ Bd1 = ∅ for all v ∈ U . Hence when proving Theorem 3.6 we may
just as well replace K by K from the very beginning. Thus, in the following we
will assume that K is compact.

To prepare for the proof of the theorem, we introduce a slightly modified version
of the map z from Section 3.1. Let 0 < ρ < 1. For each x ∈ Z∞ we set

ξρ(x) = inf{ξ ∈ R>0 : x ∈ ξe1 + BdρDρ} ∈ R≥0.(3.12)

Note that BdρDρ is the ellipsoid {(x1/ρd)2 + x22 + · · · + x2d < 1}; hence we indeed

have ξρ(x) ∈ R≥0 for each x ∈ Z∞, with ξρ(x) = 0 if and only if x ∈ Z∞ ∩ BdρDρ.

Definition 3.1. The map

zρ : Ns(X ) → ∆ = (R>0 × Ω) ⊔ {undef}(3.13)
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is defined as follows. For given Y ∈ Ns(X ), if Y ∩Z∞∩BdρDρ = ∅ and if there exists
a unique point (x, ς) in Y ∩ (Z∞ × Σ) which minimizes ξρ(x), and if furthermore
this point satisfies

Y ∩ (x+ Bd2ρDρ) = {x},(3.14)

then set zρ(Y ) := (x, ς); otherwise set zρ(Y ) = undef.

We prove in Lemma 3.8 below that zρ is measurable. The motivation for the
definition of zρ is that both τ1(qρ,β(v),v; ρ) and ω1(qρ,β(v),v; ρ) can be expressed
as simple functions of zρ(Qρ(q,β,v)), where we recall that the point set Qρ(q,β,v)
was defined in (2.18). The precise statement is as follows.

Lemma 3.7. Let β ∈ K, q ∈ P, v ∈ U , ρ ∈ (0, 1), and assume that dP(q) >
(1+‖β‖)ρ and (x, ς) = zρ(Qρ(q,β,v)) 6= undef . Then v ∈ wβ

q,ρ, ρ
d−1τ1(qρ,β(v),v; ρ) =

ξρ(x) ∈ R>0, and ω1(qρ,β(v),v; ρ) = (−x⊥, ς).

Recall that we have provided Cb(U,R
d) with the supremum norm; thus ‖β‖ =

supu∈U ‖β(u)‖.

Proof. The assumptions (β(v) + R>0v) ∩ Bd1 = ∅ and dP(q) > (1 + ‖β‖)ρ
imply that either q(v) ∈ K◦

ρ or else q(v) lies on the boundary of the scatterer

Bd(q, ρ), which is separated, so that q(v) ∈ T1(∂Kρ)out. Hence (q(v),v) ∈ w(ρ).
Set Y = Qρ(q,β,v), so that (x, ς) = zρ(Y ) ∈ R>0 × Ω. Also set

q̃ := xD−1
ρ R(v)−1 + q(v).

Then q̃ ∈ P \{q} and ς(q̃) = ς , since (x, ς) ∈ Y = Qρ(q,β,v); cf. (2.18). It follows
from zρ(Y ) 6= undef that the line segment {ξe1 : ξ ∈ [0, ξρ(x)]} is disjoint from
all the open ellipsoids x′ + BdρDρ for (x′, ς ′) ∈ Y , but ξe1 ∈ x + BdρDρ holds for
each ξ > ξρ(x) which lies sufficiently near ξρ(x). Applying the affine linear map
y 7→ yD−1

ρ R(v)−1 + q(v), using also (β(v) + R>0v) ∩ Bd1 = ∅, it follows that

τ1(q(v),v; ρ) = ρ1−dξρ(x) and q(1)(q(v),v; ρ) = q̃.

Similarly, (3.14) implies that the scatterer associated to q̃ is separated, i.e. ‖q̃−p‖ >
2ρ for all p ∈ P \ {q̃}. Hence v ∈ wβ

q,ρ. Also q(v) + τ1v = q(1) + ρu1 implies

u1 = ρ−1(τ1v − xD−1
ρ R(v)−1), and so w1(q(v),v; ρ) = (u1R(v))⊥ = −x⊥. �

Lemma 3.8. For each 0 < ρ < 1, the map zρ : Ns(X ) → ∆ is Borel measurable.

Proof. For n ∈ Z+ and m ∈ Zd we let Cn,m ⊂ Rd be the cube Cn,m =

n−1(m + [0, 1)d), and set C
(ρ)
n,m = Cn,m + Bd2ρDρ. For any bounded Borel set

V ⊂ Rd, let

S(ρ)(V ) = ∪∞
N=1 ∩∞

n=N ∩m∈Zd{Y ∈ Ns(X ) : Y ∩ V ∩ Cn,m = ∅ or

#(Y ∩ V ∩ Cn,m) = #(Y ∩ C(ρ)
n,m)}.

This is clearly a Borel set in Ns(X ), and one verifies that Y lies in S(ρ)(V ) if and

only if Y ∩ (y + Bd2ρDρ) = {y} for every point y ∈ Y ∩ V . Next for any Borel set

B ⊂ R>0×Ω and 0 < r < s, we set Z
(ρ)
r = {x ∈ Z∞ : ξρ(x) < r}, Z(ρ)

r,s = Z
(ρ)
s \Z(ρ)

r ,
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and

A(ρ)[r, s, B] :=
{
Y ∈ Ns(X ) : Y ∩ Z(ρ)

r = ∅,
#(Y ∩ Z(ρ)

r,s ) = #((Y ∩B) ∩ Z(ρ)
r,s ) = 1, and Y ∈ S(ρ)(Z(ρ)

r,s )
}
.

Then z−1
ρ (B) = ∪∞

N=1 ∩∞
n=N ∪∞

k=1A
(ρ)

[
k
n ,

k+1
n , B

]
. Hence z−1

ρ (B) is a Borel set in

Ns(X ). Also z−1
ρ ({undef}) = Ns(X ) \ z−1

ρ (R>0 × Ω) is a Borel set. Hence the
lemma is proved. �

For 0 < ρ < 1, define the map Fρ : ∆ → ∆ through

Fρ(z) =

{
ι(ξρ(z), z⊥) if z ∈ R>0 × Ω

undef if z = undef .
(3.15)

Let U,β, λ be given as in Theorem 3.6. For v random in (U, λ|U ), we let η
(β,λ)
q,ρ ∈

P (U×∆) be the distribution of (v, [Fρ ◦zρ](Qρ(q,β,v))) and let η
(β,λ)
ς ∈ P (U×∆)

be the distribution of (v, [ι ◦ z](Ξς − (β(v)R(v))⊥)), with Ξς independent from v.

The key step in the proof of Theorem 3.6 is to show that η
(β,λ)
q,ρ converges weakly

to η
(β,λ)
ς(q) as ρ→ 0, uniformly over q ∈ PT (ρ) and β ∈ K. We will establish this in

Lemma 3.11. As a first step, we verify in the following lemma that η
(β,λ)
ς depends

continuously on ς and β.

Lemma 3.9. The map Σ× Cb(U,R
d) → P (U ×∆), (ς,β) 7→ η

(β,λ)
ς , is contin-

uous.

Proof. This is a consequence of Lemma 3.2. Indeed, given sequences βn → β

in Cb(U,R
d) and ςn → ς in Σ, and a function f ∈ Cb(U ×∆), our task is to prove

that

∫

U

∫

Ns(X )

f
(
v, [ι ◦ z](Y − (βn(v)R(v))⊥)

)
dµςn(Y ) dλ(v)

(3.16)

→
∫

U

∫

Ns(X )

f
(
v, [ι ◦ z](Y − (β(v)R(v))⊥)

)
dµς(Y ) dλ(v) as n→ ∞.

Call the inner integral in the left hand side gn(v), and the inner integral in the right
hand side g(v); then Lemma 3.2 implies that gn(v) → g(v) for each fixed v ∈ U .
Furthermore |gn(v)| ≤ sup |f | and |g(v)| ≤ sup |f | for all n and v. Hence (3.16)
follows by Lebesgue’s Dominated Convergence Theorem. �

In the proof of Lemma 3.11 we will apply the continuous mapping theorem for
the maps Fρ ◦ zρ : Ns(X ) → ∆ with ρ → 0. For this application we will need the
following continuity fact.

Lemma 3.10. Let Y, Y1, Y2, . . . ∈ Ns(X ) and ρ1, ρ2, . . . ∈ (0, 1) be given such
that Yn → Y and ρn → 0 as n → ∞. Assume furthermore that z(Y ) 6= undef,
Y ∩ ∂Z∞ = ∅, and y · e1 6= z(Y ) · e1 for all y ∈ Y \ {z(Y )}. Then Fρn(zρn(Yn)) →
ι(z(Y )) in ∆.

Proof. Let ξ = z(Y ) · e1 > 0. Because of the assumptions, there is some
ε > 0 such that

Y ∩ (V × Σ) = {z(Y )},
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with

V := ((−4ε, ξ + 4ε)× Bd−1
1+ε ) ∪ ((ξ − 4ε, ξ + 4ε)× Bd−1

4 ).

Since V is open and z(Y ) ∈ V ×Σ, it follows that #(Yn ∩ (V ×Σ)) = 1 for all large
n, and furthermore if zn is the unique point in Yn ∩ (V × Σ) then zn → z(Y ) as
n→ ∞. It follows that for n sufficiently large we have zρn(Yn) = zn (here the fact

that V contains (ξ − 4ε, ξ + 4ε) × Bd−1
4 is used to guarantee that zn satisfies the

condition (3.14)). Hence Fρn(zρn(Yn)) = Fρn(zn) → ι(z(Y )) as n→ ∞. �

Lemma 3.11. We have η
(β,λ)
q,ρ

w−−→ η
(β,λ)
ς(q) as ρ→ 0, uniformly over all q ∈ PT (ρ)

and β ∈ K.

Remark 3.4. Recall that we assume that K is a compact subset of Cb(U,R
d);

cf. Remark 3.3; thus {η(β,λ)ς : ς ∈ Σ,β ∈ K} is a compact subset of P (U × ∆),
being a continuous image of the compact set Σ × K (cf. Lemma 3.9). Hence the
general notion of uniform convergence from (2.1)–(2.2) applies.

Proof. Let ρn ∈ (0, 1), qn ∈ PT (ρn), βn ∈ Cb(U,R
d) for n = 1, 2, . . ., and

assume that ρn → 0, ς(qn) → ς and βn → β as n → ∞, with ς ∈ Σ and β ∈ K.

We then claim that η
(βn,λ)
qn,ρn

w−−→ η
(β,λ)
ς as n → ∞. By the same argument as in

Lemma 2.2 (using also Lemma 3.9), this will imply the lemma.
Consider the maps

Hn : Sd−1
1 ×Ns(X ) → Sd−1

1 ×∆, Hn(v, Y ) = (v, Fρn(zρn(Y )))

and

H : Sd−1
1 ×Ns(X ) → Sd−1

1 ×∆, H(v, Y ) = (v, ι(z(Y ))),

and note that η
(βn,λ)
qn,ρn = µ̃

(βn,λ)
qn,ρn ◦H−1

n and η
(β,λ)
ς = µ̃

(β,λ)
ς ◦H−1, after extending

by zero from P (U × ∆) to P (Sd−1
1 × ∆). We have µ̃

(βn,λ)
qn,ρn

w−−→ µ̃
(β,λ)
ς by Lemma

2.11. Let C be the set of all Y ∈ Ns(X ) satisfying z(Y ) 6= undef, Y ∩ ∂Z∞ = ∅,
and y · e1 6= z(Y ) · e1 for all y ∈ Y \ {z(Y )}. Then by Lemma 3.10, for any

v,v1,v2, . . . ∈ Sd−1
1 and Y, Y1, Y2, . . . ∈ Ns(X ) subject to Y ∈ C and (vn, Yn) →

(v, Y ) as n → ∞, we have Hn(vn, Yn) → H(v, Y ) as n → ∞. Furthermore, using

the definition of µ
(β,λ)
ς together with [Q2], [Q3] and Lemma 2.15, one verifies that

µ
(β,λ)
ς (C) = 1 (cf. also the proof of Lemma 3.1). Now the desired convergence

follows by the continuous mapping theorem, [35, Thm. 4.27]. �

We noted in Remark 3.2 that one consequence of Theorem 3.6 is that λ(wβ
q,ρ) →

1 as ρ→ 0, with uniformity in q and β. Still, it is convenient to prove this particular
fact before completing the proof of the theorem:

Lemma 3.12. λ(wβ
q,ρ) → 1 as ρ→ 0, uniformly over all q ∈ PT (ρ) and β ∈ K.

Proof. Set B = U × {undef}. Then η
(β,λ)
ς (B) = η

(β,λ)
ς (∂B) = 0 for all ς , by

Lemma 3.1; hence η
(β,λ)
q,ρ (B) → 0 uniformly as ρ→ 0, by Lemma 3.11 and Remark

2.1. Let C := supβ∈K ‖β‖; this is a finite number since K is compact. By Lemma
2.16, for all sufficiently small ρ we have dP(q) > (1 + C)ρ for all q ∈ PT (ρ). Now
the desired conclusion follows via Lemma 3.7. �
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Proof of Theorem 3.6. Let f ∈ Cb(U ×R>0×Ω) be given. We extend f to
be zero on U × {undef}; then f ∈ Cb(U ×∆). By Lemma 3.11 and Lemma 2.3 we

have η
(β,λ)
q,ρ (f)− η

(β,λ)
ς(q) (f) → 0 as ρ → 0, uniformly over all q ∈ PT (ρ) and β ∈ K.

Here

η(β,λ)q,ρ (f) =

∫

U

f
(
v, [Fρ ◦ zρ](Qρ(q,β,v))

)
dλ(v).

Now as in the proof of Lemma 3.12, λ({v ∈ U : zρ(Qρ(q,β,v)) 6= undef}) → 1,
uniformly as ρ → 0; and for ρ sufficiently small, zρ(Qρ(q,β,v)) 6= undef implies
v ∈ wβ

q,ρ and

[Fρ ◦ zρ](Qρ(q,β,v)) = (ρd−1τ1(q(v),v; ρ),ω1(q(v),v; ρ)).

Hence we conclude∫

w
β
q,ρ

f
(
v, ρd−1τ1(q(v),v; ρ),ω1(q(v),v; ρ)

)
dλ(v)− η

(β,λ)
ς(q) (f) → 0,

uniformly as ρ→ 0. Also,

η(β,λ)ς (f) =

∫

U

∫

Ns(X )

f(v, [ι ◦ z](Y − (β(v)R(v))⊥)) dµς(Y ) dλ(v)

=

∫

U

∫

Ω

∫ ∞

0

f(v, ξ,ω)k(((β(v)R(v))⊥, ς), ξ,ω) dξ dµΩ(ω) dλ(v),

by the definition of the transition kernel k(ω′, ξ,ω) in Section 3.1. Hence we obtain
(3.11). �

We next give a corollary to Theorem 3.6 which will be useful later when we
prove that the transition kernel k(ω′, ξ,ω) possesses a time reversal symmetry; cf.
Proposition 3.19 below. In order to extract information about k(ω′, ξ,ω) from
Theorem 3.6 it is convenient to choose β to be the function

βu(v) = uR(v)
−1 + (1 − ‖u‖2)1/2v,(3.17)

where u ∈ Bd−1
1 is fixed. Note that βu(v) ∈ Sd−1

1 and (βu(v) + R>0v) ∩ Bd1 = ∅
for all v ∈ Sd−1

1 . To simplify notation, we set qρ,u(v) = qρ,βu
(v) and wu

q,ρ = w
βu
q,ρ.

Corollary 3.13. For any fixed f ∈ Cc(X × Bd−1
1 × Sd−1

1 × R>0 × Ω) and

λ ∈ Pac(S
d−1
1 ),

ρd(d−1)
∑

q∈P

∫

Bd−1
1

∫

wu
q,ρ

f
(
(ρd−1q, ς(q)),u,v, ρd−1τ1(qρ,u(v),v; ρ),ω1(qρ,u(v),v; ρ)

)

×dλ(v) du

→ cP

∫

X

∫

Bd−1
1

∫

Sd−1
1

∫ ∞

0

∫

Ω

f(p,u,v, ξ,ω) k((u, ς(p)), ξ,ω)(3.18)

×dµΩ(ω) dξ dλ(v) du dµX (p)

as ρ→ 0.

Proof. Take v0 ∈ Sd−1
1 so that the function R is continuous on U := Sd−1

1 \
{v0}. Then K = {βu|U : u ∈ Bd−1

1 } is a compact subset of Cb(U,R
d) and

(β(v) + R>0v) ∩ Bd1 = ∅ for all β ∈ K and v ∈ U . Furthermore, using f ∈
Cc, the family of functions {f(p,u, ·, ·, ·) : p ∈ X , u ∈ Bd−1

1 } is a compact
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subset of Cb(S
d−1
1 × R>0 × Ω), and by restriction we obtain a compact subset of

Cb(U×R>0×Ω). By a standard subsequence argument the convergence in Theorem
3.6 is seen to be uniform also over such a compact family of test functions. Hence,
using also (βu(v)R(v))⊥ = u, we obtain

∫

wu
q,ρ

f
(
(ρd−1q, ς(q)),u,v, ρd−1τ1(qρ,u(v),v; ρ),ω1(qρ,u(v),v; ρ)

)
dλ(v)(3.19)

−
∫

Sd−1
1

∫ ∞

0

∫

Ω

f((ρd−1q, ς(q)),u,v, ξ,ω) k((u, ς(q)), ξ,ω) dµΩ(ω) dξ dλ(v) → 0,

as ρ → 0, uniformly over all q ∈ PT (ρ) and u ∈ Bd−1
1 . This holds for any fixed

T ; we apply it with T so large that the support of f is contained in BdT × Σ ×
Bd−1
1 × Sd−1

1 × R>0 × Ω; then the left hand side of (3.19) is identically zero when
‖q‖ ≥ Tρ1−d; hence the convergence in (3.19) is in fact uniform over all q ∈ P \ E .
Using also sup |f | < ∞, [P1], and the fact that E has asymptotic density zero (cf.
[P2]), it follows that up to an additive error which tends to zero as ρ → 0, the left
hand side of (3.18) equals

ρd(d−1)
∑

q∈P

∫

Bd−1
1

∫

Sd−1
1

∫ ∞

0

∫

Ω

f((ρd−1q, ς(q)),u,v, ξ,ω) k((u, ς(q)), ξ,ω)

×dµΩ(ω) dξ dλ(v) du.

Using here Remark 3.1 and Lemma 2.7, we obtain the limit stated in (3.18). �

3.2.1. Macroscopic initial conditions. The following is the analogue of
Theorem 3.6 for macroscopic initial conditions. Let us write W(1; ρ) for the set
w(1; ρ) in macroscopic coordinates, i.e. W(1; ρ) = {(q,v) ∈ T1(Rd) : 〈ρ1−dq,v〉 ∈
w(1; ρ)}.

Theorem 3.14. For any Λ ∈ Pac(T
1(Rd)) and f ∈ Cb(T

1(Rd)× R>0 × Ω),

lim
ρ→0

∫

W(1;ρ)

f
(
q,v, ρd−1τ1(ρ

1−dq,v; ρ),ω1(ρ
1−dq,v; ρ)

)
dΛ(q,v)

=

∫

T1(Rd)

∫ ∞

0

∫

Ω

f(q,v, ξ,ω)kg
(
ξ,ω

)
dµΩ(ω) dξ dΛ(q,v).(3.20)

Remark 3.5. In particular the theorem implies that Λ(W(1; ρ)) → 1 as ρ→ 0.
(Indeed, take f ≡ 1 in (3.20).)

The proof of the theorem follows the same lines as the proof of Theorem 3.6,
with the key input being the macroscopic limit result of Theorem 2.19. In particular
we use the same maps z, zρ and Fρ as in the previous proof. The following is the
analogue of Lemma 3.7 for start from an arbitrary point in K◦

ρ (cf. (1.6)).

Lemma 3.15. Let ρ ∈ (0, 1), q ∈ K◦
ρ, v ∈ Sd−1

1 , and assume that (x, ς) =

zρ(Qρ(q,v)) 6= undef. Then (q,v) ∈ w(1; ρ), ρd−1τ1(q,v; ρ) = ξρ(x) > 0, and
ω1(q,v; ρ) = (−x⊥, ς).

Proof. Very similar to Lemma 3.7. �

Let Λ be as in Theorem 3.14, and let Ξ be the macroscopic limit point process

defined in Section 2.5. For (q,v) random in (T1(Rd),Λ), let η
(Λ)
ρ ∈ P (T1(Rd)×∆)

be the distribution of (q,v, [Fρ ◦ zρ](Qρ(ρ
1−dq,v))), and let η(Λ) ∈ P (T1(Rd)×∆)
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be the distribution of (q,v, [ι◦z](Ξ)), with Ξ independent from (q,v). The following
is the analogue of Lemma 3.11.

Lemma 3.16. We have η
(Λ)
ρ

w−−→ η(Λ) as ρ→ 0.

Proof. This is similar to the proof of Lemma 3.11. For (q,v) random in

(T1(Rd),Λ), let µ̃
(Λ)
ρ ∈ P (T1(Rd) × X ) be the distribution of (q,v,Qρ(ρ

1−dq,v)).
Then Theorem 2.19 implies (via a decomposition argument, similar in flavor to the
proof of Lemma 2.10) that

µ̃(Λ)
ρ

w−−→ Λ× µ as ρ→ 0.

Consider the maps

Hρ : T
1(Rd)×Ns(X ) → T1(Rd)×∆, Hn(q,v, Y ) = (q,v, Fρ(zρ(Y )))

and

H : T1(Rd)×Ns(X ) → T1(Rd)×∆, H(q,v, Y ) = (q,v, ι(z(Y ))),

and note that η
(Λ)
ρ = µ̃

(Λ)
ρ ◦ H−1

ρ and η(Λ) = (Λ × µ) ◦H−1. Let C be the set of
all Y ∈ Ns(X ) satisfying z(Y ) 6= undef, Y ∩ ∂Z∞ = ∅, and y · e1 6= z(Y ) · e1
for all y ∈ Y \ {z(Y )}. Then by Lemma 3.10, for any t, t1, t2, . . . ∈ T1(Rd) and
Y, Y1, Y2, . . . ∈ Ns(X ) subject to Y ∈ C and (tn, Yn) → (t, Y ) as n → ∞, we have
Hn(tn, Yn) → H(t, Y ) as n → ∞. Furthermore using Lemma 2.25, Lemma 2.26
and Proposition 2.27 (with A = Ns(X ), B = ∂Z∞ ×Σ) one verifies that µ(C) = 1.
Now the desired convergence follows by [35, Thm. 4.27]. �

Lemma 3.17. (Cf. Remark 3.5.) Λ(W(1; ρ)) → 1 as ρ→ 0.

Proof. Set B = T1(Rd) × {undef}. Then η(Λ)(B) = 0 by Lemma 3.5; hence

η
(Λ)
ρ (B) → 0 as ρ → 0, by Lemma 3.16, and now the desired convergence follows
using Lemma 3.15. �

Proof of Theorem 3.14. Let f ∈ Cb(T
1(Rd)× R>0 × Ω) be given. Extend

f to be zero on T1(Rd)×{undef}; then f ∈ Cb(T
1(Rd)×∆). Now by Lemma 3.16,

η
(Λ)
ρ (f) → η(Λ)(f) as ρ → 0. Also Λ({(q,v) : zρ(Qρ(ρ

1−dq,v)) = undef}) → 1,
by the proof of Lemma 3.17. Using this together with Lemma 3.15, the theorem
follows. �

3.3. Relations for the transition kernels

3.3.1. Symmetries.

Lemma 3.18. For any fixed ω′ ∈ X⊥ and R ∈ SO(d− 1), we have

k(ω′R, ξ,ωR) = k(ω′, ξ,ω), kg(ξ,ωR) = kg(ξ,ω)

for almost all (ξ,ω) ∈ R>0 × Ω with respect to the measure dξ dµΩ(ω).

Proof. The first statement follows from the definition of k and the SO(d−1)-
invariance of µς (cf. [Q1]). The second statement follows from the definition of kg

and the SO(d− 1)-invariance of µ (cf. Proposition 2.24). �

Next we prove a time reversal symmetry for k, using Corollary 3.13.
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Proposition 3.19. Fix any R ∈ O(d− 1) with detR = −1. Then

k(ω′, ξ,ω) = k(ωR, ξ,ω′R)

for almost all 〈ω′, ξ,ω〉 with respect to the measure dµΩ(ω
′) dξ dµΩ(ω).

Proof. Let f ∈ Cc(X×Bd−1
1 ×Sd−1

1 ×R>0×Ω) and λ ∈ P (Sd−1
1 ). Let Pρ be the

set of q ∈ P corresponding to separated scatterers, i.e. Pρ = {q ∈ P : dP(q) > 2ρ}.
Inspecting the proof of Corollary 3.13 and recalling Lemma 2.16 we see that the
summation in the left hand side of (3.18) may be restricted to q ∈ Pρ without

changing the limit. Using also the fact that q(1)(qρ,u(v),v; ρ) ∈ Pρ for all v ∈ wu
q,ρ,

we obtain

lim
ρ→0

ρd(d−1)
∑

q∈Pρ

∑

q′∈Pρ

∫

Sd−1
1

∫

Bd−1
1

I
(
v ∈ wu

q,ρ and q(1)(qρ,u(v),v; ρ) = q
′
)

×f
(
(ρd−1q, ς(q)),u,v, ρd−1τ1(qρ,u(v),v; ρ),ω1(qρ,u(v),v; ρ)

)
du dλ(v)(3.21)

= cPvd−1

∫

Ω

∫

Sd−1
1

∫ ∞

0

∫

Ω

f0(ω
′,v, ξ,ω) k(ω′, ξ,ω) dµΩ(ω) dξ dλ(v) dµΩ(ω

′),

where

f0((u, ς),v, ξ,ω) =

∫

Rd

f((x, ς),u,v, ξ,ω) dx.

Let ρ ∈ (0, 1) be fixed. Given q, q′ ∈ Pρ and v ∈ Sd−1
1 , we set

U [q, q′,v] = {u ∈ Bd−1
1 : v ∈ wu

q,ρ and q(1)(qρ,u(v),v; ρ) = q
′}.

Also set Kv := R(v)−1R(−v). Given any u ∈ U [q, q′,v] we set u′ :=
w1(qρ,u(v),v; ρ)Kv; also write τ1 = τ1(qρ,u(v),v; ρ) and w1 = w1(qρ,u(v),v; ρ).

Then by the definition (3.17), βu′(−v) is the unique point in Sd−1
1 satisfying

(βu′(−v)R(v))⊥ = u′K−v = w1 and βu′(−v) · v < 0; hence by the definition
of w1 we have qρ,u(v)+τ1v = q′+ρβu′(−v) = q′ρ,u′(−v), and thus also qρ,u(v) =

q′ρ,u′(−v)− τ1v. It follows that u
′ ∈ U [q′, q,−v], τ1(q′ρ,u′(−v),−v; ρ) = τ1, and

w1(q
′
ρ,u′(−v),−v; ρ) = (βu(v)R(−v))⊥ = (uKv)⊥ = uKv.

The map u 7→ u′ := w1(qρ,u(v),v; ρ)Kv from U [q, q′,v] to U [q′, q,−v] is clearly
injective, and it follows from the above considerations that the composition of
this map with the corresponding injection u′ 7→ w1(qρ,u′(−v),−v; ρ)K−v from
U [q′, q,−v] to U [q, q′,v] is the identity map. Hence both these maps are in fact
bijections, and inverses of each other. Note also that Lebesgue measure du corre-
sponds to du′ under the bijection. Hence the left hand side of (3.21) equals

lim
ρ→0

ρd(d−1)
∑

q∈Pρ

∑

q′∈Pρ

∫

Sd−1
1

∫

Bd−1
1

I
(
−v ∈ wu′

q′,ρ and q(1) = q
)

×f
((
ρd−1q(1), ς(q(1))

)
, w1K−v, v, ρ

d−1τ1,
(
u′K−v, ς(q

′)
))
du′ dλ(v),(3.22)

where now q(1) = q(1)(q′ρ,u′(−v),−v; ρ), τ1 = τ1(q
′
ρ,u′(−v),−v; ρ) and w1 =

w1(q
′
ρ,u′(−v),−v; ρ). Using the fact that q(1) ∈ Pρ for all −v ∈ wu′

q′,ρ the summa-

tion over q in (3.22) may be removed, keeping only the condition −v ∈ wu′

q′,ρ in the

indicator function. Furthermore in the first argument of f in (3.22), we may replace
ρd−1q(1) by ρd−1(q′ − τ1v). Indeed, using ‖q(1) − (q′ − τ1v)‖ = ρ and f ∈ Cc we



54 3. FIRST COLLISIONS

see that the error in the integrand caused by the replacement is uniformly small;
and hence by [P1] the error caused in the total expression tends to zero as ρ → 0.

Substituting also −v for v, writing λ̃ for the corresponding probability measure on
Sd−1
1 , we conclude that (3.22) equals

lim
ρ→0

ρd(d−1)
∑

q∈P

∫

Bd−1
1

∫

wu
q,ρ

f̃
(
(ρd−1q, ς(q)), u, v, ρd−1τ1(qρ,u(v),v; ρ),

ω1(qρ,u(v),v; ρ)
)
dλ̃(v) du,(3.23)

where

f̃
(
(x, ς), u, v, ξ, (w, ς ′)

)
:= f

(
(x+ ξv, ς ′), wKv, −v, ξ, (uKv, ς)

)
.

Clearly f̃ ∈ Cc(X ×Bd−1
1 × Sd−1

1 ×R>0 ×Ω); hence Corollary 3.13 applies, and we
conclude that (3.23) equals

cP

∫

X

∫

Bd−1
1

∫

Sd−1
1

∫ ∞

0

∫

Ω

f̃(p,u,v, ξ,ω) k((u, ς(p)), ξ,ω)

×dµΩ(ω) dξ dλ̃(v) du dµX (p),

and integrating out the Rd-component of p and changing variables appropriately,
we get

cPvd−1

∫

Ω

∫

Sd−1
1

∫ ∞

0

∫

Ω

f0(ω
′,v, ξ,ω) k(ωKv, ξ,ω

′Kv) dµΩ(ω) dξ dλ(v) dµΩ(ω
′).

(3.24)

Finally, note that for each v ∈ Sd−1
1 we haveKv =

(
−1 0
0 K′

v

)
for someK ′

v ∈ O(d−1)

with detK ′
v = −1; thus R−1K ′

v ∈ SO(d− 1), where R is fixed as in the statement
of the proposition. Also by our identification of Rd−1 ×Σ with {0} ×Rd−1 ×Σ we
have ωKv = ωK ′

v for all ω ∈ Ω. Hence by Lemma 3.18, for all v and ω′ we have
k(ωKv, ξ,ω

′Kv) = k(ωR, ξ,ω′R) for almost all (ξ,ω′). Hence (3.24) equals

cPvd−1

∫

Ω

∫

Sd−1
1

∫ ∞

0

∫

Ω

f0(ω
′,v, ξ,ω) k(ωR, ξ,ω′R) dµΩ(ω) dξ dλ(v) dµΩ(ω

′).

Summing up, using also an obvious surjectivity property of the map f 7→ f0,
we have proved that the last expression equals the expression in the right hand side
of (3.21), for every f0 ∈ Cc(Ω× Sd−1

1 ×R>0 ×Ω). The proposition is an immediate
consequence of this fact. �

3.3.2. Expressions in terms of Palm distributions. We will now show
that if Ξς has constant intensity measure EΞς = cPµX (as is true in all of the
examples which we consider in Section 5), then the transition kernel k can be given
explicitly in terms of the Palm distributions of Ξς .

For any ς ∈ Σ such that EΞς = cPµX , we let νς be a version of the Palm
distributions of Ξς . Recall that this means that νς is a function X × N → [0, 1],
where N is the Borel σ-algebra of Ns(X ), such that νς(x, A) is Borel measurable
in x ∈ X for each A ∈ N , is a probability measure in A ∈ N for each x ∈ X , and
for any Borel sets B ⊂ X and A ∈ N one has∫

A

#(Y ∩B) dµς(Y ) = cP

∫

B

νς(y, A) dµX (y).(3.25)
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Cf. [34, Ch. 10].

Proposition 3.20. Let ω′ = (x′, ς ′) ∈ X⊥ be given, and assume that Ξς′ has
constant intensity measure EΞς′ = cPµX . Then the relation

k(ω′, ξ,ω) = vd−1cP νς′
(
(ξ,x′ − x, ς),

{
Y ∈ Ns(X ) : Y ∩ (Zξ + x

′) = ∅
})

(3.26)

holds for almost every (ξ,ω) = (ξ, (x, ς)) ∈ R>0 × Ω with respect to the measure
dξ dµΩ(ω).

Proof. By [34, Lemma 10.1], and using our assumption that EΞς′ = cPµX ,
we have for any Borel measurable function f : X ×Ns(X ) → R≥0, and any Borel
subset U ⊂ X ,

∫

Ns(X )

∑

y∈U∩Y

f(y, Y ) dµς′(Y ) = cP

∫

U

∫

Ns(X )

f(y, Y ) νς′(y, dY ) dµX (y).(3.27)

We apply this relation with U = ι(B) + x′ for a given Borel set B ⊂ R>0 ×Ω, and
f as the indicator function

f(y, Y ) := I((Y − x′) ∩ Zy1 = ∅) (where y1 = y · e1).

Then the integrand in the left hand side of (3.27) equals I(z(Y − x′) ∈ ι(B)) for
each Y with z(Y − x′) 6= undef. In the right hand side of (3.27) we substitute
y = (ξ,x′ − x, ς) ∈ R× Rd−1 × Σ. Using (3.4) and Lemma 3.1 we then get

κ((x′, ς ′);B) = cPvd−1

∫

B

νς′((ξ,x
′ − x, ς), {Y ∈ Ns(X ) : (Y − x′) ∩ Zy1 = ∅})

×dξ dµΩ(x, ς).

Using the fact that this holds for every Borel set B ⊂ R>0×Ω, and comparing with
the definition of k(ω′, ξ,ω), we obtain (3.26). �

The same technique also leads to the following formula for the “generic” tran-
sition kernel kg:

Proposition 3.21. For almost every (ξ, (x, ς)) ∈ R>0 × Ω,

kg(ξ, (x, ς)) = vd−1cPµς
(
{Y : Y ∩ (Zξ − (ξ,−x)) = ∅}

)
.

Proof. By Proposition 2.27, Ξ has constant intensity cPµX , and a version

ν : X×N → [0, 1] of the Palm distributions of Ξ are given by ν((x, ς), A) = µ
(x)
ς (A).

Hence by the same argument as in the proof of Proposition 3.20 we get

kg(ξ, (x, ς)) = vd−1cP ν
(
(ξ,−x, ς), {Y : Y ∩ Zξ = ∅}

)

= vd−1cP µ
(ξ,−x)
ς

(
{Y : Y ∩ Zξ = ∅}

)

= vd−1cP µς
(
{Y : Y ∩ (Zξ − (ξ,−x)) = ∅}

)
.

�

Proposition 3.22. For almost every (ξ,ω) ∈ R>0 × Ω,

kg(ξ,ω) = vd−1cP

∫ ∞

ξ

∫

Ω

k(ω′, ξ′,ω) dµΩ(ω
′) dξ′.
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Proof. Fix R ∈ O(d − 1) with detR = −1, and set K =
(
−1 0
0 R

)
∈ SO(d).

We then note that (Zξ − (ξ,−x))K = Zξ +xR, and hence by Proposition 3.21 and
Lemma 2.14, for almost every (ξ, (x, ς)) ∈ R>0 × Ω we have

kg(ξ, (x, ς)) = vd−1cP µς
(
{Y : (Y − xR) ∩ Zξ = ∅}

)

= vd−1cP

∫ ∞

ξ

∫

Ω

k
(
(xR, ς), ξ′,ω′

)
dµΩ(ω

′) dξ′

= vd−1cP

∫ ∞

ξ

∫

Ω

k
(
(x, ς)R, ξ′,ω′R

)
dµΩ(ω

′) dξ′,

(3.28)

where we used the definition of k, and then used the fact that ω′ 7→ ω′R is a
diffeomorphism of Ω onto itself preserving the measure µΩ. Now the desired formula
follows by also using Proposition 3.19. �

The following corollary shows that ξ = (vd−1cP)
−1 (cf. (1.10)) equals the mean

free path length for the particle dynamics in the Boltzmann-Grad limit.

Corollary 3.23.∫

Ω

∫ ∞

0

∫

Ω

ξ k(ω′, ξ,ω) dµΩ(ω
′) dξ dµΩ(ω)=

1

vd−1cP
= ξ.

Proof. We have
∫∞

0

∫
Ω
kg(ξ,ω) dµΩ(ω) dξ = κg(R>0 × Ω) = 1. Substituting

the formula from Proposition 3.22 into this relation, the corollary follows. �

Corollary 3.24. There is a representative of kg which is continuous on all
R>0 × Ω and which satisfies

kg(0,ω) := lim
ξ→0

kg(ξ,ω) = vd−1cP , ∀ω ∈ Ω.

Proof. Fix R ∈ O(d − 1) with detR = −1. As in the proof of Proposition
3.22 we have

kg(ξ,ω) = vd−1cP

∫ ∞

ξ

∫

Ω

k
(
ωR, ξ′,ω′R

)
dµΩ(ω

′) dξ′(3.29)

for almost all (ξ,ω) ∈ R>0 × Ω. Now fix the representative of kg for which (3.29)
holds for all (ξ,ω). Then kg is continuous, as follows from Lemma 3.2 and the
boundedness of k (cf. (3.5)). Using the boundedness of k we also obtain

lim
ξ→0

kg(ξ,ω) = vd−1cP

∫

R>0

∫

Ω

k
(
ωR, ξ′,ω′R

)
dµΩ(ω

′) dξ′ = vd−1cP ,

where the last equality holds by the O(d− 1)-invariance of µΩ and since k(ωR, ·, ·)
is a probability density. �

3.4. Scattering maps

We now describe the general scattering process which we will allow in the state-
ment of our main results on the limit distribution of the sequence τ1,v1, τ2,v2, . . .
(cf. Theorems 4.1 and 4.6 below). As in Section 1.2, the scattering process is defined
by a map Ψ : S− → S+, where

S− := {(v, b) ∈ Sd−1
1 × Sd−1

1 : v · b < 0}
and

S+ := {(v, b) ∈ Sd−1
1 × Sd−1

1 : v · b > 0}
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are the sets of incoming and outgoing data, respectively. We write Ψ1(v, b) ∈
Sd−1
1 and Ψ2(v, b) ∈ Sd−1

1 for the projection of Ψ(v, b) onto the first and second
component, respectively. We assume that Ψ satisfies the following conditions:2

(i) Ψ is spherically symmetric, i.e., Ψj(v, b)K = Ψj(vK, bK) for all K ∈ O(d),
j = 1, 2;

(ii) Ψ1(v, b) and Ψ2(v, b) are contained in the linear subspace spanned by v and
b;

(iii) Ψ : S− → S+ is C1 and for each fixed v ∈ Sd−1
1 the map Ψ1(v, ·) is a C1

diffeomorphism from {b ∈ Sd−1
1 : v · b < 0} onto some open subset of Sd−1

1 .

As we will explain in Section 5.4, the above conditions are satisfied for many stan-
dard choices of scatterers described by a Hamiltonian flow with a compactly sup-
ported potential.

We introduce some further notation associated to the scattering map. We will
write ϕ(u,v) ∈ [0, π] for the angle between any two vectors u,v ∈ Rd \ {0}. Using
(ii) it follows that

Ψ1(v,−v) = sΨ · v for all v ∈ Sd−1
1 ,(3.30)

where the constant sΨ is either 1 or −1. It then follows from (i) and (iii) that

there exists a constant BΨ ∈ [0, π] such that for each v ∈ Sd−1
1 , the image of the

diffeomorphism Ψ1(v, ·) equals
Vv :=

{
u ∈ Sd−1

1 : sΨ · (BΨ − ϕ(u,v)) > 0
}
.(3.31)

Let us write β−
v : Vv → {b ∈ Sd−1

1 : v · b < 0} for the inverse map. Then β−
v

is spherically symmetric in the sense that β−
vK(uK) = β

−
v (u)K for all v ∈ Sd−1

1 ,

u ∈ Vv, K ∈ O(d), and in particular β−
v (u) is jointly C1 in v,u. We also define

β+
v (u) = Ψ2(v,β

−
v (u)) (v ∈ Sd−1

1 , u ∈ Vv).(3.32)

The map β+ is also spherically symmetric and jointly C1 in v,u. Note that for any
given v,v+ ∈ Sd−1

1 , there exist b, b+ ∈ Sd−1
1 such that Ψ(v, b) = (v+, b+) if and

only if v+ ∈ Vv, and in this case b and b+ are uniquely determined, as b = β−
v (v+)

and b+ = β+
v (v+).

Remark 3.6. Denote by R{v2}⊥ ∈ O(d) the orthogonal reflection in the hy-

perplane {v2}⊥ ⊂ Rd. If the scattering map Ψ is a diffeomorphism from S−

onto S+ which carries the volume measure |v · b| dvolSd−1
1

(v) dvolSd−1
1

(b) on S−

to (v · b) dvolSd−1
1

(v) dvolSd−1
1

(b) on S+, then

β+
v1
(v2) ≡ −β−

v2
(v1) or β+

v1
(v2) ≡ β−

v2
(v1)R{v2}⊥ .(3.33)

The reverse implication is also true; see [44, Remark 2.3] for a detailed discussion. 3

In physical terms, (3.33) reflects the preservation of the angular momentum b∧v, or
its reversal, respectively. The first alternative in (3.33) holds for specular reflection
as well as potential scattering.

2These conditions correspond to assumptions (i), (ii), (iv) in [44, Section 2.2]; the fourth
assumption is not required in the present paper, cf. (3.30).

3Note that sΨ = −1 in [44]; however [44, Remark 2.3] applies verbatim also when sΨ = 1,
with the only modification that “ϑj(0) = 0” is replaced by “ϑj(0) = π”.



58 3. FIRST COLLISIONS

It will be useful later to have a reformulation of the condition (iii) in terms of
the deflection angle of the scattering map, i.e. the angle between the incoming and
outgoing velocities expressed as a function of the length of the impact parameter. In
precise terms, for a scattering map Ψ satisfying conditions (i) and (ii), the deflection
angle is a function θ : [0, 1) → R satisfying the formula

Ψ1(v, b) = (cos θ(w))v +
sin θ(w)

w
w ((v, b) ∈ S−),(3.34)

where

w := b− (v · b)v ∈ {v}⊥ and w = ‖w‖.(3.35)

In the special case w = 0 (⇔ b = −v), we require θ(0) ≡ 0 (mod π), and the
right hand side of (3.34) should be interpreted as (cos θ(0))v. Note that we do not
require θ to take values in [−π, π]; in fact in the case of potential scattering the
natural definition of θ is a function which can take any value in [−∞, π], cf. (5.63)
below.

The following lemma gives an equivalent formulation in terms of the deflection
angle of the “Ψ1-part” of condition (iii).

Lemma 3.25. Given any continuous function θ : [0, 1) → R with θ(0) = kπ
(k ∈ Z), the following two statements are equivalent:

(1) The map Ψ1 given by (3.34) is C1 and for each fixed v ∈ Sd−1
1 the map Ψ1(v, ·)

is a C1 diffeomorphism from {b ∈ Sd−1
1 : v · b < 0} onto some open subset of

Sd−1
1 .

(2) θ : [0, 1) → R is C1, and for all w ∈ [0, 1) we have θ′(w) 6= 0 and |θ(w)− kπ| <
π.

Proof. The implication (1)⇒(2) is straightforward, e.g. using the fact that
for all w ∈ [0, 1), cos θ(w) and sin θ(w) can be expressed as the scalar product of
Ψ1

(
e1,−(1− w2)1/2e1 + we2

)
with e1 and e2, respectively. We turn to the proof

of (2)⇒(1); thus assume that (2) holds. By immediate inspection, (3.34) yields

a spherically symmetric map Ψ1 : S− → Sd−1
1 which is continuous, and C1 on

S− \ {(v,−v)}. In order to verify that Ψ1 is C1 on all S−, note that we can write
Ψ1(v, b) = g(‖w‖2)v + f(w), where the maps f : Bd1 → Rd and g : [0, 1) → R are
given by

g(u) = cos θ(u1/2) and(3.36)

f(w) = f1(‖w‖)w with f1(w) =

{
w−1 sin θ(w) if w > 0

θ′(0) if w = 0.

Therefore it suffices to verify f ∈ C1(Bd1) and g ∈ C1([0, 1)). Both of these are
straightforward. (For f , an intermediate step is to note that f1 is continuous
on [0, 1) and C1 on (0, 1), and limw→0 wf

′
1(w) = 0.) It remains to verify the

diffeomorphism statement. By spherical symmetry it suffices to verify that Ψ1(e1, ·)
is a C1 diffeomorphism from {b ∈ Sd−1

1 : e1 ·b < 0} onto an open subset of Sd−1
1 . Let

us first note that for every 0 < w < 1, the differential of the map b 7→ Ψ1(e1, b) at

b = −(1−w2)1/2e1+we2 equals the linear map from Tb(S
d−1
1 ) = {h ∈ Rd : h·b = 0}
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to TΨ1(e1,b)(S
d−1
1 ) given by

h = (h1, · · · , hd) 7→
(
−θ′(w) sin θ(w)h2, θ′(w) cos θ(w)h2,

sin θ(w)

w
h3,

(3.37)

· · · , sin θ(w)
w

hd

)
.

It follows from the assumption (2) that this map is non-singular for every 0 <
w < 1. Furthermore the differential at b = −e1 is seen to be scalar multiplication
with θ′(0), which is again a non-singular map. Hence by spherical symmetry, the

differential of b 7→ Ψ1(e1, b) is non-singular throughout {b ∈ Sd−1
1 : e1 · b < 0}. It

also follows from assumption (2) that this map b 7→ Ψ1(e1, b) is injective. Hence

this map is indeed a C1 diffeomorphism from {b ∈ Sd−1
1 : e1 · b < 0} onto an open

subset of Sd−1
1 . �

Remark 3.7. In the situation of Lemma 3.25, if the scattering map is also
known to preserve angular momentum b ∧ v, then one computes that

Ψ2(v, b) = −w(sin θ)v + (cos θ)w − (v · b)Ψ1(v, b) ((v, b) ∈ S−),(3.38)

with w and w as in (3.35). Hence in this case, condition (2) in Lemma 3.25 implies
that Ψ satisfies all of condition (iii). Indeed, it only remains to verify that Ψ2 is
C1, and this follows once we note that Ψ2(v, b) = −(w · f(w))v+ g(‖w‖2)w− (v ·
b)Ψ1(v, b), with f, g as in (3.36).

Next, for a scattering map Ψ satisfying conditions (i), (ii) and (iii), the nor-
malized impact parameter corresponding to incoming and outgoing velocities v
and v+, respectively, is w := (β−

v (v+)R(v))⊥, and the differential cross section
σ(v,v+) is defined as the Jacobian of the map v+ 7→ w with respect to the mea-
sures ω = volSd−1

1
and dw ( = Lebesgue measure on Rd−1). Thus, for each fixed

v ∈ Sd−1
1 ,

dw = σ(v,v+) dv+ (v+ ∈ Vv).(3.39)

Hence σ is a continuous function on {(v,v+) ∈ Sd−1
1 × Sd−1

1 : v+ ∈ Vv}. In fact,

σ(v,v+) =





(w(ϕ)
sinϕ

)d−2

|w′(ϕ)| if v+ 6= sΨ · v,

|w′(ϕ)|d−1 if v+ = sΨ · v,
(3.40)

where ϕ = ϕ(v,v+) and w(ϕ) = ‖w‖. Note that ‖w‖ is indeed a function of ϕ, due
to spherical symmetry. The formula (3.40) is an immediate consequence of (3.37) in
the proof of Lemma 3.25, once we note that ϕ ≡ ±θ(w) mod 2π (and 0 ≤ ϕ ≤ π).
In particular in the case of specular reflection, we have w(ϕ) = sin(ϕ/2), and

hence we recover the formula (1.5). We extend σ to all of Sd−1
1 × Sd−1

1 through
σ(v,v+) = 0 when v+ /∈ Vv; this extension is generally not continuous. It is clear
from the above that σ(vK,v+K) = σ(v,v+) for all K ∈ O(d), and furthermore
σ(v+,v) = σ(v,v+).

Finally, with the scattering map in place, we now extend some definitions from
Section 3.2. Recall that in Section 3.2 we introduced the notion of a scatterer being
’separated’; we defined w(1; ρ) to be the subset of initial conditions (q,v) ∈ w(ρ)
which lead to a collision with a separated scatterer in finite time, and for (q0,v0) ∈
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w(1; ρ) we defined q(1)(q0,v0; ρ), w1(q0,v0; ρ) and ω1(q0,v0; ρ). More generally,
we now define w(j; ρ) and q(j), ςj ,wj ,ωj , qj ,vj , uj for j ≥ 1 by the following

recursive formulas:4 Set w(0; ρ) := w(ρ). For j ≥ 1 and any (q0,v0) ∈ w(j − 1; ρ)
we set:5

τj = τj(q0,v0; ρ) := τ1(qj−1,vj−1; ρ).

Then τj ∈ R>0 ∪ {∞}. Let w(j; ρ) be the subset of those (q0,v0) ∈ w(j − 1; ρ)
for which τj <∞ and qj−1 + τjvj−1 lies on the boundary of a separated scatterer.

Next, for (q0,v0) ∈ w(j; ρ), let q(j) ∈ P be the center of the unique scatterer with

qj−1 + τjvj−1 ∈ ∂Bd(q(j), ρ) and set ςj = ς(q(j)); let uj ∈ Sd−1
1 be the point such

that qj−1 + τjvj−1 = q(j) + ρuj , and then set

vj = Ψ1(vj−1,uj); wj = (ujR(vj−1))⊥; qj = q
(j) + ρΨ2(vj−1,uj);

and finally set

ωj = (wj , ςj) ∈ Ω.

The sequences {τj}, {ςj} and {vj} which we have thus associated to a given
initial condition (q0,v0) ∈ w(ρ) generalize the corresponding sequences defined in
Section 1.2 to the case of a general scattering process, except that our present con-
ventions regarding overlapping scatterers differ from those in Section 1.2. However
we have seen that the probability of hitting a non-separated scatterer in the first
collision tends to zero, and the same fact will turn out to hold for every later col-
lision. Therefore, the difference in conventions does not affect the limit result as
ρ→ 0; cf. Remark 4.3 below.

3.5. Collision kernels

We now define the collision kernels; these are simple transforms of the transi-
tion kernels defined in Section 3.1. Recall from Section 3.4 the definition of the scat-
tering map Ψ, the associated maps β±

v , and the differential cross section σ(v,v+).

For v0 ∈ Sd−1
1 , v ∈ Vv0

, v+ ∈ Vv, and ξ > 0, ς ∈ Σ, ς+ ∈ Σ, we set

p0
(
v0, ς,v; ξ, ς+,v+

)
=
σ(v,v+)

vd−1
k
((
β
+
v0R(v)(e1)⊥, ς

)
, ξ,

(
β
−
e1
(v+R(v))⊥, ς+

))
.

(3.41)

We extend the function p0 by setting p0
(
v0, ς,v; ξ, ς+,v+

)
= 0 for any v,v+ ∈ Sd−1

1

with v /∈ Vv0
or v+ /∈ Vv. More generally, given a function β ∈ Cb(U,R

d) where U

is an open subset of Sd−1
1 , we set

p0,β
(
ς,v; ξ, ς+,v+

)
=
σ(v,v+)

vd−1
k
((

(β(v)R(v))⊥, ς
)
, ξ,

(
β−
e1
(v+R(v))⊥, ς+

))
(3.42)

if v ∈ U and v+ ∈ Vv, and otherwise p0,β
(
ς,v; ξ, ς+,v+

)
= 0. We then have

p0
(
v0, ς,v; ξ, ς+,v+

)
≡ p

0,β+
v0

(
ς,v; ξ, ς+,v+

)
.(3.43)

4All these are functions of q0,v0, ρ, i.e. q(j) = q(j)(q0,v0; ρ); ςj = ςj(q0,v0; ρ), etc.
5It will be seen that (q0,v0) ∈ w(j−1; ρ) implies that qj−1 and vj−1 have been defined and

that (qj−1, vj−1) ∈ w(ρ).
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Let us also define

p
(
v; ξ, ς+,v+

)
=
σ(v,v+)

vd−1
kg

(
ξ,
(
β−
e1
(v+R(v))⊥, ς+

))
(3.44)

if v+ ∈ Vv, and otherwise p
(
v; ξ, ς+,v+

)
= 0.

The relation between the transition kernels and the collision kernels is captured
by the formulas in the following two lemmas. Let s− be the diffeomorphism from

Bd−1
1 onto the negative hemisphere {x ∈ Sd−1

1 : x1 < 0} which is inverse to the
projection x 7→ x⊥, i.e.

s−(w) =
(
−(1− ‖w‖2)1/2,w

)
, w ∈ Bd−1

1 .(3.45)

Then for any v ∈ Sd−1
1 , the inverse of the C1 diffeomorphism Vv → Bd−1

1 , v+ 7→
w := (β−

v (v+)R(v))⊥, is given by v+ = Ψ1(e1, s−(w))R(v)−1.

Lemma 3.26. For any bounded Borel measurable function f : R>0×Σ×Sd−1
1 →

R and any fixed β ∈ Cb(U,R
d), v ∈ U , ς ∈ Σ, if f1 : R>0 × Ω → R≥0 is defined

through

f1(ξ, (w, ς)) = f
(
ξ, ς,Ψ1(e1, s−(w))R(v)−1

)
,(3.46)

then∫ ∞

0

∫

Ω

f1(ξ,ω)k
(
((β(v)R(v))⊥, ς), ξ,ω

)
dµΩ(ω) dξ

=

∫ ∞

0

∫

Σ

∫

Vv

f(ξ, ς+,v+)p0,β(ς,v; ξ, ς+,v+) dv+ dm(ς+) dξ.(3.47)

Lemma 3.27. For any v ∈ Sd−1
1 and any bounded Borel measurable functions

f : R>0 × Σ× Sd−1
1 → R and f1 : R>0 × Ω → R≥0 subject to (3.46),

∫ ∞

0

∫

Ω

f1(ξ,ω)k
g
(
ξ,ω

)
dµΩ(ω) dξ

=

∫ ∞

0

∫

Σ

∫

Vv

f(ξ, ς+,v+)p(v; ξ, ς+,v+) dv+ dm(ς+) dξ.

The proof of both lemmas is immediate from the definition of the differential
cross section.

Remark 3.8. Using Lemma 3.18 one sees that the formula (3.42) remains true

if in the right hand side we replace R(v) by any R̂ ∈ SO(d) satisfying vR̂ = e1,

so long as both the “R(v)’s” are replaced by the same R̂. In other words, the

function p0,β does not depend on the choice of the function R : Sd−1
1 → SO(d),

and the same is true for p0. Similarly the formula in Lemma 3.26 remains valid

if we replace R by any other (measurable) function R̂ : Sd−1
1 → SO(d) satisfying

vR̂(v) = e1 for all v ∈ Sd−1
1 , so long as we use the same function R̂ in both

(3.46) and (3.47). In particular in this way we see, via Remark 3.1, that if f ∈
Cb(R>0 × Ω) then the expression in (3.47) depends continuously on v ∈ U , even
at the (possible) discontinuity point of the function R. The analogous statement
holds for Lemma 3.27.

It will follow from Theorem 3.32 below that, for given ς,v, the function
p0,β(ς,v; ξ, ς+,v+) is the limiting probability density (as ρ → 0) of hitting a scat-
terer with marking ς+ at time ρ1−dξ and in such a way that the exit velocity is
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v+, when starting at the point q + ρβ(v) and with velocity v, where q ∈ P and
ς = ς(q).

The first part of the following lemma shows that p0,β(ς,v; ξ, ς+,v+) is indeed
a probability density in the variables ξ, ς+,v+. For the second part of the lemma,

we introduce the following notation, for any v ∈ Sd−1
1 and η > 0 (cf. (3.31)):

Vηv :=
{
u ∈ Sd−1

1 : sΨ · (BΨ − ϕ(u,v)) > η
}
⊂ Vv.(3.48)

Lemma 3.28. For any open set U ⊂ Sd−1
1 and any β ∈ Cb(U,R

d), v ∈ U and
ς ∈ Σ,

∫ ∞

0

∫

Σ

∫

Vv

p0,β(ς,v; ξ, ς+,v+) dv+ dm(ς+) dξ = 1.(3.49)

Also for any ε > 0 there exist C > 1 and η > 0 such that
∫ C

1/C

∫

Σ

∫

Vη
v

p0,β(ς,v; ξ, ς+,v+) dv+ dm(ς+) dξ > 1− ε,(3.50)

uniformly over all U,β,v, ς as above.

Proof. The first statement follows from Lemma 3.26 and the definition of the
transition kernel k, in particular the fact that κ(ω, ·) is a probability measure on
R>0 ×Ω for every ω ∈ X⊥; cf. Lemma 3.1. The second statement is an immediate
consequence of Lemma 3.3 and the fact that k(·, ·, ·) ≤ CPvd−1. �

Similarly, it will follow from Theorem 3.33 that the function p(v; ξ, ς+,v+) is
the limiting probability density (as ρ→ 0) of hitting a scatterer with marking ς+ at
time ρ1−dξ and in such a way that the exit velocity is v+, when starting with velocity
v from a generic point in Rd. The following lemma shows that p(v; ξ, ς+,v+) is
indeed a probability density in the variables ξ, ς+,v+.

Lemma 3.29. For any v ∈ Sd−1
1 ,

∫ ∞

0

∫

Σ

∫

Vv

p(v; ξ, ς+,v+) dv+ dm(ς+) dξ = 1.

Proof. This follows in a similar manner using Lemma 3.27 and the fact that
κg is a probability measure on R>0 × Ω. �

3.6. Relations for the collision kernels

Lemma 3.30. For any fixed v0,v ∈ Sd−1
1 , ς ∈ Σ and K ∈ SO(d), we have

p0
(
v0K, ς,vK; ξ, ς+,v+K

)
= p0

(
v0, ς,v; ξ, ς+,v+

)
,

p
(
vK; ξ, ς+,v+K

)
= p

(
v; ξ, ς+,v+

)

for almost all (ξ, ς+,v+) ∈ R>0×Σ×Sd−1
1 with respect to the measure dξ dm(ς+) dv+.

Proof. We have

p0
(
v0K, ς,vK; ξ, ς+,v+K

)

=
σ(v,v+)

vd−1
k
((
β+
v0KR(vK)(e1)⊥, ς

)
, ξ,

(
β−
e1
(v+KR(vK))⊥, ς+

))
,
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and the analogous relation for p(vK; ξ, ς+,v+K). For fixedK ∈ SO(d), the function

v 7→ R̃(v) = KR(vK) ∈ SO(d) has the property that vR̃(v) = e1. The claim now
follows from Remark 3.8. �

Proposition 3.31. Assume (3.33) holds (i.e., the scattering map preserves or

reverses angular momentum). Then, for any fixed v ∈ Sd−1
1 ,

p
(
v; ξ, ς+,v+

)
= cP

∫

[ξ,∞)×Σ×Sd−1
1

σ(v0,v) p0
(
v0, ς,v; ξ

′, ς+,v+
)
dξ′ dm(ς) dv0,

for almost all (ξ, ς+,v+) ∈ R>0×Σ×Sd−1
1 with respect to the measure dξ dm(ς+) dv+.

Proof. By (3.44) and Proposition 3.22, we have

p
(
v; ξ, ς+,v+

)
= cP σ(v,v+)

∫ ∞

ξ

∫

Ω

k
(
ω′, ξ′,

(
β−
e1
(v+R(v))⊥, ς+

))
dµΩ(ω

′) dξ′.

We now use relation (3.41) in combination with (3.33) to obtain

p0
(
v0, ς,v; ξ, ς+,v+

)
=
σ(v,v+)

vd−1
k
((

∓β−
e1
(v0R(v))⊥, ς

)
, ξ,

(
β−
e1
(v+R(v))⊥, ς+

))
.

(3.51)

Now β−
e1
(v0R(v)) = β−

v (v0)R(v), and hence by (3.39), dµΩ(ω
′) = v−1

d−1dm(ς)
×σ(v,v0) dv0. Finally, σ(v,v0) = σ(v0,v). �

3.7. Post-collision velocity

We now transform Theorem 3.6 to obtain the limit distribution of the velocity
after the first collision. For later use, we give a result which is uniform with respect
to appropriate families of test functions f and probability measures λ.

We recall some definitions from [44, Section 2.4].

Definition 3.2. Given any subset U ⊂ Sd−1
1 we set

∂εU :=
{
v ∈ Sd−1

1 : ∃w ∈ ∂U : ϕ(v,w) < ε
}
.(3.52)

A family F of Borel subsets of Sd−1
1 is called equismooth if for every δ > 0 there is

some ε > 0 such that ω(∂εU) < δ for all U ∈ F . Finally, a family F of measures on

Sd−1
1 is called equismooth if there exist an equicontinuous and uniformly bounded

family F ′ of functions from Sd−1
1 to R≥0 and an equismooth family F ′′ of open

subsets of Sd−1
1 , such that each µ ∈ F can be expressed as µ = (g · ω)|U for some

g ∈ F ′, U ∈ F ′′.

Given any open set U ⊂ Sd−1
1 we define

XU :=
{
〈v0, ξ1, ς1,v1〉 ∈ U × R>0 × Σ× Sd−1

1 : v1 ∈ Vv0

}
.(3.53)

Theorem 3.32. Let T ≥ 1; let U be an open subset of Sd−1
1 ; let F1 be an

equismooth family of probability measures on Sd−1
1 such that λ(U) = 1 for each

λ ∈ F1; let F2 be a uniformly bounded and pointwise equicontinuous family of
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functions f : XU → R; and let F3 be a relatively compact subset of Cb(U,R
d) such

that (β(v) + R>0v) ∩ Bd1 = ∅ for all β ∈ F3, v ∈ U . Then
∫

w
β
q,ρ

f
(
v, ρd−1τ1(qρ,β(v),v; ρ), ς1(qρ,β(v),v; ρ),v1(qρ,β(v),v; ρ)

)
dλ(v)

−
∫

XU

f
(
v, ξ1, ς1,v1

)
p0,β

(
ς(q),v; ξ1, ς1,v1

)
dλ(v) dξ1 dm(ς1) dv1 → 0(3.54)

as ρ→ 0, uniformly with respect to all q ∈ PT (ρ), λ ∈ F1, f ∈ F2, β ∈ F3.

Remark 3.9. In the left hand side of (3.54), note that by definition
v1(qρ,β(v),v; ρ) = Ψ1(e1, s−(w1))R(v)

−1 with w1 = w1(qρ,β(v),v; ρ). In par-
ticular v1 ∈ Vv.

Proof. Without loss of generality we assume that R is continuous on U (other-
wise replace U with U \{v0} where v0 is the unique point where R is discontinuous).
Now if F1 and F2 are singleton sets, say F1 = {λ} and F2 = {f}, then (3.54) is an
immediate consequence of Theorem 3.6, applied with f1 ∈ Cb(U ×R>0×Ω) defined
by

f1(v, ξ, (w, ς)) = f(v, ξ, ς,Ψ1(e1, s−(w))R(v)−1),

combined with Lemma 3.26. The extension to uniformity over general sets F1 and
F2 is carried out in the same way as in the proof of [44, Thm. 2.3; Steps 2–4]. (One
uses Lemma 3.28 in place of [44, (2.42)]. When proving uniformity over F1, the
key point is to note that the set of densities of the measures in F1 with respect to
ω form a relatively compact subset of L1(U, ω).) �

Remark 3.10. The proof of Theorem 3.32 is significantly shorter than the
proof of the corresponding result [44, Thm. 2.3]. The reason is that we have
proved the auxiliary results about convergence of point processes, Lemma 2.11,
with the appropriate uniformity with respect to β, which could then be carried
over to Theorems 3.6 and 3.32, thereby avoiding the need of the discussion [44, pp.
241–244].

The following is the analogue of Theorem 3.32 for macroscopic initial conditions.
Set

(3.55) X =
{〈
q,v, ξ, ς,v+

〉
∈ T1(Rd)× R>0 × Σ× Sd−1

1 : v+ ∈ Vv

}
.

This is the extended phase space; cf. Section 1.4.

Theorem 3.33. Let Λ ∈ Pac(T
1(Rd)) and let F be a uniformly bounded and

pointwise equicontinuous family of functions f : X → R. Then
∫

W(1;ρ)

f
(
q,v, ρd−1τ1(ρ

1−dq,v; ρ), ς1(ρ
1−dq,v; ρ),v1(ρ

1−dq,v; ρ)
)
dΛ(q,v)

−
∫

X

f
(
q,v, ξ1, ς1,v1

)
p
(
v; ξ1, ς1,v1

)
dΛ(q,v) dξ1 dm(ς1) dv1 → 0

as ρ→ 0, uniformly with respect to all f ∈ F .

Proof. This is similar to the proof of Theorem 3.32, but easier. One uses
Theorem 3.14 in place of Theorem 3.6. �
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3.8. Bounding the probability of grazing a scatterer or hitting E
In the proof of our main result, Theorem 4.1, we will also need the following

two propositions, which say that most initial velocities v give rise to a “good” path
and scatterer collision, in the sense that the particle never gets very near any other
scatterer before the collision, the scatterer involved in the collision does not belong
to the exceptional set E , and the length of the impact parameter is not too close to
1.

Proposition 3.34. For U,K, T, λ as in Theorem 3.6 and β ∈ K, set

w̃β
q,ρ := {v ∈ wβ

q,ρ : q(1)(qρ,β(v),v; ρ) ∈ P \ E}.

Then λ(w̃β
q,ρ) → 1 as ρ→ 0, uniformly over all q ∈ PT (ρ) and β ∈ K.

Proof. Let ε > 0 be given. By Lemma 3.3 we can take T1 > 1 so that
κ(ω′; [T1 − 1,∞)×Ω) < ε for all ω′ ∈ X⊥, and then by Theorem 3.6 there is some
ρ1 ∈ (0, 1) such that

λ({v ∈ wβ
q,ρ : ρd−1τ1(qρ,β(v),v; ρ) ≥ T1}) < 2ε(3.56)

for all ρ ∈ (0, ρ1), q ∈ PT (ρ), β ∈ K. Let C := supβ∈K ‖β‖ and B = [−1, T1+1]×
Bd−1
C+1. Then by Lemma 2.17, after shrinking ρ1 appropriately we have

λ({v ∈ Sd−1
1 : E ∩ (q +BD−1

ρ R(v)−1) 6= ∅}) < ε(3.57)

for all ρ ∈ (0, ρ1), q ∈ PT (ρ). We may also assume (C + 1)ρd1 < 1.
Now let ρ ∈ (0, ρ1), q ∈ PT (ρ) and β ∈ K be given, and consider any v ∈ wβ

q,ρ

satisfying ρd−1τ1 < T1, where τ1 := τ1(qρ,β(v),v; ρ). Then the scattering center

q(1) = q(1)(qρ,β(v),v; ρ) has distance ρ from q + ρβ(v) + τ1v, and thus

‖(q(1) − q)R(v)− τ1e1‖ ≤ (C + 1)ρ,

and using (C + 1)ρd < 1 this is seen to imply q(1) ∈ q +BD−1
ρ R(v)−1. Hence, by

(3.56) and (3.57), we have

λ({v ∈ wβ
q,ρ : ρd−1τ1(qρ,β(v),v; ρ) < T1 and q(1)(qρ,β(v),v; ρ) /∈ E}) > 1− 3ε,

and in particular λ(w̃β
q,ρ) > 1− 3ε. �

To prepare for the next proposition, recall (3.48), and define

Uη := β−
e1

(
Ve1 \ V10η

e1

)
⊥
⊂ Bd−1

1 , for η > 0.(3.58)

(Note that (3.58) differs from the notation in [44, (2.33)].)

Definition 3.3. For v ∈ wβ
q,ρ, we say that the particle path from qρ,β(v) to

qρ,β(v)+τ1(qρ,β(v),v; ρ)v is “η-grazing” if either w1(qρ,β(v),v; ρ) ∈ Uη or if there

is some point q′ ∈ P \ {q, q(1)(qρ,β(v),v; ρ)} which has distance < (1 + η)ρ from

the line segment between qρ,β(v) and qρ,β(v)+τ1(qρ,β(v),v; ρ)v. Let g
β
q,ρ,η be the

set of those v ∈ wβ
q,ρ which give rise to η-grazing paths.

Proposition 3.35. Let U,K, T, λ be as in Theorem 3.6 and let ε > 0. Then
there exist η and ρ0 in the interval (0, 1) so that λ(gβq,ρ,η) < ε for all ρ ∈ (0, ρ0),
q ∈ PT (ρ), β ∈ K.
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Proof. Without loss of generality we assume that K is compact (cf. Remark

3.3). Let us set Ũη := Uη ∪ (Bd−1
1 \ Bd−1

1−η), and note that this is a set of the form

Bd−1
1 \ Bd−1

r(η) with r(η) → 1 as η → 0. Using Lemma 3.3, Lemma 2.15 and (2.35),

we have κ(ω′;R>0 × Ũη ×Σ) → 0 as η → 0, uniformly over all ω′ ∈ X⊥. Hence we
may fix η ∈ (0, 1) so small that

κ(ω′;R>0 × Ũ2η × Σ) <
ε

4
, ∀ω′ ∈ X⊥.(3.59)

Using Theorem 3.6 and Remark 3.2, it follows that there is some ρ1 ∈ (0, 1) such
that

λ({v ∈ wβ
q,ρ : w1(qρ,β(v),v; ρ) ∈ Ũη}) + λ(U \wβ

q,ρ) <
ε

2
(3.60)

for all ρ ∈ (0, ρ1), q ∈ PT (ρ), β ∈ K. Let C := 1 + supβ∈K ‖β‖ and

K̂ = {β̂ : β ∈ K} with β̂(v) := (1 + η)−1β(v) + 2Cv.

Then K̂ is a compact subset of Cb(U,R
d) and (β(v)+R>0v)∩Bd1 = ∅ for all β ∈ K̂,

v ∈ U , and using Theorem 3.6 again we see that after possibly shrinking ρ1, (3.60)

holds also for all ρ ∈ (0, ρ1), q ∈ PT (ρ) and β ∈ K̂. Furthermore, by Lemma 2.16,
we may assume that dP (q) > 5Cρ for all ρ ∈ (0, ρ1) and q ∈ PT (ρ).

Now take any ρ ∈ (0, (1 + η)−1ρ1), q ∈ PT (ρ) and β ∈ K. Set ρ̂ := (1 + η)ρ.

Then ρ̂ ∈ (0, ρ1), q ∈ PT (ρ̂) and β̂ ∈ K̂, and so by the above we have

λ
({
v ∈ wβ

q,ρ : w1(qρ,β(v),v; ρ) ∈ Uη or v /∈ w
β̂

q,ρ̂ or w1(qρ̂,β̂(v),v; ρ̂) /∈ Bd−1
1−η

})

<
ε

2
+
ε

2
= ε.(3.61)

Now assume that v ∈ wβ
q,ρ has the property that there exists some point q′ ∈

P \ {q, q(1)(qρ,β(v),v; ρ)} which has distance < ρ̂ from some point x on the line
segment between qρ,β(v) and qρ,β(v) + τ1v, where τ1 = τ1(qρ,β(v),v; ρ). Assume

also v ∈ w
β̂
q,ρ̂, and set q(1) = q(1)(qρ,β(v),v; ρ), q̂

(1) = q(1)(qρ̂,β̂(v),v; ρ̂), and

τ̂1 = τ1(qρ̂,β̂(v),v; ρ̂). Note that qρ̂,β̂(v) = qρ,β(v) + 2Cρ̂v. Also dP(q) > 5Cρ,

whence τ1 > 2Cρ̂, and it follows that the line segment from qρ̂,β̂(v) to qρ̂,β̂(v)+ τ̂1v

is a strict subset of the line segment from qρ,β(v) and qρ,β(v)+ τ1v. If q̂
(1) = q(1),

then x must lie between qρ̂,β̂(v) + τ̂1v and qρ,β(v) + τ1v; this implies that x ∈
Bd

(
q̂
(1), ρ̂

)
∩ Bd

(
q′, ρ̂

)
, i.e. the scatterer Bd

(
q̂
(1), ρ̂

)
is not separated, contradicting

v ∈ w
β̂

q,ρ̂ (cf. the definitions at the beginning of Section 3.2). Hence q̂(1) 6= q(1),

and then from the definitions of these points it follows that q̂(1) has distance ≥ ρ
from the ray qρ̂,β̂(v) + R>0v, and so ‖w1(qρ̂,β̂(v),v; ρ̂)‖ ≥ (1 + η)−1 > 1 − η, i.e.

v belongs to the set in (3.61).
It follows from the above discussion that gβq,ρ,η is a subset of the set in (3.61).

Hence λ(gβq,ρ,η) < ε for all ρ ∈ (0, (1 + η)−1ρ1), q ∈ PT (ρ), β ∈ K, and the
proposition is proved. �

3.8.1. Macroscopic initial conditions. The macroscopic analogue of Propo-
sition 3.34 is as follows.
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Proposition 3.36. Let Λ ∈ Pac(T
1(Rd)). Then

Λ({(q,v) ∈ W(1; ρ) : q(1)(ρ1−dq,v; ρ) ∈ E}) → 0 as ρ→ 0.

Proof. The proof of Proposition 3.34 carries over with simple modifications,
using Theorem 3.14 in place of Theorem 3.6. The only step which is not immediate
is the following fact, which is the required analogue of (3.57): For any relatively
compact set B ⊂ Rd,

Λ
({

E ∩
(
ρ1−dq +BD−1

ρ R(v)−1
)
6= ∅

})
→ 0 as ρ→ 0.(3.62)

To prove (3.62), we first note that, as in the proof of Prop. 2.22, we may reduce to
the case when Λ has a density Λ′ ∈ Cc(T

1(Rd)) with respect to vol
Rd×Sd−1

1
. Then

each point p ∈ E gives a contribution to the expression in (3.62) which is bounded
above by

(
sup

T1(Rd)

|Λ′|
)
·
∫

Rd

∫

Sd−1
1

I
(
p ∈

(
ρ1−dq +BD−1

ρ R(v)−1
))
dv dq

=
(

sup
T1(Rd)

|Λ′|
)
vol(B)ω(Sd−1

1 ) · ρd(d−1).

Take R,R′ > 0 so that suppΛ′ ⊂ BdR×Sd−1
1 and B ⊂ BdR′ . Then BD−1

ρ ⊂ Bdρ1−dR′ ,

and therefore only points p ∈ E with ‖p‖ < ρ1−d(R+R′) can give any contribution
to the expression in (3.62). Hence that expression is bounded above by

#
(
E ∩ Bdρ1−d(R+R′)

)
·
(

sup
T1(Rd)

|Λ′|
)
vol(B)ω(Sd−1

1 ) · ρd(d−1).

Now (3.62) follows from the fact that E has asymptotic density zero (cf. [P2]). �

Finally we give the macroscopic analogue of Proposition 3.35.

Definition 3.4. Let Gρ,η be the set of all (q,v) ∈ W(1; ρ) which give rise
to η-grazing paths, i.e. paths such that w1(ρ

1−dq,v; ρ) ∈ Uη or such that there

exists some q′ ∈ P \{q(1)(ρ1−dq,v; ρ)} which has distance < (1+ η)ρ from the line
segment between ρ1−dq and ρ1−dq + τ1(ρ

1−dq,v; ρ)v.

Proposition 3.37. Let Λ ∈ Pac(T
1(Rd)) and ε > 0. Then there exist η and

ρ0 in the interval (0, 1) such that Λ(Gρ,η) < ε for all ρ ∈ (0, ρ0).

Proof. The proof of Proposition 3.35 carries over with some modifications.
First, fix η ∈ (0, 1) so small that

κg
(
R>0 × Ũ2η × Σ

)
<
ε

4
,

where Ũη = Uη ∪ (Bd−1
1 \ Bd−1

1−η) as before. We introduce the scaling map

S : T1(Rd) → T1(Rd), S(q,v) = ((1 + η)d−1q,v).

By Theorem 3.14 and Remark 3.5, applied to both the measures Λ and Λ ◦ S−1, it
follows that there exists some ρ1 ∈ (0, 1) such that for every ρ ∈ (0, ρ1) we have

Λ
(
{(q,v) ∈ T1(Rd) : (q,v) /∈ W(1; ρ) or w1(ρ

1−dq,v; ρ) ∈ Ũη}
)
<
ε

2
(3.63)
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as well as

Λ ◦ S−1
(
{(q,v) ∈ T1(Rd) : (q,v) /∈ W(1; ρ) or w1(ρ

1−dq,v; ρ) ∈ Ũη}
)
<
ε

2
.

(3.64)

Now take any ρ ∈ (0, (1 + η)−1ρ1). Set ρ̂ := (1 + η)ρ. Then (3.64) holds with
ρ̂ in place of ρ, and this statement can be equivalently expressed as:

Λ
({

(q,v) ∈ T1(Rd) : (ρ1−dq,v) /∈ w(1; ρ̂) or w1(ρ
1−dq,v; ρ̂) ∈ Ũη

})
<
ε

2
.

The last bound together with (3.64) imply:

Λ
({

(q,v) ∈ W(1; ρ) : w1(ρ
1−dq,v; ρ) ∈ Uη or (ρ1−dq,v) /∈ w(1; ρ̂)

or w1(ρ
1−dq,v; ρ̂) /∈ Bd−1

1−η

})
< ε.(3.65)

By the same argument as in the proof of Proposition 3.35, Gρ,η is verified to be a
subset of the set in the left hand side of (3.65). Hence the proposition is proved. �



CHAPTER 4

Convergence to a random flight process

4.1. Joint distribution of path segments

Theorem 4.1 below is our first main result; it gives the limit of the joint distri-
bution of the first n flight segments and the marks of the corresponding scatterers.
It generalizes [44, Thm. 4.1] (specialized to start from a scatterer) from the case
of a lattice to the case of an arbitrary point set P satisfying the assumptions in
Section 2.3.

Recall the definitions of w(j; ρ), q(j)(q,v; ρ), ςj(q,v; ρ), wj(q,v; ρ), qj(q,v; ρ)

and vj(q,v; ρ) given in Section 3.4. Given an open subset U ⊂ Sd−1
1 and a function

β ∈ Cb(U,R
d), we set

wβ
q,ρ,n := {v ∈ U : (qρ,β(v),v) ∈ w(n; ρ)}.(4.1)

This notation generalizes that of (3.10), in that wβ
q,ρ = w

β
q,ρ,1. We also introduce

the following notation generalizing (3.53):

X
(n)
U :=

{
〈v0, 〈ξj , ςj ,vj

〉n
j=1

〉 ∈ U × (R>0 ×Σ×Sd−1
1 )n : vj ∈ Vvj−1

(j = 1, . . . , n)
}
.

(4.2)

For v ∈ Sd−1
1 , the tangent space Tv(S

d−1
1 ) is naturally identified with the

orthogonal complement of v in Rd. For h ∈ Tv(S
d−1
1 ), we write Dh for the corre-

sponding derivative. We use the standard Riemannian metric for Sd−1
1 , and denote

by T1
v(S

d−1
1 ) the set of unit vectors in Tv(S

d−1
1 ). For any open subset U ⊂ Sd−1

1

we write

T1(U) =
⊔

v∈U

T1
v(S

d−1
1 ).

for the unit tangent bundle of U .
We will formulate the limit result of Theorem 4.1 in a way that is uniform with

respect to certain families of functions β : U → Rd. This will be crucial for making
it possible to prove the theorem by induction over n.

Definition 4.1. For U an open subset of Sd−1
1 , let C1

b(U,R
d) be the space of

C1 functions β : U → Rd which are bounded and satisfy suph∈T1(U) ‖Dhβ‖ < ∞.

We call a subset F of C1
b(U,R

d) admissible if it is relatively compact as a subset of
Cb(U,R

d) and satisfies supβ∈F suph∈T1(U) ‖Dhβ‖ <∞ and (β(v)+R>0v)∩Bd1 = ∅
for all β ∈ F and v ∈ U .

Theorem 4.1. Let P and E satisfy all the conditions in Section 2.3 and (2.35),
and let Ψ be a scattering process satisfying the conditions in Section 3.4. Let n ∈
Z≥1 and T ∈ R≥1; let U be an open subset of Sd−1

1 ; let F1 be an equismooth family

of probability measures on Sd−1
1 such that λ(U) = 1 for each λ ∈ F1; let F2 be a

69
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uniformly bounded and pointwise equicontinuous family of functions f : X
(n)
U → R;

and let F3 be an admissible subset of C1
b(U,R

d). Then
∫

w
β
q,ρ,n

f
(
v,

〈
ρd−1τj(qρ,β(v),v; ρ), ςj(qρ,β(v),v; ρ),vj(qρ,β(v),v; ρ)

〉n
j=1

)
dλ(v)

−
∫

X
(n)
U

f
(
v0,

〈
ξj , ςj ,vj

〉n
j=1

)
p0,β

(
ς(q),v0; ξ1, ς1,v1

)
(4.3)

×
n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dλ(v0)

n∏

j=1

(
dξj dm(ςj) dvj

)
→ 0

as ρ→ 0, uniformly with respect to all q ∈ PT (ρ), λ ∈ F1, f ∈ F2, β ∈ F3.

Remark 4.1. Regarding the limit expression in (4.3), one should note that
∫

X
(n)
U

p0,β
(
ς,v0; ξ1, ς1,v1

) n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dλ(v0)

×
n∏

j=1

(
dξj dm(ςj) dvj

)
= 1

for all ς ∈ Σ and β ∈ Cb(U,R
d). This follows by using (3.49) in Lemma 3.28 n

times. In particular, taking f ≡ 1 in (4.3), the theorem implies that λ(wβ
q,ρ,n) → 1

as ρ→ 0, uniformly with respect to all q ∈ PT (ρ), λ ∈ F1, and β ∈ F3.

4.2. Auxiliary results

We next review some results from [44, Section 3].
Recall the definition of the maps β±

v and of the differential cross section σ(v,v+)
from Section 3.4. Set

Cη := 1 + max
(

sup
h∈T1(Vη

v )

∥∥Dhβ
+
v

∥∥, sup
h∈T1(Vη

v )

∥∥Dhβ
−
v

∥∥
)
.(4.4)

Then Cη is independent of v, depends continuously on η > 0, and may approach
infinity as η → 0.

For any s ∈ Rd \ {0} we let νs be the probability measure on Sd−1
1 which

gives the direction of a ray after it has been scattered in the ball Bd1 , given that
the incoming ray has direction ŝ := ‖s‖−1s and is part of the line x + Rs with x
picked at random in the (d − 1)-dimensional unit ball {s}⊥ ∩ Bd1 , with respect to
the (d− 1)-dimensional Lebesgue measure. Thus

dνs(v) = v−1
d−1σ(ŝ,v) dv.(4.5)

Let us write Vηs := Vη
ŝ
(cf. (3.48)). For η > 0 so small that Vηs 6= ∅, we define

νηs to be the probability measure which is obtained by restricting νs to Vηs and
renormalizing, i.e.

νηs := νs(Vηs )−1 · νs|Vη
s
.(4.6)

Given s ∈ Rd \ {0}, a number ρ > 0, an open set U ⊂ Sd−1
1 and a continuous

function β : U → Rd subject to the condition ρβ(v) /∈ Bd(s, ρ) ∀v ∈ U , we set

U =
{
v ∈ U : (ρβ(v) + R>0v) ∩ Bd(s, ρ) 6= ∅

}
.(4.7)
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For v ∈ U we set

(4.8) τ(v) = τρ,s,β(v) := inf
{
t > 0 : ρβ(v) + tv ∈ Bd(s, ρ)

}
,

let B(v) = Bρ,s,β(v) be the impact location on Sd−1
1 , i.e., the point for which

ρβ(v) + τ(v)v = s+ ρB(v), and let

V (v) = Vρ,s,β(v) := Ψ1(v,B(v)) ∈ Sd−1
1 ,(4.9)

the outgoing direction after the ray ρβ(v)+R>0v is scattered in the sphere s+Sd−1
ρ .

Let us write Dη
s := {v ∈ Sd−1

1 : ϕ(v, s) < η} for the ball of radius η with center

ŝ in Sd−1
1 . We now have:

Lemma 4.2. Given any 0 < η < 1
100

(
π
2 −sΨ(π2 −BΨ)

)
, C ≥ 10 and ε > 0, there

exists a constant ρ̃0 = ρ̃0(η, C, ε) > 0 such that for any ρ ∈ (0, ρ̃0), any s ∈ Rd

with ‖s‖ ≥ C−1, any open subset U ⊂ Sd−1
1 containing Dη

s , and any C1-function
β : U → Rd satisfying supv∈U ‖β(v)‖ ≤ C and suph∈T1(U) ‖Dhβ‖ ≤ C, all of the
following statements hold:

(i) Let V = Vρ,s,β be the restriction of V = Vρ,s,β to V −1(Vηs ); then V is a C1

diffeomorphism onto Vηs .
(ii) If M ⊂ Vηs is any Borel subset with νs(M) > 0 and if µ denotes the measure

ω restricted to V
−1

(M) and rescaled to be a probability measure, then V ∗µ =
g · νs(M)−1νs|M for some continuous function g :M → [1− ε, 1 + ε].

(iii) Define the C1 maps B± = B±
ρ,s,β : Vηs → Sd−1

1 through B±(u) = β±

V
−1

(u)
(u).

Then
∥∥B±(u) − β±

ŝ (u)
∥∥ < ε for all u ∈ Vηs and ‖DhB

±‖ < Cη for all

h ∈ T1(Vηs ).
Proof. This is [44, Lemma 3.2], mildly generalized by allowing a more general

set U in place of “Vηr”, and allowing either sΨ = 1 or−1 (whereas in [44] we assumed
sΨ = −1). The proof carries over immediately, using the assumption Dη

s ⊂ U ; cf.
in particular [44, (3.9)]. �

Next we prove a lemma which is useful for reducing to test functions f of
compact support in the proof of Theorem 4.1.

Lemma 4.3. Let U be an open subset of Sd−1
1 and let λ ∈ P (U) and n ∈ Z+.

Given any ε > 0 there is a compact subset K ⊂ X
(n)
U such that

∫

X
(n)
U \K

p0,β
(
ς,v0; ξ1, ς1,v1

) n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dλ(v0)

×
n∏

j=1

(
dξj dm(ςj) dvj

)
< ε

for all ς ∈ Σ and β ∈ Cb(U,R
d).

Proof. Take ε′ > 0 so small that (1 − ε′)n+1 > 1 − ε. Let KU be a compact
subset of U such that λ(KU ) > 1 − ε′. By Lemma 3.28 we can take C > 1 and
η > 0 so that

∫ C

1/C

∫

Σ

∫

Vη
v

p0,β(ς,v; ξ, ς+,v+) dv+ dm(ς+) dξ > 1− ε′(4.10)
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holds for any open set U ′ ⊂ Sd−1
1 , and any β ∈ Cd(U ′,Rd), v ∈ U ′, ς ∈ Σ. Now set

K :=
{
〈v0; 〈ξj , ςj ,vj

〉n
j=1

〉 ∈ X
(n)
U : v0 ∈ KU , ξj ∈ [C−1, C],

vj ∈ Vηvj−1 (j = 1, . . . , n)
}
.

Using (4.10) iteratively n times it follows that for any ς ∈ Σ and β ∈ Cb(U,R
d),

∫

K

p0,β
(
ς,v0; ξ1, ς1,v1

) n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dλ(v0)
n∏

j=1

(
dξj dm(ςj) dvj

)

> (1− ε′)n
∫

KU

dλ(v0) > (1 − ε′)n+1 > 1− ε.

Recalling also Remark 4.1, the lemma follows. �

Next we give a lemma about varying β in p0,β(ς,v; ξ, ς+,v+).

Lemma 4.4. Let U be an open subset of Sd−1
1 , and let f ∈ Cc(X

(2)
U ) and ε > 0.

Then there exists ν > 0 such that for any v0 ∈ U , ξ′ > 0, ς ′ ∈ Σ, U ′ ⊂ Sd−1
1 , v′ ∈

U ′∩Vv0
and any continuous functions β1,β2 : U ′ → Sd−1

1 , if ‖β1(v
′)−β2(v

′)‖ < ν
then
∣∣∣∣
∫

R>0×Σ×Vv′

f(v0, ξ
′, ς ′,v′, ξ, ς,v)

(
p0,β1

(
ς ′,v′; ξ, ς,v

)
− p0,β2

(
ς ′,v′; ξ, ς,v

))

×dξ dm(ς) dv

∣∣∣∣ < ε.(4.11)

Proof. By Lemma 3.26, the expression inside the absolute value in the left
hand side of (4.11) equals
∫ ∞

0

∫

Ω

f1(ξ,ω)
(
k
(
((β1(v

′)R(v′))⊥, ς
′), ξ,ω

)
− k

(
((β2(v

′)R(v′))⊥, ς
′), ξ,ω

))

×dµΩ(ω) dξ,

where f1 ∈ Cb(R>0 × Ω) is given by

f1(ξ, (w, ς)) = f(v0, ξ
′, ς ′,v′, ξ, ς,Ψ1(e1, s−(w))R(v′)−1)

with s− as in (3.45). Let F1 be the subset of Cb(R>0 × Ω) given by

F1 :=
{
〈ξ, (w, ς)〉 7→ f

(
v0, ξ

′, ς ′,v′, ξ, ς,Ψ1(e1, s−(w))R(v′)−1
)

: v0 ∈ U, ξ′ > 0, ς ′ ∈ Σ, v′ ∈ Vv0

}
.

Using f ∈ Cc(X
(2)
U ) one shows that F1 is relatively compact. It now suffices to

prove that there exists ν > 0 such that for any w0,w
′
0 ∈ Bd−1

1 , ς ′ ∈ Σ, f1 ∈ F1, if
‖w0 −w′

0‖ < ν then
∣∣∣∣
∫ ∞

0

∫

Ω

f1(ξ,ω)
{
k((w0, ς

′), ξ,ω)− k((w′
0, ς

′), ξ,ω)
}
dµΩ(ω) dξ

∣∣∣∣ < ε.

However this is a consequence of Remark 3.1, since F1 is relatively compact. �
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4.3. Proof of Theorem 4.1

We now prove Theorem 4.1. The proof is by induction. The case n = 1 is
already covered by Theorem 3.32. Hence we now fix n ≥ 2; we assume that the
statement of Theorem 4.1 holds with n − 1 in the place of n; our goal is to prove
that the statement also holds for n.

4.3.1. Initial reductions. By standard approximation arguments similar to
those used in the proof of Theorem 3.32 (again cf. [44, Thm. 2.3; Steps 2–4]) and
utilizing Lemma 4.3, it suffices to prove the desired statement in the special case
when F1 and F2 are singleton sets, with the unique function f ∈ F2 having compact

support, i.e. f ∈ Cc(X
(n)
U ). Hence from now on we restrict to that situation. Let λ

be the unique element in F1. Since F1 = {λ} is equismooth, we have λ = (g·ω)|U1
for

some continuous function g : Sd−1
1 → R≥0 and some open set U1 ⊂ Sd−1

1 satisfying
ω(∂U1) = 0. Let K be the image of the support of f under the projection map

from X
(n)
U to U ; this is a compact subset of U . Let us show that without loss of

generality we may assume U1 ⊂ U . To this end, choose an open neighborhood U ′ of
K satisfying U ′ ⊂ U and ω(∂U ′) = 0. Note that the desired limit statement, (4.3),

remains the same if we replace λ by λ(U ′)−1 · λ|U ′ ∈ P (Sd−1
1 ) (in the special case

λ(U ′) = 0 the limit statement is of course trivial). This corresponds to replacing
g by λ(U ′)−1 · g and U1 by U1 ∩ U ′; and we note that ω(∂(U1 ∩ U ′)) = 0 since
∂(U1 ∩ U ′) ⊂ ∂U1 ∪ ∂U ′. After having carried out these replacements, we have

λ = (g · ω)|U1
∈ P (Sd−1

1 ); U1 ⊂ U ; ω(∂U1) = 0.

4.3.2. Introducing auxiliary parameters, functions and spaces. Since
f has compact support, we can choose C1 > 1 so that f(v, 〈ξj , ςj ,vj〉nj=1) = 0 unless

ξ1, . . . , ξn all lie in the interval (C−1
1 , C1). Set

T1 := T + C1 + 1

and

C2 := sup
β∈F3

max
(
10, sup

v∈U
‖β(v)‖, sup

h∈T1(U)

‖Dhβ‖
)
.

Let us write f0 = f ; we will now define functions fm ∈ Cc(X
(n−m)
U ) recursively

for m = 1, . . . , n− 1. Assuming that fm−1 ∈ Cc(X
(n−m+1)
U ) has been defined, we

define fm on X
(n−m)
U by

fm
(
v0, 〈ξj , ςj ,vj〉n−mj=1

)
:=

∫

R>0×Σ×Vvn−m

fm−1

(
v0, 〈ξj , ςj ,vj〉n−mj=1 , ξ, ς,v

)

×p0(vn−m−1, ςn−m,vn−m; ξ, ς,v) dξ dm(ς) dv.(4.12)

The fact that fm ∈ Cc(X
(n−m)
U ) indeed holds follows by using Remark 3.1 together

with Lemma 3.26 (cf. also Remark 3.8).
Let ε > 0 be given. We fix 0 < η < 1

100

(
π
2 − sΨ(

π
2 −BΨ)

)
so small that

∂2η(U1) ⊂ U and λ(∂2η(U1)) < ε/‖f‖∞(4.13)

(this is possible since ω(∂U1) = 0), and also so that there is some ρ′0 ∈ (0, 1) so
that

λ(gβq,ρ,η) < ε/‖f‖∞ ∀ρ ∈ (0, ρ′0), q ∈ PT (ρ), β ∈ F3(4.14)
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(as is possible by Prop. 3.35). Fix a family of pairwise disjoint open subsets

D1, . . . , DN of Sd−1
1 such that each Dℓ is a diffeomorphic image of a closed (d− 1)-

simplex in Rd−1 and has diameter < η/Cη (with respect to the metric ϕ), and so

that Sd−1
1 = ∪Nℓ=1Dℓ. Recall the definition of νs ∈ P (Sd−1

1 ) for s ∈ Rd \ {0}, cf.
(4.5); it depends only on ŝ. Given s ∈ Rd\{0} and ℓ ∈ {1, . . . , N} with νs(Dℓ) > 0,

we let νℓ,s ∈ P (Sd−1
1 ) be the normalized restriction of the measure νs to Dℓ:

νℓ,s = νs(Dℓ)
−1 · νs

∣∣
Dℓ
.(4.15)

For each ℓ ∈ {1, . . . , N} we let

Aℓ = {s ∈ Sd−1
1 : Dℓ ⊂ V5η

s },(4.16)

and set

F1,ℓ := {νℓ,s : s ∈ Aℓ};(4.17)

this is an equismooth family of probability measures. Also for any v0 ∈ U ∩ Aℓ,
ξ0 > 0, ς0 ∈ Σ we define the function f[v0,ξ0,ς0] : X

(n−1)
Dℓ

→ R by

f[v0,ξ0,ς0](v, 〈ξj , ςj ,vj〉n−1
j=1 ) = f(v0, ξ0, ς0,v, 〈ξj , ςj ,vj〉n−1

j=1 ),(4.18)

and set

F2,ℓ :=
{
f[v0,ξ0,ς0] : v0 ∈ U ∩ Aℓ, ξ0 > 0, ς0 ∈ Σ

}
.(4.19)

This is a uniformly bounded and equicontinuous family of functions on X
(n−1)
Dℓ

.
Define

F3,ℓ =
{
β : Dℓ → Sd−1

1 : β is C1, sup
h∈T1(Dℓ)

‖Dhβ‖ ≤ Cη,(4.20)

(β(v) + R>0v) ∩ Bd1 = ∅ ∀v ∈ Dℓ

}
.

Then F3,ℓ is relatively compact as a subset of Cb(Dℓ,R
d).

Let us also take η′ > 0 so small that for any v0 ∈ U , ξ′ > 0, ς ′ ∈ Σ, ℓ ∈
{1, . . . , N}, v′ ∈ Dℓ ∩ Vv0

and any continuous functions β1,β2 : Dℓ → Sd−1
1 , if

‖β1(v
′)− β2(v

′)‖ < η′ then

∣∣∣∣
∫

R>0×Σ×Vv′

fn−2(v0, ξ
′, ς ′,v′, ξ, ς,v)

(4.21)

×
{
p0,β1

(ς ′,v′; ξ, ς,v)− p0,β2
(ς ′,v′; ξ, ς,v)

}
dξ dm(ς) dv

∣∣∣∣ < ε.

This is possible by Lemma 4.4.

4.3.3. The choice of ρ0. Now take ρ0 ∈ (0, 1) so small that
∣∣∣∣
∫

w
β
q,ρ,n−1

f̃
(
v, 〈ρd−1τj(qρ,β(v),v; ρ), ςj(qρ,β(v),v; ρ),vj(qρ,β(v),v; ρ)〉n−1

j=1

)
dµ(v)

−
∫

X
(n−1)
Dℓ

f̃
(
v0,

〈
ξj , ςj ,vj

〉n−1

j=1

)
p0,β

(
ς(q),v0; ξ1, ς1,v1

)
(4.22)

×
n−1∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dµ(v0)

n−1∏

j=1

(
dξj dm(ςj) dvj

)∣∣∣∣ < ε
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for all ρ ∈ (0, ρ0), q ∈ PT1(ρ), ℓ ∈ {1, . . . , N}, µ ∈ F1,ℓ, f̃ ∈ F2,ℓ and β ∈ F3,ℓ. This
is possible by our induction hypothesis, i.e. the assumption that the statement of
Theorem 4.1 holds with n− 1 in the place of n. We shrink ρ0 further if necessary,
so as to also ensure that

∣∣∣∣
∫

w
β
q,ρ,1

fn−1

(
v, ρd−1τ1(qρ,β(v),v; ρ), ς1(qρ,β(v),v; ρ),v1(qρ,β(v),v; ρ)

)
dλ(v)

(4.23)

−
∫

X
(1)
U

fn−1(v, ξ1, ς1,v1)p0,β(ς(q),v; ξ1, ς1,v1
)
dλ(v) dξ1 dm(ς1) dv1

∣∣∣∣ < ε

for all ρ ∈ (0, ρ0), q ∈ PT (ρ), and β ∈ F3. This is possible by Theorem 3.32.
We shrink ρ0 yet further if necessary, so as to also ensure that the following

four conditions (4.24)–(4.27) are fulfilled:

ρ0 < min

{
ρ̃0

(
η, C2,min

( ε

‖f‖∞
, η′

))
, ρ′0,

( η

8C1C2(1 + C2)

)1/(d−1)
}

(4.24)

(where ρ̃0(· · · ) is as in Lemma 4.2 and ρ′0 is the number in (4.14));

λ({v ∈ w
β
q,ρ,1 : q(1)(qρ,β(v),v; ρ) ∈ E}) < ε

‖f‖∞
∀ρ ∈ (0, ρ0), q ∈ PT (ρ), β ∈ F3

(4.25)

(as is possible by Prop. 3.34);

ϕ(v,v′) ≤ 4C1(1 + C2)ρ
d
0 and |ξ1 − ξ′1| ≤ (1 + C2)ρ

d
0(4.26)

⇒
∣∣f(v, 〈ξj , ςj ,vj〉nj=1)− f(v′, ξ′1, ς1,v1, 〈ξj , ςj ,vj〉nj=2)

∣∣ < ε

(this can be obtained since f is continuous and has compact support); and

ϕ(v,v′) ≤ 8C1(1 + C2)ρ
d
0 ⇒ |g(v)− g(v′)| < ε

ω(Sd−1
1 )‖f‖∞

.(4.27)

4.3.4. Modification and partition of the domain of integration. Let us
now consider any choice of ρ ∈ (0, ρ0), q ∈ PT (ρ) and β ∈ F3. In order to complete
the proof of Theorem 4.1, we wish to prove that the difference in (4.3) is ≪ ε. Thus
we need to study the integral∫

w
β
q,ρ,n

f
(
v,

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=1

)
dλ(v),(4.28)

where τj(v) := τj(qρ,β(v),v; ρ) and ςj(v) := ςj(qρ,β(v),v; ρ) and vj(v) :=

vj(qρ,β(v),v; ρ). Let us fix sets D̃1, . . . , D̃N so that Dℓ ⊂ D̃ℓ ⊂ Dℓ for all ℓ

and D̃1, . . . , D̃N partition Sd−1
1 , i.e. D̃i ∩ D̃j = ∅ for all i 6= j and Sd−1

1 = ∪Nℓ=1D̃ℓ.

Given any a ∈ Sd−1
1 we let [a] be the unique set D̃j for which a ∈ D̃j . Let us also

write q(j)(v) := q(j)(qρ,β(v),v; ρ) and

s1(v) := q
(1)(v)− q.

We now come to a crucial step of our treatment: We will prove that with small
error the domain of integration in (4.28), wβ

q,ρ,n, can be slightly modified in such a
way that the new domain can be perfectly partitioned into a large number of small
pieces which can each be dealt with using (4.22). First of all, since λ is concentrated
on U1, we may trivially replace wβ

q,ρ,n by U1 ∩ wβ
q,ρ,n. We then throw away any

v ∈ U1 for which ρd−1τ1(v) /∈ (C−1
1 , C1) or q(1)(v) ∈ E , and also any v ∈ U1
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which does not satisfy that the whole set [v1(v)] is “far from grazing position and
is fully lit upon from U1”. In precise terms, we replace the domain of integration
by U2 ∩wβ

q,ρ,n, where

U2 :=
{
v ∈ U1 ∩w

β
q,ρ,1 : C−1

1 <ρd−1τ1(v)<C1, q
(1)(v) ∈ P \ E , [v1(v)] ⊂ V5η

s1(v)
,

(4.29)

and [∀α ∈ [v1(v)] : ∃v′ ∈ U1 ∩w
β
q,ρ,1 s.t. q(1)(v′) = q(1)(v) and v1(v

′) = α]
}
.

The following lemma will allow us to bound the error caused by this replacement.

Lemma 4.5. If v ∈ (U1 ∩w
β
q,ρ,1) \ U2 then one of the following holds:

(i) ρd−1τ1(v) /∈ (C−1
1 , C1);

(ii) q(1)(v) ∈ E;
(iii) v ∈ ∂2η(U1);
(iv) v ∈ gβq,ρ,η.

Proof. Assume v ∈ (U1 ∩ w
β
q,ρ,1) \ U2, ρ

d−1τ1(v) ∈ (C−1
1 , C1) and q

(1)(v) ∈
P \ E , i.e. neither (i) or (ii) hold. Then our task is to prove that either (iii) or
(iv) holds. Now τ1 = τ1(v), q

(1) = q(1)(v), v1 = v1(v), w1(v) = w1(qρ,β(v),v; ρ)

are well-defined, with τ1(v) < ∞. Take ℓ so that [v1] = D̃ℓ. Let us first assume

D̃ℓ 6⊂ V5η
s1

(with s1 = s1(v)), and take α ∈ D̃ℓ with α /∈ V5η
s1
, i.e.

sΨ · (BΨ − ϕ(α, s1)) ≤ 5η.

Then ϕ(α,v1) < η/Cη < η since α,v1 ∈ Dℓ. Furthermore, since the ray q +

ρβ(v) + R>0v hits Bd(q(1), ρ) and ‖β(v)‖ ≤ C2, we have ‖s1‖ ≥ τ1 − (1 + C2)ρ >
(2C1)

−1ρ1−d (cf. (4.24)), and

ϕ(s1,v) < arcsin
(1 + C2)ρ

‖s1‖
≤ arcsin

(
2C1(1 + C2)ρ

d
)
< 4C1(1 + C2)ρ

d < η

(4.30)

(again cf. (4.24) for the last inequality). Hence

sΨ · (BΨ − ϕ(v,v1)) < 7η.

This implies w1 ∈ Uη (cf. (3.58)), and so (iv) holds.

It remains to treat the case when D̃ℓ ⊂ V5η
s1
. It then follows from v /∈ U2 that

there is some α ∈ D̃ℓ such that there does not exist any v′ ∈ U1 ∩w
β
q,ρ,1 satisfying

q(1)(v′) = q(1)(v) and v1(v
′) = α. We noted ‖s1‖ > (2C1)

−1ρ1−d above; hence
‖s1‖ ≥ C−1

2 (cf. (4.24)). If (iii) holds then we are done; hence let us assume that
(iii) does not hold, i.e. D2η

v ⊂ U1. Then Dη
s1

⊂ U1, because of (4.30), and hence all
the assumptions of Lemma 4.2 are fulfilled, with C2, s1, U1 in place of C, s, U . It
follows that V , the restriction of V = Vρ,s1,β to V −1(Vηs1

), is a C1 diffeomorphism

onto Vηs1
. In particular, since α ∈ D̃ℓ ⊂ Vηs1

, there is a unique v′ ∈ U1 satisfying
V (v′) = α. For this v′, set τ ′ = τρ,s1,β(v

′), so that the ray {q+ρβ(v′)+tv′ : t > 0}
hits the ball Bd(q(1)(v), ρ) for t = τ ′ (cf. (4.8)). Thus τ1(v

′) ≤ τ ′. If τ1(v
′) = τ ′

then it would follow that v′ ∈ w
β
q,ρ,1, q

(1)(v′) = q(1)(v) and v1(v
′) = V (v′) = α,

contrary to our present assumptions. Hence we must have τ(v′) < τ ′, and there
is some q′ ∈ P \ {q, q(1)(v)} so that the line segment L′ between q + ρβ(v′) and
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q + ρβ(v′) + τ ′v′ intersects Bd(q′, ρ). Let us also denote by L the line segment

between q + ρβ(v) and q + ρβ(v) + τ1(v)v, and take points u′
1,u1 ∈ Sd−1

1 so that

q + ρβ(v′) + τ ′v′ = q(1)(v) + ρu′
1 and q + ρβ(v) + τ1(v)v = q(1)(v) + ρu1.

We have ϕ(s1,v) < 4C1(1 +C2)ρ
d by (4.30), and in the same way, ϕ(s1,v

′) <
4C1(1+C2)ρ

d. Hence ϕ(v,v′) < 8C1(1+C2)ρ
d < η. Hence using suph∈T1(U) ‖Dhβ‖

≤ C2 and D2η
v ⊂ U1 ⊂ U , we get ‖β(v)− β(v′)‖ < 8C1C2(1 +C2)ρ

d. Furthermore
we have ϕ(α,v1) < η/Cη since α,v1 ∈ Dℓ. Hence by Lemma 4.2(iii), noticing that

u′
1 = B−(α) and u1 = B−(v1) with B− = B−

ρ,s1,β
, it follows that ϕ(u1,u

′
1) <

Cηϕ(α,v1) < η. Hence the end-points of L and L′ satisfy

‖(q(1)(v) + ρu′
1)− (q(1)(v) + ρu1)‖ < ηρ

and

‖(q + β(v))− (q + β(v′))‖ < 8C1C2(1 + C2)ρ
d < ηρ

(cf. (4.24)). It follows that each point on L′ has distance < ηρ to L. Hence q′ has
distance < (1 + η)ρ from L, and hence v ∈ gβq,ρ,η, i.e. (iv) holds. �

By Lemma 4.5, and since f(v, 〈ξj , ςj ,vj〉nj=1) = 0 whenever ξ1 /∈ (C−1
1 , C1), the

error caused by replacing the domain of integration in (4.28) by U2 ∩wβ
q,ρ,n is

≤
(
λ({v ∈ w

β
q,ρ,1 : q(1)(v) ∈ E}) + λ(∂2η(U1)) + λ(gβq,ρ,η)

)
· ‖f‖∞ < 3ε.(4.31)

Cf. (4.13), (4.14) and (4.25) for the last inequality.
Now our task is to understand∫

U2∩w
β
q,ρ,n

f
(
v,

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=1

)
dλ(v).(4.32)

With the new domain of integration, the integral can be decomposed as a sum over
those q′ which can appear as q(1). By the definition of U2, each such point q′

satisfies q′ ∈ P \ E and

‖q′‖ ≤ ‖q‖+ (C2 + 1)ρ+ C1ρ
1−d < (T + C1 + 1)ρ1−d = T1ρ

1−d

(we used (4.24) in the second inequality); thus q′ ∈ PT1(ρ). Given any q′ ∈ PT1(ρ)
we write s1 := q′ − q, and let M(q′) be the corresponding set of ℓ ∈ {1, . . . , N}
such that D̃ℓ is far from grazing position and is fully lit upon from U1, i.e.

M(q′) =
{
ℓ : D̃ℓ ⊂ V5η

s1
and

[∀α ∈ D̃ℓ : ∃v′ ∈ U1 ∩w
β
q,ρ,1 s.t. q(1)(v′) = q′ and v1(v

′) = α]
}
.

Then (4.32) can be expressed as
∑

q′∈PT1(ρ)

∑

ℓ∈M(q′)

∫

Uq′,ℓ∩w
β
q,ρ,n

f
(
v,

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=1

)
dλ(v),(4.33)

where

Uq′,ℓ := {v ∈ U1 ∩w
β
q,ρ,1 : q(1)(v) = q′, v1(v) ∈ D̃ℓ}.

Indeed, for every v ∈ U2 ∩ wβ
q,ρ,n there is exactly one choice of q′ ∈ PT1(ρ) and

ℓ ∈ M(q′) such that v ∈ Uq′,ℓ ∩ wβ
q,ρ,n, and conversely for any q′ ∈ PT1(ρ),

ℓ ∈M(q′) and v ∈ Uq′,ℓ ∩wβ
q,ρ,n, we have v ∈ U2 or ρd−1τ1(v) /∈ (C−1

1 , C1), and in
the latter case the integrand vanishes.
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4.3.5. Step by step modification and approximation of the decom-
posed integral. For any q′, ℓ and v ∈ Uq′,ℓ as in (4.33), we have |τ1(v)− ‖s1‖| ≤
(1+C2)ρ, ϕ(ŝ1,v) < 4C1(1+C2)ρ

d (cf. (4.30)), and ς1(v) = ς(q′). Hence by (4.26),
up to an error of absolute size < ε, (4.33) equals

∑

q′∈PT1(ρ)

∑

ℓ∈M(q′)

∫

Uq′,ℓ∩w
β
q,ρ,n

f
(
ŝ1, ρ

d−1‖s1‖, ς(q′),v1(v),(4.34)

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=2

)
dλ(v).

(Note that ŝ1 ∈ U , since v ∈ U1 and U1 ∪ ∂2η(U1) ⊂ U .) Next recall that dλ(v) =
g(v) dω(v) for v ∈ U1. By (4.27), if in each region Uq′,ℓ we replace the function
g by any constant equal to a value taken by g in Uq′,ℓ, this causes a total error
of absolute size < ε; and by the intermediate value theorem, an admissible such
constant is λ(Uq′,ℓ)/ω(Uq′,ℓ). Hence we conclude that (4.34) differs by less than ε
from

∑

q′∈PT1(ρ)

∑

ℓ∈M(q′)

λ(Uq′,ℓ)

∫

Uq′,ℓ∩w
β
q,ρ,n

f
(
ŝ1, ρ

d−1‖s1‖, ς(q′),v1(v),

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=2

) dω(v)

ω(Uq′,ℓ)
.(4.35)

As in the proof of Lemma 4.5, for any fixed q′ ∈ PT1(ρ) and ℓ ∈ M(q′), we
have a C1 diffeomorphism V of from V −1(Vηs1

) onto Vηs1
; also Uq′,ℓ ⊂ V −1(Vηs1

),

V (Uq′,ℓ) = D̃ℓ, and v1(v) = V (v) for all v ∈ Uq′,ℓ. We take v1 = v1(v) as a
new variable of integration in (4.35). By Lemma 4.2(ii), using also (4.24) and our
notation from (4.15), ω(Uq′,ℓ)

−1 dω(v) in (4.35) transforms into h(v1) dνℓ,s1(v1),

where h = hq′,ℓ is a continuous function on D̃ℓ satisfying
∣∣h(v1) − 1

∣∣ ≤ ε/‖f‖∞
for all v1 ∈ D̃ℓ. It follows that replacing h(v1) dνℓ,s1(v1) by dνℓ,s1(v1) causes a
total error ≤ ε in our expression. Also, the point where the particle leaves the
q′-scatterer is q′ + ρB+(v1) with B

+ = B+
ρ,s1,β

as in Lemma 4.2(iii), and we note

that for all v ∈ Uq′,ℓ the condition v ∈ wβ
q,ρ,n is equivalent with v1(v) ∈ wB+

q′,ρ,n−1.

Hence, up to an error of absolute size < ε, (4.35) equals
∑

q′∈PT1(ρ)

∑

ℓ∈M(q′)

λ(Uq′,ℓ)

∫

D̃ℓ∩wB+

q′,ρ,n−1

f
(
ŝ1, ρ

d−1‖s1‖, ς(q′),v,

〈
ρd−1τ̃j(v), ς̃j(v), ṽj(v)

〉n−1

j=1

)
dνℓ,s1(v),(4.36)

where τ̃j(v) = τj(q
′+ρB+(v),v; ρ), ς̃j(v) = ςj(q

′+ρB+(v),v; ρ), ṽj(v) = vj(q
′+

ρB+(v),v; ρ).

Clearly we may replace D̃ℓ by Dℓ in (4.36), since ∂Dℓ has measure zero. Let us

temporarily fix q′ ∈ PT1(ρ) and ℓ ∈M(q′), and set β̃ := B+
|Dℓ

; thenDℓ∩wB+

q′,ρ,n−1 =

w
β̃
q′,ρ,n−1, and using also (4.18) the integral appearing in (4.36) can be rewritten as

∫

w
β̃

q′,ρ,n−1

f[ŝ1,ρd−1‖s1‖,ς(q′)]

(
v,

〈
ρd−1τ̃j(v), ς̃j(v), ṽj(v)

〉n−1

j=1

)
dνℓ,s1(v).(4.37)

Note that for all q′ and ℓ appearing in (4.36), we have νℓ,s1 ∈ F1,ℓ, f[ŝ1,ρd−1‖s1‖,ς(q′)] ∈
F2,ℓ, and also β̃ := B+

|Dℓ
∈ F3,ℓ, by Lemma 4.2(iii). Hence by (4.22), the integral
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in (4.37) differs by less than ε from
∫

X
(n−1)
Dℓ

f
(
ŝ1, ρ

d−1‖s1‖, ς(q′),v0,
〈
ξj , ςj ,vj

〉n−1

j=1

)
p
0,β̃

(
ς(q′),v0; ξ1, ς1,v1

)

×
n−1∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dνℓ,s1(v0)

n−1∏

j=1

(
dξj dm(ςj) dvj

)
(4.38)

=

∫

X
(1)
Dℓ

fn−2(ŝ1, ρ
d−1‖s1‖, ς(q′),v1, ξ2, ς2,v2) p0,β̃

(
ς(q′),v1; ξ2, ς2,v2

)

×dνℓ,s1(v1) dξ2 dm(ς2) dv2,

where in the last equality we used (4.12) for m = 1, 2, . . . , n− 2, and then renamed

the variables v0, ξ1, ς1,v1 as v1, ξ2, ς2,v2. Here β̃ = B+
ρ,s1,β|Dℓ

, and by Lemma

4.2(iii), using ρ < ρ0 and (4.24), we have ‖β̃(v1) − β+
ŝ1
(v1)‖ < η′ for all v1 ∈ Dℓ,

and hence by (4.21) and (3.43), the expression in (4.38) differs by less than ε from
∫

X
(1)
Dℓ

fn−2(ŝ1, ρ
d−1‖s1‖, ς(q′),v1, ξ2, ς2,v2) p0

(
ŝ1, ς(q

′),v1; ξ2, ς2,v2
)

×dνℓ,s1(v1) dξ2 dm(ς2) dv2(4.39)

=

∫

Dℓ

fn−1(ŝ1, ρ
d−1‖s1‖, ς(q′),v1) dνℓ,s1(v1),

where the equality holds by (4.12). In conclusion, for any q′ ∈ PT1(ρ) and ℓ ∈
M(q′), the integral appearing in (4.36) differs by less than 2ε from the integral in
(4.39). Adding over q′ and ℓ, it follows that the whole expression in (4.36) differs
by less than 2ε from

∑

q′∈PT1(ρ)

∑

ℓ∈M(q′)

λ(Uq′,ℓ)

∫

Dℓ

fn−1(ŝ1, ρ
d−1‖s1‖, ς(q′),v1) dνℓ,s1(v1).(4.40)

4.3.6. Conclusion of the proof. It follows from the recursion formula (4.12)
together with (3.49) in Lemma 3.28 that ‖fn−1‖∞ ≤ ‖fn−2‖∞ ≤ · · · ≤ ‖f‖∞.
Similarly the continuity property (4.26) immediately carries over to fn−1, i.e. we
have

ϕ(v,v′) ≤ 4C1(1 + C2)ρ
d
0 and |ξ1 − ξ′1| ≤ (1 + C2)ρ

d
0

⇒
∣∣fn−1(v, ξ1, ς1,v1)− fn−1(v

′, ξ′1, ς1,v1)
∣∣ < ε.

Hence by repeating the argument between (4.33) and (4.36) (“backwards”), with
the function fn−1 in place of f and with a slight simplification due to the fact that
this time we are not intersecting by wβ

q,ρ,n in the domain of integration, it follows
that (4.40) differs by less than 3ε from

∑

q′∈PT1(ρ)

∑

ℓ∈M(q′)

∫

Uq′,ℓ

fn−1(v, ρ
d−1τ1(v), ς(q

′),v1(v)) dλ(v).(4.41)

Also by the argument between (4.32) and (4.33), this double sum equals
∫

U2

fn−1(v, ρ
d−1τ1(v), ς1(v),v1(v)) dλ(v).(4.42)
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Now by Lemma 4.5 and the bound in (4.31) (and the fact that λ is concentrated

on U1), replacing the domain of integration in (4.42) by w
β
q,ρ,1 causes a total error

less than 3ε. Hence, using also (4.23), it follows that (4.42) differs by less than 4ε
from∫

X
(1)
U

fn−1(v, ξ1, ς1,v1) p0,β(ς(q),v; ξ1, ς1,v1
)
dλ(v) dξ1 dm(ς1) dv1

=

∫

X
(n)
U

f
(
v0,

〈
ξj , ςj ,vj

〉n
j=1

)
p0,β

(
ς(q),v0; ξ1, ς1,v1

)
(4.43)

×
n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dλ(v0)
n∏

j=1

(
dξj dm(ςj) dvj

)
,

where the last equality holds by repeated use of (4.12).
Summing up, we have proved that for any ρ ∈ (0, ρ0), q ∈ PT (ρ) and β ∈ F3,

the two integrals (4.28) and (4.43) differ by less than 15ε. This completes the proof
of Theorem 4.1. �

4.4. Macroscopic initial conditions

Generalizing the notation W(1; ρ) from Section 3.2.1, let us write W(n; ρ) for
the set w(n; ρ) in macroscopic coordinates, i.e.

W(n; ρ) = {(q,v) ∈ T1(Rd) : 〈ρ1−dq,v〉 ∈ w(n; ρ)}.(4.44)

The following space is the macroscopic analogue of X
(n)
U , cf. (4.2):

X(n) :=
{
〈q,v0, 〈ξj , ςj ,vj

〉n
j=1

〉 ∈ T1(Rd)× (R>0 × Σ× Sd−1
1 )n :

vj ∈ Vvj−1
(j = 1, . . . , n)

}
.(4.45)

In particular note that X(1) = X , the extended phase space defined in (3.55).

Theorem 4.6. Let P and E satisfy all the conditions in Section 2.3 and (2.35),
and let Ψ be a scattering process satisfying the conditions in Section 3.4. Then for
any n ≥ 1, Λ ∈ Pac(T

1(Rd)) and f ∈ Cb(X
(n)), we have

lim
ρ→0

∫

W(n;ρ)

f
(
q,v,

〈
ρd−1τj(ρ

1−dq,v; ρ), ςj(ρ
1−dq,v; ρ),vj(ρ

1−dq,v; ρ)
〉n
j=1

)

×dΛ(q,v)

=

∫

X(n)

f
(
q,v0,

〈
ξj , ςj ,vj

〉n
j=1

)
p
(
v0; ξ1, ς1,v1

)
(4.46)

×
n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dΛ(q,v0)

n∏

j=1

(
dξj dm(ςj) dvj

)
.

Remark 4.2. Regarding the limit expression in (4.46), one should note that
∫

X(n)

p
(
v0; ξ1, ς1,v1

) n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dΛ(q,v0)

×
n∏

j=1

(
dξj dm(ςj) dvj

)
= 1.
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This follows by iterated use of (3.49) in Lemma 3.28, and Lemma 3.29. In partic-
ular, taking f ≡ 1 in (4.46), the theorem implies that Λ(W(n; ρ)) → 1 as ρ→ 0.

Remark 4.3. In the special case of Ψ being specular reflection, Theorem 4.6
is equivalent with Theorem 1.2. Here one should note that the definition of the se-
quences {τj}, {ςj}, {vj} which was given in Sec. 3.4 and which is used in Theorem
4.6, differs slightly from the definition used in Section 1.2 and Theorem 1.2. How-
ever, as far as the values of 〈(τj , ςj ,vj)〉nj=1 are concerned, this difference occurs only
for initial conditions (q,v) which lie outside W(n; ρ), and since Λ(W(n; ρ)) → 1 as
ρ → 0 (cf. Remark 4.2), it follows that Theorem 1.2 and Theorem 4.6 are indeed
equivalent.

Proof. We derive Theorem 4.6 as a consequence of Theorem 4.1 together with
Theorem 3.33 and Propositions 3.36 and 3.37. As we will see, after expressing the
integral in the left hand side of (4.46) as an iterated integral over q and v, the
inner integral (that is, the integral over v) can be treated by more or less exactly
the same arguments as in the proof of Theorem 4.1.

Some initial reductions: The right hand side of (4.46) can be expressed as∫
X(n) f dµΛ, where µΛ is a Borel probability measure on X(n); cf. Remark 4.2 re-

garding the fact that µΛ(X
(n)) = 1. Hence by a standard approximation argument,

it suffices to prove (4.46) under the extra assumption that f has compact support
in X(n). Next let g ∈ L1(T1(Rd)) be the density of Λ with respect to dq dv. Again
by Lemma 3.28 and Lemma 3.29 we have

∫

(R>0×Σ×Sd−1
1 )n

∣∣∣f
(
· · ·

)∣∣∣ p
(
v0; ξ1, ς1,v1

) n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj)

×
n∏

j=1

(
dξj dm(ςj) dvj

)
≤ ‖f‖∞

for all (q,v0) ∈ T1(Rd) (where the integrand should be interpreted to vanish when

〈q,v0; 〈ξj , ςj ,vj
〉n
j=1

〉 /∈ X(n)). Hence, since Cc(T
1(Rd)) is dense in L1(T1(Rd)), we

may without loss of generality assume g ∈ Cc(T
1(Rd)).

Since f has compact support, we can choose C1 > 1 and T > 0 so that
f
(
q,v0;

〈
ξj , ςj ,vj

〉n
j=1

)
vanishes unless ‖q‖ < T and ξ1, . . . , ξn all lie in the interval

(C−1
1 , C1). Set

T1 := T + C1 + 1.

We write f0 = f , and define functions fm ∈ Cc(X
(n−m)) recursively for m =

1, . . . , n− 1 exactly as in (4.12) but with the extra parameter q in each fm.
Let ε > 0 be given. We fix 0 < η < 1

100

(
π
2 − sΨ(

π
2 − BΨ)

)
and ρ′0 ∈ (0, 1) so

that

Λ(Gρ,η) < ε/‖f‖∞ ∀ρ ∈ (0, ρ′0);(4.47)

this is possible by Prop. 3.37. Given η, we let Dℓ, D̃ℓ, Aℓ, F1,ℓ and F3,ℓ for ℓ =
1, . . . , N be exactly as in the proof of Theorem 4.1. Also for ℓ = 1, . . . , N we set

F2,ℓ :=
{
f[q,v0,ξ0,ς0] : (q,v0) ∈ T1(Rd), v0 ∈ Aℓ, ξ0 > 0, ς0 ∈ Σ

}
,
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where f[q,v0,ξ0,ς0] ∈ Cc(X
(n−1)
Dℓ

) is defined exactly as in (4.18) but with the extra
parameter q in f . Then F2,ℓ is a uniformly bounded and equicontinuous family of

functions on X
(n−1)
Dℓ

.

Let us also take η′ > 0 sufficiently small so that the condition formulated around
(4.21) holds, but with the extra parameter q in fn−2 and with (q,v′) arbitrary in
T1(Rd). This is possible by an obvious modification of Lemma 4.4.

Next take ρ0 ∈ (0, 1) so small that the inequality in (4.22) holds for all ρ ∈
(0, ρ0), q ∈ PT1(ρ), ℓ ∈ {1, . . . , N}, µ ∈ F1,ℓ, f̃ ∈ F2,ℓ and β ∈ F3,ℓ. This is
possible by Theorem 4.1 applied with n− 1 in the place of n. We shrink ρ0 further
if necessary, so as to also ensure that
∣∣∣∣
∫

W(1;ρ)

fn−1

(
q,v, ρd−1τ1(ρ

1−dq,v; ρ), ς1(ρ
1−dq,v; ρ),v1(ρ

1−dq,v; ρ)
)
dΛ(q,v)

−
∫

X(1)

fn−1(q,v, ξ1, ς1,v1)p(v; ξ1, ς1,v1
)
dΛ(q,v) dξ1 dm(ς1) dv1

∣∣∣∣ < ε(4.48)

for all ρ ∈ (0, ρ0). This is possible by Theorem 3.33. We shrink ρ0 still further if
necessary, so as to also ensure that the following four conditions (4.49)–(4.52) are
fulfilled:

ρ0 < min

{
ρ̃0

(
η, 10,min

( ε

‖f‖∞
, η′

))
, ρ′0,

( η

4C1

)1/(d−1)
}

(4.49)

(where ρ̃0(· · · ) is as in Lemma 4.2 and ρ′0 is the number in (4.47));

Λ({(q,v) ∈ W(1; ρ) : q(1)(ρ1−dq,v; ρ) ∈ E}) < ε/‖f‖∞ ∀ρ ∈ (0, ρ0)(4.50)

(as is possible by Prop. 3.36);

ϕ(v,v′) ≤ 4C1ρ
d
0 and |ξ1 − ξ′1| ≤ 2ρd0(4.51)

⇒
∣∣f(q,v, 〈ξj , ςj ,vj〉nj=1)− f(q,v′, ξ′1, ς1,v1, 〈ξj , ςj ,vj〉nj=2)

∣∣ < ε

(this can be obtained since f is continuous and has compact support); and

ϕ(v,v′) ≤ 8C1ρ
d
0 ⇒ |g(q,v)− g(q,v′)| < ε

vol(BdT )ω(Sd−1
1 )‖f‖∞

.(4.52)

Now fix any ρ ∈ (0, ρ0). We will prove that the integral in the left hand side of
(4.46) differs from the right hand side by ≪ ε. We will use the following short-hand
notation:

τj(v) := τj(ρ
1−dq,v; ρ); ςj(v) := ςj(ρ

1−dq,v; ρ); vj(v) := vj(ρ
1−dq,v; ρ);

q(j)(v) := q(j)(ρ1−dq,v; ρ); s1(v) := q
(1)(v)− ρ1−dq.

For each q ∈ Rd we set

Wq(n; ρ) := {v ∈ Sd−1
1 : (q,v) ∈ W(n; ρ)},

and let λq be the Borel measure dλq(v) := g(q,v) dv on Sd−1
1 . Then since

f(q,v, 〈ξj , ςj ,vj〉nj=1) = 0 whenever ‖q‖ ≥ T , the integral in the left hand side
of (4.46) equals

∫

Bd
T

∫

Wq(n;ρ)

f
(
q,v,

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=1

)
dλq(v) dq.(4.53)



4.4. MACROSCOPIC INITIAL CONDITIONS 83

For each q ∈ BdT , we define the set U2,q as the exact counterpart of U2 in (4.29):

U2,q :=
{
v ∈ Wq(1; ρ) : C

−1
1 <ρd−1τ1(v)<C1, q

(1)(v) ∈ P \ E , [v1(v)] ⊂ V5η
s1(v)

,

and
[
∀α ∈ [v1(v)] : ∃v′ ∈ Wq(1; ρ) s.t. q

(1)(v′) = q(1)(v) and v1(v
′) = α

]}
.

We now have the following analogue of Lemma 4.5:

Lemma 4.7. For q ∈ BdT , if v ∈ Wq(1; ρ)\U2,q then one of the following holds:

(i) ρd−1τ1(v) /∈ (C−1
1 , C1);

(ii) q(1)(v) ∈ E;
(iii) (q,v) ∈ Gρ,η.

Proof. The proof of Lemma 4.5 carries over with very small and obvious
modifications. There are some simplifications due to the fact that we now have
“β ≡ 0”, meaning that we can replace C2 by 0, and take C = 10 in the application
of Lemma 4.2. �

By Lemma 4.7, and since f(q,v, 〈ξj , ςj ,vj〉nj=1) = 0 whenever ξ1 /∈ (C−1
1 , C1),

the error caused by replacing the domain of integration in the inner integral in
(4.53) by U2,q ∩Wq(n; ρ) is

≤
(
Λ({(q,v) ∈ W(1; ρ) : q(1)(v) ∈ E}) + Λ(Gρ,η)

)
· ‖f‖∞ < 2ε.(4.54)

Cf. (4.47) and (4.50) for the last inequality.
Now our task is to understand∫

Bd
T

∫

U2,q∩Wq(n;ρ)

f
(
q,v,

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=1

)
dλq(v) dq.(4.55)

Fix an arbitrary q ∈ BdT , and consider the inner integral in (4.55). This integral can

be decomposed as a sum over those q′ which can appear as q(1). By the definition
of U2,q, each such point q′ satisfies q′ ∈ P \ E and

‖q′‖ ≤ ‖ρ1−dq‖+ 2ρ+ C1ρ
1−d < (T + C1 + 1)ρ1−d = T1ρ

1−d;

thus q′ ∈ PT1(ρ). Given any q′ ∈ PT1(ρ) we write s1 := q′ − ρ1−dq, and let Mq(q
′)

be the corresponding set of ℓ ∈ {1, . . . , N} such that D̃ℓ is far from grazing position
and is fully lit upon, i.e.,

Mq(q
′) =

{
ℓ : D̃ℓ ⊂ V5η

s1
and

[∀α ∈ D̃ℓ : ∃v′ ∈ Wq(1; ρ), s.t. q
(1)(v′) = q′ and v1(v

′) = α]
}
.

Then for our fixed q ∈ BdT , by the same argument as for (4.33), the inner integral
in (4.55) can be expressed as

∑

q′∈PT1(ρ)

∑

ℓ∈Mq(q′)

∫

Uq′,ℓ∩Wq(n;ρ)

f
(
q,v,

〈
ρd−1τj(v), ςj(v),vj(v)

〉n
j=1

)
dλq(v)

(4.56)

where

Uq′,ℓ := {v ∈ Wq(1; ρ) : q(1)(v) = q′, v1(v) ∈ D̃ℓ}.
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Now, by a direct mimic of the treatment of (4.33) in the proof of Theorem 4.1,
all the way to (4.41), one shows that for every q ∈ BdT , the expression in (4.56)
differs by at most

ε ·
(
6λq(S

d−1
1 ) +

2

vol(BdT )
)

from
∫

U2,q

fn−1(q,v, ρ
d−1τ1(v), ς1(v),v1(v)) dλq(v).(4.57)

(The factor vol(BdT )−1 in the bound comes from the corresponding factor in (4.52),
which was not present in the analogous assumption in (4.27).) Integrating now over
q ∈ BdT , we conclude that up to an error of absolute size ≤ 8ε, the double integral
in (4.55) equals

∫

Bd
T

∫

U2,q

fn−1(q,v, ρ
d−1τ1(v), ς1(v),v1(v)) dλq(v) dq.(4.58)

By Lemma 4.7 and the bound in (4.54), replacing U2,q by Wq(1; ρ) in (4.58) causes
a total error less than 2ε; and hence, using also (4.48), it follows that (4.58) differs
by less than 3ε from

∫

X(1)

fn−1(q,v, ξ1, ς1,v1)p(v; ξ1, ς1,v1
)
dΛ(q,v) dξ1 dm(ς1) dv1,

and this integral is equal to the right hand side of (4.46).
Summing up, we have proved that for any ρ ∈ (0, ρ0), the integral in (4.53)

differs by less than 13ε from the right hand side of (4.46). This completes the proof
of Theorem 4.6. �

4.5. Random flight processes

We will here discuss the deduction of Theorem 1.1 and Theorem 1.3 from
Theorem 4.6.

For any metric space S and positive real number T , we write DS [0, T ] (resp.,
DS[0,∞)) for the space of càdlàg functions [0, T ] → S (resp., [0,∞) → S), equipped
with the Skorohod topology (cf., e.g., [7, Ch. 3] and [28, Ch. 3.5]). Given Λ ∈
P (T1(Rd)) and ρ > 0, if (q,v) is a random point in (T1(Rd),Λ) then Θ(ρ) defined

by Θ(ρ)(t) = Φ̃
(ρ)
t (q,v) as in (1.14) or (1.29), is a random element in DT1(Rd)[0,∞).

We will first give a precise definition of the limiting flight processes Θ appearing
in Theorems 1.1 and 1.3. To this end, we extend (4.45) by letting

X(∞) :=
{
〈q0,v0; 〈ξj , ςj ,vj

〉∞
j=1

〉 ∈ T1(Rd)×
∞∏

j=1

(R>0 × Σ× Sd−1
1 ) :

vj ∈ Vvj−1
, ∀j ≥ 1

}
,(4.59)

with the topology induced from the product topology on T1(Rd)×∏∞
j=1(R>0×Σ×

Sd−1
1 ). Also let prn : X(∞) → X(n) be the projection taking 〈q0,v0; 〈ξj , ςj ,vj

〉∞
j=1

〉
to 〈q0,v0; 〈ξj , ςj ,vj

〉n
j=1

〉. Given any Borel probability measure Λ on T1(Rd), we
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let νΛ be the unique Borel probability measure on X(∞) which for any n ≥ 1 and
any Borel set A ⊂ X(n) satisfies

νΛ(pr
−1
n (A)) =

∫

A

p
(
v0; ξ1, ς1,v1

) n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj)(4.60)

×dΛ(q,v0)
n∏

j=1

(
dξj dm(ςj) dvj

)
.

(The probability measure in the right hand side is exactly the one that appears
in (4.46) in Theorem 4.6.) The existence and uniqueness of the measure νΛ is a
consequence of the Kolmogorov extension theorem. Note that νΛ is the distribution
of a Markov process with memory two on the space R>0 × Σ× Sd−1

1 .
Set

F =
{(
q0,v0,

〈
ξj , ςj ,vj

〉∞
j=1

)
∈ X(∞) :

∑∞
j=1 ξj <∞

}
.

Lemma 4.8. νΛ(F) = 0.

Proof. For any t > 0 and any positive integer n we have

νΛ

({〈
q0,v0,

〈
ξj , ςj ,vj

〉∞
j=1

〉
∈ X(∞) :

n∑

j=1

ξj ≤ t
})

≤ (cPvd−1)
n t
n

n!
.(4.61)

Indeed, using (4.60) and Lemmas 3.26 and 3.27 to express the left hand side as
an integral over T1(Rd) × (R>0 × Ω)n, and then using the fact that both k and
kg take values in [0, cPvd−1] (cf. (3.5) and (3.8)), the left hand side of (4.61) is
seen to be bounded above by (cPvd−1)

n times the Lebesgue volume of the simplex
{(ξ1, . . . , ξn) ∈ (R>0)

n :
∑n
j=1 ξj ≤ t}; this is the bound in (4.61).

It follows from (4.61) that νΛ
(∑∞

j=1 ξj < t
)
= 0, for every t > 0. The lemma

follows from this fact. �

We next define a map

J : X(∞) → DT1(Rd)[0,∞),(4.62)

as follows. For x =
(
q0,v0;

〈
ξj , ςj ,vj

〉∞
j=1

)
in X(∞) \ F ,

J(x)(t) :=
(
q0 +

n∑

j=1

ξjvj−1 +
(
t− ξ1 − · · · − ξn

)
vn,vn

)
,(4.63)

where n = n(〈ξ1, ξ2, . . .〉, t) is the nonnegative integer defined through the relation

ξ1 + · · ·+ ξn ≤ t < ξ1 + · · ·+ ξn+1.(4.64)

To make J defined on allX(∞) we choose a fixed (dummy) value y0 ∈ DT1(Rd)[0,∞)

and declare J(x) := y0 for all x ∈ F .
The map J is Borel measurable; in fact J is even continuous on X(∞) \ F , as

one easily verifies using [28, Prop. 3.6.5].

Definition 4.2. We let Θ be the random element J(x) in DT1(Rd)[0,∞) for x

random in (X(∞), νΛ).
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We will now give the proof of Theorems 1.1 and 1.3. In the case of Theorem
1.1, we consider the hard sphere scattering process introduced in Section 1.2, and
let the scattering map Ψ : S− → S+ be as in (1.4); in the case of Theorem 1.3 we
consider the Lorentz process for potentials and let Ψ : S− → S+ be the scattering
map associated to the fixed potential W . (We recall explicit formulas for the
correspondence W 7→ Ψ in Section 5.4 below. Note that in Theorem 1.3 we are
assuming that W is such that Ψ satisfies the conditions in Section 3.4.) The choice
of scattering map Ψ then leads to corresponding collision kernels p(v; ξ, ς+,v+)
and p0(v0, ς,v; ξ, ς+,v+) (cf. Sec. 3.5) and a corresponding probability measure νΛ
on X(∞) (cf. (4.60)) and finally a random flight process Θ (cf. Def. 4.2). We will
prove that Theorem 1.1 (resp., Theorem 1.3) holds with this limiting random flight
process Θ.

Let us note that it suffices to prove that, for each fixed T > 0, the random
element Θ(ρ)|[0,T ] in DT1(Rd)[0, T ] converges in distribution to Θ|[0,T ], as ρ → 0.

Thus from now on we keep T fixed. For each n ∈ Z+ we define Σn : X(n) → R>0

by

Σn(x) = ξ1 + · · ·+ ξn for x =
〈
q0,v0;

〈
ξj , ςj ,vj

〉n
j=1

〉
∈ X(n).

We also view Σn as a function on X(∞), via composition with the projection prn :
X(∞) → X(n). Then define the random element Θn,T in DT1(Rd)[0, T ] through

Θn,T =

{
J(x) if Σn(x) > T,

y0|[0,T ] if Σn(x) ≤ T,
(4.65)

with x being the same random element in (X(∞), νΛ) as in Definition 4.2, and y0

being the dummy constant in DT1(Rd)[0,∞) fixed above. Let us record that, as an
immediate consequence of (4.61) applied with t = T , we have

lim
n→∞

P(Θn,T = ΘT ) = 1.(4.66)

For any ρ > 0, (q,v) ∈ w(n; ρ) and j ∈ {1, . . . , n} we let τj(q,v; ρ), ςj(q,v; ρ),
and vj(q,v; ρ) be as defined in Section 3.4. We define the map

Cρ : T
1(Rd) → X(n)

by

Cρ(q,v) =





〈
q,v,

〈
ρd−1τj(ρ

1−dq,v; ρ), ςj(ρ
1−dq,v; ρ),vj(ρ

1−dq,v; ρ)
〉n
j=1

〉

if (q,v) ∈ W(n; ρ),

x0 if (q,v) /∈ W(n; ρ)

(recall (4.44)), where x0 is a (dummy) point in X(n) fixed once and for all. Let us
also set

WT (n; ρ) :=
{
(q,v) ∈ W(n; ρ) : Σn(Cρ(q,v)) > T and

vj−1(q,v; ρ) 6= sΨ · vj(q,v; ρ) for j = 1, . . . , n− 1
}
.(4.67)

Remark 4.4. Recall (3.30) regarding sΨ; thus the last condition in (4.67)
means that none of the first n − 1 collisions occurs with exactly vanishing impact
parameter. We need to exclude the case of vanishing impact parameter since the
collision time may be infinite in this case. We remark that in the case of the
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hard sphere scattering process, the last condition in (4.67) could be removed in the
following proof.

We will next define a map Jρ : X
(n) → DT1(Rd)[0, T ] such that [Jρ◦Cρ(q,v)](t) =

Φ̃
(ρ)
t (q,v) for all (q,v) ∈ WT (n; ρ) and t ∈ [0, T ]. This is slightly more complicated

in the case of the Lorentz process for potentials, and we discuss that case first. Here,
we first need to introduce one more piece of notation regarding the Hamiltonian flow
with the potentialW . Recall that for a particle entering the unit sphere with veloc-
ity v− and exiting with velocity v+, the point of entrance is uniquely determined
to be β−

v−
(v+), and the point of exit is β+

v−
(v+). It is also easily verified that the

total time which the particle spends inside the unit sphere, Tv−,v+ , is finite when-

ever β−
v−

(v+) 6= −v−.1 In this case, let the particle path inside the unit sphere

be t 7→ ψv−,v+
(t), for t ∈ [0, Tv−,v+ ]; in particular ψv−,v+

(0) = β−
v−

(v+) and

ψv−,v+
(Tv−,v+) = β+

v−
(v+). It follows that the particle path in the sphere of ra-

dius ρd centered at the origin is given by t 7→ ρdψv−,v+
(ρ−dt) for t ∈ [0, ρd Tv−,v+ ].

Now we define the map

Jρ : X
(n) → DT1(Rd)[0, T ]

as follows. Let

x =
(
q,v0;

〈
ξj , ςj ,vj

〉n
j=1

)
∈ X(n)

be given. If
∑n

j=1 ξj ≤ T or if vj = sΨ · vj−1 for some j = 1, . . . , n− 1 (cf. (3.30))

then we set Jρ(x) = y0|[0,T ]. From now on assume
∑n
j=1 ξj > T and vj 6= sΨ ·vj−1

(⇔ β−
vj−1

(vj) 6= vj−1) for each j = 1, . . . , n− 1. Set ξ′j := ξj + ρdTvj−1,vj . Given

t ∈ [0, T ], let m be the largest number in {0, 1, . . . , n} satisfying
∑m
j=1 ξ

′
j ≤ t; then

in fact 0 ≤ m ≤ n− 1. If t ≤ ξm+1 +
∑m

j=1 ξ
′
j then we set

Jρ(x)(t) :=
(
q +

m∑

j=1

(
ξjvj−1 + ρd

(
β+
vj−1

(vj)− β−
vj−1

(vj)
))

+(t− ξ′1 − · · · − ξ′m)vm, vm

)
,

whereas if ξm+1+
∑m
j=1 ξ

′
j < t <

∑m+1
j=1 ξ′j then set s := ρ−d

(
t−

(
ξm+1+

∑m
j=1 ξ

′
j

))

and

Jρ(x)(t) :=
(
q +

m∑

j=1

(
ξjvj−1 + ρd

(
β+
vj−1

(vj)− β−
vj−1

(vj)
))

+ ξm+1vm

+ρd
(
ψvm,vm+1

(s)− β−
vm

(vm+1)
)
, ‖ψ̇vm,vm+1

(s)‖−1ψ̇vm,vm+1
(s)

)
.(4.68)

This completes the definition of Jρ, in the case of the Lorentz process for potentials.

In the case of the hard sphere scattering process, we define Jρ : X(n) →
DT1(Rd)[0, T ] simply by applying the above definition with Tv−,v+ ≡ 0; this means
that ξ′j = ξj for all j and the case (4.68) never occurs; thus there is no reference to
“ψv−,v+

(t)”.

1Indeed, we have Tv−,v+ = T
(
‖(β−

v−
(v+)R(v−))⊥‖

)
in the notation of (5.64); hence the

claim follows from (5.65) and Lemma 3.25(2).
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By inspection one verifies that, both for the Lorentz process for potentials and
for the hard sphere scattering process:

[Jρ ◦ Cρ(q,v)](t) = Φ̃
(ρ)
t (q,v), ∀(q,v) ∈ WT (n; ρ), t ∈ [0, T ].(4.69)

Furthermore Jρ ◦ Cρ(q,v) = y0|[0,T ] for all (q,v) ∈ W(n; ρ) \WT (n; ρ).

Recall from Sections 1.2 and 1.3 that the random element Θ(ρ) in DT1(Rd)[0,∞)

is defined by Θ(ρ)(t) = Φ̃
(ρ)
t (q,v) where (q,v) is a random point in (T1(Rd),Λ).

Using the same random point (q,v), we now also introduce, for each fixed n ∈ Z+,

the random element Θ
(ρ)
n,T in DT1(Rd)[0, T ] through

Θ
(ρ)
n,T :=

{
Jρ ◦ Cρ(q,v) if (q,v) ∈ W(n; ρ),

y0|[0,T ] if (q,v) /∈ W(n; ρ).

Note that Θ
(ρ)
n,T = Θ(ρ)|[0,T ] whenever (q,v) ∈ WT (n; ρ); hence

P
(
Θ

(ρ)
n,T = Θ(ρ)|[0,T ]

)
≥ Λ(WT (n; ρ)).

Furthermore, by Theorem 4.6 and Remark 4.2 (and (4.60)), Cρ(q,v) converges in

distribution to a random point in (X(n), νΛ ◦ pr−1
n ) as ρ→ 0. It is immediate from

(4.60) that

νΛ ◦ pr−1
n

({
z ∈ X(n) : Σn(z) = T or vj−1(z) = sΨ · vj(z) for some

j = 1, . . . , n− 1
})

= 0,(4.70)

and hence by the Portmanteau Theorem,

lim
ρ→0

Λ(WT (n; ρ)) = νΛ ◦ pr−1
n

({
z ∈ X(n) : Σn(z) > T

})
.

The last expression tends to 1 as n → ∞, by (4.61) applied with t = T . Hence we
conclude:

lim
n→∞

lim inf
ρ→0

P
(
Θ

(ρ)
n,T = Θ(ρ)|[0,T ]

)
= 1.(4.71)

In view of (4.71) and (4.66), in order to prove that Θ(ρ)|[0,T ] converges in distribu-

tion to Θ|[0,T ], it now suffices to prove that for each fixed n ∈ Z+, Θ
(ρ)
n,T converges

in distribution to Θn,T .
Thus from now on we keep n ∈ Z+ (as well as T > 0) fixed. We will prove the

desired convergence by using Theorem 4.6 and the continuous mapping theorem.
We first need to introduce one more map. We define

J̃ : X(n) → DT1(Rd)[0, T ](4.72)

by setting, for x =
(
q,v0;

〈
ξj , ςj ,vj

〉n
j=1

)
∈ X(n):

J̃(x) = y0|[0,T ] if Σn(x) ≤ T,

while if Σn(x) > T then

J̃(x)(t) :=
(
q0 +

m∑

j=1

ξjvj−1 +
(
t− Σm(x)

)
vm,vm

)
,
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where m is the unique integer in {1, . . . , n − 1} such that Σm(x) ≤ t < Σm+1(x).
The point of this definition is that now the random element Θn,T in (4.65) can be
expressed as

Θn,T = J̃(prn(x)),

where x is a random point in (X(∞), νΛ) as before.

Lemma 4.9. If {ρk} is any sequence in (0, 1) with ρk → 0, and {zk} is any
sequence in X(n) such that z := limk→∞ zk exists in X(n), and Σn(z) 6= T and

vj−1(z) 6= sΨ · vj(z) for each j = 1, . . . , n − 1, then limk→∞ Jρk(zk) = J̃(z) in
DT1(Rd)[0, T ].

Proof. This is easily verified by comparing the definitions of Jρ and J̃ . One
also uses the basic fact that the collision time for any scatterer collision is uniformly
bounded so long as the impact parameter is bounded away from zero (cf. Lemma
3.25(2) and (5.65) in Section 5.4 below). �

We continue to let x be a random point in (X(∞), νΛ) and also let (q,v) be
a random point in (T1(Rd),Λ). As we have noted above, Cρ(q,v) tends in distri-
bution to prn(x) as ρ → 0 (by Theorem 4.6 and (4.60)). Hence by the continuous
mapping theorem [35, Thm. 4.27], together with Lemma 4.9 and (4.70), we con-

clude that Jρ ◦ Cρ(q,v) tends in distribution to J̃(prn(x)) as ρ→ 0. Equivalently,

Θ
(ρ)
n,T tends in distribution to Θn,T .

This completes the proof of both Theorems 1.1 and 1.3. �

4.6. Semigroups and kinetic transport equations

This section provides more details on the forward Kolmogorov equation (1.31)

for the random flight process Θ̂ introduced in (1.24). We follow closely [44, Section
6], and will only highlight key steps. We start by providing a precise definition for

Θ̂ and showing the process is Markovian.
Define L1(X) and L1

loc(X) as the spaces of integrable/locally integrable func-
tions X → R with respect to the measure dq dv dξ dm(ς) dv+, where X is the
extended phase space as defined in (3.55). We generalise νΛ in (4.60) as follows.
Given any non-negative function f ∈ L1

loc(X) we define ν̂f to be the (unique) Borel

measure on X(∞) which for any n ≥ 1 and any Borel set A ⊂ X(n) satisfies

(4.73) ν̂f (pr
−1
n (A)) =

∫

A

f
(
q,v0, ξ1, ς1,v1

)

×
n∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj) dq dv0

n∏

j=1

(
dξj dm(ςj) dvj

)
.

The same formula also associates to any f ∈ L1(X) a signed Borel measure ν̂f on

X(∞). Note that if f is a probability density then ν̂f is a probability measure. In
analogy with (4.62) we define the map

Ĵ : X(∞) → DX [0,∞),
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by

Ĵ(x)(t) :=
(
q0 +

n∑

j=1

ξjvj−1 +
(
t− Σn(x)

)
vn,vn,Σn+1(x)− t, ςn+1,vn+1

)
,

for x =
(
q0,v0;

〈
ξj , ςj ,vj

〉∞
j=1

)
∈ X(∞) \ F (with n = n(〈ξ1, ξ2, . . .〉, t) as before);

again declare the dummy variable Ĵ(x) := y0 for all x ∈ F . This map Ĵ is Borel

measurable; in fact Ĵ is even continuous on X(∞) \ F , as one verifies using [28,
Prop. 3.6.5].

Definition 4.3. For f ∈ L1(X) a probability density, we let Θ̂ be the random

element Ĵ(x) in DX [0,∞) for x random in (X(∞), ν̂f ).

That is, for all probability densities f ∈ L1(X) and Borel sets A ⊂ X ,

P(Θ̂(t) ∈ A) = ν̂f{x ∈ X(∞) : Ĵ(x)(t) ∈ A}.

Definition 4.4. The evolution operator Kt : L1
loc(X) → L1

loc(X) for Θ̂ is
defined by the relation

(4.74)

∫

A

Ktf(q,v, ξ, ς,v+) dq dv dξ dm(ς) dv+ = ν̂f{x ∈ X(∞) : Ĵ(x)(t) ∈ A},

for all non-negative f ∈ L1
loc(X) and Borel sets A ⊂ X , and extended to all L1

loc(X)
by linearity.

We note that Kt preserves the subspace of non-negative functions in L1
loc(X);

Kt also preserves L1(X). If f ∈ L1(X) is non-negative, then ‖Ktf‖L1(X) =
‖f‖L1(X). This follows from (4.74) for probability densities f , and for general
non-negative f by linearity. We thus have by the triangle inequality

(4.75) ‖Ktf‖L1(X) ≤ ‖f‖L1(X)

for all f ∈ L1(X). We have the following expansion in terms of number of collisions
n within time t,

(4.76) Kt =

∞∑

n=0

K
(n)
t ,

where

∫

A

K
(n)
t f(q,v, ξ, ς,v+) dq dv dξ dm(ς) dv+

(4.77)

= ν̂f{x ∈ X(∞) : Ĵ(x)(t) ∈ A, Σn(x) ≤ t < Σn+1(x)}.

More explicitly, in the case n = 0,

(4.78) K
(0)
t f(q,v, ξ, ς,v+) = f(q − tv,v, ξ + t, ς,v+),
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and for n ≥ 1,

K
(n)
t f(q,v, ξ, ς,v+)

=

∫

ξ1+...+ξn≤t

f

(
q −

( n∑

j=1

ξjvj−1 + (t− ξ1 − . . .− ξn)vn

)
,v0, ξ1, ς1,v1

)

×
n+1∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj)

n∏

j=1

(
dvj−1 dξj dm(ςj)

)
,

(4.79)

subject to

(4.80) vn = v, ξn+1 = ξ + t− (ξ1 + . . .+ ξn), ςn+1 = ς, vn+1 = v+.

We have for any f ∈ L1(X) and n ≥ 1:

(4.81) ‖K(n)
t f‖L1(X) ≤

(cPvd−1t)
n−1

(n− 1)!
‖f‖L1(X).

This bound is proved by first applying Lemma 3.28 to the integrals over ξ, ςn+1,vn+1,
and then mimicking the proof of (4.61). It follows from (4.81) that the sum (4.76)
is uniformly operator convergent on L1(X).

The semigroup property established in the following proposition implies that

Θ̂ is Markovian.

Proposition 4.10. The family (Kt)t≥0 forms a linear semigroup on L1
loc(X),

and a (strongly continuous) linear contraction semigroup on L1(X).

Proof. (This is almost identical to the proof of [44, Proposition 6.3].) For
f ∈ L1

loc(X), 0 ≤ s ≤ t, 0 ≤ m ≤ n, and (4.80),

K
(n−m)
t−s K(m)

s f(q,v, ξ, ς,v+)

=

∫

�

f

(
q −

( n∑

j=1

ξjvj−1 + (t− ξ1 − . . .− ξn)vn

)
,v0, ξ1, ς1,v1

)

×
n+1∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj)

n∏

j=1

(
dvj−1 dξj dm(ςj)

)
,

(4.82)

with the range of integration � restricted to

(4.83)





n∑

j=1

ξj ≤ t and

m∑

j=1

ξj ≤ s <

m+1∑

j=1

ξj (m < n)

n∑

j=1

ξj ≤ s (m = n).

Therefore
n∑

m=0

K
(n−m)
t−s K(m)

s = K
(n)
t

and thus

Kt−sKs =

∞∑

m,n=0

K
(m)
t−sK

(n)
s =

∞∑

n=0

n∑

m=0

K
(n−m)
t−s K(m)

s = Kt.
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This proves the semigroup property. Strong continuity follows from a standard
argument, see [44, Proposition 6.3]. The contraction property is already established
(4.75). �

Set ft = Ktf . For f sufficiently nice (see below for details), t ≥ 0 and h small,
we have in view of the semigroup property and the expansion (4.76),

ft+h(q,v, ξ, ς,v+) = ft(q − hv,v, ξ + h, ς,v+)

+

∫

0<ξ1<h

ft
(
q −

(
ξ1v0 + (h− ξ1)v

)
,v0, ξ1, ς1,v

)
p0(v0, ς1,v; ξ + h− ξ1, ς,v+)

× dv0 dξ1 dm(ς1) +O(h2).

If we divide this expression by h and formally take the limit h → 0, we recover
the transport equation (1.31). To make this rigorous, we need to assume suitable
differentiability assumptions for f . To this end, we define the following spaces of
continuous and continuously differentiable functions.

For functions X → R we define the norm

(4.84) ‖f‖σ := ess sup
(q,v,ξ,ς,v+)∈X

|f(q,v, ξ, ς,v+)|
σ(v,v+)

,

and let L∞
σ (X) be the space of f with ‖f‖σ <∞. We denote by Cσ(X) ⊂ L∞

σ (X)
the subspace of continuous functions, and furthermore set

C1
σ(X) :=

{
f ∈ Cσ(X) : ∂q1f, . . . , ∂qdf, ∂ξf ∈ Cσ(X)

}
.

Similarly, we consider function spaces with an additional time-dependence,
where for any given T > 0, X in the above definitions is replaced by [0, T ]×X . In
particular, we set
(4.85)
C1
σ([0, T ]×X) :=

{
f ∈ Cσ([0, T ]×X) : ∂tf, ∂q1f, . . . , ∂qdf, ∂ξf ∈ Cσ([0, T ]×X)

}
.

In the following we will assume that the collision kernel p0 is a continuous
function in all variables. This allows us to solve the Cauchy problem of the for-

ward Kolmogorov equation for the Markov process Θ̂. Examples of case where
p0 is continuous include Poisson scatterer configurations and Euclidean lattices in
dimension d ≥ 3 [44, Remark 4.1]2.

Set

Y = {(v0, ς ′,v; ξ, ς,v+) ∈ Sd−1
1 × Σ× Sd−1

1 × R>0 × Σ× Sd−1
1 : v ∈ Vv0

v+ ∈ Vv},

(4.86) ‖ϕ‖σ := ess sup
(v0,ς′,v;ξ,ς,v+)∈Y

|ϕ(v0, ς ′,v; ξ, ς,v+)|
σ(v,v+)

.

We let L∞
σ (Y ) be the space of ϕ with ‖ϕ‖σ <∞, and Cσ(Y ) ⊂ L∞

σ (Y ) the subspace
of continuous functions.

2For Euclidean lattices in dimension d = 2 one has a completely explicit formula for p0;
cf. [45], and p0 is continuous except at points with β+

v0R(v)
(e1)⊥ = β−

e1
(v+R(v))⊥ (there is a

misprint in the statement of this condition in [44, Remark 4.1], however it appears in the correct
form in [44, Lemma 6.5(iii)]). Using this precise control on the set of discontinuities of p0 one
can show that Theorem 4.11 holds also for the case of Euclidean lattices in dimension d = 2; cf.
[44, Theorem 6.4].
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Theorem 4.11. For T > 0, f0 ∈ C1
σ(X) and p0 ∈ Cσ(Y ), the function

f(t, q,v, ξ, ς,v+) := Ktf0(q,v, ξ, ς,v+) is the unique solution in C1
σ([0, T ] × X)

of the integro-differential equation (1.31),

(4.87)
(
∂t + v · ∇q − ∂ξ

)
f(t, q,v, ξ, ς,v+)

=

∫

Σ×Sd−1
1

f(t, q,v0, 0, ς
′,v) p0(v0, ς

′,v; ξ, ς,v+) dm(ς ′) dv0

with f(0, q,v, ξ, ς,v+) = f0(q,v, ξ, ς,v+).

Proof. The proof is virtually identical to that of [44, Theorem 6.4]. We will
therefore only sketch the main steps. Key are the following two lemmas.

Lemma 4.12. For every f0 ∈ Cσ(X), the function f(t, q,v, ξ, ς,v+) :=
Ktf0(q,v, ξ, ς,v+) belongs to Cσ([0, T ]×X) for all T > 0.

Proof. See [44, Lemma 6.6]. We have by (4.79),

(4.88) |K(n)
t f0| ≤ ‖f0‖σ

∫

ξ1+...+ξn≤t

σ(v0,v1)

×
n+1∏

j=2

p0(vj−2, ςj−1,vj−1; ξj , ςj ,vj)
n∏

j=1

(
dvj−1 dξj dm(ςj)

)
,

subject to (4.80). The same proof as for (4.61) then yields

(4.89) ‖K(n)
t f0‖σ ≤ (cPvd−1t)

n

n!
‖f0‖σ,

and hence

‖f(t, · )‖σ = ‖Ktf0‖σ ≤ ecPvd−1t‖f0‖σ,
which shows that f is bounded.

It now remains to establish continuity. In view of (4.89), it suffices to prove

continuity for each function f (n)(t, q,v, ξ, ς,v+) := K
(n)
t f0(q,v, ξ, ς,v+), n ≥ 0,

which in turn follows from (4.79), using the assumed continuity of f0 and p0. �

Lemma 4.13. For f0 ∈ C1
σ(X) and f(t, q,v, ξ, ς,v+) := Ktf0(q,v, ξ, ς,v+), the

derivatives ∂tf, ∂q1f, . . . , ∂qdf, ∂ξf exist and belong to Cσ([0, T ]×X) for all T > 0,
and f is a solution of the transport equation (4.87).

Proof. The proof follows the same strategy as Lemma 4.12. See [44, Lemmas
6.7, 6.8] for details. �

The remaining step in the proof of Theorem 4.11 is thus the uniqueness of
the solution, which follows again from a standard argument, cf. [44, Lemmas 6.9,
6.10]. �

The analysis of the above Cauchy problem can be extended in principle to cases
when p0 is not everywhere continuous. We will not pursue this here, but instead
demonstrate that, given initial data f0, and two collision kernels p0 and p̃0 that

are close in L1, the resulting time-evolved densities Ktf0 and K̃tf0 remain close in
L1 for all t ∈ [0, T ] (T fixed). This means in particular that the solutions of (4.87)
provide arbitrarily good approximations of processes with general collision kernels.
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To make this precise, let L1
σ(Y ) the space of ϕ that are integrable with respect

to the measure

σ(v0,v) dv0 dm(ς ′) dv dξ dm(ς) dv+,

and denote by ‖ϕ‖L1
σ(Y ) the corresponding norm. Recall that, by Lemma 3.28,

every collision kernel satisfies
∫ ∞

0

∫

Σ

∫

Vv

p0(v0, ς
′,v; ξ, ς,v+) dv+ dm(ς+) dξ = 1(4.90)

for all v0 ∈ Sd−1
1 , ς ′ ∈ Σ and v ∈ Vv0

. This implies that p0 ∈ L1
σ(Y ), with

‖p0‖L1
σ(Y ) = vd−1 ω(S

d−1
1 ). Of course also p0 ∈ L∞

σ (Y ), with ‖p0‖σ ≤ cPvd−1.
Finally we define

f(v, ξ, ς,v+) =

∫

Rd

|f(q,v, ξ, ς,v+)| dq,

which we view as a function on X which is independent of q.

Proposition 4.14. Let p0 and p̃0 be two nonnegative functions in L∞
σ (Y ) both

satisfying the relation (4.90) for all v0 ∈ Sd−1
1 , ς ′ ∈ Σ and v ∈ Vv0

. Then for any
f ∈ L1(X) and t > 0,

(4.91) ‖Ktf − K̃tf‖L1(X) ≤ 2‖f‖σ ‖p0 − p̃0‖L1
σ(Y ) t exp

(
vd−1(‖p0‖σ + ‖p̃0‖σ) t

)
.

Proof. Let us modify the definition of K
(n)
t in (4.79), replacing the fixed

collision kernel p0 by a sequence of general functions ϕ1, ϕ2, . . . ∈ L1
σ(Y ) ∩ L∞

σ (Y ).
That is, we set

K
(n)
t f(q,v, ξ, ς,v+)

=

∫

ξ1+...+ξn≤t

f

(
q −

( n∑

j=1

ξjvj−1 + (t− ξ1 − . . .− ξn)vn

)
,v0, ξ1, ς1,v1

)

×
n+1∏

j=2

ϕj−1(vj−2, ςj−1,vj−1; ξj , ςj ,vj)
n∏

j=1

(
dvj−1 dξj dm(ςj)

)
,

(4.92)

subject to (4.80). In analogy with the proof of (4.61) (this time also using
σ(vj−1,vj) = σ(vj ,vj−1) to integrate out the terms with index ≤ n − 2), we

then have for any f ∈ L1(X), n ≥ 1,

(4.93) ‖K(n)
t f‖L1(X) ≤

vn−1
d−1 t

n

n!
‖f‖σ‖ϕn‖L1

σ(Y )

n−1∏

i=1

‖ϕi‖σ.

Alternatively, if ϕn = p0 (or p̃0), then we may first apply the relation (4.90) to inte-
grate out the variables ξ, ςn+1,vn+1. Bounding the remaining factors appropriately
we conclude that, for any 1 ≤ j < n,

(4.94) ‖K(n)
t f‖L1(X) ≤

vn−2
d−1 t

n−1

(n− 1)!
‖f‖σ‖ϕj‖L1

σ(Y )

n−1∏

i=1
i6=j

‖ϕi‖σ.

We use the formal relation

A1 · · ·An −B1 · · ·Bn =

n∑

j=1

A1 · · ·Aj−1(Aj −Bj)Bj+1 · · ·Bn
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to expand K
(n)
t f − K̃

(n)
t f into a sum of n terms, each of the form (4.92) with

ϕ1 = . . . = ϕj−1 = p0, ϕj = p0 − p̃0, ϕj+1 = . . . = ϕn = p̃0. Using the bounds
(4.93) and (4.94) we then obtain

(4.95) ‖K(1)
t f − K̃

(1)
t f‖L1(X) ≤ ‖f‖σ‖p0 − p̃0‖L1

σ(Y ) t

and for n ≥ 2:

‖K(n)
t f − K̃

(n)
t f‖L1(X)

≤ ‖f‖σ‖p0 − p̃0‖L1
σ(Y )

(
vn−2
d−1 t

n−1

(n− 2)!

(
‖p0‖σ + ‖p̃0‖σ

)n−2
+
vn−1
d−1 t

n

n!
‖p0‖n−1

σ

)

≤ ‖f‖σ‖p0 − p̃0‖L1
σ(Y )

n∑

k=n−1

vk−1
d−1t

k

(k − 1)!

(
‖p0‖σ + ‖p̃0‖σ

)k−1
.

(4.96)

Since K
(0)
t f − K̃

(0)
t f = 0, the bound (4.91) follows from summing (4.95) and (4.96)

over n ≥ 2. �





CHAPTER 5

Examples, extensions, and open questions

5.1. The Poisson case

Fix a constant c > 0. In the present section we will prove that all the as-
sumptions in Section 2.3 are (almost surely) satisfied in the case when P is a fixed
realization of a Poisson process in Rd with constant intensity c. In fact we will prove
that the key limit statement, [P2], holds with the limit measure being independent
of q ∈ P . Hence in the present section, the space of marks Σ can be taken to be a
singleton set, and we may remove it entirely from our notation, writing X = Rd and

P̃ = P . However, we will still write “µς” for the unique limit measure appearing
in [P2], so as to avoid a clash of notation with the macroscopic limit measure µ
defined in Section 2.5. (In the end it turns out that µς = µ.)

Proposition 5.1. Fix constants c > 0 and 0 < α < 1. Let ψ ∈ P (Ns(R
d)) be

the distribution of a Poisson process in Rd (d ≥ 2) with constant intensity c. For
ψ-almost every P ∈ Ns(R

d), all the assumptions in Section 2.3 are satisfied, with
cP = c, the unique limit distribution µς being equal to ψ, and with an admissible
choice of E in [P2] being E = {q ∈ P : dP(q) ≤ ‖q‖−α/(d−1)}.

The proof of the proposition builds on ideas from Boldrighini, Bunimovich
and Sinai, [12]. It is well-known that ψ-almost every P ∈ Ns(R

d) has constant
asymptotic density c, i.e. [P1] holds with cP = c. Also the properties [Q1]–[Q3]
are well-known to hold for µς = ψ. Hence our task is to prove [P2] and [P3]. The
following lemma shows that the set E defined in Proposition 5.1 has asymptotic
density zero.

Lemma 5.2. Let c, α, ψ,P , E be as in Proposition 5.1. Then for ψ-almost all
P ∈ Ns(R

d), the set E has asymptotic density zero, i.e. T−d#(E ∩ BdT ) → 0 as
T → ∞.

Proof. (Cf. [12, Prop. 3.4].) Set r(y) = ‖y‖−α/(d−1). By basic properties of
the Poisson process we have, for any T ≥ 1,

Eψ#(E ∩ BdT ) = c

∫

Bd
T

ψ
({
Y ∈ Ns(R

d) : Y ∩
(
y + Bdr(y)

)
6= ∅

})
dy

= c

∫

Bd
T

(
1− e−cvol(B

d
r(y))

)
dy ≤ c2

∫

Bd
T

vol
(
Bdr(y)

)
dy ≪ T d(d−1−α)/(d−1).

Hence for any fixed β > 0, we have by Markov’s inequality

ψ
({

P ∈ Ns(R
d) : #(E ∩ BdT ) > T β+d(d−1−α)/(d−1)

})
≪ T−β

as T → ∞. Applying this for T = 2n, n = 1, 2, . . ., and using
∑∞
n=1 2

−nβ < ∞,

it follows by the Borel-Cantelli Lemma that, for ψ-almost all P , #(E ∩ Bd2n) ≤
97
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2n(β+d(d−1−α)/(d−1)) for all sufficiently large n. Taking here β ∈ (0, dαd−1), so that

β + d(d − 1 − α)/(d − 1) < d, and using the fact that #(E ∩ BdT ) is an increasing
function of T , the lemma follows. �

Remark 5.1. Of course there is some flexibility regarding the choice of E in
Proposition 5.1; however let us note that E certainly cannot be taken to be empty.
Indeed, it is easily seen that, ψ-almost surely, for all small ρ there exist points
q ∈ P ∩ Bdρ1−d for which dP(q) < ρ (and in fact even dP (q) ≪ ρd−1). As seen

in Lemma 2.16, for ρ sufficiently small those points necessarily have to be in E in
order for the uniform convergence in [P2] to hold.

The remainder of this section will be spent on the proof of the key convergence
property [P2]; the property [P3] will also follow as a consequence of the proof. The
method of proof is basically the same as in [12, Props. 2.3-2.5].

First we discretize the choices of test sets A ⊂ Ns(R
d), measures λ ∈ P (Sd−1

1 )
and center points q.

Let F be the family of all boxes B ⊂ Rd of the form B =
∏d
j=1[αj , βj) where

αj , βj ∈ Q and αj < βj for all j. Let F̃ be the set of finite unions of boxes B ∈ F ,
and let A be the family of all sets A ⊂ Ns(R

d) of the form A = {Y ∈ Ns(R
d) :

#(Y ∩B) ≥ r} for B ∈ F̃ and r ∈ Z+. Note that F is countable, and hence so are

F̃ and A.
Let S be a countable family of subsets S ⊂ Sd−1

1 , chosen so that each S ∈ S has

diameter < π/2 with respect to the metric ϕ on Sd−1
1 , each S ∈ S is a diffeomorphic

image of the closed unit cube [0, 1]d−1, and furthermore so that for each ε > 0 there

is a finite subfamily F ⊂ S such that the sets S ∈ F form a partition of Sd−1
1 (up

to sets of measure zero) and each S ∈ F has diameter < ε.1 For S ∈ S we set

λS := ω(S)−1ω|S ∈ P (Sd−1
1 ). Let L be the set of all these probability measures λS .

Let us now fix a constant t > 0 and set, for each 0 < ρ < 1,

G[ρ] := ρ1+tZd ∩ Bdρ1−d−α .(5.1)

We also set ρn = n−t for n ∈ Z≥2. Finally, we fix a constant γ subject to α < γ < 1.
Given a fixed P ∈ Ns(R

d), we define

Q̃ρ(q,v) =
(
(P \ Bd(q, ργ))− q

)
R(v)Dρ (q ∈ Rd, v ∈ Sd−1

1 ),(5.2)

and for each λ ∈ P (Sd−1
1 ), we let µ̃

(λ)
q,ρ ∈ P (Ns(R

d)) be the distribution of Q̃ρ(q,v)

for v random in (Sd−1
1 , λ).

Lemma 5.3. Let P ∈ Ns(R
d) be given. Assume that for each fixed A ∈ A and

λ ∈ L,
µ̃(λ)
q,ρn(A)− ψ(A) → 0 as n→ ∞, uniformly over all q ∈ G[ρn].(5.3)

Then for every λ ∈ Pac(S
d−1
1 ), we have µ

(λ)
q,ρ

w−−→ ψ as ρ → 0, uniformly over all
q ∈ Bdρ1−d−α subject to dP(q) > 2ργ. In particular [P2] holds, i.e. for every T ≥ 1

we have µ
(λ)
q,ρ

w−−→ ψ as ρ→ 0, uniformly over all q ∈ PT (ρ).
1To see that this is possible, for each k ∈ Z+ consider the decomposition of each (d− 1)-face

of the cube [−1, 1]d into kd−1 congruent (d − 1)-cubes of side 2/k; by radial projection (with

origin as center) this yields a decomposition of Sd−1
1 into 2d · kd−1 closed subsets, each of which

is a diffeomorphic image of [0, 1]d−1. We can take S to be the family of subsets of Sd−1
1 obtained

when the previous construction is carried out for all k ∈ Z+.
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(In the last statement, PT (ρ) = P∩BdTρ1−d \E , with E defined as in Proposition

5.1.)

Proof. Note that the second statement of the lemma is a trivial consequence of
the first, since q ∈ PT (ρ) for ρ sufficiently small implies ‖q‖ < Tρ1−d < ρ1−d−α and
dP(q) > ‖q‖−α/(d−1) > T−α/(d−1)ρα > 2ργ . In order to prove the first statement,

by Lemma 2.6 it suffices to prove that for any λ ∈ Pac(S
d−1
1 ), any bounded Borel

set B ⊂ Rd with vol(∂B) = 0, and any r ∈ Z+,

µ(λ)
q,ρ({Y ∈ Ns(R

d) : #(Y ∩B) ≥ r})− ψ({Y ∈ Ns(R
d) : #(Y ∩B) ≥ r}) → 0

(5.4)

as ρ → 0, uniformly over all q ∈ Bdρ1−d−α subject to dP(q) > 2ργ . It follows from

our choice of L that the set of densities of finite linear combinations of measures in
L is dense in L1(Sd−1

1 , ω); thus it suffices to prove (5.4) under the restriction that
λ ∈ L.

Hence we now fix some λ ∈ L and some B ⊂ Rd as above, and r ∈ Z+, and
seek to prove the uniform convergence in (5.4). Let ε > 0 be given. Note that B is

Jordan measurable; hence there exist some η > 0 and B′, B′′ ∈ F̃ such that

B′ ⊂ B \ ∂ηB, B ∪ ∂ηB ⊂ B′′, vol(B′′ \B′) < ε/c,(5.5)

where ∂ηB denotes the η-neighborhood of the boundary of B, that is, ∂ηB =
∪p∈∂B Bd(p, η). We set

A′ := {Y : #(Y ∩B′) ≥ r}; A := {Y : #(Y ∩B) ≥ r};
A′′ := {Y : #(Y ∩B′′) ≥ r}.

Then A′ ⊂ A ⊂ A′′ and A′, A′′ ∈ A, and by our assumption, (5.3), there is some
integer N ≥ 2 such that

∣∣µ̃(λ)
q′,ρn

(A′)− ψ(A′)
∣∣ < ε and

∣∣µ̃(λ)
q′,ρn

(A′′)− ψ(A′′)
∣∣ < ε, ∀n ≥ N, q′ ∈ G[ρn].

(5.6)

Take R > 0 so that B′′ ⊂ BdR. After possibly enlarging N , we may also assume
that for every n ≥ N ,

√
dρ1+tn < ργn and R

(
(ρn−1/ρn)

d−1 − 1
)
+
√
dρtn < η.(5.7)

Having thus fixed N , we claim that

∣∣µ(λ)
q,ρ(A)− ψ(A)

∣∣ < 2ε for all ρ ∈ (0, ρN) and q ∈ Bdρ1−d−α with dP(q) > 2ργ .

(5.8)

Since ε > 0 was arbitrary, this will prove (5.4), and thus complete the proof of the
lemma.

Let ρ ∈ (0, ρN) and q ∈ Bdρ1−d−α be given, subject to dP(q) > 2ργ . Take n > N

so that ρn ≤ ρ < ρn−1. Let q
′ be the point in G[ρn] lying nearest to q (if there are

several options then just pick one). Then ‖q′ − q‖ <
√
dρ1+tn < ργn (cf. (5.7)), i.e. q

lies in the ball Bd(q′, ργn); also dP(q) > 2ργ implies that P ∩ Bd(q′, ργn) equals {q}
or ∅, and so P \ Bd(q′, ργn) = P \ {q}. This implies that for each v ∈ Sd−1

1 ,

Q̃ρn(q
′,v) = Qρ(q,v)Dρn/ρ + (q − q′)R(v)Dρn .(5.9)
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Using this we will prove
[
Qρ(q,v) ∈ A ⇒ Q̃ρn(q

′,v) ∈ A′′
]
, ∀v ∈ Sd−1

1 .(5.10)

Indeed, assumeQρ(q,v) ∈ A, i.e. #(Qρ(q,v)∩B) ≥ r. Given a point p ∈ Qρ(q,v)∩
B, we set

p′ := pDρn/ρ + (q − q′)R(v)Dρn .(5.11)

Note that ‖(q − q′)R(v)Dρn‖ <
√
dρtn, since ‖q − q′‖ <

√
dρ1+tn ; furthermore

‖p‖ < R since B ⊂ B′′ ⊂ BdR. Hence
‖p− p′‖ < ‖pDρn/ρ − p‖+

√
dρtn < R((ρ/ρn)

d−1 − 1) +
√
dρtn < η,(5.12)

where we used ρ < ρn−1 and (5.7). If p′ /∈ B′′ then using B∪∂ηB ⊂ B′′ (cf. (5.5)) it
follows that p′ has distance ≥ η from ∂B, and also p′ /∈ B, so that the line segment
between p and p′ intersects ∂B; these together yield a contradiction against (5.12).

Hence p′ ∈ B′′ must hold. Also p′ ∈ Q̃ρn(q
′,v), by (5.9) and (5.11). Hence each

p ∈ Qρ(q,v)∩B gives rise to a corresponding point p′ ∈ Q̃ρn(q
′,v)∩B′′; therefore

#(Q̃ρn(q
′,v) ∩ B′′) ≥ #(Qρ(q,v) ∩ B) ≥ r, so that Q̃ρn(q

′,v) ∈ A′′, and we have
proved (5.10). By a similar argument we also have

[
Q̃ρn(q

′,v) ∈ A′ ⇒ Qρ(q,v) ∈ A
]

(∀v ∈ Sd−1
1 ).(5.13)

Together, (5.10) and (5.13) imply

µ̃
(λ)
q′,ρn

(A′) ≤ µ(λ)
q,ρ(A) ≤ µ̃

(λ)
q′,ρn

(A′′).(5.14)

Note also that

ψ(A′′ \A′) ≤ ψ({Y : Y ∩B′′ \B′ 6= ∅}) ≤ c vol(B′′ \B′) < ε(5.15)

(cf. (5.5)). Using (5.6), (5.14), (5.15), and A′ ⊂ A ⊂ A′′, we obtain
∣∣µ(λ)

q,ρ(A) −
ψ(A)

∣∣ < 2ε, and we have thus proved (5.8) and with it the lemma. �

Lemma 5.4. Under the assumption of Lemma 5.3, for each Λ ∈ Pac(T
1(Rd))

we have µ
(Λ)
ρ

w−−→ ψ as ρ→ 0.

Proof. Fix f ∈ Cb(Ns(R
d)); then our task is to prove µ

(Λ)
ρ (f) → ψ(f), i.e.

ρd(d−1)

∫

Rd

∫

Sd−1
1

f(Qρ(q,v)) Λ
′(ρd−1q,v) dv dq → ψ(f), as ρ→ 0,(5.16)

where Λ′ ∈ L1(T1(Rd)) is the density of Λ. Without loss of generality we may

assume Λ′ ∈ Cc(T
1(Rd)). Take R > 0 so that suppΛ′ ⊂ BdR × Sd−1

1 .
It follows from Lemma 5.3 and Lemma 2.3 that, for each fixed x ∈ Rd,

∫

Sd−1
1

f(Qρ(q,v)) Λ
′(x,v) dv →

(∫

Sd−1
1

Λ′(x,v) dv

)
ψ(f)(5.17)

as ρ → 0, uniformly over all q ∈ Bdρ1−d−α subject to dP(q) > 2ργ . By a standard

subsequence argument, using the fact that Λ′ ∈ Cc, (5.17) is upgraded to also
hold uniformly over all x ∈ Rd; in particular we may take x = ρd−1q in the
statement. Note also that Rρ1−d < ρ1−d−α for all small ρ, and the total volume of
all q ∈ BdRρ1−d satisfying dP(q) ≤ 2ργ is ≪ ρ−d(d−1)+dγ, which gives a negligible

contribution to the left hand side (5.16) as ρ → 0. Using these facts, we conclude
that (5.16) holds. �



5.1. THE POISSON CASE 101

Note that the conclusion of Lemma 5.4 implies in particular that the condition
[P3] holds; cf. Remark 2.8. Hence in order to complete the proof of Proposition 5.1
it now suffices to prove that ψ-almost every P ∈ Ns(R

d) satisfies the assumption
(5.3) in Lemma 5.3. In fact, since A and L are countable, it suffices to prove
that for any fixed A ∈ A and λ ∈ L, the condition (5.3) holds for ψ-almost every

P . Thus let A ∈ A and λ ∈ L be given; take B ∈ F̃ and r ∈ Z+ so that
A = {Y ∈ Ns(R

d) : #(Y ∩B) ≥ r}, and take S ∈ S so that λ = λS . The following
proof is modelled on the proof of Prop. 2.3 in [12].

We fix constants β1 and β2 satisfying

0 < β1 <
1
2 (1− γ) and β1 < β2 < 1− γ.(5.18)

For each sufficiently small ρ, we fix a choice of subsets S1, . . . , Sk ⊂ S satisfying
diam(Sℓ) < ρβ1 and ω(Sℓ) ≍ ρβ1(d−1), which are separated so that ϕ(Sℓ, Sℓ′) > ρβ2

for any ℓ 6= ℓ′, and which fill up most of S in the sense that ω(S\∪kℓ=1Sℓ) ≪ ρβ2−β1 .
2 It follows that k ≍ ρβ1(1−d). (Here and in the following, the implied constant in
any “≪”, “≍” or “O(· · · )” depends only on d, S and B.)

Also for ρ small we set

Ω̃(ρ) = {P ∈ Ns(R
d) : #(P ∩ BdργDρ) = 0}.

This is a Borel subset of Ns(R
d) and letting µ = c vol(Bdργ ) we have

ψ(Ω̃(ρ)) = e−µ = 1−O(ρdγ).(5.19)

We write ψ̃(ρ) = ψ(· | Ω̃(ρ)) for the corresponding conditional probability, i.e.

ψ̃(ρ)(A′) = ψ(A′∩Ω̃(ρ))/ψ(Ω̃(ρ)) for any Borel set A′ ⊂ Ns(R
d). For any P ∈ Ns(R

d)
let

RP
ρ,q := µ̃(λ)

q,ρ(A)− ψ(A) = λ
({
v ∈ S : Q̃ρ(q,v) ∈ A

})
− ψ(A).(5.20)

and

RP
ρ,ℓ,q := λ

({
v ∈ Sℓ : Q̃ρ(q,v) ∈ A

})
− λ(Sℓ)ψ̃

(ρ)(A).(5.21)

Using λ(S \ ∪kℓ=1Sℓ) ≪ ρβ2−β1 and |ψ(A) − ψ̃(ρ)(A)| ≪ ρdγ (cf. (5.19)) we then
have

RP
ρ,q =

k∑

ℓ=1

RP
ρ,ℓ,q +O

(
ρβ2−β1 + ρdγ

)
.(5.22)

The point of using ψ̃(ρ)(A) in (5.21) is that we have the identity

EψR
P
ρ,ℓ,q = 0.(5.23)

Indeed, by Fubini,

EψR
P
ρ,ℓ,q =

∫

Sℓ

(
ψ
({

P : Q̃ρ(q,v) ∈ A
})

− ψ̃(ρ)(A)
)
dλ(v).(5.24)

2An explicit choice of such subsets S1, . . . , Sk is as follows: By assumption there is a fixed

diffeomorphism Φ from an open set U ⊂ Rd−1 onto an open subset of Sd−1
1 such that [0, 1]d−1 ⊂ U

and S = Φ([0, 1]d−1). Now fix C > 1 large, and for each small ρ set n = ⌈Cρ−β1⌉, k =
nd−1, and let S1, . . . , Sk be the sets Φ(n−1m + [0, n−1 − Cρβ2 ]d−1) with m running through
{0, 1, . . . , n− 1}d−1. If C is larger than a certain constant which only depends on Φ, then for all
sufficiently small ρ, the sets S1, . . . , Sk satisfy all the conditions.
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Here for each v,

ψ
(
Q̃ρ(q,v) ∈ A

)
= ψ

(
(P \ Bdργ )R(v)Dρ ∈ A

)
= ψ

(
PR(v)Dρ ∈ A | P ∩ Bdργ = ∅

)(5.25)

= ψ̃(ρ)(A),

where we first used (5.2) and the fact that ψ is translation invariant, then the fact
that for P random in (Ns(R

d), ψ), the two random elements P \Bdργ and P ∩Bdργ in

Ns(R
d) are independent; and finally, for the last equality, we noted that P∩Bdργ = ∅

is equivalent with PR(v)Dρ∩BdργDρ = ∅, and then used the fact that ψ is SL(d,R)-
invariant. Hence the integrand in (5.24) vanishes identically, and we have proved
(5.23).

Next we claim that for ρ sufficiently small and for every q ∈ Rd, if P is ran-
dom in (Ns(R

d), ψ) then the random variables RP
ρ,ℓ,q for ℓ = 1, . . . , k are mutually

independent. In view of the definition (5.21), and noticing that Q̃ρ(q,vℓ) ∈ A is
equivalent with P − q having at least r points in the region

BD−1
ρ R(vℓ)

−1 \ Bdργ ,(5.26)

it follows that it suffices to prove that for any v1 ∈ S1, . . . ,vk ∈ Sk, the regions in
(5.26) for ℓ = 1, . . . , k are pairwise disjoint. Fix R > 0 so that B ⊂ BdR.

Lemma 5.5. If v,v′ ∈ Sd−1
1 and 4Rρ1−γ ≤ ϕ(v,v′) ≤ π/2 then

BD−1
ρ R(v)−1 ∩BD−1

ρ R(v′)−1 \ Bdργ = ∅.

Proof. Suppose x ∈ BD−1
ρ R(v)−1 ∩ BD−1

ρ R(v′)−1 and x 6= 0. Set ϕ =
min(ϕ(v,x), ϕ(v,−x)) and ϕ′ = min(ϕ(v′,x), ϕ(v′,−x)). The point x lies in

BD−1
ρ R(v)−1 ⊂ BdRD−1

ρ R(v)−1 ⊂ (R × Bd−1
Rρ )R(v)−1; this implies that x has

distance < Rρ from the line Rv, and thus ϕ ≤ 2 sinϕ < 2Rρ/‖x‖. Similarly

ϕ′ < 2Rρ/‖x‖. Now by the triangle inequality in Sd−1
1 /{±} we have 4Rρ1−γ ≤

ϕ(v,v′) ≤ ϕ+ ϕ′ < 4Rρ/‖x‖, implying ‖x‖ < ργ , i.e. x ∈ Bdργ . �

If ρ is sufficiently small then the lemma applies to any pair of points vℓ,vℓ′ ,
ℓ 6= ℓ′, since then ϕ(vℓ,vℓ′) ≥ ϕ(Sℓ, Sℓ′) > ρβ2 > 4Rρ1−γ (cf. (5.18)), and also
ϕ(vℓ,vℓ′) < π/2 since we have assumed that each S ∈ S has diameter < π/2. This
completes the proof that RP

ρ,ℓ,q for ℓ = 1, . . . , k are indeed independent.
Set

Vρ,q :=

k∑

ℓ=1

Eψ
(
(RP

ρ,ℓ,q)
2
)

and Hρ := max
{
λ(Sℓ) : ℓ ∈ {1, . . . , k}

}
≍ ρβ1(d−1).

(5.27)

Then |RP
ρ,ℓ,q| ≤ Hρ everywhere. In view of our observations, in particular (5.23)

and the independence just proved, we have the following inequality of Bernstein
type, for any X > 0 and 0 < h < 3/Hρ (cf., e.g., [6, eq. (2a)]):

ψ

({
P ∈ Ns(R

d) :

∣∣∣∣
k∑

ℓ=1

RP
ρ,ℓ,q

∣∣∣∣ ≥ X

})
≤ 2e−hX exp

(h2
2
Vρ,q

(
1− hHρ

3

)−1)
.

(5.28)
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In order to bound Vρ,q , note that

Eψ

(
λ
({
v ∈ Sℓ : Q̃ρ(q,v) ∈ A

})2)
=

∫

Sℓ×Sℓ

ψ
(
Q̃ρ(q,v) ∈ A, Q̃ρ(q,w) ∈ A

)

×dλ(w) dλ(v).(5.29)

Here for any v,w with ϕ(v,w) ≥ 4Rρ1−γ, it follows from Lemma 5.5 that the

events Q̃ρ(q,v) ∈ A and Q̃ρ(q,w) ∈ A are independent on (Ns(R
d), ψ), and so

the integrand equals ψ̃(ρ)(A)2 (cf. (5.25)). Furthermore for any v ∈ Sℓ, the set of
w ∈ Sℓ for which ϕ(v,w) < 4Rρ1−γ has measure ≪ ρ(1−γ)(d−1) with respect to λ.
Using these facts, and (5.21) and (5.23), we obtain

Eψ

(
(RP

ρ,ℓ,q)
2
)
≪ λ(Sℓ)ρ

(1−γ)(d−1) ≪ ρ(1−γ+β1)(d−1).(5.30)

Adding this over ℓ = 1, . . . , k it follows that

Vρ,q ≪ ρ(1−γ)(d−1).

We now fix a constant δ satisfying

0 < δ < β1(d− 1),

and apply (5.28) with h = 1/Hρ and X = Hρρ
−δ. Then h2Vρ,q < 1 provided that

ρ is sufficiently small (cf. (5.27) and (5.18)), and we obtain

ψ

(∣∣∣∣
k∑

ℓ=1

RP
ρ,ℓ,q

∣∣∣∣ ≥ Hρρ
−δ

)
≪ e−ρ

−δ

.

Setting ε(ρ) = Hρρ
−δ +C1

(
ρβ2−β1 + ρdγ

)
, where C1 > 0 is the implied constant in

the big-O expression in (5.22), it follows that

ψ
(∣∣RP

ρ,q

∣∣ ≥ ε(ρ)
)
≪ e−ρ

−δ

,(5.31)

This holds for every sufficiently small ρ, and all q ∈ Rd. Using also #G[ρ] ≪
ρ−d(d+α+t) it follows that for ρ small,

ψ
(
∃q ∈ G[ρ] s.t.

∣∣RP
ρ,q

∣∣ ≥ ε(ρ)
)
≤

∑

q∈G[ρ]

ψ
(∣∣RP

ρ,q

∣∣ ≥ ε(ρ)
)
≪ ρ−d(d+α+t)e−ρ

−δ

.

This implies that the sum
∞∑

n=2

ψ
(
∃q ∈ G[ρn] s.t.

∣∣RP
ρn,q

∣∣ ≥ ε(ρn)
)

converges (recall ρn = n−t), and hence by the Borel-Cantelli Lemma, for ψ-almost
every P ∈ Ns(R

d) there is some N = N(P) such that |RP
ρn,q| < ε(ρn) holds for all

n ≥ N and all q ∈ G[ρn]. Therefore we have uniform convergence as in (5.3) in
Lemma 5.3, and the proof of Proposition 5.1 is complete. �

Let us conclude this section by computing the collision kernels. Recall that Σ
is a singleton, which we remove from our notation. Thus X⊥ = Rd−1, Ω = Bd−1

1

and µΩ = v−1
d−1 volRd−1 , and we find that for every x′ ∈ X⊥, the distribution of

the random point (w1,w
′) := ι(z(Ξς − x′)) equals ξ

−1
e−w1/ξ dw1 dµΩ(w

′) with

ξ = (vd−1c)
−1; cf. (1.10). Hence

k(x′, ξ,x) = ξ
−1
e−ξ/ξ, for x′,x ∈ Bd−1

1 , ξ > 0.



104 5. EXAMPLES, EXTENSIONS, AND OPEN QUESTIONS

Similarly

kg(ξ,x) = ξ
−1
e−ξ/ξ.

From (3.41) and (3.44) we now get

p0
(
v0,v; ξ,v+

)
= p

(
v; ξ,v+

)
= c σ(v,v+) e

−ξ/ξ.

Hence the generalized Boltzmann equation reads

(
∂t + v · ∇q − ∂ξ

)
f(t, q,v, ξ,v+) =

∫

Sd−1
1

f
(
t, q,v0, 0,v

)
p(v; ξ,v+) dv0.

As we discussed in the introduction, upon making the ansatz

f(t, q,v, ξ,v+) = f(t, q,v)σ(v,v+) e
−ξ/ξ,

this equation reduces to the standard linear Boltzmann equation, (1.33).

5.2. Periodic point sets

In this section we let P be a locally finite periodic point set in Rd (d ≥ 2). This
means that there exists a lattice L of full rank in Rd, such that P + ℓ = P for all
ℓ ∈ L. We fix, once and for all, g ∈ SL(d,R) and δ > 0 such that L = δ1/dZdg. We
can then choose a finite number of vectors b1, . . . , bm ∈ Rd such that

P =

m⋃

j=1

δ1/d(bj + Zd)g,(5.32)

and bi − bj /∈ Zd for all i 6= j. Without loss of generality, since we may from the
start replace P by a translate of P , we may also require that b1 = 0.

We will prove that such a set P satisfies the assumptions in Section 2.3, with

Σ := {1, . . . ,m},

with the map ς : P → Σ given by ς(q) = j for all q ∈ δ1/d(bj + Zd)g (j ∈ Σ), and
with m being the uniform probability measure on Σ. We will start by giving an
explicit description of the map j 7→ µj from Σ to P (Ns(X )). This requires some
preparation.

Let B be the matrix in Mm,d(R) whose row vectors are b1, . . . , bm (in this
order). Let B1, . . . , Bd ∈ Rm be the column vectors of B, and let J be the smallest
closed subgroup of Rm containing Zm and B1, . . . , Bd. In other words, J equals
the closure of the integer span of Zm and B1, . . . , Bd:

J = Zm + ZB1 + · · ·+ ZBd.

This is a closed Lie subgroup of Rm. Let J ◦ be the connected subgroup of J
containing 0; this is a linear subspace of Rm which intersects Zm in a lattice (that is,
there exists an R-linear basis of J ◦ consisting of vectors in J ◦∩Zm). Furthermore,
J ⊂ Qm+J ◦, and either J = J ◦ = Rm or J is a union of a countable number of
translates of J ◦. Note also that if we assume b1 = 0 then J ◦ ⊂ e⊥1 .

Remark 5.2. Equivalently, J ◦ can be defined as the orthogonal complement in
Rm of the set of integer vectors h ∈ Zm which satisfy h·Bj ∈ Z for all j ∈ {1, . . . , d}.
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We identify the product space J ◦d = J ◦ × · · · × J ◦ with the subspace of
matrices inMm,d(R) all of whose column vectors belong to J ◦. Recall that J ◦∩Zm
is a lattice in J ◦; hence J ◦

Z

d := J ◦d ∩Mm,d(Z) is a lattice in J ◦d; we let TJ ◦d =

J ◦d/J ◦
Z

d be the quotient torus, and let ηT be the translational invariant probability
measure on TJ ◦d .

For each j we have Bj ∈ J ⊂ Qm +J ◦; hence there exists a positive integer q
such that Bj ∈ q−1Zm + J ◦ for each j ∈ {1, . . . , d}, or in other words,

B ∈ q−1Mm,d(Z) + J ◦d.(5.33)

We fix q once and for all, and set

Γ(q) = {γ ∈ SL(d,Z) : γ ≡ I mod q}.

Also let Fq ⊂ SL(d,R) be a fixed (Borel measurable) fundamental domain for
Γ(q)\ SL(d,R), and let η be the (left and right) Haar measure on SL(d,R), normal-
ized so that η(Fq) = 1.

Recall that X = Rd × Σ. Now for each ℓ ∈ Σ we define the map

Jℓ : Fq × TJ ◦d → Ns(X )

by

Jℓ
(
A,U + J ◦

Z

d) =
( m⋃

j=1

δ1/d
(
bj − bℓ + uj − uℓ + Zd

)
A× {j}

)
\ {(0, ℓ)},(5.34)

where u1, . . . ,um ∈ Rd are the row vectors of the matrix U (in order). Of course,
the right hand side of (5.34) is independent of the choice of the representative

U ∈ J ◦d for the point U + J ◦
Z

d in TJ ◦d , since any other representative U ′ for the

same point has u′
j ∈ uj + Zd for each j. These maps J1, . . . , Jm are continuous.

Finally, we define µℓ to be the pushforward by Jℓ of the probability measure η× ηT
on Fq × TJ ◦d :

µℓ := (η × ηT) ◦ J−1
ℓ ∈ P (Ns(X )).(5.35)

It will be clear from the proof of Proposition 5.6 that µℓ is independent of the choice
of q and the choice of the fundamental domain Fq .

Proposition 5.6. For P ,Σ,m as above, all the assumptions in Section 2.3 are
satisfied, with E = ∅ in [P2], and with the map ℓ 7→ µℓ from Σ to P (N(X )) given
by (5.35).

We give the proof of Proposition 5.6 in Section 5.3.3, by deriving it as a special
case of our main result for quasicrystals of cut-and-project type, Proposition 5.12,
but with the limit measures µℓ given in more explicit form.

Remark 5.3. It is immediate from (5.34) that

Jℓ
(
A,U + J ◦

Z

d) ∩ (Rd × {ℓ}) = (δ1/dZdA \ {0})× {ℓ}.
It follows that a point process Ξ in X with distribution µℓ has the property that the
projection of Ξ∩ (Rd×{ℓ}) in Rd is a random lattice of covolume δ in Rd minus the
origin, distributed according to the standard invariant measure on such lattices.
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Example 5.1. Assume w.l.o.g. b1 = 0. It follows from Remark 5.2 that J ◦ =
e⊥1 holds if and only if the vectors e1, . . . , ed, b2, . . . , bm are linearly independent

over Q. In this case, J ◦d consists of all matrices in Mm,d(R) with vanishing top
row; we identify this space with Mm−1,d(R) in the obvious way, and then get
TJ ◦d = Mm−1,d(R)/Mm−1,d(Z). Note also that we can take q = 1. It follows
that in this case, a point process Ξ in X with distribution µℓ can be constructed
as follows: Pick a random lattice L of covolume δ in Rd distributed according
to the SL(d,R) invariant probability measure on such lattices; then pick m − 1
random points {pj}j∈{1,...,m}\{ℓ} in the torus Rd/L, independently and uniformly
distributed; and finally set:

Ξ =
(
(L \ {0})× {ℓ}

) ⋃ ⋃

j∈{1,...,m}\{ℓ}

(
(L+ pj)× {j}

)
.

Note that if p1 is the projection map X → Rd then

p1(Ξ) = (L \ {0})
⋃ ⋃

j∈{1,...,m}\{ℓ}

(L+ pj),

and the distribution of this point process in Rd is independent of ℓ. Hence in the
present situation it is possible to discard the set of marks, i.e. the assumptions in
Section 2.3 can be satisfied with Σ being a singleton set and X = Rd (up to obvious
identification).

Example 5.2. Now assume m = 2, and again b1 = 0. Then J ◦ = e⊥1 if and
only if b2 /∈ Qd, and in this case the description in Ex. 5.1 applies. On the other
hand if b2 ∈ Qd then J ◦ = {0}, thus TJ ◦d = {0}, and q is any positive integer

such that b2 ∈ q−1Zd. In this case the formulas for J1, J2 become

J1(A) =
(
δ1/d(Zd \ {0})A× {1}

) ⋃ (
δ1/d(b2 + Zd)A× {2}

)
;

J2(A) =
(
δ1/d(Zd \ {0})A× {2}

) ⋃ (
δ1/d(−b2 + Zd)A× {1}

)
.

Here we remark that for A random in (Fq, η), the two random point sets p1(J1(A))
and p1(J2(A)) have the same distribution. (The proof of this fact uses the obser-
vation that there exists an element γ ∈ SL(d,Z) such that (−b2 + Zd)γ = b2 + Zd;
we then get p1(J2(γA)) = p1(J1(A)) for all A ∈ SL(d,R); finally note that γFq is
a fundamental domain for Γ(q)\ SL(d,R) since Γ(q) is normal in SL(d,Z).) Hence
as in Ex. 5.1 it is again possible to satisfy the assumptions in Section 2.3 without
using markings, i.e. with Σ being a singleton set.

It should also be noted that the two cases for m = 2 just discussed (i.e.,
J ◦ = e⊥1 and J ◦ = {0}) are closely related to [43, Cor. 5.4] and [43, Cor. 5.9],
respectively.

Example 5.3. A special case of the situation in Ex. 5.2 is the honeycomb
point set, for which the limit distribution of the free path length in the low density
limit was considered in Boca and Gologan [10] and Boca [9]; cf. also [49, Remark
2.2]. The honeycomb point set can be represented as in (5.32) with d = 2, m = 2,

δ =
√
3/2, g =

(
1 0

1/2
√
3/2

)
and b1 = 0, b2 = 1

3 (1, 1); thus J ◦ = {0} and we can

take q = 3 in Ex. 5.2.
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Example 5.4. In the previous examples we noted that it was possible to discard
the marking space. A simple example where the marking space cannot be discarded
is obtained by taking m = 3, b1 = 0, b2 ∈ Qd \Zd and b3 /∈ Qd in (5.32). (However
for this example it is still possible to reduce from #Σ = 3 to #Σ = 2.)

5.3. Quasicrystals of cut-and-project type

In this section we let P be a regular cut-and-project set ; such P are also referred
to as (Euclidean) model sets. These are point sets which are typically non-periodic,
yet strongly correlated. Famous examples of point sets P which are covered by the
theory in the present section are the vertex sets of a Penrose tiling and of an
Ammann-Beenker tiling. Previous results on the Lorentz gas in a quasicrystal have
been limited to numerical simulations [38] and the distribution of free path lengths
[61, 49].

5.3.1. Preliminaries. We will use almost the same notation as in [49]: Let
d ≥ 2, m ≥ 0, n = d+m, and denote by π and πint the projection of Rn = Rd×Rm

onto the first d and lastm coordinates. We refer to Rd and Rm as the physical space
and internal space, respectively. Let L be a grid (also called affine lattice) in Rn,
i.e. a translate of a lattice in Rn of full rank. A cut-and-project set P = P(W ,L)
is defined as the set of all projections to Rd of points in L which lie above a certain
window set W ⊂ Rm, that is:

(5.36) P = P(W ,L) := {π(y) : y ∈ L, πint(y) ∈ W} ⊂ Rd.

Conditions which are often imposed in the quasicrystal literature is that π|L is
injective and πint(L) is dense in Rm; however we will not require any of these here.3

Allowing this generality makes it necessary to introduce some notation of a more
technical nature4: Let A be the closure of πint(L) in Rm; then A is a translate of
the set A−A = {a− a′ : a, a′ ∈ A}, which is a closed subgroup of Rm. We denote
by A◦ the connected component of A − A containing 0; this is a linear subspace
of Rm, and both A − A and A are countable disjoint unions of translates of A◦.
Set m1 = dimA◦. We define µA to be the natural volume measure on A, i.e. the
measure which restricts to the standard m1 dimensional Lebesgue measure on each
translate of A◦ contained in A. Set5

V◦ = Rd ×A◦, V = Rd ×A = V◦ + L, and LV◦ := (L − L) ∩ V◦.

Then LV◦ is a lattice of full rank in V◦. We let µV = vol×µA, the natural volume
measure on V . By abuse of notation, we will write µA also for the m1 dimensional
Lebesgue measure on A◦, and µV also for the natural volume measure on V◦.

We will always assume that the window set W is a subset of A; note that this is
no loss of generality, since the cut-and-project set P = P(W ,L) remains the same
upon replacing W by W ∩ A. We will furthermore assume that W is bounded,
and that W has non-empty interior with respect to the topology of A. If W has
boundary of measure zero with respect to µA, we will say that P is regular. It

3This will allow us to also include periodic sets as part of the same setting; see Section 5.3.3
for details.

4In the special case when πint(L) is dense in Rm, the notation which we introduce here could
be dispensed with, since in this case we simply have: A = A◦ = Rm; m1 = m; µA = Lebesgue

measure on Rm; V◦ = V = Rn; LV◦ = L − L (this is the lattice which L is a translate of), and
µV = Lebesgue measure on Rn.

5Our usage of the symbols “V” and “V◦” differs slightly from that in [49].
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follows from Weyl equidistribution (see [33] or [49, Prop. 3.2]) that for any regular
cut-and-project set P and any bounded B ⊂ Rd with boundary of measure zero
with respect to Lebesgue measure,

(5.37) lim
T→∞

#{b ∈ L : π(b) ∈ P ∩ TB}
T d

= δd,m(L)µA(W) vol(B),

where

δd,m(L) :=
1

µV(V◦/LV◦)
.(5.38)

Our final assumption is that the window W is appropriately chosen so that
π|L∩π−1

int (W) is injective, and thus a bijection onto P . Then (5.37) implies that P
has asymptotic density

cP = δd,m(L)µA(W),(5.39)

i.e., (1.1) holds with this cP . Under the above assumptions P is a Delone set, i.e.,
uniformly discrete and relatively dense in Rd [49, Prop. 3.1]; in particular P is
locally finite.

Let ASL(n,R) = SL(n,R)⋉Rn, with multiplication law

(M,x)(M ′,x′) = (MM ′,xM ′ + x′).

We let ASL(n,R) act from the right on Rn by affine linear maps, through

y 7→ y(M,x) := yM + x.

Set G = ASL(n,R) and Γ = ASL(n,Z). We fix, once and for all, g ∈ G and δ > 0
so that L = δ1/n(Zng). We define an embedding of ASL(d,R) in G by

ϕg : ASL(d,R) → G, (A,x) 7→ g

((
A 0
0 1m

)
, (x,0)

)
g−1.

We also set G1 = SL(n,R) and Γ1 = SL(n,Z), and identify G1 with a subgroup
of G through M 7→ (M,0); similarly we identify SL(d,R) with a subgroup of
ASL(d,R). It follows from the celebrated results of Ratner [56], [57] that there
exists a unique closed connected subgroup H = Hg of G such that Γ∩H is a lattice
in H , ϕg(SL(d,R)) ⊂ H , and the closure of Γ\Γϕg(SL(d,R)) in Γ\G is given by

X := Γ\ΓH.(5.40)

We set ΓH := Γ ∩H , and note that X can be naturally identified with the homo-
geneous space ΓH\H . We denote the unique right-H invariant probability measure
on X by µg; sometimes we will also let µg denote the corresponding Haar measure
on H .

Similarly, there exists a unique closed connected subgroup H̃ = H̃g of G such

that Γ∩H̃ is a lattice in H̃ , ϕg(ASL(d,R)) ⊂ H̃ , and the closure of Γ\Γϕg(ASL(d,R))
in Γ\G is given by

X̃ = Γ\ΓH̃.

Note that X̃ can be naturally identified with the homogeneous space (Γ∩H̃)\H̃ . We

denote the unique right-H̃ invariant probability measure on either of these spaces
by µ̃g; sometimes we will also use µ̃g to denote the corresponding Haar measure

on H̃ . Of course, H ⊂ H̃ . It holds that πint(δ
1/n(Znhg)) ⊂ A for all h ∈ H̃,
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and A equals the closure of πint(δ
1/n(Znhg)) for µ̃g-almost all h ∈ H̃ and also for

µg-almost all h ∈ H ; cf. [49, Props. 3.5 and 4.5].
The following is a corrected and slightly generalized version of the Siegel-Veech

formula [49, Theorem 5.1].

Theorem 5.7. For any f ∈ L1(V , µV),∫

X

∑

m∈δ1/n(Znhg)
π(m) 6=0

f(m) dµg(h) = δd,m(L)
∫

V

f dµV .(5.41)

(Note that δ1/n(Znhg) is invariant under h 7→ γh for all γ ∈ Γ, and δ1/n(Znhg) ⊂
V for all h ∈ H . Hence the left hand side of (5.41) is well defined.)

Proof. If δ = 1, then Theorem 5.7 is exactly [49, Theorem 5.1] (as explained
in the erratum to that paper, the summation condition in [49, (5.1)] should be cor-
rected to “m ∈ Znhg \ π−1({0})”). The proof of that theorem is easily generalized
to the case of an arbitrary δ > 0. Alternatively, the extension to general δ can be
done by a simple scaling argument. �

The following lemma gives information regarding the summation condition in
Theorem 5.7.

Lemma 5.8. If m ∈ Zn and π(mg) = 0, then mh =m for all h ∈ H.

Proof. Let h ∈ H be given. It follows from the defining properties of H that
there exist γ1, γ2, . . . ∈ Γ and A1, A2, . . . ∈ SL(d,R) such that γjϕg(Aj) → h in G
as j → ∞. But π(mg) = 0 implies that mϕg(A) = m for all A ∈ SL(d,R), and

thusm(γjϕg(Aj))
−1 =mγ−1

j ∈ Zn for all j. Howeverm(γjϕg(Aj))
−1 →mh−1 in

Rn as j → ∞, and since Zn is discrete this forcesmh−1 ∈ Zn. But H is connected;
hence the fact that mh−1 ∈ Zn for all h ∈ H implies that mh−1 is independent of
h. �

Now we may reformulate Theorem 5.7 as follows. Let us set

Ẑn := {m ∈ Zn : π(mg) 6= 0}.(5.42)

Theorem 5.7’. For any f ∈ L1(V , µV),∫

X

∑

m∈δ1/n(Ẑnhg)

f(m) dµg(h) = δd,m(L)
∫

V

f dµV .(5.43)

(Note that Ẑnγ = Ẑn for every γ ∈ ΓH , by Lemma 5.8. Hence the point set Ẑnhg is
a well-defined function of Γh ∈ X , and the left hand side of (5.43) is well-defined.)

Proof. Note that for any k ∈ Zn \ Ẑn, the condition “π(m) 6= 0” implies that
the vectorm = δ1/n(khg) is excluded from the sum in (5.41), for all Γh ∈ X . On the

other hand, if k ∈ Ẑn, then by a simple argument using real-analyticity, π(khg) 6= 0
for µ-almost all h ∈ H (cf. [48, Lemma 8]), and so the vector m = δ1/n(khg) is
included in the sum in (5.41), for almost all Γh ∈ X . Hence the left hand side of
(5.41) equals the left hand side of (5.43). �

The following is a strengthening of [49, Prop. 3.7] (which dealt with the case
of W open):
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Lemma 5.9. Let W ⊂ A, µA(∂W) = 0, and assume that the projection map
from {y ∈ L : πint(y) ∈ W} to P(W ,L) is bijective. Then for µg-almost all h ∈ H

the projection map from {y ∈ δ1/n(Znhg) : πint(y) ∈ W} to P(W , δ1/n(Znhg)) is
bijective.

Proof. The projections are surjective by construction. To prove the injectiv-
ity, set

D = (Rd × ∂W) ∪ ({0} × A) ⊂ V ,
and consider the following two subsets of H :

S1 =
{
h ∈ H : δ1/n(Ẑnhg) ∩D 6= ∅

}
;

(5.44)

S2 =
{
h ∈ H : ∃y1 6= y2 ∈ δ1/n(Znhg) ∩ π−1

int (W◦) satisfying π(y1) = π(y2)
}
,

(5.45)

where W◦ is the interior of W . Then µg(S1) = 0, by Theorem 5.7’ applied with f as
the characteristic function of D. Also µg(S2) = 0, by [49, Prop. 3.7] (after scaling

by δ1/n). We will prove that every h ∈ H \ (S1 ∪ S2) has the desired injectivity
property.

Thus let h ∈ H \ (S1 ∪ S2), and let y1 6= y2 be two arbitrary points in

δ1/n(Znhg) ∩ π−1
int (W). Take mj ∈ Zn so that yj = δ1/n(mjhg). If mj /∈ Ẑn

then π(yj) = 0 and yj = δ1/n(mjg) ∈ L by Lemma 5.8; hence our assumption
that the projection map from {y ∈ L : πint(y) ∈ W} to P(W ,L) is injective implies

that at least one of m1 and m2 must lie in Ẑn; say m1 ∈ Ẑn. Then π(y1) 6= 0,

since h /∈ S1. If m2 /∈ Ẑn then π(y1) 6= 0 = π(y2) and we are done; hence from

now on we may assume that both m1,m2 ∈ Ẑn. Again using h /∈ S1 we then have
πint(yj) /∈ ∂W , i.e. πint(yj) ∈ W◦, for both j = 1, 2. Now it follows from h /∈ S2

that π(y1) 6= π(y2), and the injectivity is proved. �

In fact a similar injectivity property holds also for shifts of W , at least away
from 0 ∈ Rd:

Lemma 5.10. Let W be as in Lemma 5.9, and fix w̃ ∈ A. Then for µg-almost

all h ∈ H, the restriction of π to δ1/n(Znhg)∩π−1
int (W + w̃) \ π−1({0}) is injective.

Proof. Set W̃ = W + w̃. Define D,S1, S2 be as in the proof of Lemma 5.9,

but with W replaced by W̃ . Then µg(S1) = 0 as before. Furthermore, as in the

proof of [49, Prop. 3.7], for any h ∈ H with πint(δ1/n(Znhg)) = A, we have h /∈ S2

if and only if

W0 ∩ πint
(
δ1/n(Znhg)0 ∩ ({0} × Rm)

)
= {0},(5.46)

where W0 := W̃◦ −W̃◦ = W◦ −W◦ ⊂ Rm and (Znhg)0 := (Znhg)− (Znhg) ⊂ Rn.
Our injectivity assumption implies that (5.46) holds for h = 1n. Hence by [49,
Props. 3.5 and 3.6], µg(S2) = 0.

Now let h ∈ H\(S1∪S2) and let y1 6= y2 be two arbitrary points in δ1/n(Znhg)∩
π−1
int (W̃) \ π−1({0}). Take mj ∈ Zn so that yj = δ1/n(mjhg). It follows from

y1,y2 /∈ π−1({0}) and Lemma 5.8 that both m1,m2 ∈ Ẑn. Now h /∈ S1 implies

πint(y1), πint(y2) ∈ W̃◦, and thus, using also h /∈ S2, we have π(y1) 6= π(y2), and
the injectivity is proved. �
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Finally, we also recall the Siegel-Veech formula for H̃ . The following is [49,
Cor. 5.2] but for a general density δ.

Corollary 5.11. For any f ∈ L1(V , µV),∫

Γ\ΓH̃

∑

m∈δ1/n(Znhg)

f(m) dµ̃g(h) = δd,m(L)
∫

V

f dµV .

5.3.2. Verifying that the assumptions of Section 2.3 hold. From now
on we assume that P = P(W ,L) is a regular cut-and-project set with L a genuine
lattice, viz., 0 ∈ L. We will prove that P satisfies the assumptions in Section 2.3,
with

Σ := W ,(5.47)

with the map ς : P → Σ defined by letting ς(q) be the unique point w ∈ W for
which (q,w) ∈ L, and with

m := µA(W)−1µA|W .(5.48)

The map ς 7→ µς , or as we will call it here, w 7→ µw, from Σ = W to P (N(X )), is
defined as follows. We assume that the fixed element g lies in G1; this is permitted
since 0 ∈ L. Then also H ⊂ G1 and δ1/n(Znhg) = δ1/nZnhg for all h ∈ H . For
each w ∈ W , define the map Jw : X → Ns(X ) through

Jw(Γh) :=
(
δ1/nẐnhg + (0,w)

)
∩
(
Rd ×W

)
.(5.49)

Noticing that the map X → Ns(R
n), Γh 7→ δ1/nẐnhg + (0,w) is continuous (and

thus Borel measurable), and using [35, Thm. A2.3(iv)], one verifies that Jw is Borel
measurable. Now define

µw := µg ◦ J−1
w ∈ P (Ns(X )).(5.50)

Proposition 5.12. For P ,Σ,m as above, all the assumptions in Section 2.3
are satisfied, with E = ∅ in [P2], and with the map ς 7→ µς given by (5.50).

We split the proof in a series of lemmas.

Lemma 5.13. The density assumption [P1] holds for our P̃, with cP = δd,m(L)·
µA(W).

Proof. We have X = Rd × W and P̃ = L ∩ (Rd × W). By [49, Prop. 3.2],
[P1] holds for any set B ⊂ X of the form B = D × U where D is a bounded
subset of Rd with vol(∂D) = 0, and U is a bounded subset of W with µA(∂U) = 0.
Now for an arbitrary bounded subset B ⊂ X with µX (∂B) = 0, note that B is a
Jordan measurable subset of the space V ; hence for any ε > 0 there exist subsets
B′, B′′ ⊂ V which are both finite unions of disjoint boxes in V , and which satisfy
B′ ⊂ B ⊂ B′′ and µV(B

′′ \B) < ε. By what we have already noted, [P1] holds for
the two sets B′ ∩ (Rd ×W) and B′′ ∩ (Rd ×W), and by letting ε→ 0 we conclude
that [P1] also holds for B. �

We next show that w 7→ µw is a continuous map; cf. Lemma 5.15.

Lemma 5.14. Let w,w1,w2, . . . ∈ W and h, h1, h2, . . . ∈ H, subject to wj → w

and Γhj → Γh as j → ∞. Furthermore assume
(
δ1/nẐnhg+(0,w)

)
∩(Rd×∂W) =

∅. Then Jwj (Γhj) → Jw(Γh) in Ns(X ) as j → ∞.
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Proof. Immediate. �

Lemma 5.15. The map w 7→ µw from W to P (Ns(X )) is continuous.

Proof. Let w,w1,w2, . . . ∈ W and assume wn → w; then our task is to prove

µg ◦J−1
wn

w−−→ µg ◦J−1
w . However this follows from the continuous mapping theorem

[35, Thm. 4.27] together with Lemma 5.14, once we note that

µg
({

Γh ∈ X :
(
δ1/nẐnhg + (0,w)

)
∩ (Rd × ∂W) 6= ∅

})
= 0,(5.51)

by Theorem 5.7’. �

Next we prove that the key assumption, [P2], holds, with E = ∅ and with
stronger uniformity:

Lemma 5.16. For any λ ∈ Pac(S
d−1
1 ), µ

(λ)
q,ρ

w−−→ µς(q) as ρ→ 0, uniformly over
all q ∈ P.

Proof. Recall that P̃ = L∩ (Rd ×W). For any fixed q ∈ P , letting w = ς(q)
and using L = L+ (q,w), we have

P̃q − q =
(
δ1/nẐng + (0,w)

)
∩ (Rd ×W),

and so

Qρ(q,v) =
(
(δ1/nẐng)R(v)Dρ + (0,w)

)
∩
(
Rd ×W

)
= Jw

(
Fρ(v)

)
,(5.52)

where Fρ : Sd−1
1 7→ X is the map Fρ(v) = Γϕg(R(v)Dρ). Let ρn ∈ (0, 1) and

qn ∈ P for n = 1, 2, . . ., and assume that ρn → 0 and ς(qn) → w as n → ∞,

for some w ∈ W ; by Lemma 2.2 it then suffices to prove that µ
(λ)
qn,ρn

w−−→ µw as
n → ∞. Set wn = ς(qn) and νn = λ ◦ F−1

ρn ; then by (5.52) and (5.50), our task is

to prove νn ◦ J−1
wn

w−−→ µg ◦ J−1
w . By [49, Thm. 4.1] we have νn

w−−→ µg. Now the
desired result follows from [35, Thm. 4.27], using Lemma 5.14 and (5.51). �

The following lemma shows that the assumption [Q1] holds, in a much stronger
form.

Lemma 5.17. For each w ∈ W, µw is invariant under the action of SL(d,R).

Proof. It follows from ϕg(SL(d,R)) ⊂ H that for every A ∈ SL(d,R), right
multiplication by ϕg(A) on X preserves the measure µg. The lemma follows from
this fact, together with (5.50) and the fact that Jw(Γhϕg(A)) = Jw(Γh)A for all
Γh ∈ X and A ∈ SL(d,R). �

Lemma 5.18. The assumption [Q2] holds, i.e. for every w ∈ W and µw-almost
every Y ∈ Ns(X ) we have y · e1 6= y′ · e1 for all y 6= y′ ∈ Y .

Proof. Let w ∈ W . Our task is to prove that

µg
({

Γh ∈ X : ∃y,y′ ∈ Jw(Γh) s.t. y 6= y′ and y · e1 = y′ · e1
})

= 0,

and for this it suffices to prove that for any two fixed m 6=m′ ∈ Ẑn,

µg
({
h ∈ H : πint(δ

1/nmhg) ∈ W −w, πint(δ1/nm′hg) ∈ W −w,
(5.53)

(m−m′)hg · e1 = 0
})

= 0.
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This is obviously true if the larger set S :=
{
h ∈ H : (m−m′)hg ·e1 = 0

}
satisfies

µg(S) = 0; hence from now on we may assume µg(S) > 0. Then a real-analyticity
argument implies that (m−m′)hg · e1 = 0 for all h ∈ H . Using ϕg(SL(d,R)) ⊂ H

this forces π((m−m′)g) = 0. This means thatm−m′ /∈ Ẑn, and thus by Lemma
5.8 we have π((m −m′)hg) = 0 for all h ∈ H . Now for every h appearing in the
set in (5.53), we either have π(mhg) = π(m′hg) = 0 or else the restriction of π
to δ1/nZnhg ∩ π−1

int (W −w) \ π−1({0}) is non-injective. Hence (5.53) follows from
Lemma 5.10 and the fact that the set S1 in (5.44) satisfies µg(S1) = 0. �

Next, the following lemma shows that the assumption [Q3] holds, in a stronger
form.

Lemma 5.19. For every ε > 0 there is some R > 0 and an open set Xε ⊂ X
such that µg(Xε) > 1 − ε and Jw(Γh) ∩ (Bd(x, R) × W) 6= ∅ for all Γh ∈ Xε,

w ∈ W, x ∈ Rd.

Proof. Since W has non-empty interior, there exist a ∈ A and an open ball
B ⊂ A◦ centered at 0, such that a + B ⊂ W . For any Γh ∈ X we write Lh :=
δ1/nZnhg. Recall that Lh ⊂ V for all Γh ∈ X . To start with, we note that if
Γh ∈ X and R > 0 satisfy

Lh + (BdR/2 ×B) = V ,(5.54)

then Jw(Γh)∩(Bd(x, R)×W) 6= ∅ for allw ∈ W , x ∈ Rd. Indeed, givenw ∈ W and
x ∈ Rd, take x′ ∈ Rd so that Bd(x′, R/2) ⊂ Bd(x, R) \ {0}; then (x′,a −w) ∈ V ,
and so by (5.54) there exists a point y ∈ Lh such that

(x′,a−w) ∈ y + (BdR/2 ×B).

Then π(y) ∈ Bd(x′, R/2) ⊂ Bd(x, R) \ {0} and y ∈ δ1/nẐnhg since π(y) 6= 0; also
πint(y) +w ∈ a+ B ⊂ W . It follows that y + (0,w) ∈ Jw(Γh) ∩ (Bd(x, R)×W),
proving our assertion.

Now letX ′ be the set of Γh ∈ X satisfying πint(Lh) = A; recall that µg(X
′) = 1.

For every Γh ∈ X ′, the subspace Rd × {0} maps to a dense subset in the torus
V/Lh = V◦/(Lh ∩ V◦) and hence there exists some R > 0 for which (5.54) holds.
It follows that if we let

X(R) = {Γh ∈ X : Lh + (BdR/2 ×B) = V}
then X ′ is contained in the union ∪R>0X(R). Also each X(R) is an open subset of
X , andX(R) is increasing with respect to R. It follows that limR→∞ µg(X(R)) = 1,
and so there is some R > 0 such that µg(X(R)) > 1 − ε. Then Xε := X(R) has
the desired properties. �

Finally, we will prove [P3]. As in the case of the Poisson process, we will do

so by explicitly identifying the macroscopic limit process. Recall that X̃ = Γ\ΓH̃,

and define the map J̃ : X̃ → Ns(X ) by

J̃(Γh) := δ1/n(Znhg) ∩ (Rd ×W).

This map is Borel measurable. We set

µ := µ̃g ◦ J̃−1 ∈ P (Ns(X )).(5.55)

Lemma 5.20. Let Λ ∈ Pac(T
1(Rd)). Then µ

(Λ)
ρ

w−−→ µ as ρ→ 0.
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Proof. Recall that P̃ = L ∩ (Rd ×W); hence for any q ∈ Rd \ P we have

Qρ(q,v) = (δ1/nZng − (q,0))R(v)Dρ ∩ (Rd ×W),

and so for any (q,v) ∈ T1(Rd) and ρ > 0, if ρ1−dq /∈ P then

Qρ(ρ
1−dq,v) = J̃(F̃ρ(q,v)),

where F̃ρ : T
1(Rd) → X̃ is the map F̃ρ(q,v) = Γϕg((1d,−(δ−1/nρ1−dq,0))R(v)Dρ).

Hence µ
(Λ)
ρ = Λ ◦ F̃−1

ρ ◦ J̃−1. Now by [49, Thm. 4.7], Λ ◦ F̃−1
ρ

w−−→ µ̃g as ρ → 0.

Also the map J̃ has the property that if h, h1, h2, . . . ∈ H satisfy Γhn → Γh as

n→ ∞ and δ1/n(Znhg)∩ (Rd × ∂W) = ∅, then J̃(Γhn) → J̃(Γh). Furthermore, by
Corollary 5.11,

µ̃g
({

Γh ∈ X̃ : δ1/n(Znhg) ∩ (Rd × ∂W) 6= ∅
})

= 0.

Hence by [35, Thm. 4.27], Λ ◦ F̃−1
ρ ◦ J̃−1 w−−→ µ̃g ◦ J̃−1 as ρ→ 0, as desired. �

Lemma 5.21. The assumption [P3] holds.

Proof. In view of Lemma 5.20 and Remark 2.8, it suffices to prove that

µ({∅}) = 0. Let us write Lh = δ1/n(Znhg), and let X̃ ′ be the set of all Γh ∈ X̃

for which πint(Lh) = A; recall that µ̃g(X̃
′) = 1. For every Γh ∈ X̃ ′, J̃(Γh) is

non-empty, since W has non-empty interior. Hence J̃−1({∅}) ⊂ X \ X ′ and thus
µ({∅}) ≤ µ̃g(X \X ′) = 0. �

We have now proved that all the assumptions in Section 2.3 are satisfied, i.e.
the proof of Proposition 5.12 is complete. �

Remark 5.4. Of course, by combining Theorem 2.19 and Lemma 5.20, it now
also follows that the measure µ in (5.55) agrees with the measure defined in (2.37).

Remark 5.5. It follows from Theorem 5.7’ that for each w ∈ W , a point
process Ξw with distribution µw has intensity measure cPµX . Hence Section 3.3.2
applies, leading to an expression for the transition kernel in terms of the Palm
distributions of Ξw. However it is possible to give more explicit formulas for the
transition kernels in terms of Haar measures on certain homogeneous spaces. For
the special case of P a lattice (i.e. m = 0) this was done in [43, Sections 4 and 8];
and precise asymptotic formulas for the transition kernels were given in [46].

5.3.3. The case of periodic point sets. We now specialize to the case of a
periodic point set P as considered in Section 5.2. Thus let P ,L, δ, g and b1, . . . , bm
be as in (5.32). We will prove Proposition 5.6 by realizing it as a special case of
Proposition 5.12, following [49, Sec. 2.3].

Set n = d+m and let

L′ = L × {0}+ δ1/d(b1g, e1) + · · ·+ δ1/d(bmg, em).

This is a lattice of full rank in Rn which can be expressed as

L′ = δ′
1/n

Zng′,

where δ′ := δn/d, and where g′ ∈ G1 = SL(n,R) is given by

g′ =

(
g 0
Bg I

)
= gB

(
g 0
0 I

)
; gB :=

(
I 0
B I

)
.(5.56)



5.3. QUASICRYSTALS OF CUT-AND-PROJECT TYPE 115

(Recall from Sec. 5.2 that B is the matrix in Mm,d(R) whose row vectors are
b1, . . . , bm. Also in (5.56), “I” stands for the identity matrix of order d or m,
depending on the position.) We will apply the set-up of Sec. 5.3.1–5.3.2 with L′ in
place of L. Note that for this lattice we have A = δ1/dZm, and thus µA is counting
measure. We fix the following (regular) window set:

W = {δ1/de1, . . . , δ1/dem}.
The point of these choices of L′ and W is that now our periodic set P in (5.32)
equals the cut-and-project set P(W ,L′). Hence Proposition 5.12 applies to the set
P , and we will see that in this case, the statement of Proposition 5.12 is equivalent
with the statement of Proposition 5.6. We note that (5.47) gives Σ = W , and
(5.48) means that m is the uniform probability measure on Σ, assigning mass m−1

to each point. This agrees with Σ and m in Proposition 5.6, if we identify each
j ∈ {1, . . . ,m} with the vector δ1/dej ∈ W . It remains to prove that the map given
by (5.50) agrees with the map in (5.35). The key step in doing so is the following
lemma, which gives an explicit formula for the subgroup H = Hg′ of G.

Lemma 5.22.

H =

{
gB

(
I 0
U I

)(
A 0
0 I

)
g−1
B : A ∈ SL(d,R), U ∈ J ◦d

}
.

Proof. Recall that, by definition, H = Hg′ is the unique closed connected
subgroup of G such that Γ∩H is a lattice in H , ϕg′(SL(d,R)) ⊂ H , and the closure
of Γ\Γϕg′(SL(d,R)) in Γ\G equals Γ\ΓH . It follows from (5.56) that ϕg′(A) =
ϕgB (gAg

−1) for all A ∈ SL(d,R); hence H = HgB . Let G′ be the following closed
Lie subgroup of G:

G′ =

{(
A 0
U I

)
: A ∈ SL(d,R), U ∈Mm,d(R)

}
.(5.57)

Note that ϕgB (SL(d,R)) ⊂ G′ and Γ ∩G′ is a lattice in G′; hence

H = HgB ⊂ G′.

For any linear subspace U ⊂ Rm, let us write Ud for the space of matrices in
Mm,d(R) all of whose column vectors belong to U . Note that Ud · A = Ud for all
A ∈ SL(d,R). Set

HU =

{
gB

(
A 0
U I

)
g−1
B : A ∈ SL(d,R), U ∈ U d

}

=

{
gB

(
I 0
U I

)(
A 0
0 I

)
g−1
B : A ∈ SL(d,R), U ∈ U d

}
;

this is a closed connected subgroup of G′.

Let Ω be the set of matrices U ∈ Mm,d(R) such that

(
I 0
U I

)
∈ H ; this is a

closed subgroup of 〈Mm,d(R),+〉. By mimicking part of the proof of [24, Lemma
7], we find that there exists a linear subspace V of Rm such that Ω = Vd. Using
ϕgB (SL(d,R)) ⊂ H it also follows that H = HV . Hence it now remains to prove
that J ◦ = V .

Note that for every linear subspace U ⊂ Rm, HU is a closed connected Lie
subgroup of G′ which contains ϕgB (SL(d,R)). Hence, by the definition ofH = HgB ,
V can be characterized as the unique smallest linear subspace U ⊂ Rm with the
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property that HU intersects Γ in a lattice. Let π : G′ → SL(d,R) be the projection

homomorphism

(
A 0
U I

)
7→ A. Using [55, Cor. 8.28], it follows that HU intersects

Γ in a lattice if and only if

U ∩ Zm is a lattice in U(5.58)

and π(Γ ∩ HU) is a finite index subgroup of SL(d,Z); and as in the proof of [24,
Lemma 8], one sees that the latter condition holds if and only if

Bj ∈ Qm + U , ∀j,(5.59)

where B1, . . . , Bd are the column vectors of B. Hence: V is the smallest linear
subspace U ⊂ Rm which satisfies both (5.58) and (5.59).

Let s = dimV . Since V satisfies (5.58), there exists a Z-basis V1, . . . , Vm of Zm

such that V1, . . . , Vs is a Z-basis of V ∩ Zm and an R-linear basis of V . Since V
satisfies (5.59), there exists some q ∈ Z+ such that Bj ∈ q−1(ZVs+1+· · ·+ZVm)+V ,
∀j. Now q−1(ZVs+1 + · · · + ZVm) + V is a closed subgroup of Rm containing Zm

and B1, . . . , Bd; hence J ⊂ q−1(ZVs+1 + · · · + ZVm) + V , and thus J ◦ ⊂ V . On
the other hand, recall that J ◦ ∩ Zm is a lattice in J ◦, i.e. J ◦ satisfies (5.58), and
furthermore we have Bj ∈ J ⊂ Qm + J ◦ for each j, i.e. J ◦ satisfies (5.59). Hence
V ⊂ J ◦, i.e. we have proved J ◦ = V , and thereby the lemma. �

Using Lemma 5.22 we now conclude the proof of Proposition 5.6. Writing

h = gB

(
I 0
U I

)(
A 0
0 I

)
g−1
B

with A ∈ SL(d,R) and U ∈ J ◦d, one verifies that in the present situation, the
formula (5.49) can be expressed in the following more explicit way, for any w =
δ1/deℓ in W :

Jδ1/deℓ
(Γh) =

( m⋃

j=1

δ1/d
(
Zd + (ej − eℓ)(B + U)

)
Ag × {δ1/dej}

)
\ {(0, δ1/deℓ)}.

(5.60)

It follows from (5.33) that Bγ−B ∈ J ◦d+Mm,d(Z) for each γ ∈ Γ(q); hence there

exist Uγ ∈ J ◦d and αγ ∈ Mm,d(Z) such that Bγ − B = Uγ + αγ . Using Lemma
5.22 one now verifies that the lattice Γ ∩H contains

Γ′
q :=

{(
γ 0

αγ + α I

)
: γ ∈ Γ(q), α ∈ J ◦

Z

d

}

as a subgroup of finite index. Hence in the definition of µw in (5.50) we may just
as well view Jw as a map from Γ′

q\H to Ns(X ), with µg (in the present situation:
µg′) being the invariant probability measure on Γ′

q\H . Taking Fq ⊂ SL(d,R) to

be a fundamental domain for Γ(q)\ SL(d,R), as in Section 5.2, and FJ ⊂ J ◦d a

fundamental domain for TJ ◦d = J ◦d/J ◦
Z

d, one verifies that the following set is a
fundamental domain for Γ′

q\H :
{
gB

(
I 0
U I

)(
Ag−1 0
0 I

)
g−1
B : A ∈ Fq, U ∈ FJ

}
.(5.61)

Note also that when parametrizing the last set by 〈A,U〉 ∈ Fq × FJ , the probabil-
ity measure µg′ corresponds to the probability measure η× ηT which we considered
in Section 5.2; furthermore, after renaming the markings “1, . . . ,m” instead of
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“δ1/de1, . . . , δ
1/dem”, the formula (5.60) turns into (5.34). (We used “Ag−1” in-

stead of “A” in (5.61) so as to get rid of the “g” in (5.60).) Hence the formula
for µw, (5.50), turns into the formula for µℓ in (5.35). This completes the proof of
Proposition 5.6. �

5.4. Scattering potentials satisfying the conditions in Section 3.4

We consider scattering described by a Hamiltonian flow with a spherically sym-
metric potentialW having compact support in the unit ball. Thus, by a slight abuse
of notation, the potentialW : Rd\{0} → R is given byW (q) =W (r) with r = ‖q‖,
where we assume W ∈ C(R>0) and W (r) = 0 for r ≥ 1. Furthermore we assume

lim inf
r→0

r2W (r) ≥ 0.(5.62)

For scattering at the single-site potential W, considering a particle hitting the unit
ball with unit speed and with an impact parameter of length w ∈ (0, 1), the de-
flection angle and the total time which the particle spends inside the scatterer are
given by the formulas [53, Sect. 5.1]

θ(w) = π − 2w

∫ ∞

r0

r−2 dr√
1− 2W (r)− w2r−2

,(5.63)

and

T (w) = 2

∫ 1

r0

dr√
1− 2W (r)− w2r−2

,(5.64)

respectively. Here r0 = r0(w) ∈ (0, 1) is the largest solution to the equation
1− 2W (r) − w2r−2 = 0 (this number r0 is guaranteed to exist because of (5.62)).
The deflection angle θ(w) in (5.63) can take any value in [−∞, π], which for θ(w) < 0
represents spiralling motion around the center; however, in the case of an every-
where repulsive potential (i.e., W monotonically decreasing) we have 0 ≤ θ(w) ≤ π
[53, Sect. 5.4].

Comparing (5.64) and (5.63), we note that

T (w) <
π − θ(w)

w
, ∀w ∈ (0, 1).(5.65)

In particular, if the function θ is bounded, then T (w) is uniformly bounded on any
interval w ∈ [ε, 1), ε > 0.

When replacing the potential W by the rescaled version q 7→ W (ρ−1q), as in
(1.25), the formula for the deflection angle remains the same, with w ∈ (0, 1) now
denoting the normalized impact parameter; furthermore the function T is replaced
by w 7→ ρ T (w).

We next discuss conditions on the scattering potential ensuring that the scat-
tering map Ψ satisfies the conditions (i)–(iii) in Section 3.4.

Definition 5.1. For the purposes of the present paper, we say that a potential
W ∈ C(R>0) with supp(W ) ⊂ (0, 1] is dispersing ifW |(0,1] is C2, lim infr→0 r

2W (r) ≥
0 and lim supr→0W (r) 6= 1

2
6, and furthermore the function θ : (0, 1) → R given by

(5.63) extends to a C1 function on [0, 1) satisfying θ(0) = kπ for some k ∈ Z, and
θ′(w) 6= 0 and |θ(w) − kπ| < π for all w ∈ [0, 1).

6These are the conditions imposed in Section 1.3 in order to make the flow Φ
(ρ)
t everywhere

well-defined.
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When W is dispersing, it follows from Lemma 3.25 and Remark 3.7 that the
scattering map Ψ (which is given by (3.34) and (3.38), using the extended function
θ : [0, 1) → R) satisfies the conditions (i)–(iii) in Section 3.4.

One example of a dispersing potential is the truncated (“Muffin-tin”) Coulomb
potential,

W (r) = α · I(r ≤ 1) · (r−1 − 1),(5.66)

for any constant α /∈ {0,−1}. Indeed, by a straightforward modification of the
classical treatment of the non-truncated Coulomb potential (cf., e.g., [1, Sec. 8.E]),
one verifies that in this case,

θ(w) = 2 arctan
( α

1 + α
· (1− w2)1/2

w

)
− I(α < −1) · 2π.(5.67)

On the other hand, if α = −1, then θ(w) ≡ −π, and the scatterer is a so called
Eaton lens: Each particle is reflected a perfect 180◦ angle independently of the
impact parameter, and the potential is not dispersing.

In Lemma 5.24 below we give a simple criterion which ensures that every W
in a certain general class of repulsive potentials is dispersing. As a preparation we
first give an explicit formula for the first derivative of θ(w).

Lemma 5.23. Assume that W |(0,1) is C2. Then U := {w ∈ (0, 1) : r30 W
′(r0) 6=

w2} is an open subset of (0, 1), and the function θ(w) is C1 on U , satisfying

θ′(w) = −2

∫ ∞

r0(w)

(
w2r−2 + 4W (r) + rW ′(r) − 2

) r40W
′(r0)

w2−r30W
′(r0)

+ r2W ′(r)

r3
(
1− 2W (r)− w2r−2

)3/2 dr

(5.68)

for all w ∈ U .

(Recall that we always assume W ∈ C(R>0), W (r) = 0 for r ≥ 1, and that
(5.62) holds.)

Proof. Recall that r0 = r0(w) ∈ (0, 1) is the largest solution to the equation
1−2W (r)−w2r−2 = 0. Fix a point w0 ∈ U . Then by the implicit function theorem,
the function r0(w) is C

2 in some neighbourhood of w0, with

r′0(w) =
wr0

w2 − r30W
′(r0)

.(5.69)

In particular, since r0 is continuous near w0, U contains a neighbourhood of w0.
This proves that U is open. Also for any w ∈ U we have 1− 2W (r)−w2r−2 > 0 for
all r > r0(w); hence

d
dr

(
1− 2W (r)−w2r−2

)∣∣
r=r0(w)

≥ 0, viz., w2r−3
0 −W ′(r0) ≥ 0.

Hence in view of the definition of U , we have:

w2 > r30 W
′(r0) and thus r′0(w) > 0, ∀w ∈ U .(5.70)

Set ξ0(w) = r0(w)/w. Substituting r = w(ξ0(w) + h) in (5.63), differentiating
formally under the integration sign, and then substituting h = ξ− ξ0(w), we obtain

θ′(w) = −2

∫ ∞

ξ0(w)

(
ξ−2 + 4W (wξ) + wξW ′(wξ) − 2

)
ξ′0(w) + ξ2W ′(wξ)

ξ3 (1− 2W (wξ)− ξ−2)3/2
dξ(5.71)
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for all w ∈ U . This formula is easily verified to be equivalent with (5.68). In order
to justify the preceding manipulations, set A(w, x) = 2x · B(w, ξ0(w) + x2), where
B(w, ξ) is the integrand in (5.71); then the right hand side of (5.71) equals

−2

∫ ∞

0

A(w, x) dx.

Using (5.70) and W |(0,1) ∈ C2 one verifies that A(w, x) extends to a continuous

function on all U × [0,∞). Furthermore B(w, ξ) = ξ−3(1− ξ−2)−3/2(ξ−2 − 2)ξ′0(w)
for ξ > w−1, implying that A(w, x) ≪ x−5 for x large, uniformly over w in any
compact subset of U . It follows from these observations that the right hand side of
(5.71) is a continuous function of w ∈ U . Now to complete the proof it suffices to
verify that

−2

∫ w2

w1

∫ ∞

0

A(w, x) dx dw = θ(w2)− θ(w1)(5.72)

whenever w1 < w2 and [w1, w2] ⊂ U . However, this follows immediately using
Fubini’s Theorem and (5.63), together with the fact that

∫ w2

w1

A(w, x) dw =

[
2x · (ξ0(w) + x2)−2

√
1− 2W (w(ξ0(w) + x2))− (ξ0(w) + x2)−2

]w=w2

w=w1

.

�

Lemma 5.24. Let β be the numerical constant β = (1+α)2(1−α)
2α4−α+2 = 0.7124 . . .,

where α = 0.4093 . . . is the unique zero of 2x5 + 2x4 − 8x3 + 2x2 − 7x+ 3 in [0, 1].
Assume that W |(0,1] is C2, W is convex and W ′(r) ≤ −β, ∀r ∈ (0, 1). Then W is
dispersing.

Remark 5.6. It seems likely that the assumptions in Lemma 5.24 can be sig-
nificantly relaxed: We believe that W is dispersing whenever W |(0,1] is C2, strictly

decreasing, convex, and satisfies limr→0W (r) > 1
2 ; however at present we have no

proof of this claim.
The constant β appearing in the statement of Lemma 5.24 is in fact the smallest

possible for the requirement that the integrand in (5.68) be nonnegative for all
w ∈ (0, 1) and r > r0(w). Indeed, this nonnegativity fails for any linear potential
W (r) = c · I(r ≤ 1) · (1 − r) with slope 0 < c < β, as one verifies by computations
similar to those appearing in the proof below.

Proof of Lemma 5.24. The assumptions on W imply that W (r) ≥ β(1− r)
∀r ∈ (0, 1], and so r0(w) extends to a strictly increasing C1 function on [0, 1)
with r0(0) ≥ 1 − (2β)−1 = 0.298 . . ., satisfying (5.69) for all w ∈ [0, 1). (This
of course means that we only need the assumptions in Lemma 5.24 to hold for
1 − (2β)−1 < r < 1; the behavior of the potential W (r) for r < 1 − (2β)−1 is
completely irrelevant for our discussion.) Also Lemma 5.23 applies with U = (0, 1),
and so the formula (5.68) holds for all 0 < w < 1. The integrand in (5.68) decays
like r−3 as r → ∞, uniformly with respect to w ∈ [0, 1); furthermore the numerator
of the integrand is a C1 function of (w, r) in [0, 1)× (0,∞), vanishing for r = r0(w),
and regarding the denominator we note that d

dr (1 − 2W (r) − w2r−2) ≥ 2β for all
w ∈ [0, 1), r ∈ (0, 1). From these facts it follows that the right hand side of (5.68)
is well-defined for all w ∈ [0, 1), and depends continuously on w in this interval.
Hence θ extends to a C1 function on [0, 1). Letting w → 0 in (5.63) we see that
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this extended function satisfies θ(0) = π. Recall also that 0 ≤ θ(w) ≤ π for all
w ∈ [0, 1), as we noted below (5.63).

Now to complete the proof of the lemma, it suffices to prove that θ′(w) < 0 for
all w ∈ [0, 1). From now on we keep w ∈ [0, 1) fixed. Note that the integrand in
(5.68) is positive for all r > 1; hence it suffices to prove that the (numerator of the)
integrand is nonnegative for r0(w) < r < 1, i.e. that

(
w2r−2 + 4W (r) + rW ′(r)− 2

)
r40W

′(r0) + r2W ′(r)
(
w2 − r30W

′(r0)
)
≥ 0.

Using w2 = r20(1 − 2W (r0)) and W (r) ≤ W (r0) +W ′(r)(r − r0) we see that it
suffices to prove:

r0(4r0 − r)(r − r0)W
′(r)W ′(r0) +

(
r20(2− r20r

−2)W ′(r0)− r2W ′(r)
)(
2W (r0)− 1

)

≥ 0.(5.73)

Next, noticing that

β(1 − r)−W ′(r)(r − r0) ≤W (r0) ≤ 1
2(5.74)

and using the general fact that c1 ≤ x ≤ c2 ⇒ a + bx ≥ a + min(bc1, bc2), we see
that it suffices to prove that (5.73) holds when replacing W (r0) by 1

2 and when

replacing W (r0) by β(1 − r) −W ′(r)(r − r0). When replacing W (r0) by
1
2 , (5.73)

simplifies into

r0(4r0 − r)(r − r0)W
′(r)W ′(r0) ≥ 0,

which holds since r0 < r < 1 and r0 ≥ r0(0) > 0.29. Next, replacing W (r0) by
β(1− r) −W ′(r)(r − r0), (5.73) turns into

CW ′(r0) + r2
(
2(r − r0)W

′(r) + 1− 2β(1− r)
)
W ′(r) ≥ 0.(5.75)

where

C := r0r(2r
3
0r

−3 − 1)(r − r0)W
′(r) + r20(2− r20r

−2)
(
2β(1− r) − 1

)
.(5.76)

In order to prove (5.75) we first show that C ≤ 0. If 2r30r
−3 − 1 ≤ 0 then using

(r − r0)W
′(r) ≥ β(1 − r) − 1

2 (cf. (5.74)) we see that C ≤ 0 holds provided that

r0r(2r
3
0r

−3 − 1)12 + r20(2 − r20r
−2) ≥ 0, viz., 1

2r0(4r0 − r) ≥ 0, and this holds since

r0 < r < 1 and r0 ≥ r0(0) > 0.29. Now assume 2r30r
−3 − 1 > 0. Using W ′(r) ≤ −β

we then find that C ≤ 0 holds provided that

(r4 − 5r3r0 + 2r40 + 4r2r0 − 2r30)β ≤ 2r0r
2 − r30 .(5.77)

If r4 − 5r3r0 + 2r40 + 4r2r0 − 2r30 ≤ 0 then (5.77) is automatic, and if r4 − 5r3r0 +
2r40 + 4r2r0 − 2r30 > 0 then (5.77) is a consequence of β ≤ (2(1 − r0))

−1 (which
follows from 1

2 ≥W (r0) ≥ β(1 − r0)) together with r
2(r − r0)(4r0 − r) ≥ 0.

Having thus proved C ≤ 0, we see using W ′(r0) ≤W ′(r) < 0 that (5.75) holds
provided that C + r2

(
2(r − r0)W

′(r) + 1− 2β(1− r)
)
≤ 0, or equivalently,

(2r40 − r0r
3 + 2r4)W ′(r) + (r + r0)

2(r − r0)
(
1− 2(1− r)β

)
≤ 0.(5.78)

Using W ′(r) ≤ −β one finds that (5.78) holds provided that

β ≥ f(r0, r) :=
(r + r0)

2(r − r0)

2r40 − r0r3 + 2r4 + 2(r + r0)2(r − r0)(1− r)
.(5.79)

(Note that the denominator is obviously positive.) It is our task to prove that (5.79)
holds for all r with r0 < r < 1. Expanding and simplifying ∂

∂r f(r0, r) and using
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(r + r0)(8r
2
0 − 7rr0 + 5r2) > 0 one finds that ∂

∂r f(r0, r) > 0 whenever r ≥ r0 > 0.
Hence it suffices to prove that f(r0, 1) ≤ β for all r0 ∈ [r0(0), 1]. However we have

∂

∂x
f(x, 1) =

(1 + x)g(x)

(2x4 − x+ 2)2
with g(x) = 2x5 + 2x4 − 8x3 + 2x2 − 7x+ 3.

We have g(0) = 3, g(1) = −6 and g′(x) < 0 for all x ∈ [0, 1]; hence g has a unique
zero in [0, 1]; by definition this is the number α = 0.409 . . ., and g(x) is positive for
x ∈ [0, α) and negative for x ∈ (α, 1]. Hence f(x, 1) ≤ f(α, 1) = β for all x ∈ [0, 1],
and the proof is complete. �

While Lemma 5.24 gives an example of a simple general criterion which ensures
that the potentialW is dispersing, let us note that there certainly exist other general
classes of ’nice’ potentials which are not dispersing. For example, recall that for W
dispersing, the range of θ(w) is an interval of length at most π, while in fact there
exist potentials W for which θ(w) varies over an arbitrarily large portion of the
negative real axis, meaning that the particle goes around the center of the scatterer
many times [53, Sect. 5.4]. Also the condition θ′(w) 6= 0 in Definition 5.1 need not
hold for general potentials W .

5.5. More general scattering potentials

In this section we give an outline of how the main results of the present paper
may be extended to a more general class of spherically symmetric potentials. Let
θ(w) be the deflection angle, as in (5.63). Our precise assumption will be the
following:

There exists an open subset U of (0, 1) of full Lebesgue measure(5.80)

such that θ|U ∈ C1 and θ′(w) 6= 0 for all w ∈ U .
It seems likely that this condition is fulfilled for generic potentialsW within several
natural spaces of functions. However note that there also exist non-trivial, ’nice’,
potentials W for which (5.80) fails; indeed this happens for the truncated Coulomb
potential in (5.66) with α = −1.

From now on we assume that (5.80) holds. Note that then also the set {w ∈
U : θ(w) /∈ πZ} has full Lebesgue measure in (0, 1). As this set is open, it can
be expressed as a union of a finite or countable family {Iα}α∈A of pairwise disjoint
open intervals. By construction, for each α ∈ A, Iα is an open sub-interval of (0, 1),
we have θ|Iα ∈ C1, θ′(w) has constant sign in Iα, and there is some kα ∈ Z such that
θ(w) ∈ (kαπ, (kα + 1)π) for all w ∈ Iα. Furthermore,

∑
α∈A |Iα| = 1, where |Iα|

denotes the length of Iα. Let us note that in the special case when W is dispersing,
these conditions are fulfilled with A singleton: A = {α0} and Iα0 = (0, 1).

For every α ∈ A we set

Sα,− = {(v, b) ∈ Sd−1
1 × Sd−1

1 : v · b < 0, sinϕ(v, b) ∈ Iα};
this is an open subset of S−, and the family {Sα,−}α∈A is pairwise disjoint. We let
S ′
− be the union of all the sets Sα,−; this is an open set of full measure (wrt. ω×ω)

in S−. The formulas (3.34) and (3.38) define a C1 map Ψ = (Ψ1,Ψ2) : S ′
− → S+

satisfying conditions (i) and (ii) in Section 3.4. For each α ∈ A and v ∈ Sd−1
1 we

also set:

Sv,α,− := {b ∈ Sd−1
1 : (v, b) ∈ Sα,−}
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and

Vv,α := {Ψ1(v, b) : b ∈ Sv,α,−}.

Both these are open subsets of Sd−1
1 . By a simple modification of the proof of

Lemma 3.25, using the fact that θ′ has constant sign on Iα, we have:
{
For each α ∈ A and v ∈ Sd−1

1 , the map Ψ1(v, ·) is a C1

diffeomorphism from Sv,α,− onto Vv,α.
(5.81)

Let us write

β−
v,α : Vv,α → Sv,α,−

for the inverse diffeomorphism. We also set

β+
v,α(u) := Ψ2(v,β

−
v,α(u)) (v ∈ Sd−1

1 , u ∈ Vv,α).

Both β−
·,α and β+

·,α are spherically symmetric in the sense that β±
vK,α(uK) =

β±
v,α(u)K for allK ∈ SO(d). This implies in particular that both functions β±

v,α(u)

are jointly C1 in v,u.
In the present general setting, the differential cross section is given by

σ(v,v+) =
∑

α∈A

σα(v,v+) (v,v+ ∈ Sd−1
1 ),

where

σα(v,v+) =





|θ′(w)|−1
∣∣∣ w

sin θ(w)

∣∣∣
d−2

with w =
∥∥(β−

v,α(v+)R(v)
)
⊥

∥∥

if v+ ∈ Vv,α;

0 if v+ /∈ Vv,α.

Thus σ is a function on Sd−1
1 × Sd−1

1 taking values in R≥0 ∪ {+∞}. As before
we have

∫
Sd−1
1

σ(v,v+) dv+ = vd−1, implying that σ is almost everywhere finite.

More generally, for any v ∈ Sd−1
1 and any bounded, Borel measurable function

f : Sd−1
1 → R, we have

∫

Bd−1
1

f
(
Ψ1(e1, s−(w))R(v)−1

)
dw =

∫

Sd−1
1

f(v+)σ(v,v+) dv+.(5.82)

In our present setting, since the incoming and outgoing velocities v± in a
scatterer collision do not in general determine the impact parameter uniquely, in
order for the limiting joint distribution of the first n flight segments and scatterer
marks to be a a finite-memory Markov process, we will also keep track of the
index α such that the impact parameter belongs to Iα. It turns out to be natural
to lump this index together with the marking of the scatterer, thus forming an
element χ = (ς, α) in the space ΣA := Σ × A. We equip ΣA with the measure
mA := m × cA, where cA is the counting measure on A. We use the letters ς
and α also to denote the projection maps from ΣA to Σ and A, respectively; thus
χ = (ς(χ), α(χ)) for all χ ∈ ΣA.

We modify the definitions appearing at the end of Sec. 3.4 very slightly, by
letting w(j; ρ) be the subset of points (q0,v0) ∈ w(j − 1; ρ) for which τj < ∞,
qj−1 + τjvj−1 lies on the boundary of a separated scatterer, and ‖wj‖ ∈ ∪AIα.
We then let αj = αj(q0,v0; ρ) be the unique index α for which ‖wj‖ ∈ Iα, and set
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χj = χj(q0,v0; ρ) = (ςj , αj) ∈ ΣA. The sets wβ
q,ρ,j and W(j; ρ) are still defined by

(4.1) and (4.44), but using the new definition of w(j; ρ).
The definitions of the collision kernels in Sec. 3.5 (cf. (3.41) and (3.44)) are

generalized as follows: For any ξ > 0, χ, χ+ ∈ ΣA, and v0,v,v+ ∈ Sd−1
1 , we set

p0
(
v0, χ,v; ξ, χ+,v+

)

=
σα(χ+)(v,v+)

vd−1
k
((
β+
v0R(v),α(χ)(e1)⊥, ς(χ)

)
, ξ,

(
β−
e1,α(χ+)(v+R(v))⊥, ς(χ+)

))
.

if v ∈ Vv0,α(χ), v+ ∈ Vv,α(χ+), and otherwise p0
(
v0, χ,v; ξ, χ+,v+

)
= 0. For U an

open subset of Sd−1
1 , β ∈ Cb(U,R

d), ξ > 0, ς ∈ Σ, χ+ ∈ ΣA, we set

p0,β
(
ς,v;ξ, χ+,v+

)
=

=
σα(χ+)(v,v+)

vd−1
k
((

(β(v)R(v))⊥, ς
)
, ξ,

(
β−
e1,α(χ+)(v+R(v))⊥, ς(χ+)

))

if v ∈ U and v+ ∈ Vv,α(χ+), and otherwise p0,β
(
ς,v; ξ, χ+,v+

)
= 0. We then have

p0
(
v0, χ,v; ξ, χ+,v+

)
≡ p

0,β+
v0,α(χ)

(
ς(χ),v; ξ, χ+,v+

)
.

Similarly we set

p
(
v; ξ, χ+,v+

)
=
σα(χ+)(v,v+)

vd−1
kg

(
ξ,
(
β−
e1,α(χ+)(v+R(v))⊥, ς(χ+)

))

if v+ ∈ Vv,α(χ+), and otherwise p
(
v; ξ, χ+,v+

)
= 0.

We now describe the generalizations of the main theorems in Section 4. We

replace the definition of X
(n)
U (cf. (4.2)) by

X
(n)
U :=

{
〈v0; 〈ξj , χj ,vj

〉n
j=1

〉 ∈ U × (R>0 × ΣA × Sd−1
1 )n :

vj ∈ Vvj−1,α(χj) (j = 1, . . . , n)
}
.

Using our slightly modified notation, Theorem 4.1 carries over almost verbatim to
the present situation:

Theorem 5.25. Let P satisfy all the conditions in Section 2.3 and (2.35), and
let Ψ be a scattering process arising as described above. Let n ∈ Z≥1 and T ∈ R≥1;

let U be an open subset of Sd−1
1 ; let F1 be an equismooth family of probability

measures on Sd−1
1 such that λ(U) = 1 for each λ ∈ F1; let F2 be a uniformly

bounded and pointwise equicontinuous family of functions f : X
(n)
U → R; and let F3

be an admissible subset of C1
b(U,R

d). Then
∫

w
β
q,ρ,n

f
(
v,

〈
ρd−1τj(qρ,β(v),v; ρ), χj(qρ,β(v),v; ρ),vj(qρ,β(v),v; ρ)

〉n
j=1

)
dλ(v)

−
∫

X
(n)
U

f
(
v0;

〈
ξj , χj ,vj

〉n
j=1

)
p0,β

(
ς(q),v0; ξ1, χ1,v1

)
(5.83)

×
n∏

j=2

p0(vj−2, χj−1,vj−1; ξj , χj ,vj) dλ(v0)

n∏

j=1

(
dξj dmA(χj) dvj

)
→ 0

as ρ→ 0, uniformly with respect to all q ∈ PT (ρ), λ ∈ F1, f ∈ F2, β ∈ F3.
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Theorem 5.25 can be proved by following the arguments in Sections 3.5–4.4
fairly closely. We here give a brief description of the most important modifications
required: First, instead of (3.48), we now set

Vηv,α :=

{
Vv,α \ ∂η(Vv,α) if |Iα| > η

∅ if |Iα| ≤ η
(v ∈ Sd−1

1 , α ∈ A, η > 0).

Note that for given η there are only finitely many α with Vηv,α 6= ∅; this is a crucial
point for several steps in the proof. The definition (3.58) is replaced by

Uη := Bd−1
1 \

⋃

α∈A

β−
e1,α(V10η

e1,α)⊥.

Thus each Uη is a union of a finite number of annuli centered at the origin, and
vol(Uη) → 0 as η → 0. We define gβq,ρ,η exactly as in Definition 3.3 (using our new
Uη); then Proposition 3.35 remains true; similarly Definition 3.4 and Proposition
3.37 extend to the present situation. In Section 4.2, the definition of νs in (4.5)
is replaced by the following: For any s ∈ Rd \ {0} and α ∈ A, we let νs,α be the

probability measure on Sd−1
1 given by

dνs,α(v) =
1

vol((Sŝ,α,−)⊥)
σα(ŝ,v) dv.

Note that νs,α is supported on Vŝ,α. Also for η > 0 so small that Vη
ŝ,α 6= ∅, we

define νηs,α := νs,α(Vηŝ,α)−1 · νs,α
∣∣
Vη

ŝ,α

(cf. (4.6)). Now Lemma 4.2 extends to the

present situation; the difference is that each of (i), (ii), (iii) in Lemma 4.2 is now
a statement which holds for every α ∈ A such that Vη

ŝ,α 6= ∅; for example (i) now

says that for every such α, if Vα = Vρ,s,β,α is the restriction of V = Vρ,s,β to

B−1
ρ,s,β(Sŝ,α,−) ∩ V −1

ρ,s,β(Vηŝ,α), then Vα is a C1 diffeomorphism onto Vη
ŝ,α.

Turning to the proof in Section 4.3, the definition of νℓ,s, (4.15), is now replaced
by:

νℓ,s,α = νs,α(Dℓ)
−1 · νs,α

∣∣
Dℓ
,

for any ℓ ∈ {1, . . . , N} and α ∈ A with νs,α(Dℓ) > 0; and in place of (4.16) and

(4.17) we now set Aℓ,α = {s ∈ Sd−1
1 : Dℓ ⊂ V5η

s,α} and F1,ℓ = {νℓ,s,α : α ∈ A, s ∈
Aℓ,α}. Note that F1,ℓ is still an equismooth family of probability measures, for each
ℓ. Furthermore, (4.19) is replaced by

F2,ℓ :=
{
f[v0,ξ0,χ0] : ξ0 > 0, χ0 ∈ ΣA, v0 ∈ U ∩ Aℓ,α(χ0)

}
;

this is again a uniformly bounded and equicontinuous family of functions onX
(n−1)
Dℓ

.
A bit further down, the definition of U2, (4.29), now takes the form:

U2 :=
{
v ∈ U1 ∩w

β
q,ρ,1 : C−1

1 < ρd−1τ1(v) < C1, q
(1)(v) ∈ P \ E ,

[v1(v)] ⊂ V5η

ŝ1(v),α1(v)
, and

[
∀u ∈ [v1(v)] : ∃v′ ∈ U1 ∩w

β
q,ρ,1 such that

q(1)(v′) = q(1)(v), α1(v
′) = α1(v) and v1(v

′) = u
]}
.

(Here α1(v) := α1(qρ,β(v),v; ρ), just as v1(v) := v1(qρ,β(v),v; ρ) and τ1(v) :=
τ1(qρ,β(v),v; ρ).) With this, Lemma 4.5 now carries over to our situation. Finally,
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(4.33) now reads

∑

q′∈PT1(ρ)

∑

〈ℓ,α〉∈M(q′)

∫

Uq′,ℓ,α∩w
β
q,ρ,n

f
(
v,

〈
ρd−1τj(v), χj(v),vj(v)

〉n
j=1

)
dλ(v),

where now

M(q′) =
{
〈ℓ, α〉 : D̃ℓ ⊂ V5η

s1,α and [∀u ∈ D̃ℓ : ∃v′ ∈ U1 ∩w
β
q,ρ,1 such that

q(1)(v′) = q′, α1(v
′) = α and v1(v

′) = u]
}
.

and

Uq′,ℓ,α := {v ∈ U1 ∩w
β
q,ρ,1 : q(1)(v) = q′, α1(v) = α, v1(v) ∈ D̃ℓ}.

With this setup in place, the remaining part of the proof of Theorem 4.1 carries
over in a fairly straightforward manner.

Next, the generalization of Theorem 4.6 is as follows. We define X(n) (cf.
(4.45)) by:

X(n) :=
{
〈q,v0, 〈ξj , χj ,vj

〉n
j=1

〉 ∈ T1(Rd)× (R>0 × ΣA × Sd−1
1 )n :

vj ∈ Vvj−1,α(χj) (j = 1, . . . , n)
}
.(5.84)

Hence in particular, we now have, in place of (3.55):

X = X(1) =
{〈
q,v, ξ, χ,v+

〉
∈ T1(Rd)× R>0 × ΣA × Sd−1

1 : v+ ∈ Vv,α(χ)

}
.

(5.85)

Theorem 5.26. Let P and E satisfy all the conditions in Section 2.3 and (2.35),
and let Ψ be a scattering process arising as described above. Then for any n ≥ 1,
Λ ∈ Pac(T

1(Rd)) and f ∈ Cb(X
(n)), we have

lim
ρ→0

∫

W(n;ρ)

f
(
q,v,

〈
ρd−1τj(ρ

1−dq,v; ρ), χj(ρ
1−dq,v; ρ),vj(ρ

1−dq,v; ρ)
〉n
j=1

)

×dΛ(q,v)(5.86)

=

∫

X(n)

f
(
q,v0,

〈
ξj , χj,vj

〉n
j=1

)
p
(
v0; ξ1, χ1,v1

)

×
n∏

j=2

p0(vj−2, χj−1,vj−1; ξj , χj ,vj) dΛ(q,v0)

n∏

j=1

(
dξj dmA(χj) dvj

)
.

Using Theorem 5.26 and mimicking the discussion in Section 4.5, one proves
that Theorem 1.3 extends verbatim to the present setting. The explicit description
of the limiting random flight process Θ remains the same as given in the beginning
of Section 4.5, with the only difference that the definition of X(∞) in (4.59) is
replaced by

X(∞) :=
{
〈q0,v0, 〈ξj , χj,vj

〉∞
j=1

〉 ∈ T1(Rd)×
∞∏

j=1

(R>0 × ΣA × Sd−1
1 ) :

vj ∈ Vvj−1,α(χj), ∀j ≥ 1
}
,

and in (4.60) we use mA in place of m.
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Also the definition of Θ̂ from the beginning of Section 4.6 carries over imme-
diately, recalling that the extended phase space X is now given by (5.85), and
equipped with the measure dq dv dξ dmA(χ) dv+, The rest of Section 4.6 carries

over in the obvious way. The forward Kolmogorov equation for Θ̂ now reads:

(5.87)
(
∂t + v · ∇q − ∂ξ

)
f(t, q,v, ξ, χ,v+)

=

∫

ΣA×Sd−1
1

f(t, q,v0, 0, χ
′,v) p0(v0, χ

′,v; ξ, χ,v+) dmA(χ
′) dv0.

5.6. Open questions

In addition to our main hypotheses [P1-3] and [Q1-3] on the scatterer config-
uration P , key assumptions in the present study are that all scatterers are iden-
tical, spherically symmetric and finite range, and that there are no external force
fields. Furthermore very little is known, except in special examples, on the limiting
Markov processes we have derived. This section provides a brief survey of some of
the remaining challenges.

5.6.1. Admissible scatterer configurations. The discussion in Section 5.1
is restricted to realisations P of Poisson processes with constant intensity. It would
be interesting to extend the discussion to more general randomly generated sets, for
example Gibbs point processes, determinantal point processes and cluster processes.
A particularly simple example is the process studied in [3], where Rd is partitioned
into unit cubes, and with a random number of points distributed uniformly and
independently in each cube. In all of these examples, we expect the spherical
average (2.10) in assumption [P2] to converge to a Poisson process, and hence the
Boltzmann-Grad limit to be given by the linear Boltzmann equation.

An immediate challenge is to extend the discussion in Sections 5.1–5.3 to unions
of the point sets considered there. For example, take P = P1 ∪ P2, where P1 is
a fixed realisation of a Poisson point process with intensity c (as in Section 5.1),
and P2 is a fixed full-rank lattice in Rd of covolume δ. In this case we expect
all hypotheses to be satisfied, with Σ = {1, 2} as the space of marks, labelling
the points from P1 and P2, respectively. The limiting process is the union of two
independent marked point processes, a Poisson point process with intensity c (whose
points are marked 1), and a random lattice of covolume δ (whose points are marked
2). The independence of the two processes will imply a rather simple formula for
the transition and collision kernels in terms of the corresponding kernels for the
limiting processes for the Lorentz gases with configurations P1 and P2, respectively
(cf. [47]). The same should go through if P2 is taken to be a periodic point set (as
in Section 5.2) or a quasicrystal (as in Section 5.3). A slightly different challenge
is to understand the case when P1 and P2 are both full-rank Euclidean lattices. If
the two lattices are incommensurate, the paper [47] shows that the limit process
is the union of two independent random lattices, thus establishing condition [P2] –
however without the required uniformity in q.

Another class of examples P is obtained by “thinning” an existing scatterer
configuration P0. That is, for 0 < p < 1, remove each point in P0 independently
with probability p, and consider P as a realisation of the resulting random point
set. In this case, the paper [52] establishes condition [P2] almost surely, again
without the required uniformity in q. It should be an interesting exercise to prove
all necessary assumptions in Section 2.3 in this setting.
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In a similar vein, one might ask whether the Boltzmann-Grad limit exists for
a Lorentz process where P is the set of primitive lattice points. Using the fact
that this set can be realised as an adelic cut-and-project set, El-Baz [27] proved
that assumption [P2] holds, again with no uniformity in q. The subtlety in the
problem is that the window set required in the cut-and-project construction has
empty interior. It would be interesting to establish the analogous results of Section
5.3 in this more singular setting.

5.6.2. Necessity of hypotheses and SL(d,R)-invariance. One might ask
whether any of our assumptions [P1-3] and [Q1-3] on admissible scatterer config-
urations can be weakened, or even dropped completely. If the Boltzmann-Grad
limit does not exist for a given P , can one at least establish convergence along sub-
sequences under appropriate hypotheses? It is natural to also consider sequences
of point sets P = Pρ, for example modelling the case of polycrystals [50], and it
would be interesting to extend our theory to this case. Assumption [Q1] stipulates
that the limit measure µς is SO(d− 1)-invariant, and we have noted that µς is nec-
essarily invariant under the diagonal group {Dr}r>0 (Lemma 2.9). All examples
discussed in this paper however enjoy the significantly stronger property that µς
is invariant under the action of SL(d,R). So — are there any P for which µς is
not SL(d,R)-invariant? Note that there are simple examples of point sets P with
constant density for which the spherical average (P − q)R(v)Dρ, for some fixed
q ∈ P , does not converge to a SL(d,R)-invariant limit process. The challenge here
is to find examples for which we have convergence, but no SL(d,R)-invariance, for
a positive density of q ∈ P .

5.6.3. Non-spherically symmetric scatterers. There is no principal ob-
struction for our approach to be generalized to non-spherically symmetric scatterers,
under suitable conditions on smoothness and invertibility (excluding, for instance,
polytopal scatterers). The extension to a Lorentz gas with identical scatterers
given by hard ellipses and more general strictly convex bodies should be relatively
straightforward. The transition kernel k defining the limit process will now depend
on the direction of travel v, as the size of the cross section is given by the projection
of the elliptical scatterer onto the hyperplane perpendicular to v. Identify the hy-
perplane with Rd−1 as before, and denote the projection of the scatterer by Ed−1

v .
The only modification required in the definition of the limit process is to replace the
cylinder Zξ = (0, ξ) × Bd−1

1 in the definition of the transition and collision kernels
by Zv

ξ = (0, ξ)×Ed−1
v . The strict convexity of the scatterer is critical for our theory

to work. Polyhedral scatterers (as in the Ehrenfest wind-tree model) would not
lead, in the Boltzmann-Grad limit, to a finite-memory Markov process. We refer
the reader to [2] for a simple model of this phenomenon. An important outstand-
ing task is to generalise the present work to non-radial potentials, still assuming
compact support (cf. the extension to long-range potentials below).

5.6.4. Non-identical scatterers. In Section 5.6.1 we mentioned scatterer
configurations P that are finite unions of point sets P1,P2, . . .. To model crystals
such as NaCl (where P1 = Z3 and P2 = Z3 + (12 ,

1
2 ,

1
2 )), or lattices with impurities

(where P1 is a lattice and P2 a realisation of a Poisson point process, say), it is
natural to assume that the scatterers centered at Pi are not the same as those in
Pj. In this case the necessary modifications in the limit process will include of
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course different cross sections for the scatterers from different families, and transi-
tion kernels that will take into account the varying scattering radii. This requires
replacing the single cylinder Zξ = (0, ξ) × Bd−1

1 by cylinders Ziξ = (0, ξ) × Bd−1
ri ,

each corresponding to scatterers from Pi.

5.6.5. Long-range potentials. The assumption that the scattering poten-
tials have compact support is central to our approach. Even an extension of our
results to exponentially decaying potentials will require some non-trivial estimates.
The case of potentials with power-law decay has currently only been investigated
in the case of random scatterer configurations [21, 54]. A related problem is to
consider different scaling limits for compact potentials, where the strength of the
potential is reduced, and at the same time the scatterer density rescaled suitably to
achieve a non-trivial limit. In this case grazing collisions become important, and one
expects a different kinetic equation for the macroscopic dynamics. See [36, 26, 22]
for the corresponding result for a random scatterer configuration—here the limiting
kinetic equation is the classical Fokker-Planck equation.

5.6.6. External force fields. A key feature of our approach is the linear
rescaling by the subgroup {Dr}r>0 of particle trajectories between collisions. This
clearly breaks down when the trajectories are curved due to the presence of an
external force field. Progress in this non-linear setting has so far been limited to
random scatterer configurations [23, 8, 42], and any extension of these results to
lattices or quasicrystals would be a significant achievement.

5.6.7. Transition kernels and distribution of free path lengths. We
have seen above that in the case of a Poisson scatterer configuration P , the limiting
transition kernels are explicit, with an exponential path length distribution. The
only other case where we currently have explicit formulas is when P is a Euclidean
lattice in dimension d = 2 [17, 45]. For higher dimensional Euclidean lattices there
are no explicit formulas, but we have precise asymptotics for the transition kernels
[46]. These asymptotics in particular imply precise power-law asymptotics for the
free path length distributions; thus for example, for P a covolume one Euclidean
lattice in arbitrary dimension d ≥ 2, the limiting distribution of the free path length

between consecutive collisions satisfies Φ0(ξ) =
22−d

d(d+1)ζ(d)ξ
−3

(
1 + O(ξ−

2
d log ξ)

)
as

ξ → ∞ [46]. We remark that the asymptotics for the limiting transition kernels
for P a Euclidean lattice also play an important role in the derivation of the long-
time asymptotics of the limiting random flight processes t 7→ Θ(t); cf. [51] and the
next paragraph. It would be extremely interesting to extend these results to other
scatterer configurations.

5.6.8. Diffusion vs. superdiffusion, entropy estimates. Can we char-
acterise the long-time asymptotics of the limiting random flight processes t 7→
Θ(t)? Do they converge to Brownian motion under an appropriate rescaling? The
only known affirmative answers to these questions are in the case of random P
[58, 5, 4, 41], where the mean-square displacement is linear in t (diffusion), and
lattice configurations P [51], where we have a t log t scaling (superdiffusion). It is
remarkable that for fixed scatterer size, convergence to Brownian motion is only
known for periodic configurations P [14, 25, 59] (with t log t scaling in the case of
infinite horizon); the case of random P is completely open [39]. Finally, it would



5.6. OPEN QUESTIONS 129

be instructive to generalise the entropy estimates for the limiting process Θ in [18]
for the two-dimensional lattice setting to general scatterer configurations.
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⊥ x⊥ = x− (x · e1)e1 and (x, ς)⊥ = (x⊥, ς) 25, 43
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