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Abstract. The Lorentz gas describes an ensemble of noninteracting point particles in an
infinite array of spherical scatterers. In the present paper we consider the case when the
scatterer configuration P is a fixed union of (translated) lattices in Rd, and prove that in the
limit of low scatterer density, the particle dynamics converges to a random flight process. In
the special case when the lattices in P are pairwise incommensurable, this settles a conjecture
from [20]. The proof is carried out by applying a framework developed in recent work by
Marklof and Strömbergsson [21], and central parts of our proof are the construction of an
admissible marking of the point set P , and the verification of the uniform spherical equidis-
tribution condition required in [21]. Regarding the random flight process obtained in the low
density limit of the Lorentz gas, we prove that it can be reconstructed from the corresponding
limiting flight processes arising from the individual commensurability classes of lattices in P .
We furthermore prove that the free path lengths of the limit flight process have a distribution
with a power law tail, whose exponent depends on the number of commensurability classes
in P .
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Both Palmer and Strömbergsson were supported by the Knut and Alice Wallenberg Foundation.

1



2 MATTHEW PALMER AND ANDREAS STRÖMBERGSSON
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1. Introduction

The Lorentz gas [14] describes the dynamics of a cloud of non-interacting point particles in
an array of fixed spherical scatterers of radius ρ > 0, centered at the elements of a given locally
finite point set P ⊂ Rd. Each particle travels with constant velocity along straight lines, and
each time it hits a scatterer it is deflected by elastic reflection or by a more general (fixed)
scattering process. We denote the position and velocity of a point particle at time t by q(t) and
v(t). Since the particle speed outside the scatterers is a constant of motion we may without
loss of generality consider only point particles having unit speed, viz., ‖v(t)‖ = 1. This means

that the particle dynamics takes place in the unit tangent bundle T1(Kρ) := Kρ × Sd−1
1 of the

domain

Kρ := Rd \ (P + Bdρ),
where Bdρ denotes the open ball of radius ρ, centered at the origin. The Liouville measure

on T1(Kρ) is vol×σ, where vol denotes the Lebesgue measure on Rd and σ := volSd−1
1

is the

Lebesgue measure on Sd−1
1 .

Since the gas particles are assumed to be non-interacting, to study the evolution of a particle
cloud, we may just as well consider the orbit t 7→ (q(t),v(t)) of a single point particle starting
from a random point (q0,v0), chosen according to a given probability measure on the phase
space T1(Kρ). Then t 7→ (q(t),v(t)) becomes a random flight process, which we call the
Lorentz process. A central challenge is to determine whether, in the limit of small scatterer
density (that is as ρ → 0), the Lorentz process converges to a limiting stochastic process. In
order to give a precise formulation of this question, we assume from now on that P has an
asymptotic density, meaning that there exists a constant nP > 0 such that for any bounded
set D ⊂ Rd with boundary of Lebesgue measure zero, we have

(1.1) lim
R→∞

#(P ∩RD)

Rd
= nP vol(D).

Then a simple heuristic argument shows that the mean free path length, i.e. the mean time
between consecutive collisions, should be expected to scale as ρ1−d as ρ → 0. It is therefore
natural to consider the so-called Boltzmann-Grad scaling, in which length and time units are
rescaled by a factor of ρ1−d. That is, we consider the macroscopic coordinates

(
Q(t),V (t)

)
=
(
ρd−1q(ρ−(d−1)t),v(ρ−(d−1)t)

)
.

The challenge now is to prove that the rescaled random flight process t 7→ (Q(t),V (t)) con-
verges to a limiting random flight process as ρ→ 0.

There are two instances where this problem has been fully understood for some years. The
first is the case when P is a fixed realisation of a Poisson point process. Here Boldrighini,
Bunimovich and Sinai [2] proved that the Lorentz process converges to a limit that is consistent
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with the linear Boltzmann equation (cf. also [9] and [29]). In fact the paper [2] is restricted
to dimension d = 2 and hard sphere scatterers, but it was proved in [21] that the results
generalise to general dimensions and soft scattering potentials.

The second instance is when the scatterer configuration P equals a Euclidean lattice L of
full rank in Rd. For this case, Marklof and Strömbergsson [16, 17, 15, 18] proved convergence
of the Lorentz process to a limiting random flight process which in fact only depends on the
asymptotic density of L. The limit process is Markovian only on an extended phase space
which, in addition to position and momentum, also includes the impact parameter and distance
to the next collision. The corresponding transport equation is in particular not consistent with
the linear Boltzmann equation. This new transport equation was obtained independently in
dimension d = 2 for P = Z2 by Caglioti and Golse [4, 5], subject to a heuristic assumption
that was proved (in any dimension) in [17]. In the lattice setting, the limit transport process
in fact satisfies a superdiffusive central limit theorem [22], with a mean-square displacement
proportional to t log t (where t is time measured in units of the mean collision time), rather
than the standard linear scaling which appears in the case of random scatterer configurations.

In a recent paper by Marklof and Strömbergsson [21], a general framework was developed
which, under a certain set of hypotheses on the scatterer configuration P, allows the proof
of convergence of the rescaled Lorentz process t 7→ (Q(t),V (t)) to a limiting random flight
process. This framework was proved to apply when P belongs to a certain class of quasicrystals
(this includes in particular the case when P is a general periodic point set), and also in the
case when P is a fixed realisation of a Poisson point process of constant intensity.

Our main goal in the present paper is to prove that the framework from [21] also applies in
the case when the scatterer configuration P is an arbitrary finite union of grids. (By definition,
a ‘grid’ is a translate of a full rank lattice in Rd.) That is, we will assume that

P =
N⋃

i=1

Li,(1.2)

where each Li is a grid. As we will see, this case serves as a nice testing ground for the
framework developed in [21], and exhibits new features compared with the previous cases
where that framework has been proved to apply.

In the special case when the Li are pairwise incommensurable1, the scatterer configurations
in (1.2) have previously been considered in the paper [20], where among other things a con-
jectural description of the Boltzmann-Grad limit of the Lorentz process was given. The main
result of the present paper settles that conjecture as a special case. However, the general case
of P as in (1.2), without the incommensurability assumption, is considerably more difficult
and involves interesting new phenomena (see Section 6.3).

Remark 1.1. In the case when some scatterers in the family {p + Bdρ : p ∈ P} overlap,
certain technical annoyances appear in the definition of the Lorentz process t 7→ (q(t),v(t)).
Let us note that overlapping scatterers in general do exist in the situation studied in the
present paper. Indeed, if P is any finite union of grids which is not periodic, then for every
ρ > 0 there exist points p 6= p′ in P with ‖p − p′‖ < 2ρ. In the classical case when the
particles interact with the scatterers through specular reflection, this issue is handled in a
standard manner [21, Ch. 1.2]: in this case the Lorentz flow equals the standard billiard
flow in the region Kρ, and this flow is technically defined only on a subset of T1(Kρ) of
full measure with respect to the Liouville measure vol×σ; the exceptional points include all
points (q,v) ∈ ∂Kρ×Sd−1

1 for which v points into a scatterer, and also, in the case of scatterer
overlaps, any initial condition for which the particle at some time point either in the past or
in the future collides with an intersection point of two or more scatterer boundaries. In the
case of scatterer interaction through a more general scattering map, for example a scattering

1Two grids L and L′ in Rd are said to be commensurable if there exist δ > 0 and v ∈ Rd such that
L ∩ (δL′ + v) is a grid.
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process generated by a spherically symmetric potential, a simple way to avoid intricacies in the
definition of the Lorentz flow is to remove, in an ad hoc manner, scatterer centers in P causing
overlap [21, Ch. 1.3]. Since the probability of the particle hitting a scatterer which overlaps
with another scatterer tends to zero in the Boltzmann-Grad limit, the limiting random flight
process becomes the same independently of the precise choice of convention.

1.1. The limiting flight process. We will assume throughout the paper that the fixed
scattering process of the Lorentz gas satisfies the conditions in [21, Sec. 3.4]. Special cases
include the case of hard sphere scatterers as well as a general class of soft scattering potentials.

The main result of the present paper is Theorem 2.1 in Section 2, which states that all the
assumptions required in the framework in [21] are satisfied in the case when P is an arbitrary
finite union of grids. By the results of [21], this implies the existence of the Boltzmann-Grad
limit of the particle dynamics in the Lorentz gas. To make a precise statement, let us write
Ft,ρ for the rescaled Lorentz flow;

(
Q(t),V (t)

)
= Ft,ρ

(
Q(0),V (0)

)
.

For notational reasons we extend the dynamics to the inside of each scatterer trivially, that
is, set Ft,ρ = id whenever Q is inside the scatterer. Thus Ft,ρ is now a flow defined on all

of T1(Rd), the unit tangent bundle of Rd. Let Pac(T
1(Rd)) be the set of Borel probability

measures on T1(Rd) which are absolutely continuous with respect to the Liouville measure
vol×σ.

The following theorem is a consequence of Theorem 2.1 below, in combination with the
main results of [21] and in particular [21, Sec. 4.5].

Theorem 1.1. Let the scatterer configuration P be a finite union of grids. Then, for any
Λ ∈ Pac(T

1(Rd)), there exists a random flight process Ξ = {Ξ(t) : t ≥ 0} such that the
random process

Ξ(ρ) : t 7→ Ξ(ρ)(t) = Ft,ρ(Q0,V 0)

obtained by taking the initial data (Q0,V 0) random with respect to Λ, converges to Ξ in
distribution, as ρ→ 0.

The next result, Theorem 1.2, gives a description of the limiting process Ξ in Theorem 1.1.
The key point is that, after introducing a certain marking of the points in P, the process Ξ
can be described as the flow with unit speed along a random piecewise linear curve, whose
path segments, when considered in combination with the marks of the scatterers involved in
the collisions, are generated by a Markov process with memory two. This is a special case of
a corresponding result in [21]; in the setting of the present paper with P being a finite union
of grids, the set of marks can be taken to be a certain concrete finite set, which we now turn
to describe.

From now on, we will express P as

P =
⋃

ψ∈Ψ
Lψ,(1.3)

where Ψ is a finite set of indices, and each Lψ is a grid in Rd. In the statement of Theorem 1.2
we must require that the above presentation of P is admissible. This is a somewhat technical
notion which we will define in Section 5.2; we prove in Section 5.3 that every finite union of
grids possesses an admissible presentation. We give a couple of simple examples: If the grids
Lψ are pairwise incommensurable, then the presentation in (1.3) is always admissible. On

the other hand, for any q ∈ Z≥2 and v ∈ Rd \ Zd, the presentation P = Zd ∪ (qZd + v) is
admissible if and only if v /∈ Qd; in the remaining case v ∈ Qd \Zd, an admissible presentation
of P = Zd ∪ (qZd+v) can be given as the union of the grids qZd+α with α running through
{1, . . . , q}d ⊔ {v}.
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Assuming that (1.3) is an admissible presentation of P, let us now fix a choice of a function

ψ : P → Ψ, subject to p ∈ Lψ(p) (∀p ∈ P).(1.4)

We will call this function a crude marking2 of P. Note that the condition in (1.4) forces the
choice of ψ(p) for every p ∈ P which does not lie in more than one of the sets Lψ. That is,
the flexibility involved in the choice of the crude marking ψ : P → Ψ concerns only the points
in the union

⋃
ψ 6=ψ′∈Ψ(Lψ ∩ Lψ′). It will turn out that the exact choice of the mark ψ(p) at

these points has no influence on the description of the limiting flight process.

For each ψ ∈ Ψ, let nψ be the asymptotic density of Lψ. It follows that the asymptotic
density of P is given by nP :=

∑
ψ∈Ψ nψ. We equip Ψ with the probability measure m defined

by

m(ψ) =
nψ
nP

(ψ ∈ Ψ).(1.5)

(We are abusing notation for increased readability; naturally, “m(ψ)” denotes m({ψ}).)
The following result follows from [21, Theorem 4.6], in view of Theorem 2.1 below.

Theorem 1.2. Let P =
⋃
ψ∈Ψ Lψ be an admissible presentation of P, and let ψ : P → Ψ be a

corresponding crude marking. Let Λ ∈ Pac(T
1(Rd)). For (Q0,V 0) random with respect to Λ,

let the corresponding random trajectory t 7→ Ft,ρ(Q0,V 0) be described by the random variables

ξ
(ρ)
j ∈ R>0, ψ

(ρ)
j ∈ Ψ and V

(ρ)
j ∈ Sd−1

1 , where ξ
(ρ)
j is the length of the jth path segment, ψ

(ρ)
j

is the mark of the scatterer involved in the jth collision and V
(ρ)
j ∈ Sd−1

1 is the velocity after
the jth collision. Then as ρ→ 0, the random process

(〈
ξ
(ρ)
j , ψ

(ρ)
j ,V

(ρ)
j

〉)
j=1,2,...

converges in distribution to the second-order Markov process
(〈
ξj, ψj ,V j

〉)
j=1,2,...

,(1.6)

where for any Borel set A ⊂ R>0 ×Ψ× Sd−1
1 ,

(1.7) P
(
〈ξ1, ψ1,V 1〉 ∈ A

∣∣∣ (Q0,V 0)
)
=

∫

A
p(ψ)(V 0; ξ,V ) dξ dm(ψ) dσ(V ),

and for j ≥ 2,

P
(
〈ξj, ψj ,V j〉 ∈ A

∣∣∣ (Q0,V 0),
〈
(ξi, ψi,V i)

〉j−1

i=1

)
(1.8)

=

∫

A
p(ψj−1→ψ)(V j−2,V j−1; ξ,V ) dξ dm(ψ) dσ(V ).

The functions p(ψ) and p(ψ
′→ψ) depend on P but are independent of Λ, and for any fixed

V ′,V ′′, ψ′, both p(ψ)(V ′; ξ,V ) and p(ψ
′→ψ)(V ′′,V ′; ξ,V ) are probability densities on R>0 ×

Ψ× Sd−1
1 with respect to the measure dξ × dm(ψ) × dσ(V ).

We call the functions p(ψ) and p(ψ
′→ψ) collision kernels. Explicit formulas for these will

be given in Section 10.1, as pushforwards of invariant measures on certain homogeneous
spaces associated to the given point set P. Both p(ψ) and p(ψ

′→ψ) are rotationally invari-
ant in the sense that p(ψ)(V ′K; ξ,V K) = p(ψ)(V ′; ξ,V ) and p(ψ

′→ψ)(V ′′K,V ′K; ξ,V K) =

p(ψ
′→ψ)(V ′′,V ′; ξ,V ) for any K ∈ SO(d). We also mention that by definition we have

p(ψ)(V ′; ξ,V ) = 0 unless V ∈ VV ′ , and p(ψ
′→ψ)(V ′′,V ′; ξ,V ) = 0 unless V ′ ∈ VV ′′ and

V ∈ VV ′ . Here, for any V ∈ Sd−1
1 , VV is the set of possible exit velocities in a scatterer

collision with entry velocity V [21, Secs. 3.4–5].

The limiting random flight process Ξ discussed above is closely related to the dynamics of
a particle cloud in the Boltzmann-Grad limit of the Lorentz gas. Indeed, the time evolution

2See Section 2.1 regarding why we call it “crude”.
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of an initial particle density f0 ∈ L1(T1(Rd)) in the Lorentz gas with fixed scatterer radius ρ
is given by ft = Ltρf0 where Ltρ is the Liouville operator defined by

[Ltρf0](Q,V ) := f0(F−t,ρ(Q,V )).

The existence of the limiting stochastic process Ξ(t) implies that for every t > 0 there exists a
linear operator Lt : L

1(T1(Rd)) → L1(T1(Rd)) such that for every f0 ∈ L1(T1(Rd)) and every
set A ⊂ T1(Rd) with boundary of Liouville measure zero,

lim
ρ→0

∫

A
[L

(ρ)
t f0](Q,V ) dQ dσ(V ) =

∫

A
Ltf0(Q,V ) dQ dσ(V )

[21, Cor. 1.4]. Under suitable continuity assumptions we can in fact express Ltf0 as

[Ltf0](Q,V ) =

∫

R>0×Ψ×Sd−1
1

f (ψ)(t,Q,V , ξ,V+) dξ dm(ψ) dσ(V+),

where the functions f (ψ)(t,Q,V , ξ,V+) form the unique solution of the system of differential
equations

(
∂t + V · ∇Q − ∂ξ

)
f (ψ+)(t,Q,V , ξ,V+)

=

∫

Ψ×Sd−1
1

f (ψ)
(
t,Q,V 0, 0,V

)
p(ψ→ψ+)(V 0,V ; ξ,V+) dm(ψ) dσ(V 0),(1.9)

subject to the initial condition f (ψ+)(0,Q,V , ξ,V+) = f0(Q,V ) p(ψ+)(V ; ξ,V+). See [21, Sec-
tions 1.4 and 4.6].

Equation (1.9) may be viewed as a generalization of the linear Boltzmann equation; it is the
forward Kolmogorov equation (or Fokker-Planck-Kolmogorov equation) of a natural extension

of Ξ to a Markov flight process on the space T1(Rd)× R>0 ×Ψ× Sd−1
1 [21, (1.24)].

In the special case when the grids Li in (1.2) are pairwise incommensurable, the limiting
random flight process described in Theorem 1.2, as well as the generalized linear Boltzmann
equation in (1.9), agree with the corresponding limits conjectured in [20]; see Remark 10.5
below.

1.2. Expressing Ξ via the commensurability classes. An important result of the present
paper is that the collision kernels can be expressed as products over collision kernels associated
to the commensurability classes of the grids appearing in P. In the special case when the grids
in P are pairwise incommensurable, such product formulas were given in [20, Sec. 5].

Recall that two grids L and L′ in Rd are said to be commensurable if there exist δ > 0
and v ∈ Rd such that L ∩ (δL′ + v) is a grid. This is an equivalence relation on the family
of grids in Rd. Let us say that two marks ψ,ψ′ ∈ Ψ are equivalent (and write ψ ∼ ψ′) when
Lψ and Lψ′ are commensurable. For any ψ ∈ Ψ we denote by [ψ] := {ψ′ ∈ Ψ : ψ′ ∼ ψ} the
corresponding equivalence class.

Let CΨ be the family of equivalence classes in Ψ, and set, for any c ∈ CΨ,

Pc :=
⋃

ψ∈ c
Lψ.(1.10)

Note that Pc is a subset of P, and Pc is itself a finite union of grids, so that all the results
discussed so far also hold for the Lorentz gas with Pc as scatterer configuration. The asymptotic
density of Pc is

nc :=
∑

ψ∈ c
nψ,(1.11)

and it will be immediate from our definition of admissibility that for any c ∈ CΨ, the presen-
tation Pc = ∪ψ∈cPψ is admissible; hence Theorem 1.2 applies to the scatterer configuration

Pc with this presentation. For any two ψ,ψ′ ∈ c, let us denote by ◦p(ψ) and ◦p(ψ
′→ψ) the

collision kernels for the corresponding limiting flight process. Thus ◦p(ψ) is defined for any
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ψ ∈ Ψ, and ◦p(ψ
′→ψ) is defined for any ψ′, ψ ∈ Ψ satisfying ψ′ ∼ ψ. Also, for any c ∈ CΨ,

letting mc be the probability measure on c defined by

mc(ψ) =
nψ
nc
,(1.12)

we have that for any fixed V ′,V ′′ and ψ′ ∈ c, both ◦p(ψ)(V ′; ξ,V ) and ◦p(ψ
′→ψ)(V ′′,V ′; ξ,V )

are probability densities on R>0× c× Sd−1
1 with respect to the measure dξ× dmc(ψ)× dσ(V ).

The product formula for collision kernels is stated in Theorem 10.3 below (see also Re-
mark 10.4). Here we give an equivalent formulation saying that the Markov process which
generates Ξ can be obtained by merging in a certain way mutually independent versions of the
Markov processes which arise in the Boltzmann-Grad limit for Lorentz gases which scatterer
configurations Pc. To prepare for the statement, let V ′,V ′′ be arbitrary, fixed vectors in Sd−1

1
subject to V ′ ∈ VV ′′ , that is, V ′ is a possible exit velocity in a scatterer collision with entry

velocity V ′′. For every c ∈ CΨ, let 〈ξ̃c, ψ̃c, Ṽ c〉 be a random variable in R>0 × c× Sd−1
1 , with

distribution

◦p(ψ)(V ′; ξ,V ) dξ dmc(ψ) dσ(V ).(1.13)

Also for every ψ′ ∈ Ψ, let 〈ξ̃[ψ′],ψ′ , ψ̃[ψ′],ψ′ , Ṽ [ψ′],ψ′〉 be a random variable in R>0 × [ψ′]× Sd−1
1 ,

with distribution

◦p(ψ
′→ψ)(V ′′,V ′; ξ,V ) dξ dm[ψ′](ψ) dσ(V ).(1.14)

We take all these random triples to be mutually independent. Furthermore, for any ψ′ ∈ Ψ

and c ∈ CΨ with ψ′ /∈ c, we set 〈ξ̃c,ψ′ , ψ̃c,ψ′ , Ṽ c,ψ′〉 := 〈ξ̃c, ψ̃c, Ṽ c〉. Thus the random variable

〈ξ̃c,ψ′ , ψ̃c,ψ′ , Ṽ c,ψ′〉 is now defined for all ψ′ ∈ Ψ and all c ∈ CΨ. Note that (1.13) and (1.14)
are exactly the distributions which appear in (1.7) and (1.8) when Theorem 1.2 is applied to

Pc. Next let the random variable c̃ be equal to that c ∈ CΨ which minimizes ξ̃c, and let the

random variable c̃ψ′ be equal to that c which minimizes ξ̃c,ψ′ . (These c̃ and c̃ψ′ are almost
surely uniquely defined.)

Theorem 1.3. For given V ′′ ∈ Sd−1
1 and V ′ ∈ VV ′′ and ψ′ ∈ Ψ, introduce the random

variables 〈ξ̃c, ψ̃c, Ṽ c〉 and 〈ξ̃c,ψ′ , ψ̃c,ψ′ , Ṽ c,ψ′〉 (for all c ∈ CΨ) and c̃ and c̃ψ′ as above. Then
the conditional distributions appearing in (1.7) and (1.8) of Theorem 1.2 are given by the

following formulas: For any Borel set A ⊂ R>0 ×Ψ× Sd−1
1 ,

P
(
〈ξ1, ψ1,V 1〉 ∈ A

∣∣∣ (Q0,V 0), V 0 = V ′
)
= P

(
〈ξ̃c̃, ψ̃c̃, Ṽ c̃〉 ∈ A

)
,(1.15)

and for j ≥ 2,

P
(
〈ξj , ψj ,V j〉 ∈ A

∣∣∣ (Q0,V 0),
〈
(ξi, ψi,V i)

〉j−1

i=1
, V j−2 = V ′′, V j−1 = V ′, ψj−1 = ψ′

)

= P
(
〈ξ̃c̃ψ′ ,ψ′ , ψ̃c̃ψ′ ,ψ′ , Ṽ c̃ψ′ ,ψ′〉 ∈ A

)
.(1.16)

Note that Theorem 1.3 is a tautology when #CΨ = 1, i.e. when all the grids Lψ (ψ ∈ Ψ)
are commensurable; but when #CΨ > 1, Theorem 1.3 in effect expresses the collision kernel
of the limiting flight process for the scatterer configuration P in terms of the collision kernels
for the subconfigurations Pc, c ∈ CΨ (again, see Remark 10.4 below).

We next point out a consequence of Theorem 1.3 concerning the limiting free path length
distribution in the Boltzmann-Grad limit. Set, for any V ′ ∈ Sd−1

1 ,

ΦP(ξ) =
∫

Ψ×Sd−1
1

p(ψ)(V ′; ξ,V ) dm(ψ) dσ(V ).(1.17)

The right hand side in (1.17) is independent of V ′ in view of the rotational invariance of p(ψ),
and ΦP(ξ) is a probability density on R>0 with respect to Lebesgue measure. In fact ΦP(ξ) is
the density function for the free path length in the limiting flight process Ξ when starting from
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a generic point inside the billiard domain. We will show in Section 10 that the function ΦP(ξ)
is continuous, decreasing, and 0 ≤ ΦP(ξ) ≤ nP vd−1 for all ξ ∈ R>0, where vd−1 := vol(Bd−1

1 ).
Note that for any c ∈ CΨ, the formula (1.17) applied to Pc reads

ΦPc(ξ) =
∫

c×Sd−1
1

◦p(ψ)(V ′; ξ,V ) dmc(ψ) dσ(V ).(1.18)

We now have:

Corollary 1.4.

ΦP(ξ) = − d

dξ

∏

c∈CΨ

∫ ∞

ξ
ΦPc(ξ

′) dξ′.

Proof. Given ξ > 0, we apply (1.15) in Theorem 1.3 to the set A := (ξ,∞)×Ψ× Sd−1
1 . Then

by (1.7) and (1.17), the left hand side of (1.15) equals
∫∞
ξ ΦP(ξ′) dξ′. On the other hand, by

the definition of the (mutualy independent) random variables 〈ξ̃c, ψ̃c, Ṽ c〉, and the definition

of c̃, the right hand side of (1.15) equals
∏
c∈CΨ

P(ξ̃c > ξ), which by (1.7) (for Pc) and (1.18)

equals
∏
c∈CΨ

∫∞
ξ ΦPc(ξ

′) dξ′. Hence:
∫ ∞

ξ
ΦP(ξ

′) dξ′ =
∏

c∈CΨ

∫ ∞

ξ
ΦPc(ξ

′) dξ′,

and the corollary follows by differentiation, using the fact that the functions ΦP and ΦPc are
nonnegative and continuous. �

In the special case when the grids in P are pairwise incommensurable, the formula in
Corollary 1.4 was given in [20, (2.8)].

1.3. Asymptotic estimates for the free path length distribution. We will prove the
following upper and lower bounds showing that the free path length distribution in the
Boltzmann-Grad limit has a power-law tail.

Theorem 1.5. Let P be a finite union of grids, and let N = #CΨ be the number of com-
mensurability classes of grids appearing in P. Then there exist constants 0 < c1 < c2 such
that

c1ξ
−(N+1) < ΦP(ξ) < c2ξ

−(N+1), ∀ξ ≥ 1.(1.19)

In particular it follows that the expected value of the free path length from starting at a
generic point,

∫∞
0 ξΦP(ξ) dξ, is finite if and only if N ≥ 2.

In the special case when the grids in P are pairwise incommensurable, a more precise
asymptotic formula for ΦP(ξ) as ξ → ∞ was given in [20, Theorem 2]; the proof uses the
product formula and the asymptotics for ΦP(ξ) in the special case when P is a lattice, which
was obtained in [18, Theorem 1.13]. It would be interesting to try to generalize this asymptotic
formula, and also the precise asymptotic estimates for the collision kernels obtained in [18],
to the case when P is a general union of grids as considered in the present paper.

We remark that in the proof of Theorem 1.5, the critical case to handle is N = 1, as the
case of general N ≥ 2 then follows immediately via the product formula in Corollary 1.4.

Next we point out a consequence of Theorem 1.5 concerning the density function ΦP(ξ) of
the free path length between consecutive collisions in the random flight process Ξ describing
the Boltzmann-Grad limit of the Lorentz gas. We give an explicit formula for ΦP(ξ) in (10.14)
in Section 10; here we merely point out the relations

ΦP(ξ) = nP vd−1

∫ ∞

ξ
ΦP(ξ

′) dξ′(1.20)
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and ∫ ∞

0
ξΦP(ξ) dξ =

1

nP vd−1
.(1.21)

Note that the value in (1.21) is the expected value of the free path length between consecutive
collisions. The following result is an easy consequence of Theorem 1.5 and the relation (1.20).

Corollary 1.6. The second moment of the free path length between consecutive collisions,∫∞
0 ξ2 ΦP(ξ) dξ, is finite if and only if N ≥ 2.

It is interesting to ask about the long-time asymptotics of the limiting random flight process
t 7→ Ξ(t); we expect that this process converges to Brownian motion under an appropriate
rescaling. In the special case when P is a lattice, such a convergence result has been proved
in [22]; the correct scaling factor in this case is t log t (superdiffusion). In view of Theorem 1.5
and Corollary 1.6, it is natural to guess that a similar superdiffusive central limit result holds
whenever P is a finite union of commensurable grids (N = 1); however if the grids in P are
not all commensurable (N ≥ 2), we expect that a standard diffusive central limit result holds,
i.e. with the rescaling factor being linear in t.

Acknowledgement. We are grateful to Jens Marklof for valuable comments and suggestions.

2. The hypotheses from [21] on the scatterer configuration P
We now recall the precise formulation of the hypotheses on the scatterer configuration P

which in the paper [21] were proved to imply the convergence of the Lorentz gas particle
dynamics in the Boltzmann-Grad limit. We first need to introduce some technical notation.

For any topological space S, we write P (S) for the set of Borel probability measures on
S, equipped with the weak topology. We will only consider P (S) when S is separable and
metrizable; recall that then also P (S) is metrizable [1, pp. 72-73]. Also, given any locally
compact second countable Hausdorff space X , we let N(X ) be the family of locally finite
counting measures on X , equipped with the vague topology (then N(X ) is a Polish space),
and let Ns(X ) be the subset of simple counting measures; this is a Borel subset of N(X ). The
elements of Ns(X ) may be identified with the family of locally finite subsets of X through
ν 7→ supp(ν). The inverse map is {xi} 7→∑

i δxi . We will use this identification between point
sets and simple counting measures throughout this work, often using the same notation for
point set and counting measure. A point process in X is, by definition, a random element ξ
in N(X ). It is called simple if ξ ∈ Ns(X ) almost surely. We identify P (Ns(X )) with the set
of probability measures ν ∈ P (N(X )) with ν(Ns(X )) = 1. Then a point process ξ is simple if
and only if its law is in P (Ns(X )).

In the present paper we will always have

X := Rd ×Σ(2.1)

for some compact metric space Σ. We will view vectors in Rd as row vectors; thus GLd(R)
acts on Rd from the right. We extend the natural actions on Rd of Rd (by translation), of R×

(by dilation) and of GLd(R) (by multiplication from the right) by the trivial action on Σ; thus
for any (w, ς) ∈ X and any x ∈ Rd, T ∈ R× and A ∈ GLd(R) we set (w, ς) + x := (w + x, ς),
T (w, ς) := (Tw, ς) and (w, ς)A := (wA, ς). These actions also give rise to natural, continuous,
actions on Ns(X ). For example, for any A ∈ GLd(R) and Q ∈ Ns(X ) (viewed as a locally
finite subset of X ), QA := {xA : x ∈ Q}.

For ρ > 0 we denote by Dρ the diagonal matrix

Dρ = diag(ρd−1, ρ−1, · · · , ρ−1) ∈ SLd(R).(2.2)

We also fix, once and for all, a map R : Sd−1
1 → SO(d) with the property vR(v) = e1 for all

v ∈ Sd−1
1 , where e1 := (1, 0, . . . , 0). We assume that R is continuous when restricted to Sd−1

1
minus one point; the choice of R is otherwise arbitrary.
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Now let P be an arbitrary fixed locally finite subset of Rd with constant asymptotic density
nP . We also assume given a compact metric space Σ, a map ς : P → Σ, a Borel probability
measure m on Σ, and a continuous map ς 7→ µς from Σ to P (N(X )) = P (N(Rd × Σ)). Set

P̃ = {(p, ς(p)) : p ∈ P} ⊂ X .(2.3)

We refer to ς as a marking of P, and Σ as the corresponding space of marks.3

For any q ∈ Rd, v ∈ Sd−1
1 and ρ > 0, we set

(2.4) P̃q =

{
P̃ \ {(q, ς(q))} (q ∈ P)

P̃ (q /∈ P)

and

Qρ(q,v) = (P̃q − q)R(v)Dρ.(2.5)

Given any q ∈ Rd and λ ∈ P (Sd−1
1 ), if we take v random in (Sd−1

1 , λ) then Qρ(q,v) becomes

a point process; we write µ
(λ)
q,ρ ∈ P (Ns(X )) for its distribution. Finally set µX = vol×m.

The assumption on the scatterer configuration P, under which the convergence of the
rescaled Lorentz process to a limiting flight process was proved in [21], is that P can be
equipped with data ς,Σ,m and ς 7→ µς as above, in such a way that the following six condi-
tions [P1]–[P3] and [Q1]–[Q3] are fulfilled (see [21, Sec. 2.3]):

[P1] Uniform density: For any bounded B ⊂ X with µX (∂B) = 0, we have

lim
T→∞

#(P̃ ∩ TB)

T d
= nP µX (B).(2.6)

[P2] Spherical equidistribution: Let Pac(S
d−1
1 ) be the set of λ ∈ P (Sd−1

1 ) which are absolutely
continuous with respect to σ. There exists a subset E ⊂ P of density zero4 such that for
any fixed T ≥ 1 and λ ∈ Pac(S

d−1
1 ), we have

µ
(λ)
q,ρ

w−−→ µς(q) as ρ→ 0, uniformly for q ∈ PT (ρ) := P ∩ BdTρ1−d \ E . 5(2.7)

[P3] No escape of mass: For every bounded Borel set B ⊂ Rd,

lim
ξ→∞

lim sup
ρ→0

[vol×σ]
({

(q,v) ∈ B × Sd−1
1 : Qρ(ρ

1−dq,v) ∩ (Zξ × Σ) = ∅
})

= 0,

with the open cylinder Zξ = (0, ξ) × Bd−1
1 ⊂ Rd.

[Q1] SO(d− 1)-invariance: For every ς ∈ Σ,

µς is invariant under the action of SO(d− 1) := {k ∈ SO(d) : e1k = e1}.
[Q2] Coincidence-free first coordinates: For every ς ∈ Σ,

µς({ν ∈ N(X ) : ∃x1 ∈ R s.t. ν({x1} × Rd−1 × Σ) > 1}) = 0.

[Q3] Small probability of large voids: For every ε > 0 there exists R > 0 such that for all
ς ∈ Σ and x ∈ Rd we have

(2.8) µς
({
ν ∈ N(X ) : ν

(
BdR(x)× Σ

)
= 0
})

< ε.

Here BdR(x) := x+ BdR, the open ball of radius R centered at x.

3For the point sets P which we consider in the present paper, the marking ς : P → Σ will be constructed to
be a certain refinement of the crude marking ψ : P → Ψ which we introduced in Section 1.1.

4We say that a subset E of Rd has density zero if it has asymptotic density zero in the sense of (1.1); note
that this holds if and only if it holds for D = Bd1 , viz., if and only if limR→∞R−d#(E ∩ BdR) = 0.

5The statement in (2.7) means by definition:
[
∀ε > 0: ∃ρ0 > 0: ∀ρ ∈ (0, ρ0): ∀q ∈ PT (ρ): d(µ(λ)

q,ρ, µς(q)) < ε
]
,

where d is some metric on P (N(X )) realizing the weak topology. This definition is independent of the choice
of d; indeed see [21, Lemma 2.1] and note that {µς : ς ∈ Σ} is a compact subset of P (N(X )), since it is the
continuous image of the compact set Σ.
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From a technical point of view, the following is the main result of the present paper:

Theorem 2.1. Let P be a union of grids in Rd. Then there exists a compact metric space Σ,
a marking ς : P → Σ, a continuous map ς 7→ µς from Σ to P (N(X )), and a Borel probability
measure m on Σ, such that all the assumptions [P1]–[P3] and [Q1]–[Q3] hold.

The explicit description of the data
[
Σ, ς, ς 7→ µς , m

]
which we use in the proof of Theo-

rem 2.1 is given in Section 6.

Remark 2.1. In the special case when P is periodic, i.e. when P may be represented as in (1.2)
with all the Lis being translates of one and the same fixed lattice, Theorem 2.1 was proved in
[21, Prop. 5.6]. See Remark 6.3 below for a more detailed comparison.

We end this section by pointing out an immediate consequence of [P2], which partly moti-
vates the construction of Σ in the present paper (see the discussion in Section 6.3).

Lemma 2.2. Assume given a locally finite subset P ⊂ Rd, a map ς from P to a compact
metric space Σ, and a continuous map ς 7→ µς from Σ to P (N(Rd × Σ)), such that the
condition [P2] holds. Let p be the natural projection from N(Rd×Σ) to N(Rd). Then the map
ς 7→ µ̂ς := p∗(µς) from Σ to P (N(Rd)) is continuous, and for each fixed q ∈ P \ E (with E as

in [P2]) and each λ ∈ Pac(S
d−1
1 ), we have p∗(µ

(λ)
q,ρ)

w−−→ µ̂ς(q) as ρ→ 0.

Note here that p∗(µ
(λ)
q,ρ) is the distribution of the random point set ((P \ {q}) − q)R(v)Dρ

in Rd, for v random in (Sd−1
1 , λ).

Proof. As a map of counting measures, we have p = (p1)∗ where p1 is the projection map
Rd × Σ → Rd; and one immediately verifies that p is continuous (using the fact that Σ is
compact). Now the lemma follows by the continuous mapping theorem. �

2.1. Outline of the rest of the paper. Sections 3–9 are devoted to the proof of Theorem 2.1,
from which also Theorems 1.1 and 1.2 follow. Section 10 contains the proofs of Theorems 1.3
and 1.5, and their corollaries.

In Section 3 we introduce some further basic set-up and notation. In particular we fix the
index set Ψ in the presentation P =

⋃
ψ∈Ψ Lψ to be

Ψ = {ψ = (j, i) : j ∈ {1, . . . , N}, i ∈ {1, . . . , rj}},
for some positive integers N and r1, . . . , rN , with the indices chosen in such a way that the
grids L(j,i) and L(j′,i′) are commensurable if and only if j = j′. We also introduce a certain
product of homogeneous spaces X = X1 × · · · ×XN which naturally parametrizes the families
of unions of grids which appear when studying the spherical equidistribution condition [P2].
Here each space Xj is a torus fiber bundle over the space SLd(Z)\SLd(R) of d-dimensional

lattices of covolume one in Rd; the fiber space is an rjd-dimensional torus which we will denote

by Tdj ; it is equipped with a natural action by SLd(Z) from the right.
In Section 4 we state an equidistribution result in the space X, Theorem 4.2, which can

be viewed as a precise description of the limit considered in the spherical equidistribution
condition [P2]. In fact Theorem 4.2 applies for an arbitrary translation vector q in Rd;
however the theorem includes no statement about uniformity with respect to q, as is required
in [P2]. The corresponding limit probability measure on X is called µ(q). In the remainder

of Section 4 we give an alternative way to represent these measures µ(q) via certain measures

ω
(q)
1 , . . . , ω

(q)
N , where for each j, ω

(q)
j is an SLd(Z)-invariant probability measure on Tdj . We

will denote by P (Tdj )
′ the set of all SLd(Z)-invariant probability measures on Tdj ; this is a

compact subset of P (Tdj ).

In Section 5 we study the behaviour of each measure ω
(q)
j as q tends to infinity within a

given subgrid Lψ of P, and we explicitly identify the limit measure(s) obtained. In order for
this limit to be unique in a certain sense, we need to introduce the admissibility property



12 MATTHEW PALMER AND ANDREAS STRÖMBERGSSON

of the presentation P =
⋃
ψ∈Ψ Lψ mentioned in Section 1.1. The notion of admissibility is

defined in Section 5.2, and we prove in Section 5.3 that an admissible presentation of P always
exists.

In Section 6, building on the results from the previous sections, we are finally able to give
the precise definition of the space of marks Σ, the marking ς : P → Σ, and the map ς 7→ µς ,
which we will use in the proof of Theorem 2.1. The construction of the space of marks Σ is one
of the key steps in the present paper; this construction is more complicated and non-intuitive
than for any of the previous types of scatterer configurations for which the framework from
[21] is known to apply (see [21, Ch. 5]). The crude marking ψ : P → Ψ which we introduced
in Section 1.1 will appear as a factor of ς : P → Σ; in fact we will define Σ to be a subset of
the Cartesian product of Ψ and the compact set Ω :=

∏N
j=1 P (T

d
j )

′. In Section 6.3 we give a
discussion motivating our construction of Σ.

In Section 7 we prove that the conditions [Q1]–[Q3] and [P1] and [P3] hold, and we reduce
the remaining condition, [P2], to a certain uniform equidistribution result taking place in the
homogeneous space X, Theorem 7.7. In Section 8 we prove a key result, Theorem 8.1, on
equidistribution of certain expanding unipotent orbits in a slightly generalized version of the
homogeneous space X = Γ\G; the proof builds on Ratner’s classification of ergodic measures
invariant under unipotent flows [25]. Theorem 8.1 is then used in Section 9 in order to complete
the proof of Theorem 7.7, and thus also of Theorem 2.1.

Finally, in Section 10 we start by recalling the formulas for the collision kernels p(ψ) and
p(ψ

′→ψ) (see Theorem 1.2) in the general setting of the paper [21], and we then give the proofs
of Theorem 10.3 (which we discussed above in Section 1.2), Theorem 1.3, Theorem 1.5 and
Corollary 1.6.

3. Further setup and notation

3.1. Representing the point set P. As mentioned in the introduction, we will always view
vectors in Rd as row vectors.6

Recall that we are assuming that the scatterer configuration P is of the form P =
⋃M
i=1 Li,

where each Li is a grid (viz., a translate of a lattice) in Rd. Recall also that two grids L and
L′ in Rd are said to be commensurable if there exist c > 0 and v ∈ Rd such that L∩ (cL′ + v)
is a grid. This is an equivalence relation on the family of grids in Rd. By collecting the given
grids L1, . . . ,LM into commensurability classes, and then applying Lemma 3.1 below to each
class, one sees that the set P can be represented as follows:

P =
N⋃

j=1

rj⋃

i=1

cj,i(Lj + vj,i),(3.1)

where L1, . . . ,LN are pairwise incommensurable lattices in Rd of covolume one, r1, . . . , rN are
positive integers, cj,i are positive real numbers and vj,i are vectors in Rd, and furthermore:

∀j ∈ {1, . . . , N} : ∀i 6= i′ ∈ {1, . . . , rj} : cj,i/cj,i′ ∈ Q ⇒
[
cj,i(Lj + vj,i) ∩ cj,i′(Lj + vj,i′) = ∅

]
.

(3.2)

Our reason for requiring (3.2) is that if cj,i/cj,i′ ∈ Q and the two grids cj,i(Lj + vj,i) and
cj,i′(Lj+vj,i′) were not disjoint, then their intersection would be a grid and in particular would
have positive aymptotic density; this is a situation that we wish to avoid (see Lemma 3.2 and
Remark 3.2 below).

In order to arrive at the statement above, we made use of the following lemma.

Lemma 3.1. Let L1, . . . ,Lm be commensurable grids in Rd. Then there exists a lattice L in Rd

of covolume one, a positive integer r, positive real numbers c1, . . . , cr and vectors v1, . . . ,vr ∈
6But note that for other spaces Rr appearing below, it will be natural to instead consider the vectors to

be column vectors. The first instance of this is on p. 16, for the space Rrj in the definition of the torus
Tj = Rrj/Zrj .
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Rd such that L1 ∪ · · · ∪ Lm =
⋃r
i=1 ci(L + vi). In this representation, we may furthermore

assume that for any i 6= i′ in {1, . . . , r}, if ci/ci′ ∈ Q then ci(L+ vi) ∩ ci′(L + vi′) = ∅.
Proof. Choose w1 ∈ Rd such that L′ := L1+w1 is a lattice. Now for each j ∈ {2, . . . ,m}, the
fact that L1 and Lj are commensurable implies that we can choose δj > 0 and wj ∈ Rd such
that L′ ∩ (δjLj +wj) is a lattice. (In particular then 0 ∈ δjLj +wj, meaning that δjLj +wj

is a lattice.) It follows that also ∩mj=2(δjLj +wj) intersects L′ in a lattice, and we can express
this intersection as δL, where L is a lattice of covolume one and δ is a positive real number.
The fact that δL is a finite index subgroup of L′ implies that L′ is a union of a finite number
of translates of δL; hence so is L1. Similarly for each j ∈ {2, . . . ,m}, since δL is a finite index
subgroup of δjLj +wj, the grid Lj is a union of a finite number of translates of (δ/δj)L. The
first statement of the lemma follows by collecting all these unions into a single union.

To prove the second statement, we may for example proceed as follows. We start from a
union

⋃r
i=1 ci(L + vi) with arbitrary numbers c1, . . . , cr ∈ R>0 and vectors v1, . . . ,vr ∈ Rd.

Partition the index set {1, . . . , r} by the equivalence relation i ∼ i′
def⇔ ci/ci′ ∈ Q, and for

each equivalence class J ⊂ {1, . . . , r}, let cJ be the least common multiple of the numbers
{ci : i ∈ J} (this exists since ci/ci′ ∈ Q for all i, i′ ∈ J). Then for each i ∈ J we have
ni := cJ/ci ∈ Z+, and now

⋃
i∈J ci(L+vi) =

⋃
i∈J
⋃

w∈Ri cJ(L+w+n−1
i vi), where Ri ⊂ n−1

i L
is any fixed set of representatives for the quotient n−1

i L/L. Removing any duplicate translate of
cJL from the last union, we arrive at an expression of the form

⋃
i∈J ci(L+vi) =

⋃rJ
i=1 cJ(L+v′

i)

for some vectors v′
1, . . . ,v

′
rJ ∈ Rd which are pairwise incongruent modulo L. Applying this

rewriting procedure to each equivalence class J ⊂ {1, . . . , r}, we arrive at a representation of
L1 ∪ · · · ∪ Lm which has the required property. �

Remark 3.1. Note that for a given P, the representation (3.1) is far from unique, even when
we require (3.2).

Let us rewrite (3.1) slightly: Choose M1, . . . ,MN ∈ SLd(R) so that Lj = ZdMj (this is
possible since Lj has covolume one). Set

Ψ = {(j, i) : j ∈ {1, . . . , N}, i ∈ {1, . . . , rj}}.(3.3)

Also for each ψ = (j, i) ∈ Ψ, we set cψ = cj,i, wψ = wj,i = vj,iM
−1
j ∈ Rd, and

Lψ := cj,i(Lj + vj,i) = cψ(Z
d +wψ)Mj .(3.4)

With this notation, the asymptotic density of Lψ is nψ = c−dψ , and we have:

P =
⋃

ψ∈Ψ
Lψ,(3.5)

as in (1.3).
Given ψ ∈ Ψ, we denote by jψ and iψ the indices such that ψ = (jψ , iψ). The condition

(3.2) now takes the following form:

∀ψ 6= ψ′ ∈ Ψ :
[
jψ = jψ′ and cψ/cψ′ ∈ Q

]
⇒ Lψ ∩ Lψ′ = ∅.(3.6)

Also, the fact that L1, . . . ,LN are pairwise incommensurable implies that

MjM
−1
j′ /∈ S, ∀j 6= j′ ∈ {1, . . . , N},(3.7)

where S is the commensurator of SLd(Z) in SLd(R), i.e.

S = {(detT )−1/dT : T ∈ GL(d,Q), detT > 0}.(3.8)

The presentation of P in (3.5) is the one which we will work with throughout the paper, and
the conditions (3.6) and (3.7) will always be assumed to hold.

Lemma 3.2. In the above representation of P, for any two ψ 6= ψ′ ∈ Ψ, the intersection
Lψ ∩ Lψ′ is contained in an affine hyperplane of Rd.
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Proof. Assume that Lψ∩Lψ′ is not contained in an affine hyperplane. Then there exist points

q0, . . . , qd ∈ Lψ ∩ Lψ′ such that the vectors qj − q0 for j = 1, . . . , d form a linear basis of Rd.
Then q0+Z(q1−q0)+ · · ·+Z(qd−q0) is a grid contained in Lψ ∩Lψ′ , and so Lψ and Lψ′ are

commensurable, i.e. jψ = jψ′ . Hence by (3.4), both cψ(Z
d +wψ) and cψ′(Zd +wψ′) contain

the points qiM
−1
jψ

(i = 0, 1, . . . , d). Therefore (cψ/cψ′)(Zd +wψ − (cψ′/cψ)wψ′) intersects Zd

in more than one point, and hence cψ/cψ′ ∈ Q. When combined with (3.6), this leads to a
contradiction. �

Given P as in (3.5) we now also fix a choice of a crude marking ψ : P → Ψ, as in (1.4).

Remark 3.2. As we discussed below (1.4), ψ(p) is uniquely defined for every point p ∈ P
outside the union

⋃
ψ 6=ψ′∈Ψ(Lψ∩Lψ′). By Lemma 3.2, this union is contained in a finite union

of affine hyperplanes. In particular ψ(p) is uniquely defined for every p ∈ P away from a
subset of density zero.

3.2. Lie groups and homogeneous spaces. We now introduce appropriate homogeneous
spaces to keep track of the unions of grids which will appear in our discussion. (This is very
standard; cf. [21, Sections 5.2 & 5.3.3], [6, Sec. 7] as well as many other references.)

For any positive integer r, we let Mr×d(R) be the space of real r×d matrices, and let Sr(R)
be the semidirect product

Sr(R) := SLd(R)⋉Mr×d(R)(3.9)

with multiplication law

(M,U)(M ′, U ′) = (MM ′, UM ′ + U ′).(3.10)

We also set

Sr(Z) := SLd(Z)⋉Mr×d(Z).

In the special case r = 1, we have S1(R) = ASLd(R), the affine special linear group. This
group acts on Rd from the right through

w(M,u) := wM + u (w ∈ Rd, (M,u) ∈ ASLd(R)).

It is natural to identify Sr(R) with a subgroup of SLd+r(R) through (M,U) ↔
(
M 0
U I

)
,

since the group law (3.10) then corresponds to multiplication of matrices; however we will not
make use of this identification in the present paper.

We will always consider SLd(R) to be embedded in Sr(R) through M 7→ (M, 0); in other
words any M ∈ SLd(R) is understood to also denote the element (M, 0) in Sr(R). In the
opposite direction, we denote by ι the projection homomorphism

ι : Sr(R) → SLd(R); ι(M,U) :=M.

For any U ∈ Mr×d(R) we let IU be the element

IU := (I, U).(3.11)

in Sr(R). Note that the map U 7→ IU is a homomorphism from Mr×d(R) to Sr(R). Further-
more, for each i ∈ {1, . . . , r}, we let ri : Mr×d(R) → Rd be the projection map which takes
any matrix to its ith row, and we also define the following Lie group homomorphism:

ai : Sr(R) → ASLd(R); ai(M,U) := (M, ri(U)).

From now on we assume a point set P with presentation as in (3.3)–(3.5) to be fixed. In
particular this means that the numbers N, r1, . . . , rN are now fixed; and so are the numbers
cψ and vectors wψ (ψ ∈ Ψ). We then set:

G = Sr1(R)× · · · × SrN (R); Γ = Sr1(Z)× · · · × SrN (Z);
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and

X = Γ\G.
We also write Gj = Srj (R), Γj = Srj(Z) and Xj = Γj\Gj , so that G = G1 × · · · × GN and
X = X1 × · · · × XN ; and we denote by π the standard projection maps Gj → Xj and G→ X.
We also write pj and p̃j for the projection maps onto the jth factor:

pj : G→ Srj (R) and p̃j : X → Xj (j ∈ {1, . . . , N}),(3.12)

and for each ψ = (j, i) ∈ Ψ, we introduce the Lie group homomorphism pψ through

pψ := ai ◦ pj : G→ ASLd(R).(3.13)

We will use the space X to parametrize the set of all point sets that can be obtained from P =
∪ψ∈ΨLψ by applying arbitrary translations to each individual grid Lψ, and arbitrary linear

maps of determinant one to each individual commensurability class, ∪rji=1L(j,i). Specifically,
we take Γg in X to parametrize the point set J0(Γg), where

J0 : X → Ns(R
d); J0(Γg) :=

⋃

ψ∈Ψ
cψ
(
Zd pψ(g)

)
(g ∈ G).(3.14)

To see that this map is well-defined, note that for each ψ we have pψ(Γ) = ASLd(Z); hence
if Γg = Γg′ then pψ(g′) = γ pψ(g) for some γ ∈ ASLd(Z), implying that Zdpψ(g

′) = Zdpψ(g).
However it should be noted that the map J0 is discontinuous at any point Γg ∈ X for which
the grids cψ

(
Zd pψ(g)

)
(ψ ∈ Ψ) are not pairwise disjoint.

We next introduce notation for expressing the parametrization in X of an arbitrary translate

of the fixed point set P. For any q ∈ Rd and j ∈ {1, . . . , N} we define the matrix U
(q)
j by

specifying its row vectors:

U
(q)
j ∈ Mrj×d(R); ri(U

(q)
j ) = wj,i − c−1

j,i qM
−1
j (i = 1, . . . , rj).(3.15)

We also write

U (q) := (U
(q)
1 , · · · , U (q)

N ) ∈
N∏

j=1

Mrj×d(R),(3.16)

and we introduce the notation (cf. (3.11))

IV :=
(
IV1 , . . . , IVN

)
∈ G for any V = (V1, . . . , VN ) ∈

N∏

j=1

Mrj×d(R).(3.17)

Furthermore, we set

M̃ := (M1, . . . ,MN ) ∈ G,(3.18)

and define:

g
(q)
0 := IU (q) M̃ ∈ G (q ∈ Rd).(3.19)

The point of these definitions is that we now have, for any ψ = (j, i) ∈ Ψ:

cψ
(
Zd pψ(g

(q)
0 )
)
= cψ

(
Zd ai(IU (q)

j

Mj)
)
= cψ (Z

d +wψ − c−1
ψ qM−1

j )Mj = Lψ − q(3.20)

(cf. (3.4)), and hence

J0(Γ g
(q)
0 ) = P − q (∀q ∈ Rd).(3.21)

Finally we introduce some further notation relating to the structure of the homogeneous
spaces Xj and X. Recall that for each j ∈ {1, . . . , N} we have a projection map ι : Srj (R) →
SLd(R); this map takes Γj to SLd(Z), and hence induces a projection map from Xj to
SLd(Z)\SLd(R), which we will denote by ι̃:

ι̃ : Xj → SLd(Z)\SLd(R), ι̃(Γjg) = SLd(Z) ι(g) (g ∈ Gj).(3.22)
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We also set

Tj := Rrj/Zrj and Tdj := Tj × · · · × Tj︸ ︷︷ ︸
d copies

.

Note that Tdj is an rjd-dimensional torus. We will use “π” to denote both the corresponding
projection maps;

π : Rrj → Tj and π : (Rrj )d → Tdj .(3.23)

We will identify Mrj×d(R) with (Rrj)d, by identifying any matrix in Mrj×d(R) with the se-
quence of its d column vectors (in order). This also induces an identification

Tdj = Mrj×d(R/Z).

We write r̃i : Tdj → (R/Z)d for the projection induced by the map ri. For each j we also
introduce the embedding

x : Tdj → Xj; x(π(U)) = Γj IU , ∀U ∈ Mrj×d(R).(3.24)

4. Spherical equidistribution (without uniformity)

4.1. The limit measure µ(q). In this section we state a result in homogeneous dynamics,
Theorem 4.2 below, which gives a precise description of the limit considered in the spherical
equidistribution condition [P2] in Section 2. Theorem 4.2 expresses the answer in terms of
the parametrizing space X, and in fact applies for an arbitrary point q in Rd; however the
theorem includes no statement about uniformity with respect to the translation vector q, as
is required in [P2].

This Theorem 4.2 is a special case of more general equidistribution results which we will
prove in Sections 8 and 9 (see in particular Theorem 9.1), and the main reason for stating
this special case already here is to help motivating the introduction of the measure µ(q) (see
(4.2) below), which will be a crucial object of study in the remainder of Section 4 as well as in
Section 5. Note that we will not make use of the statement of Theorem 4.2 before Section 9.

For a given q ∈ Rd and each j ∈ {1, . . . , N}, we let U
(q)
j,1 , . . . , U

(q)
j,d ∈ Rrj be the column

vectors of U
(q)
j , and then define L

(q)
j to be the identity component of the smallest closed

subgroup of Rrj containing both Zrj and U
(q)
j,1 , . . . , U

(q)
j,d . This L

(q)
j is a rational (linear)

subspace of Rrj , i.e., L
(q)
j ∩ Zrj is a lattice in L

(q)
j . Next, given any linear subspace L of Rrj ,

we let SL(R) be the closed connected subgroup of Srj(R) given by

SL(R) := SLd(R)⋉ Ld =
{
(M,U) ∈ Srj (R) : U ∈ Ld

}
.(4.1)

Here “Ld” should be understood via our identification Mrj×d(R) = (Rrj)d, viz., Ld is the set
of matrices in Mrj×d(R) all of whose column vectors lie in L.

Lemma 4.1. For any q ∈ Rd, the S
L
(q)
j

(R)-orbit of the point Γj IU (q)
j

in Xj = Γj\Gj is a closed

embedded submanifold of Xj which carries a unique S
L
(q)
j

(R)-invariant probability measure.

Proof. Set U := U
(q)
j and L := L

(q)
j . It follows from the construction of L that there exists

a matrix X ∈ Mrj×d(Q) such that U −X ∈ Ld (indeed, see Lemma 4.3 below). This implies

IU I−1
X ∈ SL(R), and hence the SL(R)-orbit in the statement of the lemma can be expressed as

Γj\Γj IU SL(R) = Γj\Γj IX SL(R). Hence by [24, Theorem 1.13], it suffices to verify that Γj
intersects IX SL(R) I

−1
X in a lattice. To show this, let n be a denominator of X, i.e. a positive

integer such that X ∈ n−1Mrj×d(Z), and then set

Λ := {(M,V ) : M ∈ Γ(n), V ∈ XM −X + (L ∩ Zrj)d},
where Γ(n) is the principal congruence subgroup of SLd(Z) of level n. One verifies that Λ is a
subgroup of Γj ∩ IX SL(R) I

−1
X , and a lattice in IX SL(R) I

−1
X . Hence the lemma is proved. �
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In view of Lemma 4.1, it makes sense to define µ
(q)
j ∈ P (Xj) to be the unique S

L
(q)
j

(R)-

invariant probability measure on the orbit Γj\Γj IU (q)
j

S
L
(q)
j

(R) in Xj. Finally we set

µ(q) := µ
(q)
1 ⊗ · · · ⊗ µ

(q)
N ∈ P (X).(4.2)

Let ϕ : SLd(R) → G be the diagonal embedding. For any topological space S, we denote
by Cb(S) the space of bounded continuous real-valued functions on S.

Theorem 4.2. Given any q ∈ Rd, f ∈ Cb(X) and λ ∈ Pac(S
d−1
1 ), we have

∫

Sd−1
1

f(Γg
(q)
0 ϕ(R(v)Dρ)) dλ(v) →

∫

X
f dµ(q)(4.3)

as ρ→ 0.

We will prove Theorem 4.2 at the end of Section 9.1, as a corollary of more general and
difficult results which we prove in Section 8. We remark that it is possible to give a considerably
simpler deduction of Theorem 4.2 by combining the ideas in the proof of [20, Theorem 10]
and the proof of [21, Lemma 5.22]. In any case, the crucial ingredient in either of these two
proofs is the deep measure classification theorem of Ratner [25], and strong use is also made
of the work of Shah [27].

4.2. Re-expressing the limit measures µ
(q)
j as ω

(q)
j . The task of finding the appropriate

space of marks Σ and marking ς : P → Σ to satisfy the conditions in Section 2 is closely

related to the task of understanding the limit measures µ(q) = µ
(q)
1 ⊗ · · · ⊗ µ

(q)
N appearing in

Theorem 4.2, and in particular how these vary as q varies within the set P. As a first step
towards this goal, in this section we will introduce an alternative way to define the measures

µ
(q)
j . Recall that each space Xj is a torus bundle over the space SLd(Z)\SLd(R) (cf. (3.22)),

and the point here is that each each measure µ
(q)
j can be expressed as a product measure, of

the normalized Haar measure on SLd(Z)\SLd(R) and some fixed measure on the fiber Tdj . We
make this precise in Lemma 4.4 and Proposition 4.7 below.

We keep j ∈ {1, . . . , N} throughout this section. Our first step will be to introduce the
relevant measures which can appear on the fiber Tdj .

Recall that π denotes (among other things) the projection map Rrj → Trj := Rrj/Zrj . For
any subset S of Rrj (resp. Trj), we write 〈S〉 for the subgroup of Rrj (resp. Trj) generated

by S, and 〈S〉 for its closure. For any topological group H we write H◦ for the connected
component of the identity. Now for any non-empty subset S of Trj , we introduce the notation:

L(S) :=
〈
π−1(S)

〉 ◦
.(4.4)

This is a rational subspace of Rrj , i.e. a linear subspace of Rrj which is spanned by its vectors in

Zrj . If S is a non-empty subset of Rrj then we also write L(S) := L(π(S)) = 〈S + Zrj〉 ◦
, and

if V1, . . . , Vm is any finite sequence of points in Trj or Rrj , then we also write L(V1, . . . , Vm) :=
L({V1, . . . , Vm}).
Lemma 4.3. For any non-empty subset S ⊂ Rrj , L(S) is the unique smallest rational subspace
L ⊂ Rrj with the property that there is some n ∈ Z+ such that 〈S〉 ⊂ n−1Zrj + L.

Proof. Set G = 〈π(S)〉; this is a closed subgroup of Trj ; hence its group of components, G/G◦,
is finite, i.e. there exists a positive integer n such that ny ∈ G◦ for all y ∈ G. We also have
G◦ = π(L(S)). It follows that n · π(S) ⊂ π(L(S)), i.e. n · S ⊂ Zrj + L(S). This is equivalent
with S ⊂ n−1Zrj + L(S), and also with 〈S〉 ⊂ n−1Zrj + L(S).

Next assume that L is any rational subspace of Rrj satisfying 〈S〉 ⊂ n−1Zrj + L for some

n ∈ Z+. Now n−1Zrj+L is a closed subgroup of Rrj which contains S+Zrj ; hence 〈S + Zrj〉 ⊂
n−1Zrj + L, and so L(S) := 〈S + Zrj〉 ◦ ⊂ (n−1Zrj + L)◦ = L. �
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Next, for any V = (V1, . . . , Vd) ∈ Tdj , we introduce the notation

S
(V )
j := 〈V1, . . . , Vd〉(4.5)

and

L
(V )
j := L(V1, . . . , Vd) =

(
π−1(S

(V )
j )

)◦
.(4.6)

Thus S
(V )
j is a closed subgroup of Tj and L

(V )
j is a rational subspace of Rrj .

Recall that we have identified Mrj×d(R) with (Rrj )d; this means that for any linear subspace

L ⊂ Rrj , Ld = L × · · · × L is a linear subspace of Mrj×d(R). Similarly for any subgroup

S ⊂ Tj, Sd is a subgroup of Tdj = Mrj×d(R)/Mrj×d(Z). Note that SLd(R) acts from the

right on Mrj×d(R) by matrix multiplication, and this action preserves the subspace Ld for any
L ⊂ Rrj . Furthermore, the subgroup SLd(Z) preserves Mrj×d(Z), and hence we obtain an

induced right action of SLd(Z) on Tdj = Mrj×d(R/Z). This action preserves the subgroup Sd,
for any subgroup S ⊂ Tj.

Now for any V ∈ Tdj , we define:

O(V )
j =

⋃

γ∈SLd(Z)

(
V γ +

(
S
(V )
j

)◦ d)
.(4.7)

Here it should be noted that V ∈
(
S
(V )
j

)d
; hence O(V )

j is a union of some of the connected

components of the Lie group
(
S
(V )
j

)d
. In particular O(V )

j is open and closed in
(
S
(V )
j

)d
. Note

also that since
(
S
(V )
j

)d
is compact, its total number of components is finite.

We also define ω
(V )
j ∈ P (Tdj ) to be the restriction to O(V )

j of the Haar measure on
(
S
(V )
j

)d
.

normalized so that ω
(V )
j (O(V )

j ) = 1.

Note that for each V ∈ Tdj , the measure ω
(V )
j is SLd(Z)-invariant by construction. We

denote by P (Tdj )
′ the subset of all SLd(Z)-invariant measures ω ∈ P (Tdj ). This is a closed, and

hence compact, subset of P (Tdj ).

Next, recall that for any q ∈ Rd we have defined a matrix U
(q)
j ∈ Mrj×d(R), cf. (3.15); and

via our identification Tdj = Mrj×d(R)/Mrj×d(Z) we have π(U
(q)
j ) ∈ Tdj . Note that the rational

subspace L
(q)
j ⊂ Rrj defined in Section 4.1 equals L

(π(U
(q)
j ))

j in our present notation. From

now on we will also write S
(q)
j , O(q)

j and ω
(q)
j to denote S

(π(U
(q)
j ))

j , O(π(U
(q)
j ))

j and ω
(π(U

(q)
j ))

j ,

respectively. Thus in particular, O(q)
j is a union of some of the components of the closed

subgroup
(
S
(q)
j

)d ⊂ Tdj , and ω
(q)
j is a measure in P (Tdj )

′ supported on O(q)
j . We will see that

ω
(q)
j is the measure on the fiber Tdj which gives back the measure µ

(q)
j on Xj via the product

construction which we will presently describe.

We now introduce a map

P (Tdj )
′ → P (Xj), ω 7→ ω,(4.8)

as follows. For any ω ∈ P (Tdj ), let ω̃ be corresponding Mrj×d(Z)-invariant Borel measure on

Mrj×d(R), and define the Borel measure ω̃ on Gj through

dω̃(g) = dω̃(U) dν(A) when g = IU A ∈ Gj (U ∈ Mrj×d(R), A ∈ SLd(R)),(4.9)

where ν denotes the Haar measure on SLd(R), normalized by ν(SLd(Z)\SLd(R)) = 1. By the

following lemma, if ω ∈ P (Tdj )
′ then the measure ω̃ is left Γj-invariant, and we finally define

ω to be the corresponding Borel measure on Xj .
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Lemma 4.4. For any ω ∈ P (Tdj )
′, the measure ω̃ is left Γj-invariant, and the corresponding

measure ω on Xj satisfies, for any Borel set E ⊂ Xj,

ω(E) =

∫

Fd

∫

Tdj

I
(
x(U)A ∈ E

)
dω(U) dν(A),(4.10)

where Fd is any fixed Borel set in SLd(R) which is a fundamental domain for SLd(Z)\SLd(R),
and where I(·) is the indicator function.

Note that (4.10) in particular shows that ω is a probability measure, i.e. ω ∈ P (Xj), and so
we indeed have a map as in (4.8).

Proof. Let ω ∈ P (Tdj )
′. In order to verify that ω̃ is left Γj-invariant, it suffices to verify that

for any Borel set E ⊂ Gj we have ω̃(IM E) = ω̃(E) for all M ∈ Mrj×d(Z) and ω̃(γ E) = ω̃(E)
for all γ ∈ SLd(Z). The first of these two relations is immediate from (4.9) and the fact that
ω̃ is Mrj×d(Z)-invariant. The second relation follows by noticing that, for any U ∈ Mrj×d(R)
and A ∈ SLd(R), IU A ∈ γE holds if and only if γ−1 IU A ∈ E, viz., IUγ γ

−1A ∈ E, and then
using the invariance of the Haar measure ν, and the fact that ω̃ is SLd(Z)-invariant, since
ω ∈ P (Tdj )

′.
Next, in order to verify (4.10), note that if Cd is the set of matrices in Mrj×d(R) all of whose

entries lie in [0, 1), then the set

F ′
d := {IU A : U ∈ Cd, A ∈ Fd} ⊂ Gj

is a fundamental domain for Γj\Gj . Hence for any Borel set E ⊂ Xj we have

ω(E) = ω̃(π−1(E) ∩ F ′
d) =

∫

Fd

∫

Cd

I
(
IU A ∈ π−1(E)

)
dω̃(U) dν(A),

which is the same as (4.10). �

For later use we record a few simple properties of the map ω 7→ ω just defined.

Lemma 4.5. For any ω ∈ P (Tdj )
′, the measure ω is SLd(R) invariant, and ι̃∗ ω = ν.

(Here, by abuse of notation, we write ν also for the measure on SLd(Z)\SLd(R) induced by
the Haar measure ν.)

Proof. It is obvious from (4.9) that ω̃ is right SLd(R) invariant; hence also ω is SLd(R) invari-
ant. The fact that ι̃∗ ω = ν is immediate from (4.10). �

Lemma 4.6. The map in (4.8) is continuous. (Here P (Tdj )
′ is equipped with the subspace

topology from P (Tdj ).)

Proof. Recall that P (S) is metrizable for any separable and metrizable topological space S [1,
pp. 72–73]; in particular P (Tdj ) and P (Xj) are metrizable. Hence it suffices to prove that if

(ωk) is any sequence in P (Tdj ) converging to ω ∈ P (Tdj ), we have ωk → ω in P (Xj). To prove

this, we have to prove that ωk(ϕ) → ω(ϕ) for any ϕ ∈ Cb(Xj); but it is a well-known fact that
it suffices to prove this for ϕ ∈ Cc(Xj). Thus for a fixed ϕ ∈ Cc(Xj), our task is to prove that

∫

Tdj

∫

Fd

ϕ(x(U)A) dν(A) dωk(U)

converges to the corresponding integral with ω, as k → ∞. The fact that ϕ has compact
support in Xj implies that α(U) :=

∫
Fd
ϕ(x(U)A) dν(A) is a continuous function on Tdj .

Now the task is to prove that
∫
Tdj
α dωk →

∫
Tdj
α dω, and this holds by definition since

ωk → ω in P (Tdj ). �
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Finally, for any V ∈ Tdj we will now identify the measure ω(V ) ∈ P (Xj) as an invariant mea-

sure on a certain homogeneous submanifold of Xj. Given V ∈ Tdj , it follows from Lemma 4.3

that there exists some X ∈ Mrj×d(Q) such that V − π(X) ∈
(
S
(V )
j

)◦ d
, and this means that

we can choose some Ṽ ∈ X +
(
L
(V )
j

)d ⊂ Mrj×d(R) with π(Ṽ ) = V . Let L = L
(V )
j and recall

the definition of SL(R) in (4.1). It follows that the SL(R)-orbit of the point x(V ) in Xj can
be expressed as:

x(V ) · SL(R) = Γj\Γj IṼ SL(R) = Γj\Γj IX SL(R).(4.11)

By the proof of Lemma 4.1 (applied to Ṽ in place of U
(q)
j ), the orbit in (4.11) is a closed

embedded submanifold of Xj which carries a unique SL(R)-invariant probability measure.

Proposition 4.7. For any V ∈ Tdj , the unique S
L
(V )
j

(R)-invariant probability measure on the

orbit x(V ) · S
L
(V )
j

(R) equals ω
(V )
j . In particular, for any q ∈ Rd we have µ

(q)
j = ω

(q)
j .

Proof. Note that the second part of the proposition is an immediate consequence of the first

part, since, by the definition in Section 4.1, µ
(q)
j is the S

L
(q)
j

(R)-invariant probability measure

on the orbit x(π(U
(q)
j )) ·S

L
(q)
j

(R) in Xj, and furthermore we have L
(q)
j = L

(π(U
(q)
j ))

j and ω
(q)
j =

ω
(π(U

(q)
j ))

j .

To prove the first part of the proposition, set ω := ω
(V )
j , and let X, L and Ṽ be as in

(4.11). Since ω = ω
(V )
j by definition is the probability measure on Xj which corresponds to

the Γj-invariant measure ω̃ on Gj given by (4.9), it suffices to verify that ω̃ is supported on

Γj IṼ SL(R) and that ω̃ is right SL(R) invariant. However, it follows from (4.9) that

supp(ω̃) = {IU A : U ∈ π−1(Oj(V )), A ∈ SLd(R)},(4.12)

and here we have

π−1(Oj(V )) = {(Ṽ +W )γ : γ ∈ SLd(Z), W ∈ Ld +Mrj×d(Z)}(4.13)

(cf. (4.7)). Note here that both Ld and Mrj×d(Z) are SLd(Z)-invariant subsets of Mrj×d(R).

Using (4.12), (4.13) and I(Ṽ+W )γ A = γ−1 IṼ+W γA it follows that supp(ω̃) = Γj IṼ SL(R), as

desired.
Finally we verify that ω̃ is right SL(R)-invariant. We have noted that ω̃ is right SLd(R)

invariant (cf. Lemma 4.5); hence it suffices to verify that ω̃ is right IW -invariant for every
W ∈ Ld. However this also follows from (4.9), by noticing that IU A IW = IU+WA−1 A for all

U ∈ Mrj×d(R) and A ∈ SLd(R), and using WA−1 ∈ Ld and the fact that ω̃ is invariant under

Ld-translations (since ω = ω
(V )
j is invariant under (Sj(V )◦)d-translations). �

4.3. A Siegel integration formula for the measure ω. The classical Siegel integration
formula [28] states that for any measurable function f : Rd → R≥0 (or for any f ∈ Cc(R

d)),

defining the Siegel transform f̂ on SLd(Z)\SLd(R) by
f̂(SLd(Z)g) =

∑

m∈Zd
f(mg) (g ∈ SLd(R)),

then ∫

SLd(Z)\ SLd(R)
f̂ dν =

∫

Rd
f(x) dx+ f(0).

The following proposition gives an analogous formula involving the measure ω, for any given
ω ∈ P (Tdj )

′. This formula will be used later in our proof of [P2] (uniform spherical equidistri-

bution); see the proof of Lemma 7.8 below.
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Proposition 4.8. Let ψ = (j, i) ∈ Ψ. For any Borel measurable function f ∈ Rd → R≥0, we

define its “ψ-Siegel transform” f̂ψ : Xj → R≥0 ∪ {+∞} by

f̂ψ(Γjg) =
∑

m∈Zd
f
(
cψ · (m ai(g))

)
(g ∈ Gj).(4.14)

Then for any ω ∈ P (Tdj )
′ we have
∫

Xj

f̂ψ dω = nψ

∫

Rd
f(x) dx+ ω(̃r−1

i ({0}))f(0),(4.15)

as an equality of extended real numbers in R≥0 ∪ {+∞}.
Remark 4.1. The reason for the formula (4.14) is that this corresponds to the “ψ-part” of the

union in (3.14). Note that f̂ψ is well-defined, in the sense that the right hand side of (4.14)
remains the same if g is replaced by γg for any γ ∈ Γj.

Proof. Let ω ∈ P (Tdj )
′ be given. Define the Borel measure µ on Rd by µ(B) :=

∫
Xj

(̂χB)ψ dω

for any Borel set B ⊂ Rd. Let us prove that µ is finite on compact sets, so that µ is a Radon
measure. For this, it suffices to prove that µ(B) < ∞ for any ball B = BdR. In this case we
have, for all g ∈ Gj :

(̂χB)ψ(Γjg) = #
(
B ∩ cψ(Zdai(g))

)
≪ #

(
B ∩ cψZdι(g)

)
,(4.16)

by [10, Proposition 5] (the implied constant in the last bound depends only on d). Furthermore,
∫

Xj

#
(
B ∩ cψZdι(g)

)
dω(g) =

∫

SLd(Z)\ SLd(R)
#
(
B ∩ cψZdg

)
dν(g) = 1 + vol(c−1

ψ B) <∞,

where we applied Siegel’s original integration formula [28].
Next, one verifies that for any Borel set B ⊂ Rd and any T ∈ SLd(R) and g ∈ Gj , we

have ̂(χBT )ψ(Γjg) = (̂χB)ψ(ΓjgT
−1). Using this identity, and the fact that ω is SLd(R)

invariant (cf. Lemma 4.5), it follows that µ(BT ) = µ(B). Hence µ is SLd(R) invariant. By
the well-known characterization of SLd(R) invariant Radon measures on Rd, it follows that

µ = c1δ0 + c2 vol(4.17)

for some constants c1, c2 ∈ R≥0, where vol is the Lebesgue measure on Rd. Here

c1 = µ({0}) =
∫

Fd

∫

Tdj

̂(χ{0})ψ
(
x(U)A

)
dω(U) dν(A) = ω(̃r−1

i ({0})),

where the second equality holds by (4.10), and the last equality holds since ̂(χ{0})ψ
(
x(U)A

)
=

I (̃ri(U) = 0) for all U ∈ Tdj and all A ∈ SLd(R). Furthermore, it follows from (4.17) that

c2 = lim
R→∞

µ(BdR)
vol(BdR)

= lim
R→∞

∫

Xj

̂(χBdR)ψ

vol(BdR)
dω,

and here for each fixed point in Γjg ∈ Xj, the value of the integrand tends to c−dψ = nψ as

R→ ∞, by (4.14) and since cψ · (Zdai(g)) is an affine lattice of covolume cdψ in Rd. Hence by
Lebesgue’s dominated convergence theorem, the application of which is justified by the bound

̂(χBdR
)ψ(Γjg)

vol(BdR)
≪ #(BdR ∩ cψZdι(g))

vol(BdR)
≪ #(Bd1 ∩ cψZdι(g))

vol(Bd1)
(where we first used (4.16) and then [10, Proposition 4]) and Siegel’s integration formula, [28],
we conclude that c2 = nψ.

We have thus proved that (4.15) holds whenever f is the characteristic function of a Borel
set B ⊂ Rd. By taking finite linear combinations, it follows that (4.15) holds whenever f
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is a simple function, and finally by a standard approximation argument using the monotone
convergence theorem one proves (4.15) in the general case. �

5. Limit behaviour of ω
(q)
j

As we have mentioned, it will be important for us to understand how ω
(q)
j varies as q varies

in P; in particular we are interested in the behaviour of ω
(q)
j as q tends to infinity within P.

The main result of the present section states that, under a certain admissibility assumption
on the presentation of the given point set P as a union of grids, it holds for each ψ ∈ Ψ that

the measure ω
(q)
j tends to a unique limit measure ωψj ∈ P (Tdj )

′ as q tends to infinity within a
full density subset of Lψ.

5.1. The limit spaces Lψj and Lj. As a first step, we will study the behaviour of the linear

spaces L
(q)
j as q varies through a fixed grid Lψ. For each ψ and j, we will define a certain

rational space Lψj ⊂ Rrj , and will prove that this space is, in a certain sense, the limit of the

spaces L
(q)
j as q tends to infinity within a full density subset of Lψ.

Let ψ ∈ Ψ and j ∈ {1, . . . , N}. We start by introducing some auxiliary notation for keeping

track of the matrix U
(q)
j as q varies within Rd and Lψ, respectively. Recall from (3.4) that we

have introduced Mj ∈ SLd(R), cψ ∈ R>0 and wψ ∈ Rd so that Lψ = cψ(Z
d +wψ)Mjψ . Now

set, for any j ∈ {1, . . . , N} and ψ ∈ Ψ,

c̃j =



c−1
j,1
...

c−1
j,rj


 ∈ Rrj and c

ψ
j := cψ c̃j ∈ Rrj ,(5.1)

and also

Wj :=




wj,1
...

wj,rj


 ∈ Mrj×d(R) and Wψ

j :=Wj − c
ψ
j wψT

ψ
j ∈ Mrj×d(R),(5.2)

where

Tψj :=MjψM
−1
j ∈ SLd(R).

The point of this notation is that we now have (cf. (3.15))

U
(q)
j =Wj − c̃jqM

−1
j , ∀q ∈ Rd.(5.3)

It follows that for any point q in Lψ = cψ(Z
d +wψ)Mjψ , we have:

U
(q)
j =Wψ

j − c
ψ
j mTψj when q = cψ(m+wψ)Mjψ (∀m ∈ Zd).(5.4)

Now let Lψj be the rational subspace of Rrj given by

Lψj :=

{
L
(
{cψj } ∪ {Wψ

j,ℓ : ℓ ∈ {1, . . . , d}}
)

if j = jψ

L
(
Rcψj ∪ {Wψ

j,ℓ : ℓ ∈ {1, . . . , d}}
)

if j 6= jψ,
(5.5)

where Wψ
j,1, . . . ,W

ψ
j,d ∈ Rrj are the column vectors of Wψ

j .

Lemma 5.1. Let ψ ∈ Ψ and j ∈ {1, . . . , N}. Let L′ be any subgrid of Lψ. Then

Lψj = L
(
{U (q)

j,ℓ : q ∈ L′, ℓ ∈ {1, . . . , d}}
)
,

where U
(q)
j,1 , . . . , U

(q)
j,d ∈ Rrj are the column vectors of U

(q)
j .
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Proof. Set S0 = {Wψ
j,ℓ : ℓ ∈ {1, . . . , d}} and S = {cψj } ∪S0 if j = jψ; otherwise S = Rcψj ∪S0.

Also set S′ := {U (q)
j,ℓ : q ∈ L′, ℓ ∈ {1, . . . , d}}. Then the task is to prove that L(S) = L(S′).

Let Tψj,1, . . . , T
ψ
j,d ∈ Rrj be the column vectors of Tψj . Then by (5.4) we have

U
(q)
j,ℓ =Wψ

j,ℓ − c
ψ
j mTψj,ℓ when q = cψ(m+wψ)Mjψ (∀m ∈ Zd, ℓ ∈ {1, . . . , d}).(5.6)

Using (5.6) and the fact that Tψj = I if j = jψ, it follows that S
′ ⊂ 〈S〉, and so L(S′) ⊂ L(S).

It remains to prove that L(S) ⊂ L(S′).
Let L′′ be the inverse image of L′ under the bijection m 7→ cψ(m+wψ)Mjψ from Zd onto

Lψ. Then L′′ is a coset of a full rank sublattice of Zd; hence there is some n ∈ Z+ and some

m0 ∈ Zd such that L′′ contains m0 + nZd, and so, by (5.6):

Wψ
j,ℓ − c

ψ
j mTψj,ℓ ∈ S′, ∀m ∈ m0 + nZd, ℓ ∈ {1, . . . , d}.(5.7)

By Lemma 4.3 there is some m ∈ Z+ such that S′ ⊂ m−1Zrj +L(S′). Hence, since every point
in Zd can be written as an affine linear combination of points in m0 + nZd, with all weights
in n−1Z, it follows that

Wψ
j,ℓ − c

ψ
j mTψj,ℓ ∈ A, ∀m ∈ Zd, ℓ ∈ {1, . . . , d},(5.8)

where A := (nm)−1Zrj + L(S′) (this is a closed subgroup of Rrj). We will prove that S ⊂ A;
by Lemma 4.3 this implies L(S) ⊂ L(S′), and so the proof of Lemma 5.1 will be complete. By

taking m = 0 in (5.8) it follows that S0 ⊂ A; hence it suffices to prove that cψj ∈ A if j = jψ,

and Rcψj ⊂ A if j 6= jψ.

We denote by ek the kth standard unit vector in Rd. If j = jψ then Tψj is the identity

matrix, and applying (5.8) with ℓ = 1 and m ∈ {e1,0} it follows that A contains both

Wψ
j,ℓ − c

ψ
j and Wψ

j,ℓ; hence also c
ψ
j ∈ A.

Next assume j 6= jψ. Then Tψj /∈ S (cf. (3.7)), and so there exist two (non-zero) entries of

the matrix Tψj which have an irrational ratio; say entries k, ℓ and k′, ℓ′, respectively. Writing

Tψj = (tr,s) we thus have tk,ℓ/tk′,ℓ′ /∈ Q, which implies that the set {atk,ℓ + btk′,ℓ′ : a, b ∈ Z}
is dense in R. By considering the difference of two arbitrary vectors as in (5.8) we have

c
ψ
j mTψj,ℓ ∈ A for all m ∈ Zd. Taking here m = ek gives tk,ℓc

ψ
j ∈ A. Similarly we also have

tk′,ℓ′c
ψ
j ∈ A, and hence (atk,ℓ+ btk′,ℓ′)c

ψ
j ∈ A for all a, b ∈ Z. Hence since A is closed, we have

Rcψj ⊂ A. �

Lemma 5.2. Let ψ ∈ Ψ and j ∈ {1, . . . , N}. For every q ∈ Lψ we have L
(q)
j ⊂ Lψj .

Proof. By definition, L
(q)
j = L({U (q)

j,ℓ : ℓ ∈ {1, . . . , d}}); hence the statement follows from

Lemma 5.1, and the fact that L(S) is increasing in S. �

Our goal is now to prove Lemma 5.4 below, which says that, in an appropriate sense, the

space L
(q)
j approaches Lψj as q tends to infinity within a full density subset of Lψ. (Cf. also

Remark 5.3 below.) We will need the following auxiliary lemma. We denote by “ · ” the
standard scalar product in the space Rrj .

Lemma 5.3. Let ψ ∈ Ψ and j ∈ {1, . . . , N}. For any non-empty subset S ⊂ Rrj and any
vector a ∈ Qrj , we have a ⊥ L(S) if and only if {a · v : v ∈ S} ⊂ n−1Z for some n ∈ Z+.

Proof. The case a = 0 is trivial; hence from now on we assume a 6= 0. The statement of the
lemma is invariant under rescaling of a by a non-zero rational number; hence we may assume
that a ∈ Zrj and gcd(a1, . . . , arj ) = 1. It follows that {a · m : m ∈ Zrj} = Z, and hence

{a · m : m ∈ n−1Zrj} = n−1Z for any n ∈ Z+. Therefore, if {a · v : v ∈ S} ⊂ n−1Z
then S ⊂ n−1Zrj + a⊥, and so by Lemma 4.3, L(S) ⊂ a⊥, i.e. a ⊥ L(S). Conversely, assume
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a ⊥ L(S). By Lemma 4.3 there is some n ∈ Z+ such that S ⊂ n−1Zrj +L(S) ⊂ n−1Zrj +a⊥,
and this implies {a · v : v ∈ S} ⊂ n−1Z. �

Remark 5.1. If S is a finite subset of Rrj , then Lemma 5.3 implies that a vector a ∈ Qr is
orthogonal to L(S) if and only if {a · v : v ∈ S} ⊂ Q. Furthermore, if S = Rc ∪ S′ for some
vector c ∈ Rr and a finite subset S′ ⊂ Rr, then Lemma 5.3 implies that a vector a ∈ Qr is
orthogonal to L(S) if and only if a ⊥ c and {a · v : v ∈ S′} ⊂ Q.

Lemma 5.4. Let ψ ∈ Ψ and j ∈ {1, . . . , N}. For every a ∈ Zrj with a 6⊥ Lψj , we have

#{q ∈ Lψ ∩ BdR : a ⊥ L
(q)
j } ≪ Rd−1 as R→ ∞.(5.9)

Proof. As before, let us parametrize the points in Lψ = cψ(Z
d + wψ)Mjψ as q = q(m) =

cψ(m + wψ)Mjψ , with m running through Zd. We will prove the following bound, which
clearly implies (5.9):

#{m ∈ Zd ∩ [−R,R]d : a ⊥ L
(q(m))
j } ≤ (2R + 1)d−1 (∀R > 0).(5.10)

Using L
(q)
j = L({U (q)

j,ℓ : ℓ ∈ {1, . . . , d}}) together with (5.6) and Lemma 5.3, the bound (5.10)

can equivalently be stated as:

#
{
m ∈ Zd ∩ [−R,R]d : a ·

(
Wψ
j,ℓ − c

ψ
j mTψj,ℓ

)
∈ Q ∀ℓ ∈ {1, . . . , d}

}
≤ (2R + 1)d−1.(5.11)

We are assuming that a is not orthogonal to Lψj . By (5.5) and Lemma 5.3 (cf. also Remark 5.1),
this implies that

{
If j = jψ : a · cψj /∈ Q or a ·Wψ

j,ℓ /∈ Q for some ℓ ∈ {1, . . . , d},
If j 6= jψ : a · cψj 6= 0 or a ·Wψ

j,ℓ /∈ Q for some ℓ ∈ {1, . . . , d}.

Let us first assume j 6= jψ. If a ·cψj = 0 then a ·Wψ
j,ℓ /∈ Q for some ℓ, and it follows that the

set in (5.11) is empty, for all R. Hence we may assume that a · cψj 6= 0. Now j 6= jψ implies

that Tψj /∈ S, which means that there exist two (non-zero) entries of the matrix Tψj which have

an irrational ratio. Hence there exist k, ℓ ∈ {1, . . . , d} such that (a · cψj )(ekT
ψ
j,ℓ) /∈ Q. This

implies that, for any R, the set in (5.11) contains at most one point m along any line parallel
with ek. Hence the bound in (5.11) holds.

Next assume j = jψ. Then T
ψ
j = I. If a · cψj ∈ Q then a ·Wψ

j,ℓ /∈ Q for some ℓ ∈ {1, . . . , d},
and it follows that the set in (5.11) is empty, for all R. Hence we may assume that a · cψj /∈ Q.

Then for each ℓ ∈ {1, . . . , d} there is at most one integer m such that a · (Wψ
j,ℓ −mc

ψ
j ) ∈ Q,

and so the set in (5.11) contains at most one point, and the bound in (5.11) holds. �

We end this section by introducing a certain rational space Lj ⊂ Rrj which equals L
(q)
j for

q generic within Rd (cf. Lemma 5.5 below). These spaces are closely related to the spaces Lψj
introduced above, and they appear in the explicit description of the macroscopic limit measure
µg which we discuss in Section 7.4 below. For each j ∈ {1, . . . , N}, we set

Lj := L
(
Rc̃j ∪ {Wj,ℓ : ℓ ∈ {1, . . . , d}}

)
,(5.12)

where Wj,1, . . . ,Wj,d ∈ Rrj are the column vectors of Wj (see (5.2)).

Lemma 5.5. Let j ∈ {1, . . . , N}. For every q ∈ Rd we have L
(q)
j ⊂ Lj , and for all except

countably many q ∈ Rd we even have L
(q)
j = Lj .

Proof. Let S0 = {Wj,ℓ : ℓ ∈ {1, . . . , d} and S = Rc̃j ∪ S0, so that Lj = L(S). Recall that for

every q ∈ Rd we have L
(q)
j = L({U (q)

j,ℓ : ℓ ∈ {1, . . . , d}}); and by (5.3), U
(q)
j,ℓ =Wj,ℓ− c̃jqM

′
j,ℓ,
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where M ′
j,ℓ ∈ Rrj is the ℓth column vector of M−1

j . Here c̃jqM
′
j,ℓ ∈ Rc̃j, and thus U

(q)
j,ℓ ∈ 〈S〉

for every ℓ. Therefore L
(q)
j ⊂ Lj .

Next, since both L
(q)
j and Lj are rational subspaces of Rrj , if L

(q)
j ( Lj then there exists

some a ∈ Zrj satisfying a ⊥ L
(q)
j but a 6⊥ Lj . By Lemma 5.3 (cf. also Remark 5.1) this means

that

a · (Wj,ℓ − c̃jqM
′
j,ℓ) ∈ Q, ∀ℓ ∈ {1, . . . , d},(5.13)

but either a 6⊥ c̃j or a·Wj,ℓ /∈ Q for some ℓ. Clearly this is not possible if a ⊥ c̃j; hence we must

have a 6⊥ c̃j . Noticing also that the condition (5.13) is equivalent to7 aT(Wj − c̃jqM
−1
j ) ∈ Qd,

we conclude that:

{q ∈ Rd : L
(q)
j ( Lj} =

⋃

a∈Zrj
(a 6⊥c̃j)

⋃

b∈Qd

{
q ∈ Rd : aT(Wj − c̃jqM

−1
j ) = b

}
.(5.14)

But for every a ∈ Zrj with a 6⊥ c̃j and every b ∈ Qd, the set
{
q ∈ Rd : aT(Wj− c̃jqM

−1
j ) = b

}

consists of exactly one point, namely q = (aTc̃j)
−1(aTWj − b)Mj . Hence the set in (5.14) is

countable, and the lemma is proved. �

Lemma 5.6. For any ψ ∈ Ψ and j ∈ {1, . . . , N} we have Lψj ⊂ Lj, and if j 6= jψ then even

Lψj = Lj .

Proof. Recall that c
ψ
j = cψc̃j; hence Rcψj = Rc̃j. Furthermore, by comparing the definitions

(5.2) and (5.2) we note that Wψ
j,ℓ = Wj,ℓ − c

ψ
j wψT

ψ
j,ℓ ∈ Wj,ℓ + Rcψj = Wj,ℓ + Rc̃j. Hence the

two sets Rcψj ∪ {Wψ
j,ℓ : ℓ ∈ {1, . . . , d}} and Rc̃j ∪ {Wj,ℓ : ℓ ∈ {1, . . . , d}} generate the same

subgroups of Rrj . In view of this fact, the lemma now follows by inspecting the definitions of

Lψj and Lj , (5.5) and (5.12). �

Lemma 5.7. For every ψ = (j, i) ∈ Ψ, Lψj = Lj ∩ e⊥i and Lj = Lψj + Rc̃j.

Proof. Since ψ = (j, i), the ith coordinate of cψj is 1 by (5.1) and ri(W
ψ
j ) = 0 by (5.2); hence

it follows from (5.5) that Lψj ⊥ ei, and so by Lemma 5.6 we have Lψj ⊂ Lj ∩ e⊥i . On the other

hand, Rc̃j ⊂ Lj by (5.12) and c̃j · ei = c−1
ψ > 0; in particular Lj 6⊥ ei. Now to complete the

proof of the lemma it suffices to prove that

Lj ⊂ L̃, with L̃ := Lψj + Rc̃j .(5.15)

But it follows from (5.5) and Lemma 4.3 that cψj ∈ Qrj + Lψj ; hence since L̃ equals the linear

span of Lψj and the vector c
ψ
j , L̃ is a rational subspace of Rrj . It also follows from (5.5) and

Lemma 4.3 that each column vector of Wψ
j lies in Qrj + Lψj ; thus W

ψ
j ∈ Mrj×d(Q) + (Lψj )

d,
and hence we have

Wj =Wψ
j + c

ψ
j wψ ∈ Mrj×d(Q) + (Lψj )

d + c
ψ
j wψ ⊂ Mrj×d(Q) + L̃d.

This implies that Wψ
ℓ ∈ Qrj + L̃ for each ℓ ∈ {1, . . . , d}, and since also Rc̃j ⊂ L̃, the inclusion

in (5.15) now follows from (5.12) and Lemma 4.3. �

5.2. The limit measures ωψj and ωg
j . The following condition will be of crucial importance

for us. It involves the vectors cψj ∈ Rrj and the subspaces Lψj which were defined in (5.1) and

(5.5) in the previous section.

Definition 5.1. We say that a presentation of P as in (3.5), and satisfying (3.6) and (3.7), is

admissible if cψj ∈ Lψj + Zrj for all ψ = (j, i) ∈ Ψ.

7Note: We view a as a column vector, or equivalently as an rj × 1 matrix; hence a
T is a 1× rj matrix.
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It should be carefully noted that the condition in Definition 5.1 only involves vectors c
ψ
j

and spaces Lψj for pairs of ψ and j with j = jψ.

As we will see below, the admissibility of the presentation of P is a necessary (as well as

sufficient) condition to ensure that all the measures ω
(q)
j have a unique generic limit as q tends

to infinity within any of the grids Lψ. Luckily, it turns out that any point set P which is a
finite union of grids possesses an admissible presentation; we will prove this in Section 5.3
below.

From now on we assume that the given presentation (3.5) of P is admissible.

We will start by defining, for any ψ ∈ Ψ and j ∈ {1, . . . , N}, a measure ωψj ∈ P (Tdj )
′. We

will then prove that ωψj is in fact the generic limit of the measures ω
(q)
j as q tends to infinity

within the grid Lψ. As we will see, the assumption about admissibility is needed already for

the definition of ωψj to make sense. (Cf. the proof of Lemma 5.8 below.)

Given ψ ∈ Ψ and j ∈ {1, . . . , N} we set Sψj := π(Lψj ). This is a closed subtorus of Tj, since

Lψj is a rational subspace of Rrj . Furthermore, we pick an arbitrary point q ∈ Lψ, and define:

S̃ψj := S
(q)
j + Sψj ⊂ Tj; and Oψ

j :=
⋃

γ∈SLd(Z)
(π(U

(q)
j )γ + (Sψj )

d) ⊂ Tdj .(5.16)

Lemma 5.8. Both S̃ψj and Oψ
j are well-defined, i.e. the expressions in (5.16) are independent

of the choice of q. We have O(q)
j ⊂ Oψ

j for all q ∈ Lψ. Furthermore, S̃ψj is a closed subgroup of

Tj whose connected component subgroup equals Sψj , and Oψ
j is a union of some of the connected

components of (S̃ψj )
d.

(It should be noted that since (S̃ψj )
d is compact, its total number of connected components

is finite.)

In view of Lemma 5.8, we may now define ωψj ∈ P (Tdj ) to be the restriction to Oψ
j of the

Haar measure on (S̃ψj )
d, normalized so that ωψj (O

ψ
j ) = 1. Note that ωψj is SLd(Z)-invariant by

construction, i.e. we actually have ωψj ∈ P (Tdj )
′.

Proof of Lemma 5.8. Let us first prove that

U
(q)
j,ℓ − U

(q′)
j,ℓ ∈ Lψj + Zrj , ∀q, q′ ∈ Lψ, ∀ℓ ∈ {1, . . . , d}.(5.17)

Indeed, pick m,m′ ∈ Zd so that q = cψ(m + wψ)Mjψ and q′ = cψ(m
′ + wψ)Mjψ ; then

by (5.6) we have U
(q)
j,ℓ − U

(q′)
j,ℓ = c

ψ
j (m

′ − m)Tψj,ℓ. If j 6= jψ then Rcψj ⊂ Lψj by (5.5) and

hence U
(q)
j,ℓ − U

(q′)
j,ℓ ∈ Lψj for each ℓ. On the other hand if j = jψ then Tψj = I and so

U
(q)
j,ℓ −U

(q′)
j,ℓ ∈ Z c

ψ
j , and using the assumption that P is admissible (cf. Def. 5.1), this implies

that (5.17) holds.

In order to prove that S̃ψj is well-defined it suffices to verify that for any two q, q′ ∈ Lψ
we have S

(q′)
j ⊂ S

(q)
j + Sψj . However this follows from the definition of S

(q′)
j and the fact

that, by (5.17), π(U
(q′)
j,ℓ ) ∈ π(U

(q)
j,ℓ ) + Sψj ⊂ S

(q)
j + Sψj . Note also that (5.17) implies that

π(U
(q)
j )− π(U

(q′)
j ) ∈ (Sψj )

d; and this implies that Oψ
j is well-defined.

Now consider an arbitrary point q ∈ Lψ. Recall that L
(q)
j ⊂ Lψj , by Lemma 5.2; hence

(S
(q)
j )◦ ⊂ Sψj , and by inspection in (4.7) and (5.16) (and recalling O(q)

j := O(π(U
(q)
j ))

j ), this

implies that O(q)
j ⊂ Oψ

j . Recall also that S
(q)
j is a finite union of (S

(q)
j )◦-cosets in Tj; therefore

S̃ψj = S
(q)
j + Sψj is a finite union of Sψj -cosets. Hence S̃ψj is indeed a closed subgroup of Tj
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whose connected component subgroup equals Sψj . Finally, from the definition of Oψ
j and the

fact that π(U
(q)
j ) ∈ (S

(q)
j )d, it follows that Oψ

j ⊂ (S̃ψj )
d; and Oψ

j is by definition a union of

(Sψj )
d-cosets, i.e. a union of some of the connected components of (S̃ψj )

d. �

This is a convenient point to interject the definition of a measure ωg
j ∈ P (Tdj )

′, which

is closely analogous to ωψj , and which we will need later for the explicit description of the
macroscopic limit measure µg which we discuss in Section 7.4 below.

Given j ∈ {1, . . . , N} we set Sj := π(Lj). This is a closed subtorus of Tj. Picking an

arbitrary q ∈ Rd, we define:

S̃j := S
(q)
j + Sj and Oj :=

⋃

γ∈SLd(Z)
(π(U

(q)
j )γ + Sdj ) ⊂ Tdj .(5.18)

Lemma 5.9. Both S̃j and Oj are well-defined, i.e. the expressions in (5.18) are independent

of the choice of q. We have O(q)
j ⊂ Oj for all q ∈ Rd. Furthermore, S̃j is a closed subgroup of

Tj whose connected component subgroup equals Sj, and Oj is a union of some of the connected

components of S̃dj .

In view of Lemma 5.9 we may now define ωg
j ∈ P (Tdj )

′ to be the restriction to Oj of Haar

measure on S̃dj , normalized so that ωg
j (Oj) = 1.

Proof. It follows from (5.3) that for all q, q′ ∈ Rd we have U
(q)
j,ℓ − U

(q′)
j,ℓ ∈ Rcj ⊂ Lj, and thus

π(U
(q)
j,ℓ )− π(U

(q′)
j,ℓ ) ∈ Sj, for every ℓ ∈ {1, . . . , d}. Recall that S(q)j = 〈π(U (q)

j,1 ), . . . , π(U
(q)
j,d )〉. It

follows that S
(q′)
j ⊂ S

(q)
j + Sj for any q, q′ ∈ Rd. Hence we get that S̃j is well-defined. It also

follows that π(U
(q)
j )− π(U

(q′)
j ) ∈ Sdj for any q, q′ ∈ Rd; hence Oj is well-defined. The proof of

the remaining assertions is essentially the same as in Lemma 5.8. �

Lemma 5.10. For all except at most countably many q ∈ Rd we have (S
(q)
j )◦ = Sj, S

(q)
j = S̃j,

O(q)
j = Oj , and ω

(q)
j = ωg

j .

Proof. We will prove that the stated equalities hold whenever L
(q)
j = Lj ; by Lemma 5.5 this

gives the statement of the present lemma. Thus assume that L
(q)
j = Lj. Then

(
S
(q)
j

)◦
=

π(L
(q)
j ) = π(Lj) = Sj. In particular Sj ⊂ S

(q)
j , and so and S

(q)
j = S

(q)
j + Sj = S̃j. By

comparing (5.18) with (4.7) (applied with V = π(U
(q)
j )), we have O(q)

j = Oj . Finally now also

ω
(q)
j = ωg

j is immediate from the definitions. �

Lemma 5.11. For any ψ ∈ Ψ and j ∈ {1, . . . , N}, if j 6= jψ then Sψj = Sj, S̃
ψ
j = S̃j, Oψ

j = Oj

and ωψj = ωg
j .

Proof. If j 6= jψ. then Lψj = Lj by Lemma 5.6, and the stated equalities are immediate from
this fact, by inspection in the relevant definitions. �

We now return to the discussion on the measures ωψj . In Proposition 5.13 and Remark 5.2

below, we will prove that ωψj is the generic limit of the measures ω
(q)
j as q tends to infinity

within the grid Lψ. We will make use of the following auxiliary lemma.

Lemma 5.12. Let ψ ∈ Ψ, j ∈ {1, . . . , N} and q ∈ Lψ. Let m = m(q) be the number

of
(
S
(q)
j

)◦ d
-cosets contained in Oj(q), and let n be the number of (Sψj )

d-cosets contained in

Oψ
j . Then n divides m, and every (Sψj )

d-coset contained in Oψ
j contains exactly m/n distinct

(
S
(q)
j

)◦ d
-cosets.
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Proof. Let U := π(U
(q)
j ) ∈

(
S
(q)
j

)d
, and let Λ be the stabilizer of the coset U+

(
S
(q)
j

)◦ d
, for the

action of SLd(Z) on the finite group
(
S
(q)
j

)d
/
(
S
(q)
j

)◦ d
. It then follows from the definition in

(4.2) that O(q)
j equals the disjoint union of the cosets Uγ+

(
S
(q)
j

)◦ d
, when γ runs through any

set of representatives for Λ\SLd(Z). In particular we have m = #(Λ\SLd(Z)). Similarly let Λ′

be the stabilizer of the coset U + (Sψj )
d in (S̃ψj )

d/(Sψj )
d; then by (5.16), Oψ

j equals the disjoint

union of the cosets Uγ+(Sψj )
d, when γ runs through any set of representatives for Λ′\SLd(Z);

and in particular we have n = #(Λ′\SLd(Z)). Note that Λ ⊂ Λ′, since
(
S
(q)
j

)◦ ⊂ Sψj . Therefore

n divides m, and the last statement of the lemma follows from the fact that each right Λ′-coset
in SLd(Z) contains exactly m/n right Λ-cosets. �

Proposition 5.13. Let ψ ∈ Ψ and j ∈ {1, . . . , N}, and let U be any open neighbourhood of

ωψj in P (Tdj ). Then the set {q ∈ Lψ : ω
(q)
j /∈ U} has density zero.

Proof. To each matrix A ∈ Mrj×d(Z) corresponds a character χA on Tdj = Mrj×d(R)/Mrj×d(Z)

given by χA(X) = e2πiTr(AX
T), and every character on Tdj can be so expressed. Using the fact

that the set of finite linear combinations of characters on Tdj is dense in C(Tdj ), it follows that
there exists a finite subset S ⊂ Mrj×d(Z) and some ε > 0 such that U contains the set

{µ ∈ P (Tdj ) : |µ(χA)− ωψj (χA)| < ε ∀A ∈ S}.
Hence, using also the fact that a finite union of density zero sets again has density zero, it
suffices to prove that for any fixed A ∈ Mrj×d(Z), the set

{q ∈ Lψ : |ω(q)
j (χA)− ωψj (χA)| ≥ ε}(5.19)

has density zero.

For each q ∈ Lψ, let ν(q)j ∈ P (Tdj ) be the normalized Haar measure on
(
S
(q)
j

)◦ d
, and let

R(q) be a set of representatives containing one point in each
(
S
(q)
j

)◦ d
-coset contained in O(q)

j

(recall that O(q)
j is a finite union of

(
S
(q)
j

)◦ d
-cosets). Then by the definition of ω

(q)
j around

(4.2), we have

ω
(q)
j =

1

#R(q)

∑

X∈R(q)
ν
(q)
j ◦ τ−1

X ,

where τX : Tdj → Tdj denotes translation by X. Also let νψj ∈ P (Tdj ) be the normalized Haar

measure on (Sψj )
d. Comparing (4.2) with (5.16) and the definition of ωψj on p. 26, and using

Lemmas 5.8 and 5.12, we then have:

ωψj =
1

#R(q)

∑

X∈R(q)
νψ0

j ◦ τ−1
X .(5.20)

It follows that

∣∣ω(q)
j (χA)− ωψj (χA)

∣∣ ≤ 1

#R(q)

∑

X∈R(q)

∣∣ν(q)j (χA ◦ τX)− νψj (χA ◦ τX)
∣∣ =

∣∣ν(q)j (χA)− νψj (χA)
∣∣,

(5.21)

where the last equality holds since χA ◦ τX = χA(X) · χA for any X ∈ Tdj .

Recall that
(
S
(q)
j

)◦ d
= π

((
L
(q)
j

)d)
; hence ν

(q)
j (χA) = 1 if A is orthogonal to

(
L
(q)
j

)d
, oth-

erwise ν
(q)
j (χA) = 0. Hence, letting a1, . . . ,ad ∈ Zrj be the column vectors of A, we have

ν
(q)
j (χA) = 1 if each aℓ is orthogonal to L

(q)
j , otherwise ν

(q)
j (χA) = 0. Similarly νψj (χA) = 1 if

each aℓ is orthogonal to L
ψ
j , otherwise ν

(q)
j (χA) = 0. Recall also that L

(q)
j ⊂ Lψj for all q ∈ Lψ
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(cf. Lemma 5.2). These facts, together with (5.21), imply that the set in (5.19) is contained
in the following finite union:

⋃

ℓ∈{1,...,d}
(aℓ 6⊥Lψj )

{
q ∈ Lψ : aℓ ⊥ L

(q)
j

}
.

This set has density zero by Lemma 5.4. �

Remark 5.2. We have stated Proposition 5.13 in a way which will be convenient for later

applications. However let us note that it can be reformulated as follows: We have ω
(q)
j →

ωψj in P (Tdj ) as q tends to infinity within a full density subset of Lψ. Indeed, applying
Proposition 5.13 to a sequence of shrinking open sets U containing no other element than

ωψj in their intersection, and using Lemma 5.14 below, we conclude that there exists a subset

Z ⊂ Lψ of density zero such that limk→∞ ω
(qk)
j = ωψj for any sequence of points q1, q2, . . . in

Lψ \ Z with ‖qk‖ → ∞.

Lemma 5.14. Let L be a grid in Rd, and let Z1,Z2, . . . be subsets of L which each have
density zero. Then there exists a subset Z of L of density zero which has the property that for
every k there exists some R > 0 such that Zk \ BdR ⊂ Z.

Proof. Set zj(R) = R−d#(Zj ∩ BdR). Using the fact that zj(R) → 0 for each j, we can pick

0 < R1 < R2 < · · · such that for each k ∈ Z+ and each R ≥ Rk we have
∑k

j=1 zj(R) < k−1.
Now set

Z =

∞⋃

j=1

(Zj \ BdRj ).

This set Z has density zero, since for each k ∈ Z+ and each R ∈ [Rk, Rk+1) we have R
−d#(Z∩

BdR) = R−d# ∪kj=1 (Zj ∩ BdR \ BRdj ) ≤
∑k

j=1 zj(R) < k−1. It is also clear that Z has the last

property stated in the lemma. �

Remark 5.3. By analogy with Remark 5.2 we also note that Lemma 5.4 implies that there

exists a subset Z ⊂ Lψ of density zero such that for every a ∈ Zrj with a 6⊥ Lψj there is

some R > 0 such that a 6⊥ L
(q)
j holds for all q ∈ Lψ \ Z with ‖q‖ > R. As in the proof of

Proposition 5.13, this implies that the normalized Haar measure on
(
S
(q)
j

)◦
= π(L

(q)
j ) ⊂ Tj

tends to the normalized Haar measure νψj on Sψj = π(Lψj ) as q tends to infinity within Lψ \Z.

In this sense, we may say that “L
(q)
j approaches Lψj ” as q tends to infinity within a full density

subset of Lψ.
5.3. Admissible presentations of P. In this section we will prove that an admissible pre-
sentation of P can always be obtained:

Proposition 5.15. Let P be a finite union of grids. Then P possesses an admissible presen-
tation, i.e. there exist N ∈ Z+, r1, . . . , rN ∈ Z+, M1, . . . ,MN ∈ SLd(R), and numbers cψ ∈ R
and vectors wψ ∈ Rd for ψ ∈ Ψ (with Ψ as in (3.3)), such that P is given by (3.5), (3.4), and
this presentation of P satisfies the admissibility condition in Definition 5.1.

We will prove Proposition 5.15 by showing that there exists a presentation of P as in (3.5),
(3.4), such that (3.6) and (3.7) hold and also

c
ψ
j ∈ L

(
{cψj }

)
+ Zrj , ∀ψ = (j, i) ∈ Ψ.(5.22)

This implies that the presentation is admissible, since we always have L
(
{cψj }

)
⊂ Lψj for all

ψ = (j, i) ∈ Ψ, because of (5.5) and the fact that L(S) is increasing in S.



30 MATTHEW PALMER AND ANDREAS STRÖMBERGSSON

For any r ≥ 1 and any vector u = (u1, . . . , ur)
T ∈ Rr>0, let us write ũ := (u−1

1 , . . . , u−1
r )T ∈

Rr>0. We call the vector u ∈ Rr>0 admissible if uiũ ∈ L(uiũ) + Zr for every i ∈ {1, . . . , r}.
In view of (5.1), we then have that (5.22) is equivalent with the condition that the vector
(cj,1, . . . , cj,rj )

T is admissible, for every j ∈ {1, . . . , N}.
To prove Proposition 5.15, we will start from an arbitrary presentation of P as obtained in

Section 3.1, i.e. we assume that P is expressed as in (3.5), (3.4), and that the conditions (3.6)
and (3.7) hold. If this presentation is not already admissible, then we will modify it by making
use of the simple fact that for any positive integer q, we can express Zd as the (disjoint) union
of the grids qZd + α, with α running through the set {1, . . . , q}d; hence for any w ∈ Rd and
M ∈ SLd(R), the grid (Zd +w)M equals the union of the grids (qZd + α+w)M . It follows
that for any choice of positive integers qψ (ψ ∈ Ψ), we have

P =
⋃

ψ∈Ψ
Lψ =

⋃

ψ∈Ψ
cψ(Z

d +wψ)Mjψ =
⋃

ψ∈Ψ

⋃

α∈{1,...,qψ}d
qψcψ

(
Zd + q−1

ψ (α+wψ)
)
Mjψ .(5.23)

In other words, we have obtained a new presentation of P, analogous to the original one:

P =
⋃

ϑ∈Θ
c′ϑ(Z

d +w′
ϑ)Mjϑ ,(5.24)

where

Θ = {(j, i) : j ∈ {1, . . . , N}, i ∈ {1, . . . , r′j}}
with

r′j =

rj∑

i=1

qdj,i (j = 1, . . . , N),

and where

w′
ϑ = q−1

ψ(ϑ)(αϑ +wψ(ϑ)); c′ϑ = qψ(ϑ)cψ(ϑ),

with ψ(ϑ) ∈ Ψ and αϑ ∈ Zd chosen in such a way that jψ(ϑ) = jϑ for all ϑ ∈ Θ, and the

map ϑ 7→ 〈ψ(ϑ),αϑ〉 is a bijection from Θ onto {〈ψ,α〉 : ψ ∈ Ψ, α ∈ {1, . . . , qψ}d}. It
is obvious that the new presentation again satisfies the condition (3.7), since the matrices
M1, . . . ,MN are unchanged. It is also immediate that the condition (3.6) remains true for the
new presentation. Hence it remains to prove that we can choose the positive integers qψ in such

a way that the analogue of (5.22) holds for the new presentation, i.e. so that
(
c′j,1, . . . , c

′
j,r′j

)T

is admissible, for every j ∈ {1, . . . , N}.
The proof of this fact is essentially completed by lemmas 5.17 and 5.18 below.

Lemma 5.16. Let 1 ≤ r ≤ r′ and let T ∈ Mr′×r(Q). Then for any non-empty subset S ⊂ Rr

we have L(TS) = T L(S).

(Here for any subset A ⊂ Rr we write TA := {Tv : v ∈ A}. Recall also that we view

vectors in Rr as column matrices; hence Tv ∈ Rr
′

for every v ∈ Rr.)

Proof. Both L(TS) and T L(S) are rational subspaces of Rr
′

; hence it suffices to prove that

the equivalence [a ⊥ L(TS) ⇔ a ⊥ T L(S)] holds for all a ∈ Qr′ . However, a ⊥ T L(S) holds
if and only if a · Tv = 0 for all v ∈ L(S), or equivalently (TTa) · v = 0 for all v ∈ L(S). By
Lemma 5.3, this holds if and only if there is some n ∈ Z+ such that TTa · v ∈ n−1Z for all
v ∈ S. On the other hand, Lemma 5.3 also gives that a ⊥ L(TS) holds if and only if there
is some n ∈ Z+ such that a · Tv ∈ n−1Z for all v ∈ S, or equivalently TTa · v ∈ n−1Z for all
v ∈ S. Hence the equivalence is established. �

Lemma 5.17. If the vectors u = (u1, . . . , ur)
T ∈ Rr>0 and u′ = (u′1, . . . , u

′
r′)

T ∈ Rr
′

>0 have the
same set of coordinates, i.e. {u1, . . . , ur} = {u′1, . . . , u′r′}, then u is admissible if and only if
u′ is admissible.
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Proof. Assume that {u1, . . . , ur} = {u′1, . . . , u′r′}. This means that there exist uniquely deter-
mined matrices T ∈ Mr,r′(Z) and T

′ ∈ Mr′,r(Z) with exactly one entry of 1 in each row and 0s

elsewhere, such that u′ = Tu and u = T ′u′; thus also ũ′ = T ũ and ũ = T ′ũ′. Assume that u
is admissible. Then for every i ∈ {1, . . . , r} we have uiũ ∈ L(uiũ)+Zr. Multiplying this rela-

tion by T from the left, and using Lemma 5.16 and TZr ⊂ Zr
′

, we obtain uiũ′ ∈ L(uiũ′)+Zr
′

.
This holds for all i ∈ {1, . . . , r}, and for each i′ ∈ {1, . . . , r′} there exists some i ∈ {1, . . . , r}
such that u′i′ = ui. Hence u′ is admissible. The opposite implication is proved analogously,
using T ′. �

Lemma 5.18. For any u = (u1, . . . , ur)
T ∈ Rr>0, there exist positive integers q1, . . . , qr such

that the vector (q1u1, . . . , qrur)
T is admissible.

Proof. Given q = (q1, . . . , qr)
T ∈ Zr>0 we write Dq = diag(q1, . . . , qr); then the task is to

prove that we there exists some q ∈ Zr>0 such that qiuiD
−1
q ũ ∈ L(qiuiD

−1
q ũ) + Zr for all

i ∈ {1, . . . , r}. By Lemma 5.16 applied for the matrix qiD
−1
q ∈ Mr(Q), this is equivalent to:

qiuiũ ∈ L(uiũ) +Dq Z
r for all i ∈ {1, . . . , r}.(5.25)

For each i, Rũ+L(uiũ) is a rational subspace of Rr, and uiũ ∈ Qr+L(uiũ) by Lemma 4.3,
and Rũ = Ruiũ. But L(Rũ) is the unique smallest rational subspace of Rr containing Rũ;
hence

L(Rũ) ⊂ Rũ+ L(uiũ).(5.26)

We will now describe a choice of q1, . . . , qr which makes (5.25) hold. Let pi : Rr → R
denote projection onto the ith coordinate. Note that pi(Z

r ∩ L(Rũ)) is a subgroup of Z. By
considering the expansion of ũ with respect to a basis of L(Rũ) consisting of vectors in Zr, it
follows that pi(Z

r ∩L(Rũ)) 6= {0} for each i, and hence there exist unique positive integers qi
such that

pi(Z
r ∩ L(Rũ)) = qiZ for all i ∈ {1, . . . , r}.(5.27)

Choose vectors h(i) ∈ Zr ∩ L(Rũ) with pi(h
(i)) = qi. We now claim that

qiuiũ ∈ L(uiũ) + h(i) for all i ∈ {1, . . . , r}.(5.28)

This implies that (5.25) holds, since h(i) ∈ Zr ∩ L(Rũ) ⊂ DqZ
r, where the last inclusion

follows from (5.27).

In order to prove (5.28), let i be given, and set w := qiuiũ−h(i). We have w ∈ L(Rũ), since

ũ and h(i) lie in L(Rũ); hence by (5.26) there exists some t ∈ R such that w − tũ ∈ L(uiũ).
However, both w and L(uiũ) lie in the orthogonal complement of ei, the ith standard unit

vector in Rr; for w this holds since ei · ũ = ui and ei · h(i) = pi(h
(i)) = qi, and for L(uiũ) it

holds by Lemma 5.3, since ei · uiũ = 1. On the other hand, ũ is not orthogonal to ei. Hence
we must have t = 0, i.e. w ∈ L(uiũ), and so (5.28) holds. �

Now to finally prove Proposition 5.15 we proceed as follows, for each fixed j ∈ {1, . . . , N}:
Choose 0 < u1 < · · · < ur so that {cj,1, . . . , cj,rj} = {u1, . . . , ur}, and let τ : {1, . . . , rj} →
{1, . . . , r} be the map so that cj,i = uτ(i) for all i ∈ {1, . . . , rj}; then by Lemma 5.18 there

exist positive integers q1, . . . , qr such that the vector (q1u1, . . . , qrur)
T is admissible. Setting

now qj,i = qτ(i), Lemma 5.17 implies that the vector
(
qj,1cj,1, . . . , qj,rjcj,rj

)T
is admissible; and

since c′j,i = qψ(j,i)cψ(j,i) for all i = 1, . . . , r′j , another application of Lemma 5.17 gives that

also the vector
(
c′j,1, . . . , c

′
j,r′j

)T
is admissible, which was exactly the desired condition. This

completes the proof of Proposition 5.15. �
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6. Precise statement of the main result

In this section the statement of the main technical result of the paper, Theorem 2.1, will be
made more explicit, by presenting the precise choice of the data ς,Σ,m and ς 7→ µς for which
we will later prove that the six conditions [P1]–[P3] and [Q1]–[Q3] in Section 2 hold.

Let P be a finite union of grids in Rd, and fix an admissible presentation of P as in (3.5),
(3.4). This is possible by Proposition 5.15.

6.1. The subspace Xψ ⊂ X. We first need to make a preparation of a technical nature. For
any ψ ∈ Ψ we let Xψ be the closed set consisting of those Γg ∈ X for which Zd pψ(g) is a
lattice, i.e.

Xψ := {Γg ∈ X : g ∈ G, 0 ∈ Zd pψ(g)}.(6.1)

(Recall that the grid Zd pψ(g) is independent of the choice of representative g, i.e. if Γg = Γg′

then Zd pψ(g) = Zd pψ(g
′).) Clearly, for ψ = (j, i),

Xψ = p−1
j (X

(i)
j ), with X

(i)
j = {Γjg : g ∈ Gj , 0 ∈ Zdai(g)}.(6.2)

Lemma 6.1. For any ψ ∈ Ψ and q ∈ Lψ, Γg(q)0 ∈ Xψ.

Proof. This is immediate from (3.20). �

We will write δ0 for the Dirac measure on (R/Z)d at the point 0 ∈ (R/Z)d. Recall that
r̃i : T

d
j → (R/Z)d is the projection induced by the ith row map ri : Mrj×d(R) → Rd.

Lemma 6.2. Assume that ψ = (j, i) ∈ Ψ, ω ∈ P (Tdj )
′ and r̃i ∗ ω = δ0. Then ω(X

(i)
j ) = 1.

Proof. In view of the definition of ω in (4.9), it suffices to verify that Γj IU A ∈ X
(i)
j for all

U ∈ r
−1
i (Zd) ⊂ Mrj×d(R) and all A ∈ SLd(R). The verification of this fact is immediate. �

Lemma 6.3. Let ψ = (j, i) ∈ Ψ and V ∈ Tdj . If r̃i(V ) = 0 in (R/Z)d then r̃i ∗ ω
(V )
j = δ0, while

if r̃i(V ) 6= 0 then
(
r̃i ∗ ω

(V )
j

)
({0}) = 0.

Proof. Write V = (V1, . . . , Vd). If r̃i(V ) = 0, then the ith coordinate of each Vℓ vanishes; hence

all points in S
(V )
j have vanishing ith coordinate, and so ri

((
S
(V )
j

)d)
= {0} in (R/Z)d, which

forces ω
(V )
j (̃r−1

i ({0})) = 1, i.e., r̃i ∗ ω
(V )
j = δ0.

Next assume r̃i(V ) 6= 0. If L
(V )
j 6⊥ ei, then r̃i

((
S
(V )
j

)◦ d)
= (R/Z)d and so by (4.7) and the

definition of ω
(V )
j , we have ω

(V )
j (̃r−1

i ({0})) = 0. In the remaining case, when L
(V )
j ⊥ ei and

therefore r̃i

((
S
(V )
j

)◦ d)
= {0}, we again have ω

(V )
j (̃r−1

i ({0})) = 0, since r̃i(V γ) = r̃i(V )γ 6= 0

for all γ ∈ SLd(Z). �

Lemma 6.4. Let ψ = (j, i) ∈ Ψ and q ∈ Rd. If q ∈ Lψ then r̃i ∗ ω
(q)
j = δ0, while if q /∈ Lψ

then
(
r̃i ∗ ω

(q)
j

)
({0}) = 0.

Proof. Note that q ∈ Lψ holds if and only if ri(U
(q)
j ) ∈ Zd (cf. (3.4) and (3.15)), that is, if and

only if r̃i(π(U
(q)
j )) = 0 in (R/Z)d. Hence the lemma follows from Lemma 6.3. �

Lemma 6.5. Let j ∈ {1, . . . , N} and i 6= i′ ∈ {1, . . . , rj}. Then L
(j,i′)
j ⊥ ei holds if and only

if L
(j,i)
j ⊥ ei′ , and in this case also L

(j,i′)
j = L

(j,i)
j and cj,i = cj,i′ and wj,i −wj,i′ /∈ Zd.

Proof. Assume L
(j,i′)
j ⊥ ei. Then by Lemma 5.7, L

(j,i′)
j ⊂ Lj ∩e⊥i = L

(j,i)
j , and both L

(j,i′)
j and

L
(j,i)
j are subspaces of Lj of codimension one; hence L

(j,i′)
j = L

(j,i)
j , and since L

(j,i′)
j ⊥ ei′ by

Lemma 5.7, we conclude that L
(j,i)
j ⊥ ei′ . Of course, the converse implication, L

(j,i)
j ⊥ ei′ ⇒
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L
(j,i′)
j ⊥ ei, holds by symmetry. When both these orthogonality relations hold, admissibility

(see Definition 5.1) implies that both the i th coordinate of c
(j,i′)
j and the i′th coordinate of

c
(j,i)
j are integers, i.e. both cj,i′/cj,i and cj,i/cj,i′ are integers; thus cj,i′ = cj,i. Finally, by (3.6),

wj,i −wj,i′ /∈ Zd. �

Lemma 6.6. For every ψ ∈ Ψ we have r̃i ∗ ω
ψ
j = δ0 when (j, i) = ψ, while

(
r̃i ∗ ω

ψ
j

)
({0}) = 0

for every (j, i) ∈ Ψ \ {ψ}.

Proof. The first statement follows from Lemma 6.4, since ωψj can be obtained as a limit of

measures ω
(q)
j for a sequence of points q in Lψ (cf. Remark 5.2), and since the map r̃i ∗ :

P (Tdj ) → P ((R/Z)d) is continuous. Alternatively it is easy to give a direct verification: In

(5.1) and (5.2) one notes that the ith coordinate of cψj equals 1; thus ri(W
ψ
j ) = 0, and so by

(5.5), Lψj ⊥ ei, meaning that every point in Sψj has a vanishing ith coordinate. We know from

the proof of Lemma 6.4 that the same fact holds for every point in S
(q)
j , for any q ∈ Lψ; hence

by (5.16) it also holds for every point in S̃ψj , and so r̃i((S̃
ψ
j )
d) = {0} and r̃i ∗ ω

ψ
j = δ0.

We turn to the proof of the second statement (this is similar to the proof of the second half

of Lemma 6.3). Thus let (j, i) ∈ Ψ, (j, i) 6= ψ. If Lψj 6⊥ ei then r̃i

(
(Sψj )

d
)
= (R/Z)d and hence

ωψj
(
r̃
−1
i ({0})

)
= 0 (cf. (5.16)). Now assume Lψj ⊥ ei. Then j = jψ, by (5.5). Pick an arbitrary

point q ∈ Lψ, so that (5.16) holds. Now by Lemma 6.5, cψ = cj,i and wψ − wj,i /∈ Zd, and

so via (5.2) and (5.4), ri(U
(q)
j ) /∈ Zd, and hence r̃i(π(U

(q)
j )γ) 6= 0 for all γ ∈ SLd(Z). Also

r̃i

(
Sψj
)
= {0}, since Lψj ⊥ ei. Hence again ωψj

(
r̃
−1
i ({0})

)
= 0 (see (5.16)). �

6.2. The space of marks Σ and the associated maps. We are now finally in a position
to introduce our precise choice of space of marks Σ and the associated maps and measure.

To prepare for these definitions, set

Ω =

N∏

j=1

P (Tdj )
′.(6.3)

For any q ∈ Rd we define

ω(q) :=
(
ω
(q)
1 , . . . , ω

(q)
N

)
∈ Ω,(6.4)

and for any ψ ∈ Ψ we define

ωψ :=
(
ωψ1 , . . . , ω

ψ
N

)
∈ Ω.(6.5)

Now we define our space of marks Σ through:

Σ :=
{
((j, i), ω) ∈ Ψ× Ω : r̃i ∗ ωj = δ0

}
,(6.6)

where ωj ∈ P (Tdj )
′ is the jth entry of ω, and where δ0 is the Dirac measure at the point

0 ∈ (R/Z)d. It is to be understood that in (6.6), Ψ is equipped with the discrete topology,
and Ψ × Ω with the product topology; this makes Σ a closed and hence compact subset of
Ψ× Ω.

Remark 6.1. The reason why we cannot simply choose Σ to be Ψ × Ω is that then the map
ς 7→ µς which we define below would in general not be continuous.

Next we define our marking ς through

ς : P → Σ, ς(q) = (ψ(q), ω(q)),(6.7)

where ψ : P → Ψ is as in (1.4), i.e. a fixed function such that q ∈ Lψ(q) for all q ∈ P. It
follows from Lemma 6.4 that ς is indeed a map into Σ.
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For each ψ ∈ Ψ we set

σψ := (ψ, ωψ) ∈ Σ.(6.8)

It follows from Lemma 6.6 that σψ indeed lies in Σ. Next we define the Borel probability
measure m on Σ to be the atomic measure on Σ supported on the points σψ, with

m

(
σψ
)
:=

nψ
nP

(ψ ∈ Ψ).(6.9)

Note that m is supported on the finite subset

Ψ̃ := {σψ : ψ ∈ Ψ}(6.10)

of Σ.
As in Section 2 we set

X = Rd × Σ and µX = vol×m.

Finally we will make our choice of the map ς 7→ µς from Σ to P (N(X )). To prepare for
this, note that we have a natural map ω 7→ ω, from Ω to P (X), defined by

ω := ω1 ⊗ · · · ⊗ ωN ∈ P (X) (ω ∈ Ω).(6.11)

This makes sense since ωj ∈ P (Xj) for each j. Next we introduce the following map:

J : X → Ns(X ), J(Γg) =
⋃

ψ∈Ψ
cψ
(
Zd pψ(g)

)
× {σψ} (g ∈ G).(6.12)

This map extends the map J0 defined in (3.14) in an obvious sense.

Lemma 6.7. J is continuous.

Proof. Recall that Ns(X ) is equipped with the vague topology; hence the task is to prove
that if x1, x2, . . . is a sequence in X converging to x ∈ X, then for any f ∈ Cc(X ) we have∑

p∈J(xk) f(p) →
∑

p∈J(x) f(p). This is immediate using the formula
∑

p∈J(Γg)
f(p) =

∑

ψ∈Ψ

∑

m∈Zd
f
(
cψ
(
m pψ(g)

)
, σψ

)
, ∀g ∈ G.

�

Next, for every ψ ∈ Ψ we introduce the following modification of the map J :

Jψ : Xψ → Ns(X ); Jψ(Γg) := J(Γg) \ {(0, σψ)}.(6.13)

This map Jψ is also continuous; this is proved in the same way as Lemma 6.7, using also the

fact that (0, σψ) ∈ J(x) for all x ∈ Xψ (see (6.1) and (6.12)). At last, we now define the map
ς 7→ µς from Σ to P (Ns(X )) by setting

µς = Jψ ∗ ω ∈ P (Ns(X )) for ς = (ψ, ω) ∈ Σ.(6.14)

To see that µς is indeed a probability measure, note that

ω(Xψ) = 1, for all ς = (ψ, ω) ∈ Σ;(6.15)

cf. (6.2), Lemma 6.2, (6.6) and (6.11).

Lemma 6.8. The map ς 7→ µς is continuous.

Proof. Let ς1, ς2, . . . be an arbitrary sequence in Σ converging to a point ς ∈ Σ. Write ςk =

(ψ(k), ω(k)) with ω(k) = (ω
(k)
1 , . . . , ω

(k)
N ) ∈ Ω; also write ς = (ψ, ω). Throwing away finitely

many initial points from the sequence we may assume that ψ(k) = ψ for all k. By (6.15)

we then have ω(Xψ) = 1 and ω(k)(Xψ) = 1 for all k. Hence we may just as well regard

ω and all ω(k) as elements in P (Xψ). For each fixed j ∈ {1, . . . , N} we have ω
(k)
j → ωj in

P (Tdj )
′ as k → ∞; hence by (6.11), Lemma 4.6 and [1, Thm. 2.8(ii)], ω(k) → ω in P (X).
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Hence also ω(k) → ω in P (Xψ) [13, Lemma 4.26], and by the continuous mapping theorem,

Jψ∗ω(k) → Jψ∗ω, in P (Ns(X )), viz., µςk → µς . �

6.3. Some comments on the construction of Σ. The facts mentioned in the present
section will not be used later in the text, and we will omit some proofs.

The construction of the space of marks Σ in the present paper is more complicated and non-
intuitive than for any of the previous types of scatterer configurations for which the framework
from [21] is known to apply; see [21, Ch. 5]. In the special cases when P is periodic or when
the lattices in P are pairwise incommensurable, we could have chosen the space of marks to
be simply equal to the indexing set Ψ; however this simple choice of Σ is not possible in the
general case; see Remarks 6.2, 6.3 and 6.4 below.

For a general locally finite subset P ⊂ Rd, when trying to verify the hypotheses from [21,
Sec. 2.3] (which we recalled in Section 2) without an apriori guess of what the space of marks

Σ should be, a natural first task is to ignore the marking, thus thinking of each measure µ
(λ)
q,ρ

as lying in Ns(R
d),8 and then verify that for any fixed λ ∈ Pac(S

d−1
1 ) and q ∈ P (possibly

excluding a subset E ⊂ P of density zero), the weak limit of µ
(λ)
q,ρ as ρ → 0 exists and is

independent of λ; call this limit measure µq,0 ∈ P (N(Rd)). Then by Lemma 2.2, the space of

marks Σ must admit a continuous map ς 7→ µ̂ς from Σ to P (N(Rd)) such that µ̂ς(q) = µq,0
for all P \ E .

This to a large extent motivates our choice of Σ in Section 6.2: We have constructed the
space Ω =

∏N
j=1 P (T

d
j )

′ to encode all the spherical equidistribution limits µq,0 in P (N(Rd)).

Indeed, it follows from Theorem 4.2 that9 µq,0 = (J0,ψ(q))∗
(
ω(q)

)
for any q ∈ P\∪ψ 6=ψ′∈Ψ(Lψ∩

Lψ′), where for any ψ ∈ Ψ, J0,ψ is the following modified version of the map defined in (3.14):

J0,ψ : X → N(Rd); J0,ψ(Γg) :=
∑

ψ′∈Ψ

∑

x∈cψ′(Zd pψ′(g))

(if ψ′=ψ: x 6=0)

δx (g ∈ G).(6.16)

(That is, J0,ψ is as in (3.14) except that we (1) count multiplicity, and (2) if possible remove

the origin from cψ (Zdpψ(g)).) This suggests that we could make the choice “Σ = Ω”. It is
technically convenient to also include the factor Ψ in the definition of Σ; and we then restrict
by the condition r̃i ∗ ωj = δ0 (see (6.6)) to ensure that the map ς 7→ µς be continuous.

However, even though this space Σ by construction classifies all the relevant spherical
equidistribution limits in P (N(Rd)), it might still be too crude to classify the correspond-
ing limits in the refined space P (N(X ))! This is exactly the reason why we require that the
presentation of P should be admissible (Definition 5.1); only under this assumption have we
managed to find a proof of the condition [P2]. The crucial property that we need (see the

proof of Lemma 7.11 below) is that for each fixed ψ ∈ Ψ, ω(q) tends to a unique limit ωψ as

q → ∞ within Lψ \ E ; see Section 5.2 where the admissibility is needed already to define ωψj .

We remark that it would in fact be possible to take the space Σ to be a significantly smaller
set than we have done.10 Indeed, assuming that the conditions [P1]–[P3] and [Q1]–[Q3] hold
for the data

[
Σ, ς, ς 7→ µς , m

]
, and choosing E ⊂ P as in condition [P2], set

Σ′ := {ς(q) : q ∈ P \ E}.(6.17)

This is a compact subset of Σ, and as explained in [21, Remark 2.6], after modifying the
marking of the points in E in an arbitrary fashion to ensure that ς(q) ∈ Σ′ for all q ∈ P, the
conditions [P1]–[P3] and [Q1]–[Q3] remain valid with Σ′ in place of Σ. It is also important to

8In the notation of Lemma 2.2 this means: consider p∗(µ
(λ)
q,ρ) in place of µ

(λ)
q,ρ.

9The proof of µq,0 = (J0,ψ(q))∗
(
ω(q)

)
from Theorem 4.2 is somewhat technical, and we omit it. (The details

are similar to some of the arguments in Sec. 7.3.)
10This is an aposteriori fact; as far as we can see, such a choice would not lead to a simplification of the

presentation of the proof of our main Theorem 2.1.
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note that if [P2] holds for a certain set E ⊂ P, then [P2] also holds for any larger subset E ⊂ P
of density zero. In our setting, with Σ chosen as in Section 6.2, it follows from Remark 5.2

that Ψ̃ ⊂ Σ′, but also that, by taking E appropriately large, we can ensure that the set

{ς(q) : q ∈ P} has no limit point outside Ψ̃. This means that

Σ′ = {ς(q) : q ∈ P \ E} ∪ Ψ̃,(6.18)

and that Σ′ has quite a simple structure as a (metrizable, compact) topological space: Σ′ is a
finite or countable set containing the finite set Ψ̃, and its set of limit points is contained in Ψ̃.

Remark 6.2. The description of Σ′ in the last sentence is essentially as simple as it can be:
For the scatterer configurations studied in the present paper, it is in general impossible to
satisfy the conditions in Section 2 using a finite space of marks. For example, consider the
configuration

P = Z2 ∪
(
Z2 +

(
0,
√
2
))

∪ Z2M2 in R2, with M2 =

(
1

√
2

1
√
2 + 1

)
∈ SL2(R).(6.19)

In this case, one obtains infinitely many distinct spherical equidistribution limits µq,0 in
P (N(R2)) as q varies through the lattice Z2M2 ⊂ P. Indeed, for two arbitrary points
q, q′ ∈ Z2M2, writing q = mM2 with m = (m1,m2) ∈ Z2 and similarly q′ = m′M2, it
turns out that

µq,0 = µq′,0 ⇔
[
m1 +m2 = m′

1 +m′
2 or m1 +m2 = 1− (m′

1 +m′
2)
]
.(6.20)

We give an outline of the proof below. It follows from (6.20) that for any set E ⊂ P of density
zero, the set of spherical equidistribution limits {µq,0 : q ∈ P \ E} is infinite. (Indeed, if
it were finite, then by (6.20) the point set Z2M2 \ E would be contained in a finite number
of lines and thus be of density zero, whereas in fact it has density one.) Hence as in the
discussion in the beginning of this subsection, it follows from Lemma 2.2 that for any marking
of P used to satisfy the conditions [P1]–[P3] and [Q1]–[Q3] in Section 2, the set of marks
{ς(q) : q ∈ L(2,1) \ E} must be infinite, and in particular the space of marks must be infinite.
Of course, this also implies that the space of marks must have some limit point, since the
space of marks is required to be compact.

Outline of proof of (6.20). We express P in (6.19) as in (3.3)–(3.5) with N = 2, r1 = 2,
r2 = 1, M1 =

(
1 0
0 1

)
, and M2 as above; also c1,1 = c1,2 = c2,1 = 1 and w1,1 = w2,1 = (0, 0) and

w1,2 = (0,
√
2). For any point q = mM2 in L(2,1) = Z2M2, ω

(q)
2 is the Dirac measure at the

origin of the 2-dimensional torus T2
2. Furthermore, by (3.15) and (4.6),

L
(q)
1 = L

(π(U
(q)
1 ))

1 = L

((
0

0

)
,

(
−(m1 +m2)

√
2

(1−m1 −m2)
√
2

))
= R

(
m1 +m2

m1 +m2 − 1

)
⊂ R2,

and so by (4.7), O(q)
1 = O(π(U

(q)
1 ))

1 = π
(
L
(q)
1

)2
, which is a 2-dimensional subtorus of T2

1,

and ω
(q)
1 is the normalized Haar measure of this subtorus. Now µ0,q = (J0,(2,1))∗

(
ω(q)

)
=

(J0,(2,1))∗
(
ω
(q)
1 ⊗ ω

(q)
2

)
. The left implication in (6.20) follows quite easily. Indeed, it is clear

from the above that µ0,q only depends on m1 +m2, and to prove that µq,0 = µq′,0 also holds
in the case m1 + m2 = 1 − (m′

1 + m′
2), one makes use of a symmetry originating from the

diffeomorphism ( v1
v2 ) 7→ ( v2

v1 ) from π(L
(q)
1 )2 onto π(L

(q′)
1 )2. The proof of the converse is more

involved; one approach goes via a study of the support of µq,0 in N(R2). For example, by

a careful explicit analysis one verifies that for any q = mM2 in L(2,1), the set
{
k ∈ Z≥3 :

∑
x∈Z2\{0} δx +

∑
x∈Z2

(
δx + δx+k−1e1

)
∈ supp(µq,0)

}
contains exactly those k ∈ Z≥3 which

divide m1 +m2 or m1 +m2 − 1; this gives the right implication in (6.20). �
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Remark 6.3. On the other hand, if P is periodic, then {ς(q) : q ∈ P} = Ψ̃, i.e. the space of

marks Σ′ in (6.17) is simply equal to Ψ̃, even if we take E empty! Indeed, any periodic P may
be represented as in (3.3)–(3.5) with N = 1 and all c1,i (i = 1, . . . , r1) equal to a common
value c > 0. (This representation is admissible; note also that all the grids L(1,1), . . . ,L(1,r1)

are pairwise disjoint, by (3.6).) Then for any i ∈ {1, . . . , r1}, all points q ∈ L(1,i) give the

same ω(q). Indeed, for any two q, q′ ∈ L(1,i) we have U
(q)
1 − U

(q′)
1 ∈ M1×d(Z) by (3.15); thus

π(U
(q)
1 ) = π(U

(q′)
1 ) in Td1, and so ω

(q)
1 = ω

(q′)
1 . It then follows from Proposition 5.13, or by

direct inspection of the definitions, that in fact ω
(q)
1 = ω

(1,i)
1 for all q ∈ L(1,i). Hence by (6.7)

and (6.8), ς(q) = σψ(q) ∈ Ψ̃ for all q ∈ P.
As we have mentioned, in the special case of periodic P, Theorem 2.1 was proved in [21,

Prop. 5.6], and it is easy to give the translation between the two formulations: Our marking

data [Σ′, ς, ς 7→ µς ,m] with Σ′ = Ψ̃ agrees exactly with the marking data in [21, Sec. 5.2,

Prop. 5.6], with the only difference that the mark σ(1,ℓ) is called simply “ℓ” in [21, Sec. 5.2],
for ℓ = 1, . . . , r1 (also our r1 is called “m”, and our c is “δ1/d”). In particular, thus, for
each ℓ ∈ {1, . . . , r1} the measure µσ(1,ℓ) ∈ P (Ns(R

d × Σ)) defined by (6.14) above, equals11

the measure “µℓ” in [21, (5.35)], although it requires some work to verify this fact from the
definitions.

As noted in [21, Prop. 5.6], for P periodic, the condition [P2] holds with E = ∅. Indeed,
because of the periodicity, we have the even much stronger statement that the convergence

µ
(λ)
q,ρ

w−−→ µς(q) required in (2.7) holds uniformly over all q ∈ P.

Remark 6.4. Also in the case when P is a finite union of pairwise incommensurable grids, one

can use Σ′ = Ψ̃ as the space of marks. Indeed, in this case we have r1 = · · · = rN = 1, and

for any j 6= j′ in {1, . . . , N} we have L
(j′,1)
j = Lj = R1 by Lemma 5.6 and (5.12); this also

implies that ω
(j′,1)
j equals Haar measure on Tdj . Now by Lemma 5.4, applied with a = 1 ∈ Z1,

for any j 6= j′ the set {q ∈ L(j′,1) : L
(q)
j = {0}} has density zero. Hence we may assume that

E contains the union of these sets for all pairs of j 6= j′. Then, for any q ∈ P \ E , taking j′
so that q ∈ L(j′,1) it follows that for each j 6= j′ we have L

(q)
j 6= {0}, viz., L(q)

j = R1; and

therefore O(q)
j = Tdj and ω

(q)
j = ω

(j′,1)
j (this also implies that q /∈ L(j,1), and so ψ(q) must

equal (j′, 1)). On the other hand, immediately from the definitions we have that both ω
(q)
j′

and ω
(j′,1)
j′ equals the Dirac measure at the origin of Tdj′. Hence ω(q) = ω(j′,1) = ωψ(q) and

ς(q) = σψ(q) ∈ Ψ̃. Since this holds for all q ∈ P \ E , we get Σ′ = Ψ̃ in (6.17).

7. Verification of [Q1],[Q2],[Q3],[P1],[P3], and initial discussion regarding [P2]

In order to prove the main result of the paper, Theorem 2.1, we now wish to prove that all
the conditions [P1]–[P3] and [Q1]–[Q3] are satisfied for the maps ς : P → Σ and ς 7→ µς and
measure m which we have defined in the previous section. In the present section we will prove
all of these conditions except [P2]; we will also reduce the verification of [P2] to a certain
statement about uniform equidistribution in the homogeneous space X, Theorem 7.7 below.

7.1. Verification of [Q1], [Q2], [Q3]. We start with the conditions [Q1]–[Q3].
The following lemma shows that [Q1] holds, in a much stronger form.

Lemma 7.1. For every ς ∈ Σ, µς is SLd(R)-invariant.

Proof. It is immediate from the definition in (4.9) that for any ωj ∈ P (Tdj )
′, the measure ωj

on Xj is right SLd(R) invariant (this was also used in the proof of Proposition 4.7); hence
for any ω ∈ Ω, the measure ω on X is right SLd(R)

N -invariant, and in particular it is right

11After noticing that µσ(1,ℓ) is in fact supported on Ns(R
d × Ψ̃), and then identifying Ψ̃ with {1, . . . , r1} in

the way we have just explained.
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ϕ(SLd(R))-invariant, where ϕ : SLd(R) → G is the diagonal embedding. Next we note that,
for any ψ ∈ Ψ,

Jψ(Γgϕ(h)) = Jψ(Γg)h for all Γg ∈ Xψ, h ∈ SLd(R).

It follows that the measure Jψ∗ω on Ns(X ) is SLd(R)-invariant, for any ω ∈ Ω. This implies
the lemma, via the definition (6.14). �

Next, because of the following general fact, also [Q2] is an immediate consequence of
Lemma 7.1:

Lemma 7.2. If µ ∈ P (Ns(X )) is invariant under the action of SO(d) then

µ({ν ∈ N(X ) : ∃x1 ∈ R s.t. ν({x1} × Rd−1 × Σ) > 1}) = 0.(7.1)

Proof. For any v ∈ Sd−1
1 , set

Av = {ν ∈ N(X ) : ∃x1 ∈ R s.t. ν((x1v + v⊥)× Σ) > 1}.(7.2)

Then our task is to prove µ(Ae1) = 0. The fact that µ is SO(d)-invariant implies that

µ(Av) = µ(Ae1) for all v ∈ Sd−1
1 . Hence we have, with λ1 being the uniform probability

measure on Sd−1
1 :

µ(Ae1) =

∫

Sd−1
1

µ(Av) dλ1(v) =

∫

Ns(X )

∫

Sd−1
1

I(ν ∈ Av) dλ1(v) dµ(ν) = 0.

Here the second equality holds by Fubini’s Theorem and since µ(N(X ) \Ns(X )) = 0 (because
of µ ∈ P (Ns(X ))), and the last equality holds since for any ν ∈ Ns(X ) we have

∫
Sd−1
1

I(ν ∈
Av) dλ1(v) = 0, since the set {v ∈ Sd−1

1 : ν ∈ Av} is a countable union of subspheres of Sd−1
1

of codimension one. �

Next we turn to the condition [Q3].

Lemma 7.3. [Q3] holds.

Proof. (Cf. the proof of [21, Lemma 5.3.13].) Set Λ = SLd(Z) and Y = Λ\SLd(R). Let us also
fix a choice of ψ = (j, i) ∈ Ψ. For R > 0 we set

Y(R) = {Λh ∈ Y : cψ(Z
dh) + BdR/2 = Rd}.

Note that the set Y(R) is increasing with respect to R. Also, for every Λh ∈ Y, the set cψ(Z
dh)

is a lattice in Rd and hence there exists some R = R(h) > 0 such that cψ(Z
dh) + BdR/2 = Rd.

Hence ∪R>0Y(R) = Y, and it follows that for any given ε > 0 we can choose R > 0 so that
η(Y(R)) > 1− ε, where η is the SLd(R)-invariant probability measure on Y.

With this choice of R, we now claim that for any ς = (ψ′, ω) ∈ Σ and x ∈ Rd, (2.8) holds.
By (6.14), this is equivalent to the following:

ω
({

Γg ∈ Xψ
′

: Jψ′(Γg) ∩ (BdR(x)× Σ) = ∅
})

< ε.(7.3)

Choose y ∈ Rd so that BdR/2(y) ⊂ BdR(x) and 0 /∈ BdR/2(y). For any g ∈ G, letting h =

ι(pj(g)) ∈ SLd(R) we have that the grid cψ(Z
dpψ(g)) is a translate of the lattice cψ(Z

dh); and

in particular if Λh ∈ Y(R) then cψ(Z
dpψ(g)) must contain a point in BdR/2(y). This implies

that for every Γg ∈ X satisfying ι̃(p̃j(Γg)) ∈ Y(R), the point set J(Γg) (cf. (6.12)) must contain

a point in BdR/2(y) × Σ. Using also 0 /∈ BdR/2(y) and BdR/2(y) ⊂ BdR(x), it follows that the

measure in the left hand side of (7.3) is bounded above by

ω
({

Γg ∈ Xψ
′

: ι̃(p̃j(Γg)) /∈ Y(R)
})
.(7.4)

However, writing ω = (ω1, . . . , ωj) we have p̃j∗ (ω) = ωj, which is an SLd(R)-invariant proba-
bility measure on Xj (this is immediate from the definition (4.8), as we have noted previously).
Hence the pushforward of ω by ι̃ ◦ p̃j equals η, and so the measure in (7.4) equals η(Y\Y(R)),
which by our choice of R is less than ε. Hence (7.3), and thereby the lemma, is proved. �
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We end this section by giving a closely related fact, namely a formula for the intensity
measure of a point process with distribution µς , for any ς ∈ Σ. This formula will not be used
until Section 10.

Lemma 7.4. Let ς = (ψ′, ω) ∈ Σ. Then for any Borel set B ⊂ X we have
∫

Ns(X )
#(B ∩ Y ) dµς(Y ) = nPµX (B) +

∑

ψ∈Ψ\{ψ′}
ωjψ
(
r̃
−1
iψ

({0})
)
· I
(
(0, σψ) ∈ B

)
.(7.5)

In particular, for every ψ′ ∈ Ψ, a point process with distribution µσψ′ has intensity measure
nPµX .

Proof. By (6.14), (6.13) and (6.12), the left hand side of (7.5) equals

−I
(
(0, σψ

′

) ∈ B
)
+

∫

Xψ′

∑

ψ∈Ψ

∑

m∈Zd
I
((
cψ ·

(
mpψ(g)

)
, σψ

)
∈ B

)
dω(Γg).

By (6.15), the integration may just as well be taken over all X. Moving out the sum over ψ
and then using (6.11) and (3.13), we get

−I
(
(0, σψ

′

) ∈ B
)
+
∑

ψ∈Ψ

∫

Xjψ

∑

m∈Zd
I
((
cψ ·

(
maiψ(g)

)
, σ(ψ)

)
∈ B

)
dωjψ(Γjψg),

and by Proposition 4.8, this equals

−I
(
(0, σψ

′

) ∈ B
)
+
∑

ψ∈Ψ
nψ

∫

Rd
I
(
(x, σψ) ∈ B

)
dx+

∑

ψ∈Ψ
ωjψ
(
r̃
−1
iψ

({0})
)
· I
(
(0, σψ) ∈ B

)
.

Using ωjψ′

(
r̃
−1
iψ′

({0})
)
= 1, which holds since (ψ′, ω) ∈ Σ, together with µX = vol×m and

(6.9), we obtain the right hand side of (7.5).

To obtain the last statement of the lemma, we apply (7.5) for ς = σψ
′

= (ψ′, ωψ
′

); in this
case the sum over Ψ \{ψ′} in (7.5) vanishes, by Lemma 6.6; hence the right hand side of (7.5)
equals nP µX (B). �

7.2. Verification of [P1] (uniform density).

Proposition 7.5. [P1] holds, i.e. for any bounded subset B ⊂ X with µX (∂B) = 0, we have

lim
T→∞

#(P̃ ∩ TB)

T d
= nPµX (B).(7.6)

Proof. Note that X decomposes as the disjoint union ⊔ψ∈ΨXψ, where Xψ = Rd × Σψ with
Σψ := ({ψ} ×Ω)∩Σ; note also that each set Xψ is both open and closed is X . It follows that
it suffices to prove (7.6) under the extra assumption that B ⊂ Xψ for some fixed ψ. Using
also the fact that the set {q ∈ Lψ : ψ(q) 6= ψ} has density zero (cf. Remark 3.2), it follows
that our task is to prove the following, for any bounded set B ⊂ Xψ with µX (∂B) = 0:

lim
T→∞

#{q ∈ Lψ : (q, (ψ, ω(q))) ∈ TB}
T d

= nPµX (Xψ).(7.7)

Let us first verify that (7.7) holds for any set B of the form

B =
( d∏

i=1

[αi, βi)
)
× U,(7.8)

for any real numbers αi < βi (i = 1, . . . , d) and any open neighbourhood U of σψ in Σψ. Indeed,

given such a U , there exist open neighbourhoods Uj of ω
ψ
j in P (Tdj ) for j = 1, . . . , N such that

Σψ∩({ψ}×
∏N
j=1Uj) ⊂ U . Applying now Proposition 5.13 to the set Uj , for each j = 1, . . . , N ,

it follows that there exists a subset Z ′ ⊂ Lψ of density zero such that (ψ, ω(q)) ∈ U for all
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q ∈ Lψ \ Z ′. Furthermore, for B as in (7.8), we have nPµX (B) = nψ
∏d
i=1(βi − αi), and so

(7.7) follows from the fact that the grid Lψ has asymptotic density nψ in Rd.
Next, if B is any bounded open subset of Xψ, then there exists a sequence B1 ⊂ B2 ⊂ · · ·

of subsets of B such that each Bk is a finite disjoint union of sets of the form (7.8), and
B ∩ (Rd × {σψ}) ⊂ ∪∞

k=1Bk. Using µX (B) = µX (B ∩ (Rd × {σψ})), it follows that µX (Bk) →
µX (B) as k → ∞, and hence since (7.7) holds for each of our sets Bk, it follows that

lim inf
T→∞

#{q ∈ Lψ : (q, (ψ, ω(q))) ∈ TB}
T d

≥ nPµX (B).(7.9)

Next if B̃ is any bounded closed subset of Xψ, then by taking R > 0 so that B̃ ⊂ B′ := BdR×Σψ,

and noticing that (7.7) holds for B′ (since the grid Lψ has asymptotic density nψ in Rd), and

also (7.9) holds for the bounded open set B′ \ B̃, it follows that

lim sup
T→∞

#{q ∈ Lψ : (q, (ψ, ω(q))) ∈ TB̃}
T d

≤ nPµX (B̃).(7.10)

Finally consider an arbitrary bounded subset B ⊂ Xψ with µX (∂B) = 0. Let B◦ and B be
the interior and the closure of B, respectively. Then (7.9) holds for B◦ and (7.10) holds for
B, and furthermore µX (B◦) = µX (B), since µX (∂B) = 0. Hence (7.7) holds. �

7.3. Initial discussion regarding [P2] (uniform spherical equidistribution). We have
the following result:

Theorem 7.6. [P2] holds, i.e. there exists a subset E ⊂ P of density zero such that for

any fixed T ≥ 1 and λ ∈ Pac(S
d−1
1 ), we have µ

(λ)
q,ρ

w−−→ µς(q) as ρ → 0, uniformly for q ∈
P ∩ Bd

Tρ1−d
\ E.

In this section we will prove that Theorem 7.6 follows from the following theorem on uniform
equidistribution in the homogeneous space X, the proof of which is the main goal of the later
sections in this paper.

Recall that ϕ : SLd(R) → G is the diagonal embedding.

Theorem 7.7. Given any ψ ∈ Ψ and any decreasing function T : (0, 1) → R+, there exists a

subset E ⊂ Lψ of density zero such that for any fixed f ∈ Cb(X
ψ) and λ ∈ Pac(S

d−1
1 ), we have

∫

Sd−1
1

f
(
Γg

(q)
0 ϕ(R(v)Dρ)

)
dλ(v)−

∫

Xψ
f dω(q) → 0(7.11)

as ρ→ 0, uniformly over all q ∈ Lψ ∩ BdT (ρ) \ E.

To see that the statement of Theorem 7.7 makes sense, note that for every q ∈ Lψ we

have Γg
(q)
0 ∈ Xψ by Lemma 6.1, and so Γg

(q)
0 ϕ(R(v)Dρ) ∈ Xψ for all v ∈ Sd−1

1 and ρ >

0; furthermore, ω(q)(Xψ) = 1 by Lemmas 6.4 and 6.2, meaning that ω(q) ∈ P (X) gives a
probability measure on the subset Xψ. It is also worth noticing that without the uniformity
over q, the statement of Theorem 7.7 would be an immediate consequence of Theorem 4.2.

We will now give the proof of Theorem 7.6, assuming Theorem 7.7. As the very first step,
let us apply Theorem 7.7 with T (ρ) = ρ−d and for each ψ ∈ Ψ; this gives the existence of

subsets Eψ ⊂ Lψ of density zero such that for any fixed f ∈ Cb(X
ψ) and λ ∈ Pac(S

d−1
1 ),

∫

Sd−1
1

f(Γg
(q)
0 ϕ(R(v)Dρ)) dλ(v)−

∫

Xψ
f dω(q) → 0(7.12)

as ρ→ 0, uniformly over all q ∈ Lψ ∩ Bd
ρ−d

\ Eψ. Let us now set

E :=
⋃

ψ∈Ψ
Eψ ∪

⋃

ψ 6=ψ′∈Ψ
(Lψ ∩ Lψ′).(7.13)
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By Lemma 3.2, this set E is a subset of P of density zero. We will keep this set E fixed in the
rest of the section, and we will prove that the statement of Theorem 7.6 holds with this set
E . For any T ≥ 1 and ρ > 0 we write, as in (2.7),

PT (ρ) := P ∩ BdTρ1−d \ E .

Note that for any given T we have Tρ1−d ≤ ρ−d for all sufficiently small ρ. Recall also that
P = ∪ψ∈ΨLψ. Hence the statement around (7.12) now implies that the following holds:





for any fixed T ≥ 1, f ∈ Cb(X) and λ ∈ Pac(S
d−1
1 ),

∫

Sd−1
1

f(Γg
(q)
0 ϕ(R(v)Dρ)) dλ(v)−

∫

X
f dω(q) → 0

as ρ→ 0, uniformly over all q ∈ PT (ρ).

(7.14)

Lemma 7.8. Let k ∈ Z>0 and let B be a bounded subset of Rd with vol(∂B) = 0. Then for

any V > vol(B), T ≥ 1 and λ ∈ Pac(S
d−1
1 ), there exists ρ0 ∈ (0, 1) such that

λ({v ∈ Sd−1
1 : #((P − q)R(v)Dρ ∩B \ {0}) ≥ k}) < nPV/k(7.15)

for all ρ ∈ (0, ρ0) and q ∈ PT (ρ).
Proof. The assumptions imply that B is Jordan measurable, and hence there is a function
f ∈ Cc(Rd) such that f = 1 on B, 0 ≤ f ≤ 1 everywhere, and Vf :=

∫
Rd f d vol < V . For each

ψ = (j, i) ∈ Ψ, let f̂ψ ∈ C(Xj) be the “ψth Siegel transform” of f , as defined in (4.14). The

function f̂ψ is typically unbounded; therefore we set f̃ψ = min(k+1, f̂ψ); this is a nonnegative

function in Cb(Xj), and hence f̃ψ ◦pj ∈ Cb(X). Hence by (7.14), and since pj(g
(q)
0 ) = I

U
(q)
j

Mj ,

∫

Sd−1
1

f̃ψ
(
Γj IU (q)

j

MjR(v)Dρ

)
dλ(v)−

∫

X
f̃ψ ◦ pj dω(q) → 0

as ρ→ 0, uniformly over all q ∈ PT (ρ). Here pj∗
(
ω(q)

)
= ω

(q)
j (cf. (6.11)); hence by Proposi-

tion 4.8 and Lemma 6.4,
∫

X
f̃ψ ◦ pj dω(q) ≤

∫

X
f̂ψ ◦ pj dω(q) = nψVf + δq∈Lψ · f(0).

Adding the above over all ψ and using nP :=
∑

ψ∈Ψ nψ, it follows that there exists some

ρ0 ∈ (0, 1) such that
∫

Sd−1
1

∑

ψ∈Ψ

(
f̃ψ(Γj IU (q)

j

MjR(v)Dρ)− δq∈Lψ · f(0)
)
dλ(v) < nPV(7.16)

for all ρ ∈ (0, ρ0) and q ∈ PT (ρ). Here, by (4.14) and (3.20), we have for every v and ψ:

f̃ψ
(
Γj IU (q)

j

MjR(v)Dρ

)
− δq∈Lψ · f(0) = min

(
k + 1,

∑

p∈(Lψ−q)R(v)Dρ

f(p)

)
− δq∈Lψ · f(0)

≥ min

(
k,

∑

p∈(Lψ−q)R(v)Dρ\{0}
f(p)

)
.

Recalling also that ∪ψ∈ΨLψ = P, it follows that
∫

Sd−1
1

min

(
k,

∑

p∈(P−q)R(v)Dρ\{0}
f(p)

)
dλ(v) < nPV

for all ρ ∈ (0, ρ0) and q ∈ PT (ρ). Here, for every v such that #((P−q)R(v)Dρ∩B \{0}) ≥ k,
the integrand equals k. Hence we obtain the statement of the lemma. �
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Lemma 7.9. Let Z be any subset of P of density zero, and let T ≥ 1, λ ∈ Pac(S
d−1
1 ) and

S > 0. Then

λ({v ∈ Sd−1
1 : Z ∩ (q + BdSD−1

ρ R(v)−1) \ {q} 6= ∅}) → 0(7.17)

as ρ→ 0, uniformly over all q ∈ PT (ρ).
Proof. (This is similar to the proof of [21, Lemma 2.17].) Let λ1 be the normalized Lebesgue

measure on Sd−1
1 . By a standard approximation argument, using the fact that Cc(S

d−1
1 ) is

dense in L1(Sd−1
1 ), it suffices to prove (7.17) for those λ which have a continuous density with

respect to λ1; and thus in fact it suffices to prove (7.17) for the single case λ = λ1.
Let T ≥ 1, S > 0 and ε > 0 be given. Take 0 < r < S so small that nP vol(Bdr ) < ε. Set

k = 2S/r > 2 and T ′ = kd−1T . By Lemma 7.8, there exists ρ0 ∈ (0, 1) such that

λ1({v ∈ Sd−1
1 : (P − q)R(v)Dρ ∩ Bdr \ {0} 6= ∅}) < ε(7.18)

for all ρ ∈ (0, ρ0) and q ∈ PT ′(ρ). Set B̃ := BdrD−1
k . Replacing ρ by kρ in (7.18), it follows

that for all ρ ∈ (0, ρ0/k) and q ∈ PT ′(kρ) = PT (ρ) we have

λ1({v ∈ Sd−1
1 : (P − q)R(v)Dρ ∩ B̃ \ {0} 6= ∅}) < ε.(7.19)

One verifies that |x1| ≥ k1 := (r/2)dS1−d for all x ∈ BdS \ B̃, and hence

(BdS \ B̃)D−1
ρ ⊂ A(ρ) := BdSρ1−d \ Bdk1ρ1−d , ∀ρ > 0.(7.20)

Now for any ρ ∈ (0, ρ0/k) and q ∈ PT (ρ) we have, using (7.19) and (7.20):

λ1({v ∈ Sd−1
1 : (Z − q)R(v)Dρ ∩ BdS \ {0} 6= ∅})(7.21)

< ε+
∑

p∈Z∩(q+A(ρ))
λ1
({

v ∈ Sd−1
1 : (p− q)R(v)Dρ ∈ BdS

})
.

But if (p− q)R(v)Dρ ∈ BdS , or equivalently p ∈ q+BdSD−1
ρ R(v)−1, then p has a distance less

than Sρ to the line q + Rv; and if also p ∈ q + A(ρ) then the angle ϕ(v,p − q) between the
vectors v and p− q satisfies sinϕ(v,p− q) < (S/k1)ρ

d. The measure of the set of such points

v ∈ Sd−1
1 with respect to λ1 is bounded above by C1ρ

d(d−1), where C1 depends on d, S, r but
not on ρ or p. Hence (7.21) is

≤ ε+#(Z ∩ (q + BdSρ1−d)) · C1ρ
d(d−1) ≤ ε+#(Z ∩ Bd(T+S)ρ1−d) · C1ρ

d(d−1),

and since Z has density zero, the last term is less than ε for ρ sufficiently small. �

Recall that µ
(λ)
q,ρ is the distribution of Qρ(q,v) for v random in (Sd−1

1 , λ). We now introduce
a certain approximation Q′

ρ(q,v) to Qρ(q,v), which will be easier to handle. We set

P̃ ′ =
⋃

ψ∈Ψ
{(p, σψ) : p ∈ Lψ}.(7.22)

Note that, unlike the projection P̃ → P, the projection P̃ ′ → P is not necessarily injective!

(However, by Remark 3.2, it becomes injective after removing a set of density zero from P̃ ′.)
For any q ∈ P, we set

P̃ ′
q =

{
P̃ ′ \ {(q, σψ(q))} (q ∈ P)

P̃ ′ (q /∈ P)
(7.23)

and

Q′
ρ(q,v) = (P̃ ′

q − q)R(v)Dρ.(7.24)

Lemma 7.10. For every q ∈ P we have Q′
ρ(q,v) = Jψ(q)(Γg

(q)
0 ϕ(R(v)Dρ)).
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Proof. By parsing the definitions (7.23), (7.24) and (6.13), we see that it suffices to prove

P̃ ′ − q = J(Γg
(q)
0 ).(7.25)

However, comparing (6.12) and (7.22), we see that (7.25) is an immediate consequence of
(3.20) (just as is (3.21)). �

The following lemma shows that Q′
ρ(q,v) approximates Qρ(q,v) in a sense that is appro-

priate for us.

Lemma 7.11. Let f ∈ Cc(X ), T ≥ 1, λ ∈ Pac(S
d−1
1 ) and ε > 0. Then

λ

({
v ∈ Sd−1

1 :

∣∣∣∣
∑

x∈Qρ(q,v)
f(x)−

∑

x∈Q′
ρ(q,v)

f(x)

∣∣∣∣ > ε

})
→ 0(7.26)

as ρ→ 0, uniformly over all q ∈ PT (ρ).
Proof. Choose S > 0 so that supp(f) ⊂ BdS × Σ. Note that for every q ∈ P \ E and every

v ∈ Sd−1
1 we have, using the fact that q /∈ Lψ′ for all ψ′ 6= ψ(q) (which follows from q /∈ E and

(7.13)):
∑

x∈Qρ(q,v)
f(x)−

∑

x∈Q′
ρ(q,v)

f(x)

=
∑

p∈P\{q}

(
f
(
(p − q)R(v)Dρ, ς(p)

)
−

∑

ψ∈Ψ
(p∈Lψ)

f
(
(p− q)R(v)Dρ, σ

ψ
))
.(7.27)

Set

A(q,v, ρ) := P ∩ (q + BdSD−1
ρ R(v)−1) \ {q}.

Note that for every p ∈ P \A(q,v, ρ) we have (p−q)R(v)Dρ /∈ BdS, so that the corresponding
term in (7.27) vanishes. Also for every p /∈ E we have p /∈ Lψ′ for all ψ′ 6= ψ(p) (cf. (7.13)),
which implies that the corresponding term in (7.27) is bounded in absolute value by d(ς(p)),
where the function d : Σ → R≥0 is defined by

d(ψ, ω) = sup{|f(x, (ψ, ω)) − f(x, σψ)| : x ∈ Rd} (ψ, ω) ∈ Σ.(7.28)

Hence for every q ∈ P \ E and v ∈ Sd−1
1 such that E ∩A(q,v, ρ) = ∅, we have

∣∣∣∣
∑

x∈Qρ(q,v)
f(x)−

∑

x∈Q′
ρ(q,v)

f(x)

∣∣∣∣ ≤
∑

p∈A(q,v,ρ)
d(ς(p)).(7.29)

Now let ε′ > 0 be given. Take K ∈ Z+ and ρ0 ∈ (0, 1) such that

λ({v ∈ Sd−1
1 : #((P − q)R(v)Dρ ∩ BdS) > K}) < ε′(7.30)

for all ρ ∈ (0, ρ0) and all q ∈ PT (ρ). This is possible by Lemma 7.8. Next set

Z := {p ∈ P : d(ς(p)) ≥ ε/K}.
We claim that the set Z has density zero. To prove this, set

Uψ := {ω ∈ Ω : (ψ, ω) ∈ Σ and d(ψ, ω) < ε/K},
so that Z ⊂ ∪ψ∈Ψ{q ∈ Lψ : ω(q) /∈ Uψ}. Note that {ψ} × Uψ is an open neighbourhood of

σψ in Σ, since the function d is continuous. Hence as in the proof of Proposition 7.5 (making

crucial use of Proposition 5.13), the set {q ∈ Lψ : ω(q) /∈ Uψ} has density zero. Hence also Z
has density zero, as claimed.

It follows that also E ∪ Z has density zero, and so by Lemma 7.9, after possibly shrinking
ρ0, we have

λ({v ∈ Sd−1
1 : (E ∪ Z) ∩A(q,v, ρ) 6= ∅}) < ε′(7.31)
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for all ρ ∈ (0, ρ0) and all q ∈ PT (ρ). Now note that for any q ∈ P \ E and for any v ∈ Sd−1
1

which belongs to neither of the two sets in (7.30) and (7.31), the set A(q,v, ρ) has cardinality
at most K and is disjoint from E ∪ Z; therefore the inequality in (7.29) holds, and the right
hand side in that inequality is ≤ ε. It follows that for all ρ ∈ (0, ρ0) and q ∈ PT (ρ), the
measure in (7.26) is less than 2ε′. �

Proof of Theorem 7.6. Let T ≥ 1 and λ ∈ Pac(S
d−1
1 ) be given. Let ρ1, ρ2 . . . be an arbitrary

sequence in (0, 1) with ρn → 0, and let qn ∈ PT (ρn) for n = 1, 2, . . . be such that the limit
ς = (ψ, ω) := limn→∞ ς(qn) ∈ Σ exists. By [21, Lemma 2.1.2], it suffices to prove that in this
situation we have

µ
(λ)
qn,ρn

w−−→ µς as n→ ∞.(7.32)

Since ς(qn) → (ψ, ω) implies that ψ(qn) = ψ for all large n, we may without loss of generality
assume that ψ(qn) = ψ for all n. This means that qn ∈ Lψ for all n.

For any q ∈ P, ρ > 0 and λ ∈ P (Sd−1
1 ), let ν

(λ)
q,ρ ∈ P (X) be the distribution of Γg

(q)
0 ϕ(R(v)Dρ)

for v random in (Sd−1
1 , λ). As a first step, let us note that (7.14) implies that

ν
(λ)
qn,ρn

w−−→ ω as n→ ∞.(7.33)

Indeed, let f ∈ Cb(X) be given. Then by (7.14) we have ν
(λ)
qn,ρn(f)− ω(qn)(f) → 0 as n → ∞.

Also ς(qn) → (ψ, ω) implies that ω
(qn)
j

w−−→ ωj in P (Tdj )
′ for each j ∈ {1, . . . , N}; hence by

Lemma 4.6 and [1, Thm. 2.8(ii)], we have ω(qn)
w−−→ ω in P (X), and thus ω(qn)(f) → ω(f).

Hence ν
(λ)
qn,ρn(f) → ω(f), and (7.33) is proved.

Next, for each n we have Γg
(qn)
0 ∈ Xψ by Lemma 6.1, and hence ν

(λ)
qn,ρn(X

ψ) = 1; also

ω(Xψ) = 1 since (ψ, ω) ∈ Σ; cf. (6.15). Hence all ν
(λ)
qn,ρn as well as ω may be regarded as

elements in P (Xψ), and (7.33) implies that ν
(λ)
qn,ρn

w−−→ ω also in P (Xψ) [13, Lemma 4.26].
Hence by the continuous mapping theorem,

Jψ ∗ ν
(λ)
qn,ρn

w−−→ Jψ ∗ω as n→ ∞.(7.34)

Here Jψ ∗ω = µς , by (6.14). Now let f ∈ Cc(X ) be given, and let πf be the continuous map
from Ns(X ) to R given by πf (Q) =

∑
x∈Q f(x). Then (7.34) implies that

πf∗ Jψ ∗ ν
(λ)
qn,ρn

w−−→ πf∗ µς as n→ ∞.(7.35)

But note that for each q ∈ P, by Lemma 7.10, Jψ(q)∗ ν
(λ)
q,ρ is the distribution of Q′

ρ(q,v)

in Ns(X ) for v random in (Sd−1
1 , λ). Hence πf∗ Jψ ∗ ν

(λ)
qn,ρn is the distribution of the real-

valued random variable F ′(v) =
∑

x∈Q′
ρn

(qn,v)
f(x), for v random in (Sd−1

1 , λ). Similarly,

πf∗µ
(λ)
qn,ρn is the distribution of the real-valued random variable F (v) =

∑
x∈Qρn(qn,v) f(x).

By Lemma 7.11, |F (v)− F ′(v)| converges in probability to 0. Hence by [1, Thm. 3.1], (7.35)
implies that

πf∗ µ
(λ)
qn,ρn

w−−→ πf∗ µς as n→ ∞.(7.36)

We have proved that this holds for any given f ∈ Cc(X ). By [13, Thm. 16.16(ii)⇒(i)], this
implies that (7.32) holds. �

7.4. Verification of [P3], and the macroscopic limit.

Proposition 7.12. [P3] holds, i.e. for every bounded Borel set B ⊂ Rd we have

lim
ξ→∞

lim sup
ρ→0

[vol×σ]
({

(q,v) ∈ B × Sd−1
1 : Qρ(ρ

1−dq,v) ∩ (Zξ × Σ) = ∅
})

= 0.(7.37)
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Proof. Using the fact that P contains at least one grid, the proposition follows from the
existence of a limit distribution on R>0 (with zero mass at +∞) for the macroscopic free path
length in the Boltzmann-Grad limit of the Lorentz gas on a lattice scatterer configuration,
[16, Theorem 1.2]. Indeed, fix an arbitrary ψ ∈ Ψ. For any ρ > 0 and q ∈ Rd, v ∈ Sd−1

1 , set

Q′
ρ(q,v) = (Lψ − q)R(v)Dρ (⊂ Rd).

Comparing with the definition of Qρ(q,v) in (2.5), (2.4), and using Lψ ⊂ P and 0 /∈ Zξ, one
verifies that for any ξ > 0, Qρ(q,v) ∩ (Zξ × Σ) = ∅ forces Q′

ρ(q,v) ∩ Zξ = ∅. Hence to prove
the proposition it suffices to prove that

lim
ξ→∞

lim sup
ρ→0

[vol×σ]
({

(q,v) ∈ B × Sd−1
1 : Q′

ρ(ρ
1−dq,v) ∩ Zξ = ∅

})
= 0.(7.38)

By a simple translation and rescaling argument we may reduce to the case when Lψ has
covolume one and is a lattice, and then (7.38) is a simple consequence of [16, Theorem 1.2]. �

In [21, Sec. 2.5], the condition [P3] is used to prove, for an arbitrary fixed point set P ⊂ Rd

satisfying the hypotheses in Section 2, the existence of a canonical measure µg ∈ P (Ns(X )) 12

giving the limit distribution of Qρ(q,v) in the case of a macroscopic initial condition. That

is, µg equals the limit distribution of Qρ(ρ
1−dq,v) for (q,v) random in (T1(Rd),Λ), for any

fixed probability measure Λ ∈ P (T1(Rd)) absolutely continuous with respect to the Liouville
measure vol×σ [21, Theorem 2.19]. This measure µg also appears in the definition of the
transition kernel for generic initial data, kg; see Section 10.1 below.

In our case of P being a finite union of grids as in (3.5), the macroscopic limit measure µg

can be explicitly defined as follows: Set

ωg :=
(
ωg
1 , . . . , ω

g
N

)
∈ Ω,(7.39)

and then let

µg = J∗(ωg),(7.40)

with J : X → Ns(X ) being the map in (6.12).
We next state without proof a limit result which significantly strengthens the above men-

tioned [21, Theorem 2.19] for our special class of P. For any Λ ∈ P (T1(Rd)), s > 0 and

ρ ∈ (0, 1), let µ
(Λ,s)
ρ be the distribution of Qρ(sq,v) for (q,v) random in (T1(Rd),Λ).

Theorem 7.13. For any Λ ∈ P (T1(Rd)) which is absolutely continuous with respect to Liou-

ville measure, and any s0 > 0, we have µ
(Λ,s)
ρ

w−−→ µg as ρ→ 0, uniformly over all s ≥ s0.

Note that [21, Theorem 2.19] corresponds to the particular choice s = ρ1−d in Theorem 7.13.
The formulation of Theorem 7.13 is inspired by [19, Theorem 1.1].

As mentioned, we will not give the proof of Theorem 7.13 in the present paper. However we
remark that Theorem 7.13 can be deduced, by similar arguments as in Section 7.3, from the
following equidistribution result in the homogeneous space X, which is a kind of macroscopic
analogue of Theorem 4.2.

Theorem 7.14. For any Λ ∈ P (T1(Rd)) which is absolutely continuous with respect to Liou-
ville measure, and any f ∈ Cb(X) and s0 > 0, we have

∫

T1(Rd)
f
(
Γg

(sq)
0 ϕ(R(v)Dρ)

)
dΛ(q,v) →

∫

X
f dωg(7.41)

as ρ→ 0, uniformly over all s ≥ s0.

We will not give the proof of Theorem 7.14 either; however we note that it is to a large
extent similar to the proof of Theorem 7.7 which we give in Section 9 below.

12In [21] this measure is called “µ”.
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We end this section by pointing out a couple of invariance properties of µg. By the same
argument as in the proof of Lemma 7.1, the measure ωg on X is ϕ(SLd(R))-invariant, and thus
µg is invariant under the action of SLd(R) on Ns(X ). We also have:

Lemma 7.15. The measure µg is invariant under the action of Rd on Ns(X ) by translations.

Proof. This is part of [21, Prop. 2.24]; however let us note that it also follows directly from
the explicit definition in (7.40). Indeed, it follows from (5.12) that Rc̃j ⊂ Lj ; hence c̃jv ∈ Ldj
for all v ∈ Rd (where c̃jv is the matrix product of c̃j ∈ Mrj×1(R) and v ∈ M1×d(R)), and
so ωg

j is invariant under the translation X 7→ X + c̃jv on Tdj , for every v ∈ Rd. This implies

that the measure ω̃g
j on Gj (see (4.9)) is invariant under g 7→ g Ic̃jv for every v ∈ Rd, and

hence ωg
j is invariant under the translation x 7→ x Ic̃jv on Xj. Now the lemma follows from

the definition of µg in (7.40) by using the formula

J
(
x1 Ic̃1v, . . . , xN Ic̃Nv

)
= J(x1, . . . , xN ) + v (∀(x1, . . . , xN ) ∈ X, v ∈ Rd),

which is immediate from (5.1) and (6.12). �

8. Application of the classification of invariant measures of unipotent flows

In this section we will state and prove a result, Theorem 8.1, on the equidistribution of
certain expanding unipotent orbits in a slightly generalized version of the homogeneous space
X introduced in Section 3.2. This theorem is tailor-made to serve as the main ingredient in
the proof of Theorem 7.7 which we give in Section 9 below; in particular, it will be crucial for
us to have a certain uniformity with respect to the position of the initial point in the torus
fiber (that is, uniformity with respect to the variable “V ” in Theorem 8.1 below). The proof
of Theorem 8.1 builds on Ratner’s classification of ergodic measures invariant under unipotent
flows [25] and further characterization results by Mozes and Shah [23]. We also remark that
if it were not for the uniformity requirement, Theorem 8.1 could be deduced as a consequence
of Shah [27, Theorem 1.4].

We start by introducing some notation. We stress that in this Section 8, some of our

notation (for example, “X”, “G”, “Γ ”, “Γj” and “M̃”) will be used in a slightly different and
more general way than in all the other sections of the paper. The reason is that the results
of the present section will be applied, in Section 9, to certain homogeneous submanifolds of
our original space “X” (see the proofs of Theorems 9.1 and 9.2). To start with, similarly as
before, we set

G = G1 × · · · ×GN = Sr1(R)× · · · × SrN (R);

however now we allow r1, . . . , rN to be arbitrary (fixed) non-negative integers. That is, unlike
all the other sections, we allow one or several of the rjs to be zero, with the natural convention
that S0(R) := SLd(R). Next, we fix Γ′

1, . . . ,Γ
′
N to be arbitrary, fixed, finite index subgroups

of SLd(Z), and set

Γj = Γ′
j ⋉Mrj×d(Z) =

{
(M,U) ∈ Srj(Z) : M ∈ Γ′

j

}
(j = 1, . . . , N)(8.1)

(if rj = 0, this should be understood as Γj = Γ′
j), and

Γ = Γ1 × · · · × ΓN .

Then, as before, we set Xj := Γj\Gj and
X := Γ\G = X1 × · · · ×XN ,

and write pj : G→ Srj (R) and p̃j : X → Xj (j = 1, . . . , N) for the projection maps.
Recall that we consider SLd(R) to be an embedded subgroup of each group Gj , through

M 7→ (M, 0). Now we also set G′ := SLd(R)
N ; this is an embedded subgroup of G. We also

set

Γ′ := Γ′
1 × · · · × Γ′

N ⊂ G′
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and

X′ = Γ′\G′.

Recall that we have a projection morphism ι : Gj → SLd(R) for each j, and ι induces a
projection map

ι̃ : Xj → Γ′
j\SLd(R), ι̃(Γjg) = Γ′

j ι(g) (g ∈ Gj),(8.2)

generalizing (3.22). In the present section we will also write ι for the product morphism from
G to G′, and write ι̃ for the induced projection map from X to X′.

As before we set

Tj := Rrj/Zrj and Tdj := Tj × · · · × Tj︸ ︷︷ ︸
d copies

;

if rj = 0 this should be understood as Tj = Tdj = {0}, the trivial group. The definition in

(3.24) of the embedding x : Tdj → Xj carries over unchanged to our present setting, although

our “Xj” is now more general. (If rj = 0 then we set x({0}) := Γj ∈ Xj.) We now also set

T̃ := Td1 × Td2 × · · · × TdN ,(8.3)

and let p̃j : T̃ → Tdj (j = 1, . . . , N) be the projection maps; and we will write “x” also for the

map T̃ → X which is the product of the maps x : Tdj → Xj. The fact that both “x” and “p̃j”
now denote more than one map should not cause any confusion; in particular note that with

this abuse of notation we have x ◦ p̃j = p̃j ◦ x : T̃ → Xj for each j.
We now come to the statement of the main result of the present section, Theorem 8.1. It

concerns the equidistribution of pieces of expanding unipotent orbits in X of the form
{
x(V )M̃ ϕ(n−(u)Dρ) : u ∈ Rd−1

}
,(8.4)

where V ∈ T̃; M̃ is an arbitrary element in G′ not belonging to the subset

DS :=
⋃

i<j

{
(M1, . . . ,MN ) ∈ G′ : MiM

−1
j ∈ S

}
,(8.5)

with S as in (3.8); ϕ is the diagonal embedding of SLd(R) in G; and finally

n−(u) :=

(
1 u

0 Id−1

)
∈ SLd(R)(8.6)

(block diagonal notation). The equidistribution is with respect to the G-invariant probability
measure on X, which we call µ.

In order for orbits of the form (8.4) to equidistribute in (X, µ) as ρ → 0, we have to

assume that V avoids a certain ’singular’ subset ∆
(η)
k of T̃, which we now introduce. For each

j ∈ {1, . . . , N} with rj 6= 0, let us write πj for the projection from (Rrj)d to Tdj (it was called

“π” in (3.23)). Then for any q ∈ Z+ and m ∈ Zrj \ {0}, we set

∆j,q,m := πj((q
−1Zrj +m⊥)d) ⊂ Tdj ,(8.7)

where m⊥ is the orthogonal complement of m in Rrj . Also, for any k ∈ Z+, we set

∆j,k :=
k⋃

q=1

⋃

m∈Zrj
0<‖m‖≤k

∆j,q,m.(8.8)

Note that ∆j,q,m and ∆j,k are only defined when rj 6= 0, in which case they are both closed

regular submanifolds of Tdj of codimension d. Next, for any η > 0 we define ∆
(η)
j,k to be the open
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η-neighbourhood of ∆j,k in Tdj , with respect to the metric induced by the standard Euclidean

metric on Mrj×d(R) = (Rrj)d. Finally, we set

∆
(η)
k =

N⋃

j=1
(rj 6=0)

p̃ −1
j

(
∆

(η)
j,k

)
⊂ T̃.(8.9)

Let Pac(R
d−1) be the set of Borel probability measures on Rd−1 which are absolutely con-

tinuous with respect to Lebesgue measure.

Theorem 8.1. Let f ∈ Cb(X) and ε > 0 be given. Then there exists some k ∈ Z+ such that

for every λ ∈ Pac(R
d−1), η > 0 and M̃ ∈ G′ \DS, there exists some ρ0 ∈ (0, 1) such that
∣∣∣∣
∫

Rd−1

f
(
x(V )M̃ϕ(n−(u)Dρ)

)
dλ(u)−

∫

X
f dµ

∣∣∣∣ < ε(8.10)

for all ρ ∈ (0, ρ0) and all V ∈ T̃ \∆(η)
k .

The rest of this section is devoted to the proof of Theorem 8.1.

Definition 8.1. For each k ∈ Z+, we let Pk be the set of all measures ν ∈ P (X) which can be
obtained as a weak limit of a sequence of probability measures ν1, ν2, . . . given by

νm : f 7→
∫

Rd−1

f
(
x(Vm)M̃ϕ(n−(u)Dρm)

)
dλ(u) (f ∈ Cb(X)),(8.11)

for some λ ∈ Pac(R
d−1), M̃ ∈ G′ \DS , real numbers ρ1 > ρ2 > · · · → 0, and points V1, V2, . . .

in T̃ such that [∃η > 0: ∀m ∈ Z+: Vm /∈ ∆
(η)
k ].

Note that P1 ⊃ P2 ⊃ · · · , since ∆
(η)
k ⊂ ∆

(η)
k′ whenever k < k′.

Throughout the rest of this section, we will let W denote the following subgroup of G:

W :=
{
ϕ(n−(w)) : w ∈ Rd−1

}
.

Lemma 8.2. Every ν ∈ Pk is W -invariant.

Proof. This is a (very) standard consequence of the fact that for ρ < 1, the action (from the
right) of ϕ(Dρ) on X expands any W -orbit. The details are as follows. Let ν ∈ Pk be given.

Then the task is to prove that for any given w ∈ Rd−1 and f ∈ Cb(X) we have ν(f◦Rw) = ν(f),

where Rw : X → X denotes right multiplication by ϕ(n−(w)). Choose λ, M̃ , (ρm), (Vm) as
in Definition 8.1, so that ν is the weak limit of the measures νm given by (8.11). Using the
relation Dρ n−(w) = n−(ρdw)Dρ, and writing λ′ ∈ L1(Rd−1) for the density of λ with respect
to Lebesgue measure, we now have:

νm(f ◦Rw) =

∫

Rd−1

f
(
x(Vm)M̃ϕ(n−(u)Dρm)

)
λ′(u− ρdmw) du.

Hence |νm(f ◦Rw)− νm(f)| ≤ ‖f‖L∞ · ‖τρdmwλ
′ −λ′‖L1(Rd−1), and so by [8, Prop. 8.5] we have

limm→∞ νm(f ◦Rw) = limm→∞ νm(f), that is, ν(f ◦Rw) = ν(f). �

Recall that we write ι̃ for the natural projection map from X to X′; in particular µ̃ := ι̃∗ µ
is the unique G′-invariant probability measure on X′.

Lemma 8.3. Every ν ∈ Pk satisfies ι̃∗ ν = µ̃.

Proof. Let ν ∈ Pk be given, and let (νm) be a sequence as in Definition 8.1, tending weakly
to ν. For any f ∈ Cb(X

′) we have

νm(f ◦ ι̃) =
∫

Rd−1

f
(
ι̃
(
x(Vm)M̃ϕ(n−(u)Dρm)

))
dλ(u) =

∫

Rd−1

f
(
Γ′M̃ϕ(n−(u)Dρm)

)
dλ(u).
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This integral tends to µ̃(f) as m → ∞, by [20, Thm. 5] applied to the function g 7→ f(Γ′M̃g)

(which is left
∏N
j=1(M

−1
j Γ′

jMj)–invariant). On the other hand, by the definition of ν we have

νm(f ◦ ι̃) → ν(f ◦ ι̃) = (ι̃∗ ν)(f). Hence (ι̃∗ ν)(f) = µ̃(f). �

Recall that a subgroup U of G is said to be unipotent, if the linear automorphism Ad(u) of
the Lie algebra of G is unipotent for all u ∈ U . For any h ∈ G let us write Rh : X → X for
the map Γg 7→ Γgh. For any α ∈ P (X), let us define Hα to be the identity component of the
subgroup of G consisting of all g which preserve α;

Hα := {g ∈ G : Rg∗α = α}◦.(8.12)

This is a closed connected Lie subgroup of G. We let Q(X) be the set of all α ∈ P (X) such
that the group generated by all unipotent one-parameter subgroups of G contained in Hα acts
ergodically on X with respect to α. (Note that this definition of Q(X) is equivalent to the one
in [23, p. 150], although our Hα equals “Λ(α)◦ ” in the notation of [23].)

A key ingredient in our proof of Theorem 8.1 will be Ratner’s classification of invariant
measures of unipotent flows, [25, Thm. 1]. Applied in our setting, this result says that for
every α ∈ Q(X), there is some gα ∈ G such that α(Γ\ΓgαHα) = 1. Note that in this situation,
Γ∩gαHαg

−1
α is a lattice in gαHαg

−1
α , and the support of α equals Γ\ΓgαHα, which is a smooth

embedded submanifold of X.

Lemma 8.4. For any α ∈ Q(X) such that ι̃∗ α = µ̃, we have ι(Hα) = G′.

Proof. (This generalizes [6, Lemma 6], and the proof is the same.) Using the fact that the
map ι : X → X′ has compact fibers, we have ι̃(suppα) = supp ι̃∗α = supp µ̃ = X′. But
suppα = Γ\ΓgαHα. Hence Γ′ι(gα)ι(Hα) = G′, and thus ι(Hα) = G′. �

Next, using basic Lie group and Lie algebra theory, we will derive a completely explicit
description of any Lie subgroup Hα as in Lemma 8.4; cf. Lemma 8.6 below.

For any r ∈ Z≥0, let sr(R) be the Lie algebra of Sr(R), which we represent as the set of
pairs (A,X) ∈ sld(R)×Mr×d(R), with the Lie bracket given by

[(A1,X1), (A2,X2)] = ([A1, A2],X1A2 −X2A1).(8.13)

(For r = 0 we have s0(R) = sld(R), and in (8.13) we should view M0×d(R) as a singleton set
containing only the “empty matrix”.) Just as for the Lie groups, we always consider sld(R)
to be embedded in sr(R) through A 7→ (A, 0). We also set g = sr1(R) ⊕ · · · ⊕ srN (R) and
g′ = sld(R)

N ; these are the Lie algebras of G and of G′, respectively. Next, as in (4.1), given
any linear subspace L of Rr, we let SL(R) be the closed connected subgroup of Sr(R) given by

SL(R) := SLd(R)⋉ Ld =
{
(M,U) ∈ Sr(R) : U ∈ Ld

}
(8.14)

Recall here that via our identification Mr×d(R) = (Rr)d, Ld is the set of matrices in Mr×d(R)
all of whose column vectors lie in L. For any matrix X ∈ Mr×d(R), we also write:

SXL (R) := IX SL(R) I
−1
X .(8.15)

(For r = 0 we have Rr = {0}, the only linear subspace L ⊂ R0 is L = R0, and the only matrix
in M0×d(R) is X = the empty matrix, and for these L,X we have SL(R) = SXL (R) = SLd(R).)
We write sL(R) and sXL (R) for the Lie subalgebras of sr(R) corresponding to SL(R) and SXL (R),
respectively. Thus in particular,

sL(R) = {(A,Y ) ∈ sr(R) : Y ∈ Ld}.(8.16)

Recall that we write ι for the natural projection Sr(R) → SLd(R); hence dι is the natural
projection sr(R) → sld(R).

Lemma 8.5. If h is a Lie subalgebra of sr(R) satisfying dι(h) = sld(R), then there exist a
linear subspace L ⊂ Rr and a matrix X ∈ Mr×d(R) such that h = sXL (R).
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Proof. This is a Lie algebra version of [6, Lemma 7], and essentially the same proof works.
Therefore we here give a rather terse presentation, referring to the proof in [6] for further
details. Of course if r = 0 then dι(h) = sld(R) implies h = sld(R) and the lemma is trivial;
hence in the following we may assume r > 0.

Set L′ = {X ∈ Mr×d(R) : (0,X) ∈ h}; this is a linear subspace of Mr×d(R). Using
dι(h) = sld(R) it follows that XA ∈ L′ for all X ∈ L′ and all A ∈ sld(R); and this in turn
implies that L′ must be of the form L′ = Ld for some linear subspace L ⊂ Rr. Let L⊥ be
the orthogonal complement of L in Rr; then Mr×d(R) = Ld ⊕ (L⊥)d, and for each A ∈ sld(R)
there exists a unique Y ∈ (L⊥)d such that (A,Y ) ∈ h. This implies that the Lie subalgebra
sL⊥(R) ∩ h is a Levi subalgebra of sL⊥(R), and so by Malcev’s Theorem [11, Ch. III.9], there
exists some X ∈ (L⊥)d such that sL⊥(R) ∩ h =

(
Ad IX

)
(sld(R)). But h is the vector space

direct sum of sL⊥(R) ∩ h and {(0, U) : U ∈ Ld}; hence in fact h = sXL (R). �

Lemma 8.6. Assume that H is a connected Lie subgroup of G satisfying ι(H) = G′. Then
there exist linear subspaces Lj ⊂ Rrj and matrices Xj ∈ Mrj×d(R) such that

H = SX1
L1

(R)× · · · × SXNLN (R).(8.17)

Proof. Let h be the Lie subalgebra of g = sr1(R)×· · ·× srN (R) corresponding to H. It follows
from ι(H) = G′ that dι(h) = g′. Recall that pj : G→ Gj = Srj(R) denotes the projection onto
the jth factor. It follows from dι(h) = g′ that, for each j, the Lie subalgebra dpj(h) of srj (R)
satisfies dι(dpj(h)) = sld(R), and so by Lemma 8.5 there exist a linear subspace Lj ⊂ Rrj and
a matrix Xj ∈ Mrj×d(R) such that

dpj(h) = s
Xj
Lj

(R) (∀j ∈ {1, . . . , N}).(8.18)

This implies:

h ⊂ sX1
L1

(R)× · · · × sXNLN (R).(8.19)

We claim that the two sides of (8.19) are in fact equal. In order to prove this equality, it

suffices to prove that ϕj(s
Xj
Lj

(R)) ⊂ h for each j, where

ϕj : srj (R) → g

is the Lie group homomorphism mapping X to (0, · · · ,X, · · · , 0) (0s in all positions except
the jth). Let j be fixed, and set

l = {Z ∈ s
Xj
Lj

(R) : ϕj(Z) ∈ h}.

Using (8.18) it follows that l is an ideal of s
Xj
Lj

(R). Hence also dι(l) is an ideal of sld(R). But

given any two elements Y, Y ′ ∈ sld(R), it follows from dι(h) = g′ that there exist Z,Z ′ ∈ h

such that dι(dpj(Z)) = Y , dι(dpj(Z
′)) = Y ′, and dι(dpi(Z)) = dι(dpi(Z

′)) = 0 for all i 6= j.
Then also [Z,Z ′] ∈ h, and one computes that [Z,Z ′] = ϕj(([Y, Y

′], C)) for some C ∈ Mrj×d(R)

(and then in fact ([Y, Y ′], C) ∈ s
Xj
Lj

, because of (8.19)). Hence we conclude that [Y, Y ′] ∈ dι(l),

for all Y, Y ′ ∈ sld(R). Since sld(R) is a simple Lie algebra, it follows that dι(l) = sld(R).
Next fix some Y ∈ sld(R) which is invertible as a d × d matrix. Because of dι(l) = sld(R)

there is some C ∈ Ldj such that ϕj((Y,C)) ∈ h. Using also (8.18) it follows that for any

C ′ ∈ Ldj there exists some Z ∈ h satisfying pj(Z) = (Y,C ′). Then h also contains the Lie

product [ϕj((Y,C)), Z] = ϕj([(Y,C), (Y,C ′)]) = ϕj((0, (C −C ′)Y )). Hence (0, (C−C ′)Y ) ∈ l.

Since C ′ is an arbitrary element in Ldj and Y is invertible, it follows that (0, C) ∈ l for all

C ∈ Ldj . Combining this fact with dι(l) = sld(R), we finally conclude that l = s
Xj
Lj

(R). Hence

ϕ(s
Xj
Lj

(R)) ⊂ h. We have proved that this holds for all j; hence we finally conclude:

h = sX1
L1

(R)× · · · × s
XN
LN

(R),(8.20)

and so (8.17) holds. �
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Lemma 8.7. Let H be as in (8.17), and assume that Γ ∩H is a lattice in H. Then for each
j, Lj is a rational subspace of Rrj , and there exist Yj ∈ Mrj×d(Q) such that

H = SY1L1
(R)× · · · × SYNLN (R).(8.21)

Proof. The assumption implies that Γj ∩ S
Xj
Lj

(R) is a lattice in S
Xj
Lj

(R), for each j. As in [21,

(5.58), (5.59)], this implies that Lj ∩ Zrj is a lattice in Lj, i.e. Lj is a rational subspace of

Rrj , and furthermore Xj ∈ Mrj×d(Q) + Ldj . Choosing now any Yj ∈ Mrj×d(Q) such that

Xj ∈ Yj + Ldj , we have S
Xj
Lj

(R) = S
Yj
Lj
(R). Carrying this out for each j, we obtain (8.21). �

The following very basic observation will also be useful for us:

Lemma 8.8. Let L and L′ be linear subspaces of Rr, and X,X ′ ∈ Mr×d(R). Then SX
′

L′ (R) ⊂
SXL (R) holds if and only if L′ ⊂ L and X ′ −X ∈ Ld.

Proof. Let Y := X ′ −X. Then SX
′

L′ (R) ⊂ SXL (R) holds if and only if IY (M,U) I−1
Y ∈ SL(R) for

all (M,U) ∈ SL′(R), that is, U +Y (M − I) ∈ Ld for all M ∈ SLd(R) and all U ∈ L′d. Assume

that this holds. Then, considering first only M = I it follows that L′ ⊂ L, thus L′d ⊂ Ld, and
using this fact it follows that we must have Y (M − I) ∈ Ld for all M ∈ SLd(R). Considering
only the first column ofM−I we conclude that Y a ∈ L for all column vectors a ∈ Rd\{−e1},
and this in turn implies Y ∈ Ld, i.e. X ′ −X ∈ Ld. The converse direction is immediate. �

In the next lemma we derive an important consequence of the condition “[∃η > 0: ∀m ∈ Z+:

Vm /∈ ∆
(η)
k ]” in Definition 8.1. Given any j ∈ {1, . . . , N} with rj 6= 0 and m ∈ Zrj \ {0}, we

set:

Kj,m :=
{
IB A IY : B ∈ ‖m‖−2 Mrj×d(Z), A ∈ SLd(R), Y ∈ m⊥ × (Rrj )d−1

}
.(8.22)

Note that Kj,m is left Γj-invariant Fσ set in Srj(R); hence p
−1
j (Kj,m) is a left Γ-invariant Fσ

set in G, and π(p−1
j (Kj,m)) is an Fσ set in X.

Lemma 8.9. For any k ∈ Z+, ν ∈ Pk, j ∈ {1, . . . , N} with rj 6= 0 and m ∈ Zrj \ {0}, if
‖m‖2 ≤ k then ν(π(p−1

j (Kj,m))) = 0.

Proof. (This is similar to [7, pp. 114–115] and [6, Lemma 9].) Let k, ν, j,m be given as in
the statement of the lemma. Set q := ‖m‖2 (thus 0 < q ≤ k). Let us fix a vector b ∈ Zrj

satisfying b ·m = gcd(m1, . . . ,mrj ). Then we have

Zrj = (m⊥ ∩ Zrj)⊕ Zb.(8.23)

Let pb : Rrj → R be the linear map such that v − pb(v)b ∈ m⊥ for all v ∈ Rrj . For any
matrix Z ∈ Mrj×e(R), we write Z1, . . . , Ze ∈ Rrj for its column vectors (in order), and we
define pb(Z) = (pb(Z1), . . . , pb(Ze)), i.e. pb(Z) is the vector in Re obtained by applying pb
individually to each column of Z. Furthermore, for any matrix Z ∈ Mrj×d(R) we will write
Z ′ = (Z2, . . . , Zd) for the matrix in Mrj×(d−1)(R) formed by removing the first column vector

from Z. For any T > 0 and δ > 0 we now introduce the following subsets of Mrj×d(R):

ΩT := {Z ∈ Mrj×d(R) : pb(Z1) = 0, ‖pb(Z ′)‖ < T};
ΩT,δ := {Z ∈ Mrj×d(R) : |pb(Z1)| < δ, ‖pb(Z ′)‖ < T}.

We also introduce the following subsets of Srj(R):

KT =
{
IB A IY : B ∈ q−1Mrj×d(Z), A ∈ SLd(R), Y ∈ ΩT

}

and

KT,δ =
{
IB A IY : B ∈ q−1Mrj×d(Z), A ∈ SLd(R), Y ∈ ΩT,δ

}
.

Note that both KT and KT,δ are left Γj-invariant; also KT,δ is open; hence p−1
j (KT,δ) is an

open subset of G, and π(p−1
j (KT,δ)) is an open subset of X.
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Now our goal is to prove that for any given η > 0, λ ∈ Pac(R
d−1), M̃ = (M1, . . . ,MN ) ∈

G′ \DS , real numbers ρ1 > ρ2 > · · · → 0, and points V1, V2, . . . in T̃ \∆(η)
k , if νm ∈ P (X) is

defined as in (8.11), then we have:

∀T, ε > 0 : ∃δ,m0 > 0 : ∀m ≥ m0 : νm(π(p
−1
j (KT,δ))) < ε.(8.24)

This will complete the proof of Lemma 8.9. Indeed, if ν is any weak limit of ν1, ν2, . . ., then
(8.24) together with the Portmanteau Theorem implies that for any T, ε > 0 there exists
δ > 0 such that ν(π(p−1

j (KT,δ))) ≤ ε. This forces ν(π(p−1
j (KT ))) = 0 for all T > 0, and so

ν(π(p−1
j (Kj,m))) = 0, i.e. the lemma is proved.

Let us note that it suffices to prove (8.24) for special choices of λ. Indeed, since Cc(R
d−1)

is dense in L1(Rd−1), it suffices to prove (8.24) for measures λ ∈ Pac(R
d−1) of the form

dλ(x) = λ′(x) dx with λ′ ∈ Cc(R
d−1). Next, using the fact that any such function λ′ is

bounded, it follows that it actually suffices to prove (8.24) when λ = vol
∣∣
Bd−1
R

, i.e. Lebesgue

measure restricted to a ball Bd−1
R ,13 with R > 1 arbitrary and fixed. Hence from now on we

assume that λ is of this form.
Let us write Vm = (Vm,1, . . . , Vm,N ) with Vm,j ∈ Tdj . Then for any T, δ,m,

νm(π(p
−1
j (KT,δ))) = vol

({
u ∈ Bd−1

R : x(Vm,j)Mjn−(u)Dρm ∈ π(KT,δ)
})
.(8.25)

Take Um,j ∈ Mrj×d(R) with π(Um,j) = Vm,j. Since KT,δ is Γj-invariant, the condition
x(Vm,j)Mjn−(u)Dρm ∈ π(KT,δ) is equivalent with IUm,j Mjn−(u)Dρm ∈ KT,δ, which in turn
is equivalent with

(
Um,j − q−1Mrj×d(Z)

)
Mjn−(u)Dρm

⋂
ΩT,δ 6= ∅.(8.26)

But for any Z ∈ Mrj×d(R) the condition Zn−(u)Dρm ∈ ΩT,δ holds if and only if the vector z :=

pb(Z) satisfies |z1| < δρ1−dm and ‖z1u+(z2, . . . , zd)‖ < Tρm. We also have pb(AMj) = pb(A)Mj

for all A ∈ Mrj×d(R); furthermore pb(Z
rj) = Z, by (8.23), and thus pb(Mrj×d(Z)) = Zd;

therefore
{
pb(Z) : Z ∈ (Um,j − q−1Mrj×d(Z))Mj

}
=
(
pb(Um,j) + q−1Zd

)
Mj =: Lm.(8.27)

Note that this set Lm is a grid in Rd. It now follows that the measure in (8.25) equals

vol
({

u ∈ Bd−1
R :

[
∃z ∈ Lm : |z1| < δρ1−dm and ‖z1u+ (z2, . . . , zd)‖ < Tρm

]})

≤
∑

z∈Lm
(|z1|<δρ1−dm )

vol
({

u ∈ Bd−1
R : ‖z1u+ (z2, . . . , zd)‖ < Tρm

})
.(8.28)

Recall that we are assuming Vm /∈ ∆
(η)
k for all m; this implies that for all q′ ∈ {1, . . . , k}

and all n ∈ Zrj with 0 < ‖n‖ ≤ k, the point Vm,j in Tdj has distance ≥ η from the set ∆j,q′,n,

and therefore Um,j has distance ≥ η from the set (q′−1Zrj + n⊥)d in in Mrj×d(R) = (Rrj )d.

In particular, Um,j has distance ≥ η from (q−1Zrj +m⊥)d, and this is seen to be equivalent

to the statement that ‖pb(Um,j)− q−1a‖ ≥ ‖m‖
gcd(m)η for all a ∈ Zrj . Combining this with the

definition of Lm in (8.27), it follows that there exists a constant η′ > 0, independent of m,
such that

∀m ∈ Z+ : ∀z ∈ Lm : ‖z‖ ≥ η′.(8.29)

Now let T > 0 be given, and keep m ∈ Z+ so large that Tρm < η′/6. Consider any vector
z ∈ Lm which gives a non-zero contribution in the sum in (8.28). This means that there

exists some u ∈ Bd−1
R such that ‖z1u+ (z2, . . . , zd)‖ < Tρm < η′/6, and thus ‖(z2, . . . , zd)‖ <

η′/6+R|z1|. If R|z1| ≤ η′/3 then it would follow that ‖z‖ < η′, which is impossible by (8.29).

13This measure should really be normalized by a factor vol(Bd−1
R )−1, to make λ and νm probability measures;

however such a normalizing factor clearly does not affect the validity of (8.24), and so we will ignore it.
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Hence we have proved that every z ∈ Lm which gives a non-zero contribution in the sum in
(8.28) satisfies

|z1| >
η′

3R
and ‖(z2, . . . , zd)‖ < 2R|z1|.(8.30)

Let Lm,0 be the set of all z ∈ Lm satisfying (8.30) and |z1| ≤ 2, and for each ℓ ∈ Z+ let Lm,ℓ
be the set of all z ∈ Lm satisfying (8.30) and 2ℓ < |z1| ≤ 2ℓ+1. Then the sum in (8.28) is

≤
∑

0≤ℓ<log2(δρ
1−d
m )

∑

z∈Lm,ℓ
vol(Bd−1

1 ) ·
(Tρm
|z1|

)d−1
.

But for every ℓ ≥ 0 and every z ∈ Lm we have

‖z‖ ≤ |z1|+ ‖(z2, . . . , zd)‖ < (1 + 2R)|z1| < 2ℓ+3R.

Recall also that each grid Lm is a translate of the fixed lattice q−1ZdMj . It follows that there
exists a constant C > 0 which is independent of m and ℓ (but which depends on R, q and Mj)

such that #Lm,ℓ < C2dℓ for all ℓ ≥ 0. It follows that our sum is

≤ C · vol(Bd−1
1 ) · (Tρm)d−1 ·

(( η′
3R

)1−d
+

∑

1≤ℓ<log2(δρ
1−d
m )

2ℓ
)
< C ′(ρd−1

m + δ
)
,

where C ′ is a constant which is independent of m or δ (but which depends on R,T, η′).
To sum up, we have proved that for any T, δ > 0, and all m ∈ Z+ so large that Tρm < η′/6,

we have νm(π(p
−1
j (KT,δ))) ≤ C ′(ρd−1

m + δ), with a constant C ′ which may depend on T , but

is independent of m and δ. This bound implies that (8.24) holds, and hence Lemma 8.9 is
proved. �

Lemma 8.10. Let j ∈ {1, . . . , N}, let L be a rational subspace of Rrj , L 6= Rrj (thus rj 6= 0),

and let X ∈ Mrj×d(Q). Then for any m ∈ Zrj ∩ L⊥ \ {0} satisfying XT m ∈ Zd, and any

Y ∈ Mrj×d(R) satisfying n−(R
d−1) ⊂ SX−Y

L (R), we have Γj S
X
L (R) IY ⊂ Kj,m.

Proof. Set X̃ = ‖m‖−2m (XT m)T ∈ ‖m‖−2 Mrj×d(Z), and note that X̃T m = XTm. Let

Y ∈ Mrj×d(R) be such that n−(Rd−1) ⊂ SX−Y
L (R). This implies that (Y −X)(n−(w)−I) ⊂ Ld

for all w ∈ Rd−1, which forces the first column of Y −X lies in L.
Now consider an arbitrary element in Γj S

X
L (R) IY . This element can be expressed as follows,

for some (γ,B) ∈ Γj and (A,U) ∈ SL(R):

(γ,B) IX(A,U) I−X IY =
(
γA, (B +X)A+ U + Y −X

)
= I

(B+X̃)γ−1 γA IW ,(8.31)

where W := (X − X̃)A + U + Y − X. Here (B + X̃)γ−1 ∈ ‖m‖−2 Mrj×d(Z). Furthermore,

X̃T m = XTm implies X−X̃ ∈ (m⊥)d and so (X−X̃)A ∈ (m⊥)d. Also U ∈ Ld ⊂ (m⊥)d, and
finally the first column of Y −X lies in L, hence in m⊥. It follows that the first column of W
lies in m⊥. Hence the element in (8.31) lies in Kj,m, and we have proved that Γj S

X
L (R) IY ⊂

Kj,m. �

Lemma 8.11. Given any f ∈ Cb(X) and ε > 0, there exists k ∈ Z+ such that
∣∣ν(f)−µ(f)

∣∣ < ε
holds for all ν ∈ Pk.

Proof. Assume the opposite; this means (since P1 ⊃ P2 ⊃ · · · ) that there exist some f ∈ Cb(X),
ε > 0, and measures νk ∈ Pk for k = 1, 2, . . ., such that |νk(f)− µ(f)| > ε for all k.

For each k, since νk is W -invariant by Lemma 8.2, we can apply ergodic decomposition to
νk: Let E be the set of ergodicW -invariant probability measures on X, provided with its usual
Borel σ-algebra; then there exists a unique Borel probability measure ωk on E such that

νk =

∫

E
αdωk(α).(8.32)
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Cf., e.g., [31, Theorem 4.4]. Note that (8.32) together with Lemma 8.3 implies µ̃ = ι̃∗νk =∫
E ι̃∗α dωk(α), and for each α ∈ E , ι̃∗α is an ergodic W -invariant measure on X′. Hence
in fact ι̃∗α = µ̃ for ωk-almost all α ∈ E , by uniqueness of the ergodic decomposition of µ̃.
Furthermore, for every j ∈ {1, . . . , N} with rj 6= 0 and every m ∈ Zrj with 0 < ‖m‖ ≤
k, we have

∫
E α(π(p

−1
j (Kj,m))) dωk(α) = νk(π(p

−1
j (Kj,m))) = 0, by Lemma 8.9, and hence

α(π(p−1
j (Kj,m))) = 0 for ωk-almost all α. Note also that

∫

E

∣∣α(f)− µ(f)
∣∣ dωk(α) ≥

∣∣∣∣
∫

E
α(f) dPνk (α)− µ(f)

∣∣∣∣ =
∣∣νk(f)− µ(f)

∣∣ > ε,

and hence the set {α ∈ E : |α(f)−µ(f)| > ε} must have positive measure with respect to ωk.
It follows from the above discussion that for each k ∈ Z+, there must exist some αk ∈ E

satisfying ι̃∗αk = µ̃ and |αk(f)− µ(f)| > ε, and

∀j ∈ {1, . . . , N} : rj 6= 0 ⇒ ∀m ∈ Zrj \ {0} : ‖m‖2 ≤ k ⇒ αk(π(p
−1
j (Kj,m))) = 0.(8.33)

We will assume that such measures α1, α2, . . . have now been fixed, and we will derive a
contradiction.

Clearly E ⊂ Q(X), and hence for each k, we can apply Ratner’s theorem, [25, Thm. 1],
to αk. As discussed below (8.12), this implies that there exists some element gk ∈ G such
that, writing Hk := Hαk , Γ ∩ gkHkg

−1
k is a lattice in gkHkg

−1
k and the support of αk equals

Γ\ΓgkHk. The validity of the previous statements remain intact when replacing gk by any
other element from the double coset ΓgkHk. Hence, since ι(Hk) = G′ by Lemma 8.4, after
right multiplying gk by an appropriate element in Hk we may assume that gk is of the form
gk = (IYk,1 , · · · , IYk,N ) for some matrices Yk,j ∈ Mrj×d(R). Next, by left multiplying gk by an

appropriate element in Γ (in fact in Γ ∩ ι−1({I})), we may furthermore assume that every
entry of every matrix Yk,j lies in the interval [0, 1).

Note that the sequence α1, α2, . . . in P (X) is tight, since ι̃∗αk = µ̃ for all k and the map ι̃ :
X → X′ is proper. Hence by Prohorov’s Theorem, there exists a subsequence, say αk1 , αk2 , . . .
where 1 ≤ k1 < k2 < · · · , which converges to some limit measure ν ∈ P (X). In view of
our assumption on the entries of the matrices Yk,j, we may also assume that gkℓ converges
to some element g̃ in G as ℓ → ∞. We have ι̃∗ν = µ̃, by the continuous mapping theorem.
Furthermore, by [23, Cor. 1.1] we have ν ∈ Q(X), and hence by Ratner’s [25, Thm. 1], there
exists some gν ∈ G such that Γ ∩ gνHνg

−1
ν is a lattice in gνHνg

−1
ν and supp(ν) = Γ\ΓgνHν .

Note also that ι(Hν) = G′, by Lemma 8.4. Next we will apply [23, Thm. 1.1(2)]. As a
preparation, note that by [23, Lemma 2.3], for each ℓ we can find a one-parameter subgroup
{uℓ(t)}t∈R of W which acts ergodically with respect to αkℓ , and we can then find an element
sℓ ∈ G such that the trajectory {Γgνsℓuℓ(t) : t > 0} is uniformly distributed with respect
to αkℓ . Note that this last property remains valid if sℓ is replaced by sℓuℓ(t) for any t > 0,
and in this way we may modify the elements s1, s2, . . . so that sℓ → e in G as ℓ → ∞
(this is possible since αkℓ → ν in P (X) and since the point Γgν lies in the support of ν).
Hence by [23, Thm. 1.1(2)], for all sufficiently large ℓ we have supp(αkℓ) ⊂ supp(ν) · sℓ, or
equivalently, Γ\ΓgkℓHkℓ ⊂ Γ\ΓgνHνsℓ, viz., Γ(gkℓHkℓg

−1
kℓ

)gkℓs
−1
ℓ g−1

ν ⊂ Γ(gνHνg
−1
ν ). But we

know that Γ(gνHνg
−1
ν ) is a closed regular submanifold of G, and for each γ ∈ Γ, γ(gνHνg

−1
ν )

is a connected component of this submanifold (cf. [24, Theorem 1.13]). Hence for each large
ℓ there exists some γℓ ∈ Γ such that

(gkℓHkℓg
−1
kℓ

)gkℓs
−1
ℓ g−1

ν ⊂ γℓ(gνHνg
−1
ν ).(8.34)

Recall that we also have gkℓ → g̃ as ℓ → ∞; hence gkℓs
−1
ℓ g−1

ν → g̃g−1
ν , and since gkℓs

−1
ℓ g−1

ν ∈
γℓ(gνHνg

−1
ν ) for all large ℓ it follows that there is some γ̃ ∈ Γ such that γℓ(gνHνg

−1
ν ) =

γ̃(gνHνg
−1
ν ) for all sufficiently large ℓ. For these ℓ, (8.34) implies

gkℓs
−1
ℓ g−1

ν γ̃−1 ∈ γ̃gνHνg
−1
ν γ̃−1 and gkℓHkℓg

−1
kℓ

⊂ γ̃gνHνg
−1
ν γ̃−1.(8.35)
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We have proved that (8.35) holds for all sufficiently large ℓ; however by removing the initial
elements from the sequence k1 < k2 < · · · , we may from now on assume that (8.35) holds for
all ℓ ∈ Z+.

Next let us apply Lemmas 8.6 and 8.7 to the group γ̃gνHνg
−1
ν γ̃−1 and the groups gkℓHkℓg

−1
kℓ

for all ℓ. This gives that there exist rational subspaces Lj and Lℓ,j of Rrj and matrices Xj

and Xℓ,j in Mrj×d(Q) (for all j ∈ {1, . . . , N} and ℓ ∈ Z+), such that

γ̃gνHνg
−1
ν γ̃−1 = SX1

L1
(R)× · · · × SXNLN (R).(8.36)

and

gkℓHkℓg
−1
kℓ

= S
Xℓ,1
Lℓ,1

(R)× · · · × S
Xℓ,N
Lℓ,N

(R) (∀ℓ ∈ Z+).(8.37)

It now follows from (8.35) that S
Xℓ,j
Lℓ,j

(R) ⊂ S
Xj
Lj

(R), and hence by Lemma 8.8,

Lℓ,j ⊂ Lj and Xℓ,j −Xj ∈ Ldj , ∀ℓ ∈ Z+, j ∈ {1, . . . , N}.(8.38)

Let us also note that (8.37) and gk = (IYk,1 , · · · , IYk,N ) imply that

Hkℓ = S
Xℓ,1−Ykℓ,1
Lℓ,1

(R)× · · · × S
Xℓ,N−Ykℓ,N
Lℓ,N

(R).(8.39)

Now we obtain a contradiction as follows: We have ν 6= µ, since ν(f) = limℓ→∞ αkℓ(f) and
|αk(f)−µ(f)| > ε for all k. Hence Hν 6= G, and so by (8.36) there is some j ∈ {1, . . . , N} such
that Lj 6= Rrj (this implies in particular rj > 0). Hence we can choose somem ∈ Zrj∩L⊥

j \{0}
with XT

j m ∈ Zd. Now by (8.38) we also have m ⊥ Lℓ,j and XT
ℓ,j m = XT

j m ∈ Zd for all

ℓ. Let us apply this for some fixed choice of ℓ so large that kℓ ≥ ‖m‖2. It is immediate

from the definition of Hkℓ = Hαkℓ
(cf. (8.12)) that W ⊂ Hkℓ; thus n−(R

d−1) ⊂ S
Xℓ,j−Ykℓ,j
Lℓ,j

(R)

(cf. (8.39)), and so by Lemma 8.10, the set Γj IYkℓ,j S
Xℓ,j−Ykℓ,j
Lℓ,j

(R) is contained in Kj,m. By

(8.39), this implies that Γ\ΓgkℓHkℓ, i.e. the support of αkℓ , is contained in π(p−1
j (Kj,m)), and

so αkℓ(π(p
−1
j (Kj,m))) = 1. This is a contradiction against (8.33), since ‖m‖2 ≤ kℓ.

Hence the lemma is proved. �

Proof of Theorem 8.1. Given f ∈ Cb(X) and ε > 0, we choose k ∈ Z+ as in Lemma 8.11. Now

also let arbitrary λ ∈ Pac(R
d−1), η > 0, M̃ ∈ G′ \DS be given. Assume that there does not

exist any ρ0 ∈ (0, 1) such that (8.10) holds for all ρ ∈ (0, ρ0) and V ∈ T̃ \∆(η)
k . This means

that there exist sequences ρ1 > ρ2 > · · · → 0 and V1, V2, . . . in T̃ \∆(η)
k satisfying

∣∣∣∣
∫

Rd−1

f
(
x(Vm)M̃ϕ(n−(u)Dρm)

)
dλ(u)−

∫

X
f dµ

∣∣∣∣ ≥ ε, ∀m ∈ Z+.(8.40)

Define νm ∈ P (X) through νm(g) =
∫
Rd−1 g

(
x(Vm)M̃ϕ(n−(u)Dρm)

)
dλ(u) for all g ∈ Cb(X)

(just as in (8.11)). By [20, Thm. 5] (applied in the same way as in the proof of Lemma 8.3) we
have ι̃∗ νm → µ̃ in P (X′). Hence the sequence ν1, ν2, . . . in P (X) is tight, and so by Prohorov’s
Theorem, after passing to a subsequence we may assume that ν1, ν2, . . . converges to some
ν ∈ P (X). Then ν ∈ Pk (cf. Def. 8.1), and thus by our choice of k we have

∣∣ν(f)− µ(f)
∣∣ < ε.

But νm converges weakly to ν; in particular νm(f) → ν(f) as m→ ∞, and hence we conclude
that

∣∣νm(f)−µ(f)
∣∣ < ε for all sufficiently large m. This is a contradiction against (8.40), and

thus Theorem 8.1 is proved. �

Next we establish a variant of Theorem 8.1, where the unipotent element n−(u) is replaced
by a rotation:

Theorem 8.12. Let f ∈ Cb(X) and ε > 0 be given. Then there exists some k ∈ Z+ such that

for every λ ∈ Pac(S
d−1
1 ), η > 0 and M̃ ∈ G′ \DS, there exists some ρ0 ∈ (0, 1) such that
∣∣∣∣
∫

Sd−1
1

f
(
x(V )M̃ϕ(R(v)Dρ)

)
dλ(v)−

∫

X
f dµ

∣∣∣∣ < ε(8.41)
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for all ρ ∈ (0, ρ0) and all V ∈ T̃ \∆(η)
k .

Proof. This follows from Theorem 8.1 via a fairly standard approximation argument; cf., e.g.,
[16, Thm. 5.3 and Cor. 5.4]. Some care is needed to ensure that we can obtain a uniform
statement as in the theorem.

To start with, we restrict to functions f of compact support. Thus let f ∈ Cc(X) and
ε > 0 be given. Fix a corresponding positive integer k as in Theorem 8.1. Now also let

λ ∈ Pac(S
d−1
1 ), η > 0 and M̃ ∈ G′ \DS be given.

For δ > 0 we set Uδ = {T ∈ SLd(R) : ‖T − I‖ < δ}, where ‖ · ‖ denotes the entrywise
maximum norm on d×d matrices. Thus Uδ is an open neighborhood of the identity in SLd(R).
Since f has compact support, we can fix 0 < δ < 1 so small that

|f(xϕ(T )) − f(x)| < ε, ∀x ∈ X, T ∈ Uδ.(8.42)

Recall that R is continuous when restricted to Sd−1
1 minus one point; it follows that there

exists a compact subset S ⊂ Sd−1
1 such that the restriction of R to S is continuous, and

‖f‖∞ · λ(Sd−1
1 \ S) ≤ ε.(8.43)

For each v0 ∈ S we set Ωv0 = {v ∈ S : R(v0)
−1R(v) ∈ Uδ/2}; this is a relatively open

neighborhood of v0 in S. Since S is compact, we can fix a finite subset Q0 ⊂ Sd−1
1 such

that the sets Ωv0 for v0 ∈ Q0 cover S. Let us fix an arbitrary total order ≺ on Q0, and
set Ω′

v0
:= Ωv0 \

(
∪v′

0∈Q0

v′
0≺v0

Ωv′
0

)
. Then the sets Ω′

v0
for v0 ∈ Q0 form a partition of S. Set

Q′
0 = {v0 ∈ Q0 : λ(Ω′

v0
) > 0}, and for each v0 ∈ Q′

0 let λv0 := λ(Ω′
v0
)−1 λ

∣∣
Ω′

v0

∈ Pac(S
d−1
1 ).

Note that we now have

λ|S =
∑

v0∈Q′
0

λ(Ω′
v0
)λv0 .(8.44)

Let us fix v0 ∈ Q′
0 temporarily, and consider the functions E : Sd−1

1 → Md(R), a : Sd−1
1 → R,

b, c : Sd−1
1 → Rd−1, D : Sd−1

1 → Md−1(R) defined by

E(v) =

(
a(v) b(v)
c(v)T D(v)

)
:= R(v0)

−1R(v) (v ∈ Sd−1
1 ).

Note that (a(v), c(v)) = e1E(v)T = vR(v0) for all v ∈ Sd−1
1 ; in particular a(v) = v · v0, and,

since δ < 1, it follows that Ωv0 is contained in the open disc Hv0 = {v ∈ Sd−1
1 : v · v0 >

1
2}.

We introduce the function x : Hv0 → Rd−1, x(v) = −a(v)−1c(v); this is a diffeomorphism of

Hv0 onto the open ball Bd−1√
3
. We set λ̃v0 = x∗(λv0) ∈ Pac(R

d−1).

Note that M̃ /∈ DS implies that M̃ϕ(R(v0)) /∈ DS for every v0 ∈ Q′
0. Hence by Theorem 8.1

and our choice of k, there exists ρ0 ∈ (0, 1) such that for all v0 ∈ Q′
0, ρ ∈ (0, ρ0) and

V ∈ T̃ \∆(η)
k , we have:

∣∣∣∣
∫

Rd−1

f
(
x(V )M̃ϕ(R(v0))ϕ(n−(x)Dρ)

)
dλ̃v0(x)−

∫

X
f dµ

∣∣∣∣ < ε.(8.45)

Here in the integral over Rd−1, we substitute x = x(v) and then use (8.42) combined with the

fact that for every v ∈ Ω′
v0

and ρ ∈ (0, ρ0) we have
( a(v)−1

0

ρdc(v)T D(v)

)
∈ Uδ (this is immediate from

the fact that E(v) ∈ Uδ/2, once we note that |a − 1| < δ/2 implies |a−1 − 1| < 2|1 − a| < δ).
This gives:∣∣∣∣∣

∫

Rd−1

f(x(V )M̃ϕ(R(v0)n−(x)Dρ)) dλ̃v0(x)

−
∫

Ω′
v0

f

(
x(V )M̃ϕ

(
R(v0)n−(x(v))Dρ

(
a(v)−1 0
ρdc(v)T D(v)

)))
dλv0(v)

∣∣∣∣∣ < ε.(8.46)
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Here the last integral can be simplified using R(v0)n−(x(v))Dρ

( a(v)−1
0

ρdc(v)T D(v)

)
= R(v)Dρ.

Hence, by (8.45) and (8.46), we have for any v0 ∈ Q′
0, ρ ∈ (0, ρ0) and V ∈ T̃ \∆(η)

k :
∣∣∣∣
∫

Ω′
v0

f(x(V )M̃ϕ(R(v)Dρ)) dλv0(v)−
∫

X
f dµ

∣∣∣∣ < 2ε.(8.47)

Multiplying this inequality by λ(Ω′
v0
) and then adding over all v0 ∈ Q′

0 and using (8.44) and

(8.43), we conclude that (8.41) holds with 4ε in place of ε, for all ρ ∈ (0, ρ0) and V ∈ T̃\∆(η)
k .

Thus the theorem is proved under the extra assumption that f ∈ Cc(X). Finally, the
extension to the case of arbitrary functions f ∈ Cb(X) is achieved by a completely standard
approximation argument. �

The following is an immediate corollary of Theorem 8.12:

Corollary 8.13. Let V be an arbitrary, fixed point in T̃ \⋃ p̃ −1
j (∆j,q,m), where the union is

taken over all triples 〈j, q,m〉 with j ∈ {1, . . . , N}, rj 6= 0, q ∈ Z+ and m ∈ Zrj \ {0}. Then

for any M̃ ∈ G′, f ∈ Cb(X) and λ ∈ Pac(S
d−1
1 ), we have

∫

Sd−1
1

f
(
x(V )M̃ϕ(R(v)Dρ)

)
dλ(v) →

∫

X
f dµ as ρ→ 0.(8.48)

Proof. The assumption on V implies that for any k ∈ Z+ there is some η > 0 such that

V /∈ ∆
(η)
k . Using this fact, the corollary is an immediate consequence of Theorem 8.12. �

9. Proof of [P2] (uniform spherical equidistribution)

We now return to using the same notation as in Sections 3–7; in particular P is a finite
union of grids in Rd, and we assume that an admissible presentation of P has been fixed (cf.
(3.5), (3.4)), and corresponding to this presentation we let the homogeneous space X = Γ\G
be as defined in Section 3.2. In particular we have r1, . . . , rN > 0 and

Γ = Sr1(Z)× · · · × SrN (Z),

which is a stricter requirement than what was imposed in Section 8.
Our goal in this section is to complete the proof of [P2]. Recall that by our initial discussion

in Section 7.3, the task which remains is to prove Theorem 7.7. A key tool in our proof will
be Theorem 8.12; note that this theorem will in general be applied to a certain homogeneous
submanifold of our present homogeneous space X.

9.1. Equidistribution without uniformity. We will start by proving the following non-
uniform result, which as we will see fairly easily implies Theorem 4.2, and which will also play
an important role in our proof of Theorem 7.7.

As in Section 8, we let the subset DS ⊂ G′ be given by (8.5). Recall that Ω =
∏N
j=1 P (T

d
j )

′;

cf. (6.3). As in (8.3) we set T̃ = Td1 × Td2 × · · · × TdN , and we let x : T̃ → X be the natural

embedding. Finally, for any V =
(
V1, . . . , VN

)
∈ T̃ we define:

ω(V ) :=
(
ω
(V1)
1 , . . . , ω

(VN )
N

)
∈ Ω.(9.1)

Theorem 9.1. For any V ∈ T̃, M̃ ∈ G′ \DS, f ∈ Cb(X) and λ ∈ Pac(S
d−1
1 ) we have

∫

Sd−1
1

f(x(V )M̃ϕ(R(v)Dρ)) dλ(v) →
∫

X
f dω(V )(9.2)

as ρ→ 0.
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Proof. Let V =
(
V1, . . . , VN

)
∈ T̃ be given. For each j ∈ {1, . . . , N} we write Lj := L

(Vj)
j , fix

some Xj ∈ Mrj×d(Q) such that Vj−π(Xj) ∈
(
S
(Vj)
j

)◦ d
, and fix some Ṽj ∈ Xj+L

d
j ⊂ Mrj×d(R)

with π(Ṽj) = Vj (cf. the discussion above (4.11)). Using the notation in (8.15), we then set:

H := SX1
L1

(R)× · · · × SXNLN (R) = SṼ1L1
(R)× · · · × SṼNLN (R).

As in (4.11) and the proof of Lemma 4.1, we have for each j that Γj intersects S
Ṽj
Lj
(R) in

a lattice, and the orbit x(Vj) · SLj (R) = Γj\Γj SṼjLj (R) IṼj is a closed embedded submanifold

of Xj which carries a unique SLj(R)-invariant probability measure; and by Proposition 4.7

this measure equals ω
(Vj)
j . Taking the product over all j, and writing Ṽ :=

(
Ṽ1, . . . , ṼN

)
∈∏N

j=1Mrj×d(R), it follows that Γ\ΓH I
Ṽ

is a closed embedded submanifold of X and, using

also (9.1) and (6.11), that ω(V ) is the unique
∏N
j=1 SLj (R)-invariant probability measure on

Γ\ΓH IṼ .
Let ΓH := Γ ∩ H, and let µ be the unique H-invariant probability measure on the homo-

geneous submanifold Γ\ΓH = ΓH\H of X. In order to prove the theorem, we will prove that

for any M̃ ∈ G′ \DS , F ∈ Cb(ΓH\H) and λ ∈ Pac(S
d−1
1 ), we have

∫

Sd−1
1

F
(
ΓH I

Ṽ
M̃ϕ(R(v)Dρ) I

−1

Ṽ

)
dλ(v) →

∫

ΓH\H
F dµ(9.3)

as ρ → 0. (To see that the integral to the left in (9.3) is well-defined, note that I
Ṽ
g I−1

Ṽ
∈ H

for all g ∈ G′.)
To see that the convergence in (9.3) implies the statement of the theorem, let τ : X → X be

right multiplication by IṼ ; then ω
(V ) = τ∗(µ), and the left side in (9.2) can be expressed as

∫

Sd−1
1

(f ◦ τ)
(
Γ I

Ṽ
M̃ϕ(R(v)Dρ) I

−1

Ṽ

)
dλ(v).

Hence (9.2) follows from (9.3) if we let F be the restriction of f ◦ τ to Γ\ΓH.

We now turn to the proof of (9.3). We will start by fixing an isomorphism from H onto the
Lie group

G̃ := Ss1(R)× · · · × SsN (R),

where sj := dimLj. Given any linear bijection ϕ : L
∼→ Rs, where L is a linear subspace of Rr

(for some r ∈ Z+) of dimension s ≥ 0, we write Sϕ for the following Lie group isomorphism:

Sϕ : SL(R)
∼→ Ss(R), Sϕ

(
(M,U)

)
= (M,ϕd(U)),(9.4)

where ϕd is the linear bijection from Ld onto Ms×d(R) given by applying ϕ to each column
of the matrix. (If s = 0 so that L = {0} and Ss(R) = SLd(R), the definition in (9.4) should
of course be interpreted to say Sϕ

(
(M, 0)

)
= M .) One verifies immediately that Sϕ is indeed

a Lie group isomorphism. Also for any X ∈ Mr×d(R), we introduce the following Lie group
isomorphism:

SXϕ : SXL (R)
∼→ Ss(R), SXϕ (g) = Sϕ

(
I−1
X g IX

)
.(9.5)

Next, for each j, we fix, once and for all, a linear bijection ϕj : Lj
∼→ Rsj with the property

that ϕj(Lj ∩ Zrj) = Zsj ; this is possible since Lj is a rational subspace of Rrj . Finally we let
Φ be the Lie group isomorphism

Φ := SX1
ϕ1

× · · · × SXNϕN : H
∼→ G̃.
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For each j, fix a positive integer qj such that Xj ∈ q−1
j Mrj×d(Z), and let Γ′

j be the principal

congruence subgroup of SLd(Z) of level qj:

Γ′
j := {M ∈ SLd(Z) : M ≡ I mod qj}.(9.6)

Then set

Γ̃j := Γ′
j ⋉Msj×d(Z) (j = 1, . . . , N) and Γ̃ := Γ̃1 × · · · × Γ̃N .(9.7)

We now claim that

Γ̃ ⊂ Φ(ΓH).(9.8)

To verify this, it suffices to verify that Γ̃j ⊂ S
Xj
ϕj

(
Srj (Z) ∩ S

Xj
Lj

(R)
)
for each j. To do so, note

that given any (M,U) ∈ Γ̃j, we have
(
S
Xj
ϕj

)−1
(M,U) ∈ S

Xj
Lj

(R) and

(
S
Xj
ϕj

)−1
(M,U) =

(
M, (ϕdj )

−1(U) +Xj(M − I)
)
.

Here (ϕdj )
−1(U) ∈ Mrj×d(Z) since U ∈ Msj×d(Z) and ϕ−1

j (Zsj) = Lj ∩ Zrj ; also Xj(M −
I) ∈ Mrj×d(Z) since Xj ∈ q−1

j Mrj×d(Z) and M ∈ Γ′
j ; hence (S

Xj
ϕj )

−1(M,U) ∈ Srj(Z). This

completes the proof of (9.8). Note that it follows from (9.8) that we have a well-defined
covering map

J : Γ̃\G̃→ ΓH\H, J(Γ̃g) = ΓH Φ−1(g).(9.9)

Next, the result of Corollary 8.13, applied to the homogeneous space Γ̃\G̃, can be stated

as follows: Let µ̃ be the invariant probability measure on Γ̃\G̃. Let W = (W1, . . . ,WN ) be

an arbitrary element in
∏N
j=1Msj×d(R) such that for every j ∈ {1, . . . , N} and every rational

subspace L′ ( Rsj , we have

Wj /∈ Msj×d(Q) + (L′)d.(9.10)

Then for any M̃ ∈ G′ \DS , F1 ∈ Cb(Γ̃\G̃) and λ ∈ Pac(S
d−1
1 ), we have

∫

Sd−1
1

F1

(
Γ̃ IW M̃ϕ(R(v)Dρ)

)
dλ(v) →

∫

Γ̃\G̃
F1 dµ̃ as ρ→ 0.(9.11)

(Note that IW ∈ G̃ since W ∈ ∏N
j=1Msj×d(R); cf. (3.17).) Starting from (9.11) and applying

the continuous mapping theorem with the covering map J (cf. (9.9)), we conclude: For any

element W = (W1, . . . ,WN ) in
∏N
j=1L

d
j such that for every j ∈ {1, . . . , N} and every rational

subspace L′ ( Rsj ,

ϕdj (Wj) /∈ Msj×d(Q) + (L′)d,(9.12)

and for any M̃ ∈ G′ \DS , F2 ∈ Cb(ΓH\H) and λ ∈ Pac(S
d−1
1 ),

∫

Sd−1
1

F2

(
ΓH IW IX M̃ϕ(R(v)Dρ) I

−1
X

)
dλ(v) →

∫

ΓH\H
F2 dµ as ρ→ 0,(9.13)

where X := (X1, . . . ,XN ) ∈ ∏N
j=1Mrj×d(Q). In the above deduction we used the fact that

J∗(µ̃) = µ, the unique H-invariant probability measure on ΓH\H.

We wish to apply the last convergence relation with W := Ṽ − X, i.e. Wj := Ṽj − Xj

for each j. This W lies in
∏N
j=1L

d
j , and we proceed to verify that also the condition (9.12)

holds for every j ∈ {1, . . . , N} and every rational subspace L′ ( Rsj . Assume the opposite,
i.e. assume that there exists j ∈ {1, . . . , N} and a rational subspace L′ ( Rsj such that
ϕdj (Wj) ∈ Msj×d(Q)+ (L′)d. Using the fact that ϕ−1

j (Qsj) ⊂ Qrj (since ϕ−1
j (Zsj) = Lj ∩Zrj),

we conclude Wj ∈ Mrj×d(Q) + (L′′)d, where L′′ := ϕ−1
j (L′). Since Wj := Ṽj − Xj and

Xj ∈ Mrj×d(Q), it follows that Ṽj ∈ Mrj×d(Q) + (L′′)d, or equivalently

Ṽj,1, . . . , Ṽj,d ∈ Qrj + L′′,(9.14)
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where Ṽj,1, . . . , Ṽj,d ∈ Rrj are the column vectors of Ṽj . But we have L′′ ( Lj and L′′ is a

rational subspace of Rrj ; also Lj = L
(Vj)
j = J({Ṽj,1, . . . , Ṽj,d}) (cf. (4.6)), and thus by Lemma

4.3, Lj is the smallest rational subspace of Rrj with the property that Ṽj,1, . . . , Ṽj,d ∈ Qrj+Lj.
This is a contradiction against (9.14). This completes the proof that the condition (9.12) is
fulfilled for our choice of W .

Note also that IW ∈ H since W ∈ ∏N
j=1 L

d
j , and IW IX = IṼ . Hence for any given F ∈

Cb(ΓH\H), also the function F2 defined by F2(ΓHh) = F (ΓHh I
−1
W ) lies in Cb(ΓH\H); and

applying (9.13) to this function F2 we conclude that (9.3) holds for the given function F . �

Remark 9.1. If the point V =
(
V1, . . . , VN

)
∈ T̃ satisfies r̃iψ(Vjψ) = 0 for some ψ ∈ Ψ, then

the statement of Theorem 9.1 also holds with “Xψ” in place of “X”, i.e. for any M̃ ∈ G′ \DS ,
f ∈ Cb(X

ψ) and λ ∈ Pac(S
d−1
1 ) we have

∫

Sd−1
1

f(x(V )M̃ϕ(R(v)Dρ)) dλ(v) →
∫

Xψ
f dω(V )(9.15)

as ρ→ 0.

Proof. By [13, Lemma 4.26], this follows from Theorem 9.1 if we can only verify that ω(V )(Xψ) =

1 and x(V )M̃ϕ(R(v)Dρ) ∈ Xψ for all ρ and v. The first of these statements is immediate from

(6.2), Lemma 6.2 and Lemma 6.3. For the second statement, note that Xψ is preserved by
right multiplication of any G′-element; hence it suffices to verify that x(V ) ∈ Xψ. But writing

ψ = (j, i), and taking Ṽj ∈ Mrj×d(R) so that Vj = π(Ṽj), we have ri(Ṽj) ∈ Zd since r̃i(Vj) = 0.

Now x(Vj) = Γj IṼj and Zd ai(IṼj ) = Zd (I, ri(Ṽj)) = Zd, which is a lattice containing 0. Hence,

by (6.2), x(V ) ∈ Xψ, and the proof is complete. �

Let us note that Theorem 4.2 is an immediate consequence of Theorem 9.1:

Proof of Theorem 4.2. By (3.19), g
(q)
0 := IU (q) M̃ , where M̃ = (M1, . . . ,MN ) with the Mjs

coming from the fixed presentation of P in (3.4), (3.5). This M̃ lies outside DS , by (3.7).

Hence the left hand side of (9.2) equals the left hand side of (4.3) if we choose V := π(U (q)),

i.e. V = (V1, . . . , VN ) with Vj = π(U
(q)
j ). With this choice, ω

(q)
j = ω

(Vj)
j holds by definition,

and hence by Proposition 4.7 and (4.2), (6.11), (9.1), we have ω(V ) = µ(q), meaning that also
the right hand sides of (9.2) and (4.3) agree. �

9.2. A first uniform result. We will now prove a uniform equidistribution result, Theo-
rem 9.2 below, which, in combination with the non-uniform result of Theorem 9.1, will play a
key role in our proof of Theorem 7.7.

For any ψ ∈ Ψ and j ∈ {1, . . . , N} we pick an arbitrary point q ∈ Lψ, and define

Yψj := π(U
(q)
j ) + (Sψj )

d ⊂ Tdj .(9.16)

This is a connected component of the group (S̃ψj )
d; cf. Lemma 5.8. Note that Yψj is independent

of the choice of q, since π
(
U

(q)
j

)
− π

(
U

(q′)
j

)
∈ (Sψj )

d for any two q, q′ ∈ Lψ, as was noted in

the proof of Lemma 5.8. Let us also fix a matrix Xψ
j ∈ Mrj×d(Q) with the property that

Yψj = π
(
Xψ
j + (Lψj )

d
)
.(9.17)

(Proof of existence: Choose any q ∈ Lψ; then by Lemma 4.3 we can choose Xψ
j ∈ Mrj×d(Q)

so that U
(q)
j −Xψ

j ∈
(
L
(q)
j

)d
; using (9.16) and Lemma 5.2 it then follows that (9.17) holds.)

Furthermore, we fix a linear bijection ϕψj : Lψj
∼→ Rs (with s = s(ψ, j) = dimLψj ) with the
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property that ϕψj (L
ψ
j ∩ Zrj) = Zs. These matrices Xψ

j and bijections ϕψj will be kept fixed
throughout the present section. We also introduce the following map:

ϕ̃ψj : Yψj → Ms×d(R/Z); ϕ̃ψj
(
π(Xψ

j +W )
)
= π′

(
(ϕψj )

d(W )
) (

W ∈ (Lψj )
d
)
,(9.18)

where π′ is the projection map Ms×d(R) → Ms×d(R/Z). It follows from the defining property

of ϕψj that the map ϕ̃ψj is well-defined, and that ϕ̃ψj is a diffeomorphism from Yψj onto the

torus Ms×d(R/Z).
Next, for any ψ ∈ Ψ, j ∈ {1, . . . , N}, k ∈ Z+ and η > 0, we set

∆
(η)
ψ,j,k :=

{(
ϕ̃ψj
)−1(

∆
(η)
j,k

)
if Lψj 6= {0},

∅ if Lψj = {0},
(9.19)

where if Lψj 6= {0}, the set ∆
(η)
j,k ⊂ Ms×d(R/Z) is defined as on p. 47, but using s = dimLψj

(> 0) in the place of rj , so that “Tdj” on p. 47 becomes Ms×d(R/Z).
Next, for each ψ ∈ Ψ, we define

Yψ = Yψ1 × · · · × YψN ⊂ T̃

and for any k ∈ Z+ and η > 0:

∆
(η)
ψ,k :=

{
V =

(
V1, . . . , VN

)
∈ Yψ : Vj ∈ ∆

(η)
ψ,j,k for some j

}
.(9.20)

Theorem 9.2. Let ψ ∈ Ψ, f ∈ Cb(X
ψ) and ε > 0 be given. Then there exists some k ∈ Z+

such that for every λ ∈ Pac(S
d−1
1 ), η > 0 and M̃ ∈ G′ \DS, there exists some ρ0 ∈ (0, 1) such

that ∣∣∣∣
∫

Sd−1
1

f
(
x(V )M̃ϕ(R(v)Dρ)

)
dλ(v)−

∫

Xψ
f dωψ

∣∣∣∣ < ε(9.21)

for all ρ ∈ (0, ρ0) and all V ∈ Yψ \∆(η)
ψ,k.

To see that the statement of Theorem 9.2 makes sense, note that for every V ∈ Yψ we have
x(V ) ∈ Xψ by the following Lemma 9.3; thus also x(V )g ∈ Xψ for all g ∈ G′; and we also have

ωψ(Xψ) = 1, by Lemma 6.2 and Lemma 6.6.

Lemma 9.3. For any ψ ∈ Ψ and V ∈ Yψ, we have r̃iψ(Vjψ) = 0 and x(V ) ∈ Xψ.

Proof. Assume V = (V1, . . . , VN ) ∈ Yψ. Write ψ = (j, i), and choose a point q ∈ Lψ. Take

W ∈ Mrj×d(R) so that Vj = π(W ). It follows from Vj ∈ Yψj thatW ∈ U
(q)
j +(Lψj )

d+Mrj×d(Z).

It follows from (3.4) and (3.15) that ri
(
U

(q)
j

)
∈ Zd, and we noted in the proof of Lemma 6.6

that Lψj ⊥ ei. Hence ri(W ) ∈ Zd. This shows that r̃i(Vj) = 0, and it also implies that the grid

Zd ai(IW ) = Zd+W contains 0, i.e. the point x(Vj) = Γj IW lies in X
(i)
j . Hence x(V ) ∈ Xψ. �

Proof of Theorem 9.2. Let ψ ∈ Ψ be given. Let us set X := (Xψ
1 , . . . ,X

ψ
N ) and

H := S
Xψ

1

Lψ1
(R)× · · · × S

Xψ
N

LψN
(R) = IX

(
S
Lψ1

(R)× · · · × S
LψN

(R)
)
I−1
X .(9.22)

Recall that ωψ = ωψ1 ⊗ · · · ⊗ ωψN . We claim that ωψ equals the unique I−1
X H IX-invariant

probability measure on Γ\ΓH IX . To prove this, it suffices to prove that for each fixed j, ωψj
equals the unique S

Lψj
(R)-invariant probability measure on Γj\Γj IXψ

j
S
Lψj

(R). To this end,

fix an arbitrary matrix W ∈ Xψ
j + (Lψj )

d which is generic in the sense that it lies outside

Mrj×d(Q)+Ld for every rational subspace L ( Lψj , and set V = π(W ) ∈ Tdj . Then L
(V )
j = Lψj

by Lemma 4.3, and hence by Proposition 4.7, ω
(V )
j is the unique S

Lψj
(R)-invariant probability
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measure on Γj\Γj IW S
Lψj

(R) = Γj\Γj IXψ
j
S
Lψj

(R). Furthermore, we have
(
S
(V )
j

)◦
= π

(
L
(V )
j

)
=

π(Lψj ) and thus V +
(
S
(V )
j

)◦ d
= π(Xψ

j +(Lψj )
d) = Yψj = π

(
U

(q)
j

)
+(Sψj )

d for any q ∈ Lψ. This
implies O(V )

j = Oψ
j (cf. (5.16) and (4.7)), and hence ω

(V )
j = ωψj . This completes the proof of

the claim.
Set ΓH := Γ ∩H, and let µ be the H-invariant probability measure on ΓH\H.

Next, for each j let us write sj := dimLψj , and recall that we have fixed a linear bijection

ϕψj : Lψj
∼→ Rsj with the property that ϕψj (L

ψ
j ∩ Zrj) = Zsj . Set

G̃ := Ss1(R)× · · · × SsN (R),

and let Φ be the Lie group isomorphism

Φ := S
Xψ

1

ϕψ1
× · · · × S

Xψ
N

ϕψN
: H

∼→ G̃

(using the notation from (9.5)). For each j, choose qj ∈ Z+ so that Xψ
j ∈ q−1

j Z, and let Γ′
j be

the principal congruence subgroup of SLd(Z) of order qj (cf. (9.6)); then define Γ̃j and Γ̃ as in
(9.7). By an argument entirely similar to the discussion in the proof of Theorem 9.1 (leading

up to (9.13)), one verifies that Theorem 8.12 applied to the homogeneous space Γ̃\G̃, yields
the following result: For any f ∈ Cb(ΓH\H) and ε > 0, there exists some k ∈ Z+ such that

for every λ ∈ Pac(S
d−1
1 ), η > 0 and M̃ ∈ G′ \DS , there exists some ρ0 ∈ (0, 1) such that

∣∣∣∣
∫

Rd−1

f
(
ΓH IW IX M̃ϕ(R(v)Dρ) I

−1
X

)
dλ(v)−

∫

ΓH\H
f dµ

∣∣∣∣ < ε(9.23)

for all ρ ∈ (0, ρ0) and all W =
(
W1, . . . ,WN

)
∈ ∏N

j=1(L
ψ
j )
d satisfying π′j((ϕ

ψ
j )
d(Wj)) /∈ ∆

(η)
j,k

for every j ∈ {1, . . . , N} with sj > 0. In the last condition, the set ∆
(η)
j,k is defined exactly as on

p. 47 but using the dimension sj in place of rj (so that “Tdj” on p. 47 becomes Msj×d(R/Z)),
and π′j is the projection Msj×d(R) → Msj×d(R/Z).

Finally, let us write Ṽ :=W +X in the previous result; thus Ṽj :=Wj +Xψ
j ∈ Xψ

j + (Lψj )
d

for each j, and also IW IX = IṼ in (9.23). Then in view of the definitions (9.19) and (9.20),

the condition on W is equivalent to π(Ṽ ) /∈ ∆
(η)
ψ,k. Hence, by an argument completely similar

to the proof that (9.3) suffices to give Theorem 9.1, the result stated around (9.23) implies
the statement of Theorem 9.2. �

Next let us note that by combining Theorem 9.2 with Theorem 9.1, we immediately obtain

a variant of Theorem 9.2, where the limit measure ωψ in (9.21) is replaced by ω(V ):

Theorem 9.4. For any ψ ∈ Ψ, f ∈ Cb(X
ψ) and ε > 0, there exists some k ∈ Z+ such that

for every λ ∈ Pac(S
d−1
1 ), η > 0 and every M̃ ∈ G′ \DS , there exists some ρ0 ∈ (0, 1) such that
∣∣∣∣
∫

Sd−1
1

f
(
x(V )M̃ϕ(R(v)Dρ)

)
dλ(v)−

∫

Xψ
f dω(V )

∣∣∣∣ < ε(9.24)

for all ρ ∈ (0, ρ0) and all V ∈ Yψ \∆(η)
ψ,k.

Proof. Given ψ, f, ε, take k as in Theorem 9.2. Now also let λ ∈ Pac(S
d−1
1 ), η > 0 and

M̃ ∈ G′ \ DS be given. Take ρ0 ∈ (0, 1) as in Theorem 9.2, i.e. so that (9.21) holds for all

ρ ∈ (0, ρ0) and all V ∈ Yψ \ ∆
(η)
ψ,k. Now for any fixed V ∈ Yψ we have r̃iψ(Vjψ) = 0 by

Lemma 9.3, and so by Theorem 9.1 and Remark 9.1, the convergence in (9.15) holds as ρ→ 0.
Combining this fact with (9.21) gives

∣∣∣∣
∫

Xψ
f dω(V ) −

∫

Xψ
f dωψ

∣∣∣∣ ≤ ε, ∀V ∈ Yψ \∆(η)
ψ,k.(9.25)
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Combining (9.21) and (9.25), we conclude that (9.24), with 2ε in place of ε, holds for all

ρ ∈ (0, ρ0) and all V ∈ Yψ \∆(η)
ψ,k. �

9.3. Proof of the uniformity in [P2]; later steps. Note that for any ψ ∈ Ψ and q ∈ Lψ we

have π
(
U

(q)
j

)
∈ Yψj for all j ∈ {1, . . . , N}, by (9.16), and hence π

(
U (q)

)
∈ Yψ. The following

proposition shows that by taking η small, we can ensure that the density of points q ∈ Lψ for

which π
(
U (q)

)
falls inside the “singular” set ∆

(η)
ψ,k, is small.

Proposition 9.5. For every ψ ∈ Ψ and k ∈ Z+ we have

lim
η→0

lim sup
T→∞

#
{
q ∈ Lψ ∩ BdT : π

(
U (q)

)
∈ ∆

(η)
ψ,k

}

T d
= 0.(9.26)

Proof. It follows from the definitions in (9.19), (9.20) and on p. 47 that ∆
(η)
ψ,k is a union of sets

of the form

∆
(η)
j,A,L :=

{
V =

(
V1, . . . , VN

)
∈ Yψ : Vj − π(Xψ

j ) is η-near π(A+ Ld)
}
,(9.27)

the union being taken over a finite set of triples 〈j,A,L〉 with j ∈ {1, . . . , N}, Lψj 6= 0,

A ∈ (Lψj )
d ∩Mrj×d(Q) and L being a rational subspace of Lψj , L 6= Lψj . Note that in (9.27),

“η-near” refers to the Riemannian metric on Yψj induced from the standard Euclidean metric

on Ms×d(R/Z) (with s = dimLψj ) via the diffeomorphism in (9.18).

It follows that it suffices to prove that for any fixed such triple 〈j,A,L〉,

lim
η→0

lim sup
T→∞

#
{
q ∈ Lψ ∩ BdT : π

(
U

(q)
j

)
∈ ∆

(η)
j,A,L

}

T d
= 0.(9.28)

But it follows from the formula for U
(q)
j in (5.4) and Weyl equidistribution that if we let Z

be the closed subgroup of Tdj which is the closure of the set
{
π(U

(q)
j −Wψ

j ) : q ∈ Lψ
}
, and

if ν is the Haar measure on Z normalized so that ν(Z) = 1, then for any fixed closed subset
C ⊂ Z,

lim sup
T→∞

#{q ∈ Lψ ∩ BdT : π(U
(q)
j −Wψ

j ) ∈ C}
nψ vol(BdT )

≤ ν(C).(9.29)

Note that it follows from (9.16) and (9.17) that π(U
(q)
j −Wψ

j ) ∈ π(Xψ
j −W

ψ
j )+(Sψj )

d for all q ∈
Lψ; hence also Z ⊂ π(Xψ

j −Wψ
j )+(Sψj )

d, and since 0 ∈ Z it follows that π(Xψ
j −Wψ

j ) ∈ (Sψj )
d

and Z ⊂ (Sψj )
d. Using (9.29) and (9.27), it follows that in order to prove (9.28), it suffices to

prove that ν(Cη) → 0 as η → 0, where Cη is the closed η-neighborhood of π(Xψ
j −W

ψ
j +A+L

d).

But we have ∩∞
k=1C1/k = π(Xψ

j −Wψ
j +A+ Ld); hence in fact it suffices to prove that

ν(π(Xψ
j −Wψ

j +A+ Ld)) = 0.(9.30)

Fix q ∈ Z+ so that Xψ
j + A ∈ q−1 Mrj×d(Z). Let Z

◦ be the identity component of Z; then

Z is a union of a finite number of Z◦-cosets. Now if Z ′ is any of these cosets, we may argue
as follows. Set

L′ := {q ∈ Lψ : π(U
(q)
j −Wψ

j ) ∈ Z ′};

this is a subgrid of Lψ. Hence by Lemma 5.1, Lψj = L({U (q)
j,ℓ : q ∈ L′, ℓ ∈ {1, . . . , d}}), and so

by Lemma 4.3, since L is a rational subspace of Lψj and L 6= Lψj , there exist some q ∈ L′ and
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ℓ ∈ {1, . . . , d} for which U
(q)
j,ℓ /∈ q−1Zrj + L. This implies that U

(q)
j /∈ q−1 Mrj×d(Z) + Ld, and

in particular π(U
(q)
j ) /∈ π(Xψ

j +A+ Ld). But π(U
(q)
j −Wψ

j ) ∈ Z ′. Hence we conclude that

Z ′ 6⊂ π(Xψ
j −Wψ

j +A+ Ld).(9.31)

Now both Z ′ and π(Xψ
j −Wψ

j + A+ Ld) are translates of closed connected subtori of (Sψj )
d;

hence (9.31) implies that Z ′ ∩ π(Xψ
j − Wψ

j + A + Ld) is either empty or a submanifold of

codimension ≥ 1 of Z ′. Therefore

ν(Z ′ ∩ π(Xψ
j −Wψ

j +A+ Ld)) = 0.(9.32)

We have proved that (9.32) holds for every Z◦-coset Z ′ in Z; hence (9.30) holds, and the
lemma is proved. �

Next we prove an auxiliary lemma concerning the type of uniform convergence which we
require. We define the upper density of a subset Z ⊂ Rd to be the number14

lim sup
T→∞

T−d#(Z ∩ BdT ).(9.33)

Lemma 9.6. Let Q be a locally finite subset of Rd, let J be a countable set, and let a function
F : J ×Q× (0, 1) → R be given. Assume that

(i) For any fixed j ∈ J and q ∈ Q, F (j, q, ρ) → 0 as ρ→ 0,

and

(ii) for any j ∈ J and ε, ε′ > 0, there exist ρ0 ∈ (0, 1) and a subset Z ⊂ Q of upper
density ≤ ε′, such that |F (j, q, ρ)| < ε for all ρ ∈ (0, ρ0) and all q ∈ Q \ Z.

Then for any decreasing function T : (0, 1) → R+, there exists a subset E ⊂ Q of density
zero, such that for each fixed j ∈ J , we have F (j, q, ρ) → 0 as ρ → 0, uniformly over all
q ∈ Q ∩ BdT (ρ) \ E.

Proof. We assume, without loss of generality, that J = Z+. For any j, k,m ∈ Z+, by (ii) there
exist ρ′0 ∈ (0, 1) and a subset Z ′ ⊂ Q of upper density ≤ 2−m−1 such that |F (j, q, ρ)| < 2−k for
all ρ ∈ (0, ρ′0) and all q ∈ Q \ Z ′. We may then choose T0 > 0 so that T−d#(Z ′ ∩ BdT ) < 2−m

for all T ≥ T0, and set Z = Z(j, k,m) := Z ′ \BdT0 . Now Z ′ \Z is finite, and for each q ∈ Z ′ \Z
there exists some ρ

(q)
0 ∈ (0, 1) such that |F (j, q, ρ)| < 2−k for all ρ ∈ (0, ρ

(q)
0 ), by (i). Set

ρ0 = ρ0(j, k,m) := min({ρ′0} ∪ {ρ(q)0 : q ∈ Z ′ \ Z}).
Now for any j, k,m ∈ Z+, we have constructed a number ρ0(j, k,m) ∈ (0, 1) and a subset
Z(j, k,m) ⊂ Q, and it is clear from our construction that

#(Z(j, k,m) ∩ BdT ) < 2−mT d, ∀T > 0(9.34)

and that

|F (j, q, ρ)| < 2−k, ∀ρ ∈ (0, ρ0(j, k,m)), q ∈ Q \ Z(j, k,m).(9.35)

Let us now also set, for any m ∈ Z+,

Z̃(m) :=
⋃

j∈Z+

⋃

k∈Z+

Z(j, k, j + k +m).

Then

#(Z̃(m) ∩ BdT ) ≤
∑

j,k∈Z+

2−j−k−mT d = 2−mT d, ∀T > 0.(9.36)

14To conform with the definition of asymptotic density in (1.1), it would be more natural to divide with
vol(BdT ) instead of T d in (9.33); however using (9.33) makes some computations in the following slightly cleaner.
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Now let a decreasing function T : (0, 1) → R+ be given, as in the statement of the lemma.
For any m ∈ Z+ we set

ρ̃0(m) := min{ρ0(j, k, j + k +m) : j, k ∈ {1, . . . ,m}}.(9.37)

Next choose numbers 1 ≤ R1 < R2 < · · · so that Rm ≥ T (ρ̃0(m + 1)) and Rm+1 ≥ 2Rm for
all m. Finally set

E :=

∞⋃

m=1

(
Z̃(m) ∩ BdRm

)
.

Let us prove that this set E has density zero. Given any T ≥ R1, choosing n so that Rn ≤
T < Rn+1 we have

#(E ∩ BdT ) ≤
n∑

m=1

#(Z̃(m) ∩ BdRm) +
∞∑

m=n+1

#(Z̃(m) ∩ BdT ) ≤
n∑

m=1

2−mRdm +
∞∑

m=n+1

2−mT d,

by (9.36). Here for all m ≤ n we have Rm ≤ 2m−nRn and hence Rdm ≤ 22(m−n)T d, since d ≥ 2.
Plugging in these bounds we get #(E ∩ BdT ) < 3 · 2−nT d. Hence since n → ∞ as T → ∞, we
conclude that E has density zero.

It remains to prove the uniform convergence stated in the lemma. Thus let j ∈ Z+ and
ε > 0 be given. By (i), we can take ρ1 ∈ (0, 1) so small that |F (j, q, ρ)| < ε for all q ∈ Q∩BdRj
and all ρ ∈ (0, ρ1). Choose k ∈ Z+ so that 2−k < ε, and set

ρ0 := min
(
{ρ1} ∪ {ρ0(j, k, j + k +m) : m ∈ {1, . . . , k}}

)
.(9.38)

Now for any ρ ∈ (0, ρ0) and q ∈ Q ∩ BdT (ρ) \ E we can argue as follows: If ‖q‖ < Rj then

|F (j, q, ρ)| < ε since ρ < ρ0 ≤ ρ1. Next assume instead that ‖q‖ ≥ Rj , and let m > j be
the minimal positive integer such that ‖q‖ < Rm. Then T (ρ) > ‖q‖ ≥ Rm−1 ≥ T (ρ̃0(m)),
and so ρ < ρ̃0(m). If m ≥ k then ρ̃0(m) ≤ ρ0(j, k, j + k +m) by (9.37); on the other hand if
m < k then ρ0 ≤ ρ0(j, k, j + k +m) by (9.38). Hence we always have ρ < ρ0(j, k, j + k +m).

Furthermore, q /∈ E and ‖q‖ < Rm implies q /∈ Z̃(m), and in particular q /∈ Z(j, k, j+k+m).
Hence by (9.35), |F (j, q, ρ)| < 2−k < ε. Summing up, we have proved:

|F (j, q, ρ)| < ε, ∀ρ ∈ (0, ρ0), q ∈ Q ∩ BdT (ρ) \ E .(9.39)

This completes the proof of the uniform convergence stated in the lemma. �

We are now ready to prove Theorem 7.7.

Proof of Theorem 7.7. Let ψ and T be given as in the statement of Theorem 7.7.
Let J1 be a fixed countable dense subset of Cc(X

ψ) with respect to the uniform norm. We

equip Pac(S
d−1
1 ) the metric d defined by d(λ1, λ2) :=

∫
Sd−1
1

|λ′1−λ′2| dv, where λ′j is the density
of λj with respect to σ, that is, λ′j ∈ L1(Sd−1

1 ) and λj = λ′j dσ (j = 1, 2). Now let J2 be a

fixed countable dense subset of Pac(S
d−1
1 ) with respect to the metric d; such a set exists since

C(Sd−1
1 ) is dense in L1(Sd−1

1 ) [26, Thm. 3.14].
We will apply Lemma 9.6 with Q = Lψ, J := J1 × J2, and with the function F : J × Lψ ×

(0, 1) → R defined by

F
(
〈f, λ〉, q, ρ

)
:=

∫

Sd−1
1

f
(
Γg

(q)
0 ϕ(R(v)Dρ)

)
dλ(v)−

∫

Xψ
f dω(q).(9.40)

Recall that ω(q)(Xψ) = 1 for every q ∈ Lψ, by Lemmas 6.4 and 6.2; hence the integral over

Xψ in (9.40) may just as well be taken over all X. Recall also that for any q ∈ R we have

ω(q) = µ(q), by Proposition 4.7 and (4.2), (6.4), (6.11). Hence by Theorem 4.2 we have
F
(
〈f, λ〉, q, ρ

)
→ 0 for any fixed 〈f, λ〉 ∈ J and q ∈ Lψ, i.e. the assumption (i) in Lemma 9.6

holds.
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We next verify that also the assumption (ii) in Lemma 9.6 holds. Thus let 〈f, λ〉 ∈ J and
ε, ε′ > 0 be given. Choose k ∈ Z+ as in Theorem 9.4 (for our given ψ, f, ε). By Proposition 9.5,

we can now fix some η > 0 such that the set Z :=
{
q ∈ Lψ : π

(
U (q)

)
∈ ∆

(η)
ψ,k

}
has upper

density < ε′. We keep M̃ ∈ G′ \DS fixed as in (3.18), for our given, fixed union of grids P.
Because of our choice of k, we may now fix ρ0 ∈ (0, 1) in such a way that (9.24) holds for all

ρ ∈ (0, ρ0) and all V ∈ Yψ \ ∆
(η)
ψ,k, for our chosen M̃, ψ, f, λ, ε, η. Now for any q ∈ Lψ \ Z,

we may apply (9.24) with V := π
(
U (q)

)
∈ T̃; indeed, for this V we have V ∈ Yψ \ ∆

(η)
ψ,k

since q /∈ Z; also Γg
(q)
0 = x(V )M̃ (by (3.19)) and ω(V ) = ω(q). Hence we conclude that for

all q ∈ Lψ \ Z and all ρ ∈ (0, ρ0) we have
∣∣F
(
〈f, λ〉, q, ρ

)∣∣ < ε. Hence assumption (ii) in
Lemma 9.6 is indeed fulfilled.

It now follows from Lemma 9.6 that there exists a subset E ⊂ Lψ of density zero such
that for any f ∈ J1 and λ ∈ J2 we have F

(
〈f, λ〉, q, ρ

)
→ 0 as ρ → 0, uniformly over all

q ∈ Lψ ∩BdT (ρ) \ E , viz., the uniform convergence in (7.11) in Theorem 7.7 holds. To complete

the proof of Theorem 7.7, we will give a (standard) approximation argument to show that the

uniform convergence in (7.11) in fact holds for arbitrary f ∈ Cb(X
ψ) and λ ∈ Pac(S

d−1
1 ).

Note that equation (9.40) defines F
(
〈f, λ〉, q, ρ

)
for arbitrary f ∈ Cb(X

ψ) and λ ∈ Pac(S
d−1
1 );

and for any f1, f2 ∈ Cb(X
ψ), λ1, λ2 ∈ Pac(S

d−1
1 ), q ∈ Lψ and ρ ∈ (0, 1) we have, with ‖ · ‖u

denoting the uniform norm on Cb(X
ψ):

∣∣∣F
(
〈f1, λ1〉, q, ρ

)
− F

(
〈f2, λ2〉, q, ρ

)∣∣∣

≤ 2‖f1 − f2‖u +
∫

Sd−1
1

∣∣f1
(
Γg

(q)
0 ϕ(R(v)Dρ)

)∣∣ · |λ′1(v)− λ′2(v)| dσ(v)

≤ 2‖f1 − f2‖u + ‖f1‖u · d(λ1, λ2).

Using this bound, and the fact that J1 and J2 are dense in Cc(X
ψ) and Pac(S

d−1
1 ), respectively,

it is immediate to extend the uniform convergence in (7.11) (with the subset E ⊂ Lψ fixed

once and for all) from f ∈ J1 and λ ∈ J2 to arbitrary f ∈ Cc(X
ψ) and λ ∈ Pac(S

d−1
1 ).

It remains to extend to arbitrary functions f ∈ Cb(X
ψ). Thus let f ∈ Cb(X

ψ), λ ∈ Pac(S
d−1
1 )

and ε > 0 be given. Set B := ‖f‖u; we may assume B > 0 since otherwise f is identically zero.
Let ν be the SLd(R) invariant probability measure on SLd(Z)\SLd(R); fix a compact subset

K ′ of SLd(Z)\SLd(R) with ν(K ′) >
(
1− ε/(4B)

)1/N
, and then set K := Xψ ∩∏N

j=1 ι̃
−1
j (K ′),

where ι̃j is the projection from Xj to SLd(Z)\SLd(R) 15. Then K is a compact subset of Xψ,
and for every q ∈ Lψ we have

ω(q)(K) = ω(q)

( N∏

j=1

ι̃−1
j (K ′)

)
=

N∏

j=1

ω
(q)
j

(
ι̃−1
j (K ′)

)
= ν(K ′)N > 1− ε

4B
,(9.41)

where we first used the fact that ω(q)(Xψ) = 1 (by Lemmas 6.4 and 6.2), and then used
Lemma 4.5. Next fix a function h ∈ Cc(Xψ) with 0 ≤ h ≤ 1 and h|K ≡ 1. By the uniform
convergence which we have already proved, there exists ρ0 ∈ (0, 1) such that for all ρ ∈ (0, ρ0)

and q ∈ Lψ ∩ BdT (ρ) \ E we have
∣∣F
(
〈h, λ〉, q, ρ

)∣∣ < ε/(4B); but also
∫
Xψ hdω

(q) ≥ ω(q)(K) >

1− ε/(4B), and hence
∫
Sd−1
1

h
(
Γg

(q)
0 ϕ(R(v)Dρ)

)
dλ(v) > 1− ε/(2B). It follows that

λ
({

v ∈ Sd−1
1 : Γg

(q)
0 ϕ(R(v)Dρ) ∈ supp(h)

})
> 1− ε

2B
,

for all ρ ∈ (0, ρ0) and q ∈ Lψ ∩ BdT (ρ) \ E .

15This is the map which we called “ι̃” in (3.22); we now call it ι̃j for clarity.
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Next fix a function h1 ∈ Cc(X
ψ) with 0 ≤ h1 ≤ 1 and h1|supp(h) ≡ 1, and set f1 := h1f ∈

Cc(X
ψ). Then note that for all x ∈ Xψ we have

∣∣f(x)− f1(x)
∣∣ ≤

∣∣f(x)
∣∣ ·
∣∣1− h1(x)

∣∣ ≤ B
∣∣1− h1(x)

∣∣ ≤ B · I(x /∈ supp(h)).

Hence for all ρ ∈ (0, ρ0) and q ∈ Lψ ∩ BdT (ρ) \ E we have
∣∣∣∣
∫

Sd−1
1

f
(
Γg

(q)
0 ϕ(R(v)Dρ)

)
dλ(v)−

∫

Sd−1
1

f1
(
Γg

(q)
0 ϕ(R(v)Dρ)

)
dλ(v)

∣∣∣∣

≤ B · λ
({

v ∈ Sd−1
1 : Γg

(q)
0 ϕ(R(v)Dρ) /∈ supp(h)

})
<
ε

2
,

and also∣∣∣∣
∫

Xψ
f dω(q) −

∫

Xψ
f1 dω(q)

∣∣∣∣ ≤ B · ω(q)
(
Xψ \ supp(h)

)
≤ B · ω(q)

(
Xψ \K

)
<
ε

4
.

Hence for these ρ and q we have
∣∣F
(
〈f, λ〉, q, ρ

)
− F

(
〈f1, λ〉, q, ρ

)∣∣ < 3ε/4. Furthermore,
by again applying the uniform convergence result which we have already proved it follows
that after possibly shrinking ρ0, we have

∣∣F
(
〈f1, λ〉, q, ρ

)∣∣ < ε/4 for all ρ ∈ (0, ρ0) and all

q ∈ Lψ ∩BdT (ρ) \ E . Combining the last two inequalities, we conclude that
∣∣F
(
〈f, λ〉, q, ρ

)∣∣ < ε

for all ρ ∈ (0, ρ0) and all q ∈ Lψ ∩ BdT (ρ) \ E . This completes the proof of the uniform

convergence in (7.11), viz., the proof of Theorem 7.7. �

Note that in view of the results in Section 7, we have now also completed the proof of the
main result of the paper, Theorem 2.1.

10. The transition kernels

10.1. Definitions; collision kernels and transition kernels. We will now give the explicit
formulas for the collision kernels p(ψ) and p(ψ

′→ψ) appearing in Theorem 1.2. It should be
noted that Theorem 1.2 is a reformulation of [21, Theorem 4.6], in our special case of P being
a finite union of grids. Crucially, our main result, Theorem 2.1, is required to ensure that
the assumptions in [21, Theorem 4.6] are fulfilled. We also use the fact that any integral

over the space Σ with respect to the measure m can be reduced to an integral over Ψ̃, since

m(Σ \ Ψ̃) = 0; and in the statement of Theorem 1.2 we view m as a probability measure on

Ψ, via the bijection ψ ↔ σψ between Ψ and Ψ̃.
The defining formulas for the collision kernels are [21, (3.41) and (3.44)]16

p(ψ)
(
V ′; ξ,V

)
=
σ(V ′,V )

vd−1
kg(ξ,w, ψ)(10.1)

and

p(ψ
′→ψ)

(
V ′′,V ′; ξ,V

)
=
σ(V ′,V )

vd−1
k(w′, ψ′, ξ,w, ψ),(10.2)

where k and kg are the transition kernels, whose definition we will recall below; σ(V ′,V ) is
the differential cross section of the fixed scattering process (see [21, Sec. 3.4] and the start

of Section 1.1 above); and finally w ∈ Bd−1
1 is the impact parameter which is a function of

V ′ and V , and w′ ∈ Bd−1
1 is the exit parameter which is a function of V ′′ and V ′. We refer

to [21, Sections 3.4 and 3.5] for a more detailed description; in particular it should be noted
that the formula (10.1) only makes sense for V ′,V which can form entry and exit velocities

in a scatterer collision; for any other V ′,V ∈ Sd−1
1 we have p(ψ)

(
V ′; ξ,V

)
= 0 by definition;

a similar statement holds for (10.2).

Next we recall in detail the definition of the transition kernels k and kg, from [21, Section
3.1], with some parts of the notation mildly modified.

16See also (10.11) below.
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Recall that for any ξ > 0 we denote Zξ = (0, ξ) × Bd−1
1 , an open cylinder in Rd. In the

following we will also use this notation with ξ = ∞, i.e., Z∞ = (0,∞) × Bd−1
1 . Furthermore,

we define the “e1-coordinate” of any point (x, ς) ∈ X to be the number x ·e1. Next we define
a map

z : Ns(X ) → ∆ := (Z∞ × Σ) ⊔ {undef},(10.3)

in the following way:17 Given Y ∈ Ns(X ), let z = z(Y ) be that point in Y ∩ (Z∞ ×Σ) which
has minimal e1-coordinate; if there does not exist a unique such point then let z(Y ) = undef.
Here “undef” is a dummy element not in Z∞ × Σ, and we provide ∆ with the disjoint union
topology. We also introduce the reflection map

ι : X → X , ι((w1,w), ς) = ((w1,−w), ς) (w1 ∈ R, w ∈ Rd−1, ς ∈ Σ).(10.4)

Next, given w ∈ Rd−1 and ψ ∈ Ψ, we let κw,ψ ∈ P (∆) be the pushforward of the measure
µσψ by the map Y 7→ ι(z(Y − (0,w))) from Ns(X ) to ∆. Equivalently,

κw,ψ is the pushforward of ωψ by the map x 7→ ι(z(J(x)− (0,w))) from X to ∆.(10.5)

Indeed, this holds since µσψ = Jψ∗ ωψ by definition, and furthermore z(Jψ(x)) = z(J(x)) for

all x ∈ Xψ, and ωψ(X \ Xψ) = 0 by (6.15). By [21, Lemma 3.1], κw,ψ({undef}) = 0, i.e.

κw,ψ restricts to a probability measure on Z∞ × Σ. Furthermore, since J(x) ⊂ Rd × Ψ̃ for

all x ∈ Xψ, by (6.12), κw,ψ in fact restricts to a probability measure on Z∞ × Ψ̃. By Lemma
7.4, we have κw,ψ(B) ≤ nP µX (B) for every Borel set B ⊂ Z∞ ×Σ ⊂ X ; in particular κw,ψ is
absolutely continuous with respect to µX .

Now the transition kernel k is defined as follows: For any given w′ ∈ Rd−1 and ψ′ ∈ Ψ,
we define k(w′, ψ′, · ) to be the probability density of the measure κw′,ψ′ with respect to the

measure v−1
d−1 µX , but restricted to the set Z∞×Ψ̃, parametrized by (ξ,w, ψ) ∈ R>0×Bd−1

1 ×Ψ.
That is, we define the function

k : Rd−1 ×Ψ× R>0 × Bd−1
1 ×Ψ → [0, nP vd−1](10.6)

so that for each w′ ∈ Rd−1 and ψ′ ∈ Ψ, k(w′, ψ′, ·, ·, ·) is uniquely defined as an element in

L1(R>0 × Bd−1
1 ×Ψ, dξ dw dm), and

κw′,ψ′(B) = v−1
d−1

∫

(ξ,w,σψ)∈B
k(w′, ψ′, ξ,w, ψ) dξ dw dm(ψ)(10.7)

for all Borel sets B ⊂ Z∞ × Σ. Note that in (10.7) we view m as a probability measure on Ψ
through m(ψ) := m(σψ), just as we did in the statement of Theorem 1.2.

Similarly, we let κg be the pushforward of the measure µg by the map Y 7→ ι(z(Y )) from
Ns(X ) to ∆. Then by (7.40) and Lemma 7.15 we have, for any fixed v ∈ Rd:

κg is the pushforward of ωg by the map x 7→ ι(z(J(x) + v)) from X to ∆.(10.8)

By [21, Lemma 3.5], and since J(x) ⊂ Rd × Ψ̃ for all x ∈ X by (6.10) and (6.12), κg in fact

restricts to a probability measure on Z∞ × Ψ̃. By [21, Prop. 2.27] applied with A = Ns(X ),
we have κg(B) ≤ nP µX (B) for every Borel set B ⊂ Z∞ × Σ ⊂ X (in our situation this may
also be derived from (7.40) and Proposition 4.8, by an argument similar to that in the proof of
Lemma 7.4). In particular κg is absolutely continuous with respect to µX . We now define the
transition kernel kg to be the corresponding probability density with respect to the measure

v−1
d−1 µX , but restricted to the set Z∞×Ψ̃, which we parametrize by (ξ,w, ψ) ∈ R>0×Bd−1

1 ×Ψ.
That is, we define the function

kg : R>0 × Bd−1
1 ×Ψ → [0, nP vd−1](10.9)

17This map z is the same map as in [21, (3.3)]; in particular, note that in [21], “Ω” denotes Bd−1
1 × Σ, and

hence “R>0 × Ω” can in an obvious way be identified with the set Z∞ × Σ. Recall that in the present paper,
“Ω” has a completely different meaning; see (6.3).
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so that

κg(B) = v−1
d−1

∫

(ξ,w,σψ)∈B
kg(ξ,w, ψ) dξ dw dm(ψ)(10.10)

for all Borel sets B ⊂ Z∞×Σ. The function kg is uniquely defined as an element in L1(R>0×
Bd−1
1 ×Ψ, dξ dw dm).

To facilitate comparison, let us note that in the notation of [21] we have:

k(w′, ψ′, ξ,w, ψ) = “k
((
w′, σψ

′)
, ξ,
(
w, σψ

))
”; kg(ξ,w, ψ) = “kg

(
ξ,
(
w, σψ

))
”.(10.11)

Let us also recall from [21] the following formula expressing kg in terms of k.

Lemma 10.1. There is a continuous version of kg, which for all (ξ,w, ψ) ∈ R>0 ×Bd−1
1 ×Ψ

satisfies

kg(ξ,w, ψ) = nP

∫ ∞

ξ

∫

Bd−1
1

∫

Ψ
k(−w, ψ, ξ′,w′, ψ′) dm(ψ′) dw′ dξ′.(10.12)

Proof. This follows as in the proof of [21, Cor. 3.24]. (Indeed, for d = 2 we are forced to take
R = −I1 ∈ O(1) in that proof, which directly gives the lemma; for d ≥ 3 we apply the proof
with a fixed R ∈ O(d− 1) with detR = −1, and then also use [21, Lemma 3.18].) �

In the rest of Section 10 we will always assume that the continuous version of kg is used.

Let us now note that the formula for the free path length density ΦP , (1.17), can be rewritten
as follows using (10.1):

ΦP(ξ) =
1

vd−1

∫

Bd−1
1 ×Ψ

kg(ξ,w, ψ) dw dm(ψ).(10.13)

We also introduce the density function for the free path length between consecutive collisions,

ΦP(ξ) =
1

v2d−1

∫

Bd−1
1 ×Ψ

∫

Bd−1
1 ×Ψ

k(w′, ψ′, ξ,w, ψ) dw dm(ψ) dw′ dm(ψ′).(10.14)

It is immediate from the definitions of kg and k that
∫∞
0 ΦP(ξ) dξ =

∫∞
0 ΦP(ξ) dξ = 1 and

that 0 ≤ ΦP(ξ), ΦP (ξ) ≤ nP vd−1. Furthermore ΦP(ξ) is continuous since kg is continuous.
The formula (1.20) expressing ΦP(ξ) in terms of ΦP(ξ) follows from Lemma 10.1, and (1.20)
implies that ΦP(ξ) is a decreasing function. Also, (1.21) follows from

∫∞
0 ΦP(ξ) dξ = 1 and

(1.20). It should be noted that the formula (1.21) holds more generally for any scattering
configuration P which fits within the framework of [21]; see [21, Cor. 3.23].

Remark 10.1. In the special case when P is a single grid (presented with #Ψ = 1), the
transition kernels k and kg have previously been studied in detail in the papers [15, 16, 17, 18].
In this case we have:

k(z, ψ, ξ,w, ψ) = nP vd−1Φ0(nPξ,w,z) and kg(ξ,w, ψ) = nP vd−1Φ(nPξ,w),

where “Φ0” and “Φ” is the notation used in [15, 18]. Also the free path length densities are
given by

ΦP(ξ) = nPΦ0(nPξ) and ΦP(ξ) = nPΦ(nPξ),

where, again, “Φ0” and “Φ” is the notation used in [15, 18].

Remark 10.2. The more general special case when all the grids appearing in P are incommen-
surable was previously studied in [20]. In that paper the normalizing condition nP = 1 was
imposed. Given such a point set P, presented with Ψ = {(j, 1) : j = 1, . . . , N}, we have:

k(w, ψ′, ξ,z, ψ) =
vd−1

njψ
· Φ(j′ψ→jψ)

0
(ξ,z,w) and kg(ξ,w, ψ) =

vd−1

njψ
· Φ(jψ)(ξ,w),

(10.15)
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where “Φ
(j→k)
0

” and “Φ(j)” is the notation used in [20]. The first translation formula in (10.15)
can be obtained e.g. by comparing the statements of [20, Theorem 4 and (5.4)] and [21, Thm.
3.6], and the second formula by comparing [20, Theorem 4 and (5.11)] and [21, Thm. 3.14].
See also Remark 10.5 below.

Remark 10.3. For P a general finite union of grids as in the present paper, it seems that it
should be possible to give explicit formulas for the transition kernels k and kg in terms of Haar
measures on appropriate homogeneous submanifolds of X, similar in spirit to the formulas in
[16, Sec. 7–8] for the case when P is a single grid. Obtaining such formulas would be a first
step towards the problem of generalizing the precise asymptotic estimates for the transition
kernels which were obtained in [18] in the single grid case.

10.2. The product formula. In view of our explicit set-up from Section 3.1, any two ψ,ψ′ ∈
Ψ are equivalent (“ψ ∼ ψ′”) in the sense defined in Section 1.2 if and only if jψ = jψ′ . Hence
we have an obvious bijection between CΨ and {1, . . . , N}. For any j ∈ {1, . . . , N}, let us
denote the corresponding equivalence class by Ψj := {(j, i) : i ∈ {1, . . . , rj}} ∈ CΨ. Let us
also introduce the short-hand notation Pj := PΨj ; that is

Pj =
⋃

ψ∈Ψj
Lψ.(10.16)

The asymptotic density of this point set is nj := nPj =
∑

ψ∈Ψj nψ.

Lemma 10.2. For each j ∈ {1, . . . , N}, the presentation of Pj in (10.16) is admissible.

Proof. This lemma is essentially clear by inspection; we still write out some details in order
to explain certain notation which we will use later. Let j ∈ {1, . . . , N} be fixed. The setup in
Section 3.1 applies to Pj if we set

[Ψ for Pj] := {(1, i) : i ∈ {1, . . . , rj}}

(thus [N for Pj] = 1 and [r1 for Pj] = rj), and then, for each i ∈ {1, . . . , rj}, set

[c1,i for Pj ] := cj,i, [w1,i for Pj ] := wj,i, and [M1 for Pj ] :=Mj ,

so that [L(1,i) for Pj ] = L(j,i) (see (3.4)). Indeed, with these definitions the analogue of the
formula in (3.5) holds for Pj . Of course, this formula is exactly the same as (10.16), once we
identify [Ψ for Pj ] with Ψj through (1, i) ↔ (j, i).

Now the condition (3.6) trivially holds for Pj since it holds for P, and the condition (3.7)

for Pj is void, since [N for Pj ]= 1. Next, we have [c
(1,i)
1 for Pj] = c

(j,i)
j by (5.1), and [W

(1,i)
1

for Pj ] = W
(j,i)
j by (5.2); therefore [L

(1,i)
j for Pj ] = L

(j,i)
j by (5.5). Hence by Definition 5.1,

our presentation of Pj is admissible if and only if c
(j,i)
j ∈ L

(j,i)
j + Zrj for all i ∈ {1, . . . , rj};

and these conditions are certainly fulfilled, since we are assuming that the fixed presentation
of P in (3.5) is admissible. �

Recall from Section 1.2 that for any j ∈ {1, . . . , N} and ψ,ψ′ ∈ Ψj, the collision kernels ◦p(ψ)

and ◦p(ψ→ψ′) are defined as [p(ψ) and p(ψ→ψ′) for Pjψ ]. Similarly let us define the transition

kernels ◦k(w′, ψ′, ξ,w, ψ) and ◦kg(ξ,w, ψ) as [k(· · · ) and kg(· · · ) for Pjψ ]. Now the product
formulas announced in Section 1.2 are as follows.
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Theorem 10.3. Given any 〈w′, ψ′〉 ∈ Bd−1
1 × Ψ and ψ ∈ Ψ, the following formula holds for

Lebesgue almost all 〈ξ,w〉 ∈ R>0 × Bd−1
1 :

k(w′, ψ′, ξ,w, ψ) =





nP
njψ

◦k(w′, ψ′, ξ,w, ψ)
∏

j 6=jψ

∫ ∞

ξ
ΦPj(ξ

′) dξ′ if jψ′ = jψ

nP
njψnjψ′ vd−1

◦kg(ξ,w, ψ) ◦kg(ξ,−w′, ψ′)
∏

j 6=jψ,jψ′

∫ ∞

ξ
ΦPj (ξ

′) dξ′

if jψ′ 6= jψ.

(10.17)

Furthermore, for all 〈ξ,w, ψ〉 ∈ R>0 × Bd−1
1 ×Ψ:

kg(ξ,w, ψ) =
nP
njψ

◦kg(ξ,w, ψ)
∏

j 6=jψ

∫ ∞

ξ
ΦPj (ξ

′) dξ′.(10.18)

Each product over j in (10.17) and (10.18) should be understood to run over all j ∈ {1, . . . , N}
except those numbers which are explicitly excluded.

Remark 10.4. It is not difficult to translate Theorem 10.3 into a product formula involving
the collision kernels instead, using (10.1) and (10.2). For example, when jψ′ = jψ, the formula
in (10.17) is equivalent to

p(ψ
′→ψ)(V ′′,V ′; ξ,V ) =

nP
njψ

◦p(ψ
′→ψ)(V ′′,V ′; ξ,V )

∏

j 6=jψ

∫ ∞

ξ
ΦPj (ξ

′) dξ′.(10.19)

But when jψ′ 6= jψ (and assuming V ′ ∈ VV ′′), (10.17) translates into the following somewhat
more complicated formula:

p(ψ
′→ψ)(V ′′,V ′; ξ,V ) =

nP
njψnjψ′ σ(V

′,W )
p(ψ)(V ′; ξ,V )p(ψ

′)(V ′; ξ,W )
∏

j 6=jψ,jψ′

∫ ∞

ξ
ΦPj (ξ

′) dξ′,

with W = Ψ1(V
′,−β+

V ′′(V
′)), where the maps “Ψ1” and “β+” are as in [21, Sec. 3.4] (these

are defined in terms of the fixed scattering process of the Lorentz gas). If the scattering process
preserves angular momentum, then we have in fact W = V ′′, by [21, (3.33)].

Proof of Theorem 10.3. We first need to introduce some further notation. For each j ∈
{1, . . . , N} let us set Σj := {(ψ, ω) ∈ Σ : jψ = j} and Xj = Rd × Σj. Note that each Σj
is a clopen subset of Σ, and each Xj is a clopen subset of X , and Σ and X decompose as
disjoint unions Σ = ⊔Nj=1Σj and X = ⊔Nj=1Xj. Also for each j ∈ {1, . . . , N} we define the map

J (j) : Xj → Ns(Xj) through

J (j)(Γjg) =

rj⋃

i=1

cj,i
(
Zdai(g)

)
× {σ(j,i)} (g ∈ Gj).(10.20)

Using these maps J (j), the formula for J : X → Ns(X ) in (6.12) can be written

J(x) =
N⋃

j=1

J (j)(p̃j(x)) (x ∈ X).(10.21)

Throughout the following, we will identify [Ψ for Pj] with Ψj through (1, i) ↔ (j, i) whenever
convenient, as explained in the proof of Lemma 10.2 above. It is now straightforward to express
the concepts defined in Section 6.2 when applied to Pj with its presentation in (10.16). For

example, [Ω for Pj ] now equals P (Tdj )
′, [Σ for Pj] equals Σj, and

mj := [m for Pj ] =
nP
nj

m

∣∣
Σj

∈ P (Σj).(10.22)
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As we did for m in Section 10.1, we also use mj to denote the probability measure on Ψj given
by mj(ψ) := mj(σ

ψ) (ψ ∈ Ψj); this gives back the measure defined in (1.12) (but now writing

Ψj in place of c). Furthermore, we have [X for Pj ] = Xj and [µX for Pj ] = vol×mj =
nP
nj
µX
∣∣
Xj .

Also, the map [J for Pj ] is given by J (j) defined in (10.20).

Next, for any w′ ∈ Rd−1 and ψ′ ∈ Ψj , let us write
◦κw′,ψ′ := [κw′,ψ′ for Pj], and also ◦κgj := [κg for Pj ].

Now it is easy to write out the definitions and facts from Section 10.1 when applied for Pj in
the place of P. For example, ◦k, which we defined above to be the transition kernel [k for Pj ],
is a function

◦k : Rd−1 ×Ψj × R>0 × Bd−1
1 ×Ψj → [0, nj vd−1].(10.23)

such that for each w′ ∈ Rd−1 and ψ′ ∈ Ψj, and for any Borel set B ⊂ Z∞ × Σj, we have

◦κw′,ψ′(B) = v−1
d−1

∫

(ξ,w,σψ)∈B
◦k(w′, ψ′, ξ,w, ψ) dξ dw dmj(ψ).

We now start with the actual proof of Theorem 10.3. Let w′ ∈ Bd−1
1 and ψ′ ∈ Ψ; these

will be kept fixed throughout the proof. Let j0 ∈ {1, . . . , N}, and let B be a Borel subset of
Z∞ × Σj0 . Then by (10.5),

κw′,ψ′(B) = ωψ′(A), with A :=
{
x ∈ X : ι(z(J(x)− (0,w′))) ∈ B

}
.(10.24)

Recall that X = X1 × · · · × XN and ωψ
′
= ωψ

′

1 ⊗ · · · ⊗ ωψ
′

N . Let us write X(j0) =
∏
j 6=j0 Xj, so

that

X = Xj0 × X(j0) = {(x, x′) : x ∈ Xj0 , x
′ ∈ X(j0)},

in an obvious identification. Corresponding to this product decomposition we have ωψ′ =

ωψ
′

j0
⊗ ν with ν := ⊗j 6=j0ω

ψ′

j , and hence, by Fubini’s Theorem,

κw′,ψ′(B) = ωψ′(A) =

∫

Xj0

ν(Ax) dω
ψ′

j0
(x),(10.25)

where for each x ∈ Xj0 ,

Ax := {x′ ∈ X(j0) : ι(z(J(x, x′)− (0,w′))) ∈ B}.
For each j ∈ {1, . . . , N} we set X̃j := {x ∈ Xj : z(J (j)(x)− (0,w′)) 6= undef}. Then

ωψ
′

j

(
Xj \ X̃j

)
= 0.(10.26)

Indeed, if j = jψ′ then (10.26) follows from ◦κw′,ψ′({undef}) = 0 (which holds by [21, Lemma

3.1]), and if j 6= jψ′ then ωψ
′

j = ωg
j by Lemma 5.11, and so (10.26) follows from the fact that

◦κgj ({undef}) = 0 (which holds by [21, Lemma 3.5]) and the formula (10.8) with v = −(0,w′),

applied for Pj in the place of P. Hence, writing also X̃ =
∏N
j=1 X̃j and X̃(j0) =

∏
j 6=j0 X̃j, we

have ωψ′
(
X \ X̃

)
= 0 and ν

(
X(j0) \ X̃(j0)

)
= 0, and using these facts together with (10.26), it

follows that:

κw′,ψ′(B) = ωψ′
(
A ∩ X̃

)
=

∫

X̃j0

ν
(
Ax ∩ X̃(j0)

)
dωψ

′

j0
(x),(10.27)

For any x ∈ X̃j0 , let us define ξ(x) ∈ R>0, w(x) ∈ Bd−1
1 and ψ(x) ∈ Ψj0 through the relation

(
(ξ(x),w(x)), ψ(x)

)
= ι(z(J (j0)(x)− (0,w′))) in Z∞ × Σj0 .(10.28)

Let us also set

B̃ = {x ∈ X̃j0 : ((ξ(x),w(x)), ψ(x)) ∈ B}.
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We will write any element x′ in X(j0) =
∏
j 6=j0 Xj as x′ = (x′j)j 6=j0 with x′j ∈ Xj. Also, for

any Y ∈ Ns(X ) such that z(Y ) 6= undef, let us denote by z1(Y ) the e1-coordinate of the

point z(Y ); in particular we then have z1(J
(j0)(x) − (0,w′)) = ξ(x) for every x ∈ X̃j0 . Using

the definition of the map z and our assumption that B ⊂ Z∞ × Σj0 , it follows that for every

(x, x′) ∈ X̃j0 × X̃(j0), the condition ι(z(J(x, x′)− (0,w′))) ∈ B holds if and only if x ∈ B̃ and

z1(J
(j)(x′j)− (0,w′)) > ξ(x) for all j 6= j0. Hence (10.27) can be rewritten as

κw′,ψ′(B) =

∫

B̃

∏

j 6=j0
ωψ

′

j

({
x′j ∈ X̃j : z1(J

(j)(x′j)− (0,w′)) > ξ(x)
})
dωψ

′

j0
(x),(10.29)

Here for each j 6= jψ′ we have

ωψ
′

j

({
x′j ∈ X̃j : z1(J

(j)(x′j)− (0,w′)) > ξ(x)
})

= ◦κgj
(
(ξ(x),∞) × Bd−1

1 × Ψ̃j

)

= v−1
d−1

∫ ∞

ξ(x)

∫

Bd−1
1

∫

Ψj

◦kg(ξ′,w, ψ) dmj(ψ) dw dξ =

∫ ∞

ξ(x)
ΦPj (ξ

′) dξ′,

where the first equality follows from ωψ
′

j = ωg
j and the formula (10.8) with v = −(0,w′),

applied for Pj in place of P, and the last equality holds by (10.13) applied for Pj . On the
other hand, for j = jψ′ we have

ωψ
′

j

({
x′j ∈ X̃j : z1(J

(j)(x′j)− (0,w′)) > ξ(x)
})

= ◦κw′,ψ′

(
(ξ(x),∞) × Bd−1

1 × Ψ̃j

)

= v−1
d−1

∫ ∞

ξ(x)

∫

Bd−1
1

∫

Ψj

◦k(w′, ψ′, ξ′,w, ψ) dmj(ψ) dw dξ =
1

nj vd−1

◦kgj (ξ(x),−w′, ψ′),

where in the last equality we used Lemma 10.1 for Pj .
Let us first assume j0 = jψ′ . Then the above formulas imply that

κw′,ψ′(B) =

∫

B̃

(∏

j 6=j0

∫ ∞

ξ(x)
ΦPj (ξ

′) dξ′
)
dωψ

′

j0
(x),(10.30)

We here change to new integration variables (ξ,w, ψ) through (10.28); then by the definition

of ◦k(w′, ψ′, · · · ) we have dωψ
′

j0
(x) = v−1

d−1
◦k(w′, ψ′, ξ,w, ψ) dξ dw dmj0(ψ). Hence, using also

(10.22) to express mj0 in terms of m, we get

κw′,ψ′(B) =
nP

nj0 vd−1

∫

B

◦k(w′, ψ′, ξ,w, ψ)

(∏

j 6=j0

∫ ∞

ξ
ΦPj (ξ

′) dξ′
)
dξ dw dm(ψ).(10.31)

The fact that (10.31) holds for all Borel sets B ⊂ Z∞ × Σj0 implies that the first formula in

(10.17) holds for almost all 〈ξ,w, ψ〉 ∈ R>0 × Bd−1
1 ×Ψj0 .

Next assume j0 6= jψ′ . Then in a similar way, we get

κw′,ψ′(B) =
1

njψ′ vd−1

∫

B̃

◦kgjψ′
(ξ(x),−w′, ψ′)

( ∏

j 6=jψ′ ,j0

∫ ∞

ξ(x)
ΦPj (ξ

′) dξ′
)
dωψ

′

j0
(x)

=
nP

nj0njψ′ v
2
d−1

∫

B

◦kgj0(ξ,w, ψ)
◦kgjψ′

(ξ,−w′, ψ′)

( ∏

j 6=jψ′ ,j0

∫ ∞

ξ
ΦPj(ξ

′) dξ′
)
dξ dw dm(ψ).

(10.32)

Here, to obtain the last equality, we again changed to new integration variables (ξ,w, ψ)

through (10.28) and used ωψ
′

j0
= ωg

j0
and the formula (10.8) with v = −(0,w′) (applied for Pj

in place of P), to see that dωψ
′

j0
(x) = v−1

d−1
◦kgjψ′

(ξ,−w′, ψ′) dξ dw dmj0(ψ). Finally, the fact

that (10.32) holds for all Borel sets B ⊂ Z∞ ×Σj0 implies that the second formula in (10.17)

holds for almost all 〈ξ,w, ψ〉 ∈ R>0 × Bd−1
1 ×Ψj0 .
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Since j0 was arbitrary, we have now proved all of (10.17). The formula (10.18) follows by a
very similar computation, starting from the relation κg(B) = ωg(A) instead of (10.24), leading
to

κg(B) =
nP

nj0 vd−1

∫

B

◦kg(ξ,w, ψ)

(∏

j 6=j0

∫ ∞

ξ
ΦPj (ξ

′) dξ′
)
dξ dw dm(ψ).

The fact that (10.18) holds for all (and not just almost all) ξ,w, ψ follows by continuity, see
Lemma 10.1.

This completes the proof of Theorem 10.3, and thus also the proof of Theorem 10.4. �

Remark 10.5. In the special case when all the grids appearing in P are incommensurable
and nP = 1, the product formulas in Theorem 10.3 agree with the formulas [20, (5.5), (5.6),
(5.12)]. This is immediately verified using the formulas in Remark 10.1 and Remark 10.2, and
the fact that ◦kg(ξ,−w′, ψ′) = ◦kg(ξ,w′, ψ′), since Pjψ′ is a single grid. (The last mentioned

symmetry relation follows from Remark 10.1 and [16, Remark 4.5]18. In fact, in dimension
d ≥ 3 we have for our general P that kg(ξ,w, ψ) only depends on ξ, ‖w‖, ψ, by [21, Lemma
3.18].)

We next give the proof of Theorem 1.3. We will here stay close to the notation used in the
statement of that theorem, thus, e.g., we return to parametrizing the equivalence classes in Ψ
by c ∈ CΨ instead of j ∈ {1, . . . , N}.
Proof of Theorem 1.3. Since the set A may be decomposed as the disjoint union of the subsets
A ∩ (R>0 × {ψ} × Sd−1

1 ) with ψ running through Ψ, it suffices to prove the statements of the

corollary when A is a subset of R>0×{ψ0}×Sd−1
1 for some fixed ψ0 ∈ Ψ. In this case, for any

given ψ′ ∈ Ψ, it follows from the definition of c̃ψ′ that the right hand side of (1.16) equals

P
(
ξ̃[ψ0],ψ′ < ξ̃c,ψ′ ∀c 6= [ψ0] and 〈ξ̃[ψ0],ψ′ , ψ̃[ψ0],ψ′ , Ṽ [ψ0],ψ′〉 ∈ A

)
.(10.33)

Using the definition of the random triples 〈ξ̃c,ψ′ , ψ̃c,ψ′ , Ṽ c,ψ′〉, the above probability can be
expressed as follows, if ψ′ 6∼ ψ0:∫

A

◦p(ψ0)(V ′; ξ,V )

(∫

(ξ,∞)×[ψ′]×Sd−1
1

◦p(ψ
′→ψ1)(V ′′,V ′; ξ1,V1) dξ1 dm[ψ′](ψ1) dσ(V1)

)

×
( ∏

c 6=[ψ0],[ψ′]

∫

(ξ,∞)×c×Sd−1
1

◦p(ψ1)(V ′; ξ1,V1) dξ1 dmc(ψ1) dσ(V1)

)
dξ dm[ψ0](ψ) dσ(V )

=

∫

A

◦p(ψ0)(V ′; ξ,V )

(
1

vd−1

∫

(ξ,∞)×[ψ′]×Bd−1
1

◦k(w′, ψ′, ξ1,w1, ψ1) dξ1 dm[ψ′](ψ1) dw1

)

×
( ∏

c 6=[ψ0],[ψ′]

∫ ∞

ξ
ΦPc(ξ

′) dξ′
)
dξ dm[ψ0](ψ) dσ(V ),

where w′ ∈ Bd−1
1 is the exit parameter determined by the fixed vectors V ′′,V ′. To get the

last equality, in the integral over (ξ,∞) × [ψ′] × Sd−1
1 we introduced the new variable w1 :=

the impact parameter determined by V ′,V1, and used (10.2) and the defining property of the
differential cross section (cf. [21, Sec. 3.4 and Lemma 3.26]); also, inside the product over c
we applied (1.18).

Next we apply Lemma 10.1 to identify the integral over (ξ,∞) × [ψ′] × Bd−1
1 , and in the

integral over A we substitute w2 := the impact parameter determined by V ′,V , and use
(10.1). It follows that the above expression equals

1

n[ψ′] v
2
d−1

∫

AV ′

◦k(ξ,w2, ψ0)
◦k(ξ,−w′, ψ′)

( ∏

c 6=[ψ0],[ψ′]

∫ ∞

ξ
ΦPc(ξ

′) dξ′
)
dξ dm[ψ0](ψ) dw2,

18Note that the function “Φ(ξ,w)” in [15, 18] is the same as “Φα(ξ,w,z) with α /∈ Qd” in [16].
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where AV ′ is the set of triples (ξ, ψ,w2) which arise as images of the (ξ, ψ,V ) ∈ A. Finally,
using m[ψ0] = (nP/n[ψ0])m

∣∣
[ψ0]

and the product formula (10.17) in Theorem 10.3, and our

assumption that A ⊂ R>0×{ψ0}×Sd−1
1 (⇒ AV ′ ⊂ R>0×{ψ0}×Bd−1

1 ), the above expression
becomes

1

vd−1

∫

AV ′

k(w′, ψ′, ξ,w2, ψ) dξ dm(ψ) dw2 =

∫

A
p(ψ

′→ψ)(V ′′,V ′; ξ,V ) dξ dm(ψ) dσ(V ).

By (1.8) in Theorem 1.2, this equals the left hand side of (1.16)!
In the case ψ′ ∼ ψ0, the probability in (10.33) instead equals

∫

A

◦p(ψ
′→ψ0)(V ′′,V ′; ξ,V )

( ∏

c 6=[ψ0]

∫ ∞

ξ
ΦPc(ξ

′) dξ′
)
dξ dm[ψ0](ψ) dσ(V ),

and by the same type of computation as above (but easier, and using the first equality in
(10.17) instead of the second), this is again seen to be equal to the left hand side of (1.16).
This completes the proof of (1.16).

The proof of (1.15) is completely similar, but easier: Again assuming A ⊂ R>0×{ψ0}×Sd−1
1 ,

the right hand side of (1.15) equals

P
(
ξ̃[ψ0] < ξ̃c ∀c 6= [ψ0] and 〈ξ̃[ψ0], ψ̃[ψ0], Ṽ [ψ0]〉 ∈ A

)

=

∫

A

◦p(ψ0)(V ′; ξ,V )

( ∏

c 6=[ψ0]

∫ ∞

ξ
ΦPc(ξ

′) dξ′
)
dξ dm[ψ0](ψ) dσ(V ),

and by the same type of computation as above, using now (10.18), this is seen to be equal to
the left hand side of (1.15). �

10.3. Asymptotic estimates for the free path length distribution. We will now prove
Theorem 1.5. This theorem will be a quite easy consequence of the following result.

Proposition 10.4. There exist constants 0 < c1 < c2, which only depend on P, such that

c1ξ
−N <

∫ ∞

ξ
ΦP(ξ

′) dξ′ < c2ξ
−N , ∀ξ ≥ 1.(10.34)

Proof. By Corollary 1.4,
∫∞
ξ ΦP(ξ′) dξ′ =

∏N
j=1

∫∞
ξ ΦPj (ξ

′) dξ′; thus, if we can prove the

proposition when N = 1, it follows for general N . Hence from now on we assume N = 1.
By (10.13) and the definition of kg, we have

∫ ∞

ξ
ΦP(ξ

′) dξ′ =
1

vd−1

∫

[ξ,∞)×Bd−1
1 ×Ψ

kg(ξ′,w, ψ) dξ′ dw dm(ψ)

= κg
(
[ξ,∞)× Bd−1

1 ×Σ
)
= ωg

({
x ∈ X : J(x) ∩ (Zξ × Σ) = ∅

})
,(10.35)

where in the last equality we used (10.8), κg({undef}) = 0, and the definition of the map
z. Now since N = 1 we have X = X1 and ωg = ωg

1 , and ωg is SLd(R)-invariant by
Lemma 4.5; in particular ωg is invariant under (right) multiplication by D := Dξ1/d =

diag
(
ξ1−

1
d , ξ−

1
d , . . . , ξ−

1
d

)
, and so we may replace J(x) by J(xD) in the last expression in

(10.35). Using also J(xD) = J(x)D, we see that this is equivalent with replacing, in the same
expression, Zξ by

Z̃ξ := ZξD
−1 = (0, ξ1/d)×Bd−1

ξ1/d
.

Using also Lemma 4.4 for ωg = ωg
1 , and the definition of J in (6.12), we conclude:

∫ ∞

ξ
ΦP(ξ

′) dξ′ =
∫

Fd

ωg
({
U ∈ Td1 : c1,i

(
Zd + r̃i(U))A ∩ Z̃ξ = ∅ for i = 1, . . . , r1

})
dν(A).

(10.36)
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Here r̃i(U) ∈ (R/Z)d, and in the above expression we use the convention that for any u ∈
(R/Z)d, Zd + u denotes the inverse image of u in Rd (that is, Zd + u := Zd + v, where v is
any lift of u to Rd).

To get an upper bound, we fix an arbitrary i ∈ {1, . . . , r1}, and note that the previous
integral is bounded above by∫

Fd

[̃ri∗(ω
g)]
({

u ∈ (R/Z)d : c1,i(Z
d + u)A ∩ Z̃ξ = ∅

})
dν(A).

Here note that the measure r̃i∗(ωg) is invariant under translations, since, as we saw in the proof
of Lemma 7.15, ωg = ωg

1 is invariant under X 7→ X + c̃1v for all v ∈ Rd, and ri(c̃1v) = c−1
1,i v

with c1,i > 0. Hence r̃i∗(ωg) is in fact the Lebesgue probability measure on (R/Z)d, and it
follows that in the last integral equals∫

ASLd(Z)\ASLd(R)
I
(
j(x) ∩ c−1

1,i Z̃ξ = ∅
)
dν̃(x),

where ν̃ is the ASLd(R) invariant probability measure on ASLd(Z)\ASLd(R) and j is the
standard identification between ASLd(Z)\ASLd(R) and the space of grids of density one in Rd,
that is, j(ASLd(Z)g) := Zdg for any g ∈ ASLd(R). This integral is known to be asymptotically
equal to c ξ−1 as ξ → ∞ with an explicit constant c [18, Theorem 3.5 and (3.21), (3.22)]. Hence
the upper bound in (10.34) (for N = 1) holds for an appropriate constant c2.

It remains to prove the lower bound. We will need the following lemma.

Lemma 10.5. There exists a constant c = c(d) > 0 such that for any B ≥ 1, there exists a
subset MB ⊂ Fd with ν(MB) ≥ cB−d such that for every A ∈MB there exists a vector ℓ ∈ Rd

satisfying ‖ℓ‖ ≥ B and ZdA ⊂ Zℓ+ ℓ⊥.

(Here ℓ⊥ denotes the hyperplane orthogonal to ℓ.)

Proof. Consider the Siegel set

Sd :=
{
u diag(a1, . . . , ad) k : u ∈ FU , 0 < aj+1 ≤ 2√

3
aj (j = 1, . . . , d− 1), k ∈ SO(d)

}
,

where FU is the set of all unipotent upper triangular matrices in SLd(R) all of whose elements
above the diagonal belong to [−1

2 ,
1
2 ]. It is known that Sd contains a fundamental region for

SLd(Z)\SLd(R), and on the other hand, the number of points in Sd which project to any given
point in SLd(Z)\SLd(R) is bounded above by a constant K = K(d) (see [3]). Note that for
any A = u diag(a1, . . . , ad) k ∈ Sd we have e1u ⊂ e1 + e⊥1 and eju ⊂ e⊥1 for all j ∈ {2, . . . , d};
hence the vector ℓ := a1e1k satisfies ZdA ⊂ Zℓ+ ℓ⊥. Therefore, given B ≥ 1, if we set

M ′
B := {u diag(a1, . . . , ad) k ∈ Sd : a1 ≥ B},

then for every A ∈ M ′
B there exists ℓ ∈ Rd satisfying ‖ℓ‖ ≥ B and ZdA ⊂ Zℓ + ℓ⊥. Note

also that this property only depends on the lattice ZdA, that is, it depends only on the coset
SLd(Z)A. Hence if we setMB := Fd∩

(
SLd(Z)M

′
B

)
, then for every A ∈MB there again exists

ℓ ∈ Rd satisfying ‖ℓ‖ ≥ B and ZdA ⊂ Zℓ+ ℓ⊥. Furthermore,

ν(MB) ≥ K−1ν(M ′
B) ≫

∫ ∞

B
a−d−1
1 da1 ≫ B−d,

where the lower bound on ν(M ′
B) follows from a standard integration using the expression for

ν in terms of the Iwasawa decomposition of SLd(R) (see, e.g., [30, (2.11) and (2.12)], and use

also the fact that for B sufficiently large, the set of A′ ∈ Sd−1 with a1 ≤ 2√
3
Bd/(d−1) has Haar

measure bounded away from zero independently of B). �

Now let MB ⊂ Fd be the set provided by Lemma 10.5, applied with

B := 4
( r1∑

i=1

c−1
1,i

)
Cξ where Cξ := sup

{∣∣v ·w
∣∣ : v ∈ Sd−1

1 , w ∈ Z̃ξ
}
.(10.37)
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We claim that for every A ∈MB ,

ωg
({
U ∈ Td1 : c1,i

(
Zd + r̃i(U))A ∩ Z̃ξ = ∅ for i = 1, . . . , r1

})
≥ 1

2 .(10.38)

To prove this, we first use that the left hand side of (10.38) is

≥ 1−
r1∑

i=1

ωg
({
U ∈ Td1 : c1,i(Z

d + r̃i(U))A ∩ Z̃ξ 6= ∅
})
.(10.39)

Now A ∈MB implies that there is a vector ℓ ∈ Rd satisfying ‖ℓ‖ ≥ B and ZdA ⊂ Zℓ+ ℓ⊥. It
follows that for every U ∈ Td1 we have (Zd+ r̃i(U))A ⊂ (Z+x)ℓ+ℓ⊥, where x := ‖ℓ‖−2ℓ · (vA)
for some vector v ∈ Zd + r̃i(U). Note that for every m ∈ Zd we have mA ∈ Zℓ + ℓ⊥ and
so ‖ℓ‖−2ℓ · (mA) ∈ Z; this implies that the map v 7→ ‖ℓ‖−2ℓ · (vA) from Rd to R induces
a well-defined map δ : (R/Z)d → R/Z. Using this map, the inclusion just mentioned can be
written:

(Zd + r̃i(U))A ⊂ (Z+ δ(̃ri(U)))ℓ + ℓ⊥, ∀U ∈ Td1.

(Here for any y ∈ R/Z, we write Z + y for the inverse image of y in R.) Hence we conclude
that the expression in (10.39) is

≥ 1−
r1∑

i=1

[
(δ ◦ r̃i)∗(ωg)

]({
y ∈ R/Z : (Z+ y)ℓ+ ℓ⊥ ∩ c−1

1,i Z̃ξ 6= ∅
})
.(10.40)

But we have noted that r̃i∗(ωg) is Lebesgue measure on (R/Z)d; hence (δ ◦ r̃i)∗(ωg) is Lebesgue

measure on R/Z. Note also that for any x ∈ R, the set c−1
1,i Z̃ξ intersects xℓ + ℓ⊥ if and only

there is some w ∈ c−1
1,i Z̃ξ satisfying ‖ℓ‖−2ℓ ·w = x. Furthermore, because of our choice of Cξ

in (10.37), we have
∣∣‖ℓ‖−2ℓ ·w

∣∣ ≤ Cξ/
(
c1,i‖ℓ‖

)
for every w ∈ c−1

1,i Z̃ξ. Therefore, the expression

in (10.40) is

≥ 1−
r1∑

i=1

Leb

({
y ∈ R/Z : (Z+ y) ∩

[
− Cξ
c1,i‖ℓ‖

,
Cξ

c1,i‖ℓ‖

]
6= ∅
})

= 1−
r1∑

i=1

2Cξ
c1,i‖ℓ‖

≥ 1

2
,

where the last bound holds since ‖ℓ‖ ≥ B and because of our choice of B in (10.37) (and the
preceding equality holds since Cξ/

(
c1,i‖ℓ‖

)
≤ 1

4 ≤ 1
2 for every i). This completes the proof of

(10.38).
Using (10.38) and (10.36), we conclude

∫ ∞

ξ
ΦP(ξ

′) dξ′ ≥ 1
2ν(MB) ≫ B−d ≫ ξ−1,

where we first used the bound from Lemma 10.5, and then the fact that B ≪ Cξ ≪ ξ1/d.
Hence the lower bound in (10.34) (for N = 1) holds for an appropriate constant c1, and
Proposition 10.4 is proved. �

Proof of Theorem 1.5. This is immediate from Proposition 10.4 and the fact that ΦP(ξ)
is a nonnegative, decreasing function. Indeed, the upper bound for ξ ≥ 2 follows using

(ξ/2)ΦP (ξ) ≤
∫ ξ
ξ/2 ΦP(ξ′) dξ′; for 1 ≤ ξ ≤ 2 one may e.g. use ΦP(ξ) ≤ nP vd−1. For the lower

bound, let c1, c2 be as in Proposition 10.4, and fix a > 1 so that c1 − c2a
−N > 0. Then for

any ξ ≥ 1,

(a− 1)ξΦP(ξ) ≥
∫ aξ

ξ
ΦP(x) dx =

∫ ∞

ξ
ΦP(x) dx−

∫ ∞

aξ
ΦP(x) dx > c1ξ

−N − c2(aξ)
−N ,

which implies that the lower bound in (1.19) holds with cnew2 = (a− 1)−1(c1 − c2a
−N ). �



78 MATTHEW PALMER AND ANDREAS STRÖMBERGSSON

Proof of Corollary 1.6. By (1.20), −
(
nP vd−1

)−1
ΦP(ξ) is a primitive function of ΦP(ξ); hence

by integration by parts,
∫ A

0
ξ2 ΦP(ξ) =

1

nP vd−1

(
−A2ΦP(A) + 2

∫ A

0
ξΦP(ξ) dξ

)
,

for any A > 0. Now the corollary follows by letting A→ ∞ and using Theorem 1.5. �
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Index of notation

For the convenience of the reader, we include an index of some of the most important
notation. Note that in Section 8, some of the notation listed below (for example, “Γ ”, “Γj”

and “M̃”) is used in a slightly different and more general way; this is explained in the beginning
of that section.

Bdr open ball in Rd with center 0 and radius r 2

Bdr (x) open ball in Rd with center x and radius r 10
Cb(S) the space of bounded continuous functions on S 17
CΨ family of equivalence classes in Ψ 6

c̃j the vector
(
c−1
j,1 · · · c−1

j,rj

)T
in Rrj 22

c
ψ
j the vector cψ c̃j in Rrj 22
cψ fixed positive real numbers such that (3.4)–(3.5) hold 13

Dρ diagonal matrix diag(ρd−1, ρ−1, · · · , ρ−1) 9
DS the set

⋃
i<j

{
(M1, . . . ,MN ) ∈ G′ : MiM

−1
j ∈ S

}
47

E subset of P of density zero (“exceptional points”) 10, 40
ek the kth standard unit vector in Rd (or in Rr or Rrj ) 9, 23, 31
G Sr1(R)× · · · × SrN (R) 14
Gj Srj (R) 15
G′ SLd(R)

N (a subgroup of G) 46

g
(q)
0 IU(q) M̃ 15

IU for U ∈ Mr×d(R), IU := (I, U) ∈ Sr(R); for U ∈ ∏N
j=1 Mrj×d(R), IU := (IU1 , . . . , IUN ) 14, 15

I(·) indicator function: I(P ) = 1 if statement P is true, otherwise I(P ) = 0 19

iψ the second coordinate of ψ (for any ψ ∈ Ψ) 13

J0 a map from X to Ns(R
d) 15

J a map from X to Ns(X ) 34

Jψ a map from Xψ to Ns(X ) 34

jψ the first coordinate of ψ (for any ψ ∈ Ψ) 13

k transition kernel, defined in (10.6)–(10.7) 68

kg transition kernel, defined in (10.9)–(10.10) 68

L(S) for ∅ 6= S ⊂ Trj , L(S) :=
〈
π−1(S)

〉 ◦

(a rational subspace of Rrj ) 17
Lψ a grid in Rd. After (3.4) we have Lψ = cψ(Z

d +wψ)Mjψ 4, 13

L
(q)
j L

(π(U
(q)
j

))

j 16, 18

L
(V )
j L(V1, . . . , Vd), for V = (V1, . . . , Vd) ∈ Tdj 18

Lψj the rational subspace of Rrj given by (5.5) 22

Lj the rational subspace of Rrj defined in (5.12) 24
m probability measure on Ψ or on Σ 5, 10, 34
mc probability measure on an equivalence class c ⊂ Ψ 7

Mj M1, . . . ,MN are fixed elements in SLd(R) such that (3.4)–(3.5) hold 13

M̃ (M1, . . . ,MN ) (an element in G′, thus in G) 15
N(X ) the set of locally finite counting measures on X 9
Ns(X ) the set of simple measures in N(X ) 9
nP the asymptotic density of the point set P ; nP =

∑
ψ∈Ψ nψ 2, 5

nψ the asymptotic density of Lψ. (After (3.4): nψ = c−dψ .) 5

O(q)
j O(π(U

(q)
j

))

j 18

O(V )
j the subset of

(
S(V )
j

)d
given by (4.7) 18

Oψ
j the subset of Tdj given in (5.16) 26

Oj the subset of Tdj given in (5.18) 27
P the scatterer configuration; a fixed union of grids in Rd 3

P̃ {(p, ς(p)) : p ∈ P} (a subset of X ) 10

P̃q P̃ \ {(q, ς(q))} if q ∈ P , otherwise P̃ 10

PT (ρ) the set P ∩ BdTρ1−d \ E 10

P (S) the set of Borel probability measures on S (for any topological space S) 9

Pac(S
d−1
1 ) the set of λ ∈ P (Sd−1

1 ) which are absolutely continuous with respect to σ 10

P (Tdj )
′ the subset of SLd(Z)-invariant measures in P (Tdj ) 18
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p(ψ) collision kernel 5

p(ψ
′
→ψ) collision kernel 5

◦p(ψ) collision kernel for the scatterer configuration P[ψ] 5
◦p(ψ

′
→ψ) collision kernel for the scatterer configuration P[ψ] (here [ψ′] = [ψ]) 5

pj the projection map G→ Srj (R) 15

p̃j either of the projection maps X → Xj or T̃ → Tdj 15, 47
pψ for ψ = (i, j) ∈ Ψ, pψ is the map ai ◦ pj from G to ASLd(R) 15

Qρ(q,v) (P̃q − q)R(v)Dρ 10

R a fixed map Sd−1
1 → SO(d) such that vR(v) = e1, ∀v ∈ Sd−1

1 9

ri the projection map Mr×d(R) → Rd which takes any matrix to its ith row 14

r̃i for 1 ≤ i ≤ rj , r̃i is the projection map Tdj → (R/Z)d induced by ri 16
S the commenturator of SLd(Z) in SLd(R) 13
Sr(R) SLd(R)⋉Mr×d(R) 14

SL(R) for L a linear subspace of Rr, SL(R) := SLd(R)⋉ Ld, a subgroup of Sr(R) 16

S(V )
j 〈V1, . . . , Vd〉, a closed subgroup of Tj 18

S
(q)
j S

(π(U
(q)
j

))

j 18

Sψj π(Lψj ) 26

Sj π(Lj) 27

Tj (R/Z)rj 16
Tdj Tj × · · · × Tj = Mrj×d(R/Z) 16

T̃ Td1 × Td2 × · · · × TdN 47

U
(q)
j the rj × d matrix with row vectors wj,i − c−1

j,i qM
−1
j (i = 1, . . . , rj) 15

U (q) (U
(q)
1 , · · · , U (q)

N ) 15

vd−1 vol(Bd−1
1 ) 8

wψ fixed vectors in Rd such that (3.4)–(3.5) hold 13
Wj The rj × d matrix with row vectors wj,i (i = 1, . . . , rj) 22
X Rd × Σ 9
X Γ\G 14
Xj Γj\Gj 15

Xψ {Γg ∈ X : g ∈ G, 0 ∈ Zd pψ(g)} 32

x the embedding Tdj → Xj defined in (3.24), or the embedding T̃ → X 16, 47

Zξ The open cylinder (0, ξ)× Bd−1
1 10

z map from Ns(X ) to ∆ 68
Γ Sr1(Z)× · · · × SrN (Z) 14
Γj Srj (Z) 15
∆ the set (Z∞ × Σ) ⊔ {undef} 68
ι the projection Sr(R) → SLd(R), or the reflection map X → X 14, 68
ι̃ the projection Xj → SLd(Z)\SLd(R) 15

µ
(λ)
q,ρ distribution of Qρ(q,v) for v random in (Sd−1

1 , λ) 10
µς we have fixed a continuous map ς 7→ µς from Σ to P (N(X )) 10, 34
µX vol×m 10

µ
(q)
j measure in P (Xj) 17

µ(q) the measure µ
(q)
1 ⊗ · · · ⊗ µ

(q)
N in P (X) 17

µg the measure J∗(ωg) on Ns(X ) 45
ν Haar measure on SLd(R), normalized by ν(SLd(Z)\SLd(R)) = 1 18
Ξ random flight process 4

π either of the projection maps Gj → Xj , G→ X, Rrj → Tj or (Rrj )d → Tdj 15, 16
Σ fixed compact metric space (the space of marks) 9, 33

σ vol
S
d−1
1

, Lebesgue measure on Sd−1
1 2

σψ (ψ, ωψ) (an element in Σ) 33
ς function P → Σ fixed in (6.7) 33
ΦP (ξ) free path length density 7
ϕ the diagonal embedding SLd(R) → G 17
Ψ a set of indices. After (3.3): Ψ = {(j, i) : j ∈ {1, . . . , N}, i ∈ {1, . . . , rj}} 4, 13

Ψ̃ the set {σψ : ψ ∈ Ψ} (subset of Σ) 34
ψ function P → Ψ fixed in (1.4). But ψ is also used to denote a variable element in Ψ. 5

Ω
∏N
j=1 P (Tdj )

′ 33
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ω
(q)
j ω

(π(Uj(q)))

j 18

ω
(V )
j normalized restriction to Oj(V ) of the Haar measure on Sj(V )d 18

ωψj normalized restriction to Oψ
j of the Haar measure on (S̃ψj )

d 26

ωg
j normalized restriction to Oj of the Haar measure on (S̃j)

d 27

ω(q)
(
ω

(q)
1 , . . . , ω

(q)
N

)
(an element in Ω) 33

ω(V )
(
ω

(V1)
1 , . . . , ω

(VN )
N

)
(an element in Ω) 57

ωψ
(
ωψ1 , . . . , ω

ψ
N

)
(an element in Ω) 33

ωg
(
ωg
1, . . . , ω

g

N

)
(an element in Ω) 45

ω for ω ∈ P (Tdj )
′, ω is the probability measure on Xj defined below (4.8); 18

for ω ∈ Ω, ω is the probability measure on X defined in (6.11) 34
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[21] J. Marklof and A. Strömbergsson, Kinetic theory for the low-density Lorentz gas, Memoirs of the AMS,

to appear.
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