VISIBILITY AND DIRECTIONS IN QUASICRYSTALS

JENS MARKLOF AND ANDREAS STRÖMBERGSSON

ABSTRACT. It is well known that a positive proportion of all points in a *d*-dimensional lattice is visible from the origin, and that these visible lattice points have constant density in \mathbb{R}^d . In the present paper we prove an analogous result for a large class of quasicrystals, including the vertex set of a Penrose tiling. We furthermore establish that the statistical properties of the directions of visible points are described by certain $SL(d, \mathbb{R})$ -invariant point processes. Our results imply in particular existence and continuity of the gap distribution for directions in certain two-dimensional cut-and-project sets. This answers a recent question of Baake et al. [arXiv:1402.2818].

1. INTRODUCTION

A point set $\mathcal{P} \subset \mathbb{R}^d$ has constant density in \mathbb{R}^d if there exists $\theta(\mathcal{P}) < \infty$ such that, for any $\mathcal{D} \subset \mathbb{R}^d$ with boundary of Lebesgue measure zero,

(1.1)
$$\lim_{T \to \infty} \frac{\#(\mathcal{P} \cap T\mathcal{D})}{T^d} = \theta(\mathcal{P}) \operatorname{vol}(\mathcal{D}).$$

We refer to $\theta(\mathcal{P})$ as the density of \mathcal{P} . It is interesting to compare the density of \mathcal{P} with the density of the subset of *visible* points given by

(1.2)
$$\widehat{\mathcal{P}} = \left\{ \boldsymbol{y} \in \mathcal{P} : t \boldsymbol{y} \notin \mathcal{P} \,\forall t \in (0,1) \right\}.$$

This definition assumes that the observer is at the origin **0**. Note also that, by definition, $\mathbf{0} \notin \widehat{\mathcal{P}}$. A classic example is the set of integer lattice points $\mathcal{P} = \mathbb{Z}^d$. In this case, the set of visible points is given by the primitive lattice points $\widehat{\mathcal{P}} = \{\mathbf{m} \in \mathbb{Z}^d : \gcd(\mathbf{m}) = 1\}$. Both sets have constant density with $\theta(\mathcal{P}) = 1$ and $\theta(\widehat{\mathcal{P}}) = 1/\zeta(d)$, where $\zeta(d)$ denotes the Riemann zeta function.

In this paper we are interested in the visible points of a regular cut-and-project set $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ constructed from a (possibly affine) lattice $\mathcal{L} \subset \mathbb{R}^{d+m}$ and a window set $\mathcal{W} \subset \mathbb{R}^m$ (see Section 2 for detailed definitions). Our first observation is the following.

Theorem 1. If $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ is a regular cut-and-project set, then \mathcal{P} and $\widehat{\mathcal{P}}$ have constant density with $0 < \theta(\widehat{\mathcal{P}}) \leq \theta(\mathcal{P})$.

The constant density of \mathcal{P} is a well known fact, cf. Section 2 below. The main point of Theorem 1 is that the *visible* set $\widehat{\mathcal{P}}$ also has a strictly positive constant density. Although for cut-and-project sets \mathcal{P} with generic choices of \mathcal{L} we have $\theta(\widehat{\mathcal{P}}) = \theta(\mathcal{P})$, there are important examples with $\theta(\widehat{\mathcal{P}}) < \theta(\mathcal{P})$. The Penrose tilings and other cut-and-project sets which are based on the construction in [6, Sec. 2.2] fall into this category, cf. [9].

The second result of this paper concerns the distribution of directions in \mathcal{P} . Consider a general point set with constant density $\theta(\mathcal{P}) > 0$ (\mathcal{P} may be the visible set itself). We write $\mathcal{P}_T = \mathcal{P} \cap \mathcal{B}_T^d \setminus \{\mathbf{0}\}$ for the subset of points lying in the punctured open ball of radius T, centered at the origin. The number of such points is $\#\mathcal{P}_T \sim v_d \theta(\mathcal{P}) T^d$ as $T \to \infty$, where $v_d = \operatorname{vol}(\mathcal{B}_1^d) = \pi^{d/2} / \Gamma(\frac{d+2}{2})$ is the volume of the unit ball. For each T, we study

Date: April 5, 2014.

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 291147. J.M. is furthermore supported by a Royal Society Wolfson Research Merit Award, and A.S. is supported by a grant from the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine.

the directions $\|\boldsymbol{y}\|^{-1}\boldsymbol{y} \in S_1^{d-1}$ with $\boldsymbol{y} \in \mathcal{P}_T$, counted with multiplicity (if $\mathcal{P} = \widehat{\mathcal{P}}$ then the multiplicity is naturally one). The asymptotics (1.1) implies that, as $T \to \infty$, the directions become uniformly distributed on S_1^{d-1} . That is, for any set $\mathfrak{U} \subset S_1^{d-1}$ with boundary of measure zero (with respect to the volume element ω on S_1^{d-1}) we have

(1.3)
$$\lim_{T \to \infty} \frac{\#\{\boldsymbol{y} \in \mathcal{P}_T : \|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{U}\}}{\#\mathcal{P}_T} = \frac{\omega(\mathfrak{U})}{\omega(\mathbf{S}_1^{d-1})}$$

Recall that $\omega(S_1^{d-1}) = d v_d$. To understand the fine-scale distribution of the directions in \mathcal{P}_T , we consider the probability of finding r directions in a small open disc $\mathfrak{D}_T(\sigma, \boldsymbol{v}) \subset \mathrm{S}_1^{d-1}$ with random center $\boldsymbol{v} \in \mathrm{S}_1^{d-1}$ and volume $\omega(\mathfrak{D}_T(\sigma, \boldsymbol{v})) = \frac{\sigma d}{\theta(\mathcal{P})T^d}$ with $\sigma > 0$ fixed. Denote by

(1.4)
$$\mathcal{N}_T(\sigma, \boldsymbol{v}, \mathcal{P}) = \#\{\boldsymbol{y} \in \mathcal{P}_T : \|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_T(\sigma, \boldsymbol{v})\}$$

the number of points in $\mathfrak{D}_T(\sigma, \boldsymbol{v})$. The scaling of the disc size ensures that the expectation value for the counting function is asymptotically equal to σ . That is, for any probability measure λ on S_1^{d-1} with continuous density,

(1.5)
$$\lim_{T \to \infty} \int_{\mathrm{S}_1^{d-1}} \mathcal{N}_T(\sigma, \boldsymbol{v}, \mathcal{P}) \, d\lambda(\boldsymbol{v}) = \sigma.$$

This fact follows directly from (1.1). In the following, we denote by

(1.6)
$$\kappa_{\mathcal{P}} := \frac{\theta(\mathcal{P})}{\theta(\mathcal{P})}$$

the relative density of visible points in \mathcal{P} . We will prove:

Theorem 2. Let $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set, $\sigma > 0$, $r \in \mathbb{Z}_{\geq 0}$, and let λ be a Borel probability measure on S_1^{d-1} which is absolutely continuous with respect to ω . Then the limits

(1.7)
$$E(r,\sigma,\mathcal{P}) := \lim_{T \to \infty} \lambda(\{ \boldsymbol{v} \in \mathcal{S}_1^{d-1} : \mathcal{N}_T(\sigma,\boldsymbol{v},\mathcal{P}) = r\}),$$

(1.8)
$$E(r,\sigma,\widehat{\mathcal{P}}) := \lim_{T \to \infty} \lambda(\{ \boldsymbol{v} \in \mathcal{S}_1^{d-1} : \mathcal{N}_T(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) = r\})$$

exist, are continuous in σ and independent of λ . For $\sigma \to 0$ we have

(1.9)
$$E(0,\sigma,\mathcal{P}) = 1 - \kappa_{\mathcal{P}} \sigma + o(\sigma),$$

(1.10)
$$E(0,\sigma,\widehat{\mathcal{P}}) = 1 - \sigma + o(\sigma).$$

This theorem generalizes our previous work on directions in Euclidean lattices [5, Section 2]. The existence of the limit (1.7) has already been established in [6, Thm. A.1]. It is worthwhile noting that, if the set of directions in \mathcal{P} were independent and uniformly distributed random variables in S_1^{d-1} , then (1.7) would converge almost surely to the Poisson distribution

(1.11)
$$E(r,\sigma) = \frac{\sigma^r}{r!} e^{-\sigma}.$$

Although (1.10) is consistent with the Poisson distribution, we will see in Section 3 that $E(r,\sigma,\widehat{\mathcal{P}})$ is characterized by a certain point process in \mathbb{R}^d which is determined by a finitedimensional probability space.

Theorem 2 allows us to answer a recent question of Baake et al. [1] on the existence of the gap distribution for the directions in the class of two-dimensional cut-and-project sets considered here. In dimension d = 2, it is convenient to identify the circle S_1^1 with the unit interval mod 1, and represent the set of directions in \mathcal{P}_T as $\frac{1}{2\pi} \arg(y_1 + \mathrm{i}y_2)$ with $\boldsymbol{y} = (y_1, y_2) \in \mathcal{P}_T$. We label these numbers (with multiplicity) in increasing order by

(1.12)
$$-\frac{1}{2} < \xi_{T,1} \le \xi_{T,2} \le \dots \le \xi_{T,N(T)} \le \frac{1}{2},$$

where $N(T) := \# \mathcal{P}_T$. The analogous construction for the visible set $\widehat{\mathcal{P}}$ yields the multiplicity-free set of directions

(1.13)
$$-\frac{1}{2} < \hat{\xi}_{T,1} < \hat{\xi}_{T,2} < \dots < \hat{\xi}_{T,\hat{N}(T)} \le \frac{1}{2}$$

where $\widehat{N}(T) := \#\widehat{\mathcal{P}}_T \leq N(T)$. We also set $\xi_{T,0} = \widehat{\xi}_{T,0} = \xi_{T,N(T)} - 1 = \widehat{\xi}_{T,\widehat{N}(T)} - 1$.

Corollary 3. If $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ is a regular cut-and-project set in dimension d = 2, there exists a continuous decreasing function F on $\mathbb{R}_{\geq 0}$ satisfying F(0) = 1 and $\lim_{s\to\infty} F(s) = 0$, such that for every $s \geq 0$,

(1.14)
$$\lim_{T \to \infty} \frac{\#\{1 \le j \le \hat{N}(T) : \hat{N}(T)(\hat{\xi}_{T,j} - \hat{\xi}_{T,j-1}) \ge s\}}{\hat{N}(T)} = F(s)$$

and

(1.15)
$$\lim_{T \to \infty} \frac{\#\{1 \le j \le N(T) : N(T)(\xi_{T,j} - \xi_{T,j-1}) \ge s\}}{N(T)} = \begin{cases} 1 & \text{if } s = 0\\ \kappa_{\mathcal{P}} F(\kappa_{\mathcal{P}} s) & \text{if } s > 0. \end{cases}$$

It follows from the properties of F(s) that the limit distribution function in (1.15) is continuous at s = 0 if and only if $\kappa_{\mathcal{P}} = 1$.

In the special case when $\mathcal{P} = \mathbb{Z}^2$, (1.14) was proved earlier by Boca, Cobeli and Zaharescu [2], who also gave an explicit formula for the limit distribution. More generally for \mathcal{P} any affine lattice in \mathbb{R}^2 , Corollary 3 was proved in [5, Thm. 1.3, Cor. 2.7].

Baake et al. [1] have observed numerically that the limiting gap distribution in Corollary 3 may vanish near zero. In Section 12 we will explain this hard-core repulsion between visible directions in the case of two-dimensional cut-and-project sets constructed over algebraic number fields, including any \mathcal{P} associated with a Penrose tiling. There is no hard-core repulsion for typical two-dimensional cut-and-project sets. The phenomenon can be completely ruled out in higher dimensions $d \geq 3$, where we show that $E(0, \sigma, \hat{\mathcal{P}}) > 1 - \sigma$ for all $\sigma > 0$.

The organization of this paper is as follows. In Section 2 we recall the definition of a cut-and-project set of a higher-dimensional lattice. In Section 3 we construct random point processes in \mathbb{R}^d whose realizations yield the visible points in certain $\mathrm{SL}(d, \mathbb{R})$ -invariant families of cut-and-project sets. These point processes describe the limit distributions in Theorem 2, cf. Theorem 4 in Section 3. This follows closely the construction in [6] for the full cut-and-project set. An important technical tool in our approach is the Siegel-Veech formula, which is stated and proved in Section 4. In Section 5 we describe the small- σ asymptotics of the void distribution in (1.9) and (1.10). Sections 6–9 are devoted to the proof of Theorem 1, Sections 10 and 11 to the proofs of Theorem 2 and Corollary 3, respectively. Finally in Section 12 we discuss the possible vanishing of the limiting gap distribution near zero.

2. Cut-and-project sets

We start by recalling the definition of a cut-and-project set in \mathbb{R}^d from [6]. Denote by π and π_{int} the orthogonal projection of $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m$ onto the first d and last m coordinates. We refer to \mathbb{R}^d and \mathbb{R}^m as the *physical space* and *internal space*, respectively. Let $\mathcal{L} \subset \mathbb{R}^n$ be a lattice of full rank. Then the closure of the set $\pi_{int}(\mathcal{L})$ is an abelian subgroup \mathcal{A} of \mathbb{R}^m . We denote by \mathcal{A}° the connected subgroup of \mathcal{A} containing $\mathbf{0}$; then \mathcal{A}° is a linear subspace of \mathbb{R}^m , say of dimension m_1 , and there exist $\mathbf{b}_1, \ldots, \mathbf{b}_{m_2} \in \mathcal{L}$ $(m = m_1 + m_2)$ such that $\pi_{int}(\mathbf{b}_1), \ldots, \pi_{int}(\mathbf{b}_{m_2})$ are linearly independent in $\mathbb{R}^m/\mathcal{A}^\circ$ and

(2.1)
$$\mathcal{A} = \mathcal{A}^{\circ} + \mathbb{Z}\pi_{\mathrm{int}}(\boldsymbol{b}_1) + \ldots + \mathbb{Z}\pi_{\mathrm{int}}(\boldsymbol{b}_{m_2}).$$

Given \mathcal{L} and a bounded subset $\mathcal{W} \subset \mathcal{A}$ with non-empty interior, we define

(2.2)
$$\mathcal{P}(\mathcal{W},\mathcal{L}) = \{\pi(\boldsymbol{y}) : \boldsymbol{y} \in \mathcal{L}, \ \pi_{\mathrm{int}}(\boldsymbol{y}) \in \mathcal{W}\} \subset \mathbb{R}^d.$$

We will call $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ a *cut-and-project set*, and \mathcal{W} the *window*. We denote by $\mu_{\mathcal{A}}$ the Haar measure of \mathcal{A} , normalized so that its restriction to \mathcal{A}° is the standard m_1 -dimensional

Lebesgue measure. If \mathcal{W} has boundary of measure zero with respect to $\mu_{\mathcal{A}}$, we will say $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is regular. Set $\mathcal{V} = \mathbb{R}^d \times \mathcal{A}^\circ$; then $\mathcal{L}_{\mathcal{V}} = \mathcal{L} \cap \mathcal{V}$ is a lattice of full rank in \mathcal{V} . Let $\mu_{\mathcal{V}} = \operatorname{vol} \times \mu_{\mathcal{A}}$ be the natural volume measure on $\mathbb{R}^d \times \mathcal{A}$ (this restricts to the standard $d + m_1$ dimensional Lebesgue measure on \mathcal{V}). It follows from Weyl equidistribution (cf. [6, Prop. 3.2]) that for any regular cut-and-project set \mathcal{P} and any bounded $\mathcal{D} \subset \mathbb{R}^d$ with boundary of measure zero with respect to Lebesgue measure,

(2.3)
$$\lim_{T \to \infty} \frac{\#\{ \boldsymbol{b} \in \mathcal{L} : \pi(\boldsymbol{b}) \in \mathcal{P} \cap T\mathcal{D} \}}{T^d} = C_{\mathcal{P}} \operatorname{vol}(\mathcal{D})$$

where

(2.4)
$$C_{\mathcal{P}} := \frac{\mu_{\mathcal{A}}(\mathcal{W})}{\mu_{\mathcal{V}}(\mathcal{V}/\mathcal{L}_{\mathcal{V}})}.$$

A further condition often imposed in the quasicrystal literature is that $\pi|_{\mathcal{L}}$ is injective (i.e., the map $\mathcal{L} \to \pi(\mathcal{L})$ is one-to-one); we will not require this here. To avoid coincidences in \mathcal{P} , we assume throughout this paper that the window is appropriately chosen so that the map $\pi_{\mathcal{W}}: \{ \boldsymbol{y} \in \mathcal{L} : \pi_{int}(\boldsymbol{y}) \in \mathcal{W} \} \to \mathcal{P}$ is bijective. Then (2.3) implies

(2.5)
$$\lim_{T \to \infty} \frac{\#(\mathcal{P} \cap T\mathcal{D})}{T^d} = C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}),$$

i.e., \mathcal{P} has density $\theta(\mathcal{P}) = C_{\mathcal{P}}$. Under the above assumptions $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^d .

We furthermore extend the definition of cut-and-project sets $\mathcal{P}(\mathcal{W}, \mathcal{L})$ to affine lattices $\mathcal{L} = \mathcal{L}_0 + \boldsymbol{x}$ with $\boldsymbol{x} \in \mathbb{R}^n$ and \mathcal{L}_0 a lattice; note that $\mathcal{P}(\mathcal{W}, \mathcal{L} + \boldsymbol{x}) = \mathcal{P}(\mathcal{W} - \pi_{int}(\boldsymbol{x}), \mathcal{L}) + \pi(\boldsymbol{x})$.

3. RANDOM CUT-AND-PROJECT SETS

Following our approach in [6], we will now, for any given regular cut-and-project set $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$, construct two $\mathrm{SL}(d, \mathbb{R})$ -invariant random point processes on \mathbb{R}^d which will describe the limit distributions in Theorem 2. Let $G = \mathrm{ASL}(n, \mathbb{R}) = \mathrm{SL}(n, \mathbb{R}) \ltimes \mathbb{R}^n$, with multiplication law

(3.1)
$$(M, \boldsymbol{\xi})(M', \boldsymbol{\xi}') = (MM', \boldsymbol{\xi}M' + \boldsymbol{\xi}').$$

Also set $\Gamma = \operatorname{ASL}(n, \mathbb{Z}) \subset G$. Choose $g \in G$ and $\delta > 0$ so that $\mathcal{L} = \delta^{1/n}(\mathbb{Z}^n g)$, and let φ_g be the embedding of $\operatorname{ASL}(d, \mathbb{R})$ in G given by

(3.2)
$$\varphi_g : \operatorname{ASL}(d, \mathbb{R}) \to G, \quad (A, \boldsymbol{x}) \mapsto g\left(\begin{pmatrix} A & 0\\ 0 & 1_m \end{pmatrix}, (\boldsymbol{x}, \boldsymbol{0})\right) g^{-1}.$$

It then follows from Ratner's work [10], [11] that there exists a unique closed connected subgroup H_g of G such that $\Gamma \cap H_g$ is a lattice in H_g , $\varphi_g(\mathrm{SL}(d,\mathbb{R})) \subset H_g$, and the closure of $\Gamma \setminus \Gamma \varphi_g(\mathrm{SL}(d,\mathbb{R}))$ in $\Gamma \setminus G$ is given by

$$(3.3) X = \Gamma \backslash \Gamma H_q.$$

Note that X can be naturally identified with the homogeneous space $(\Gamma \cap H_g) \setminus H_g$. We denote the unique right- H_g invariant probability measure on either of these spaces by μ ; sometimes we will also let μ denote the corresponding Haar measure on H_g . For each $x = \Gamma h \in X$ we set

(3.4)
$$\mathcal{P}^x := \mathcal{P}(\mathcal{W}, \delta^{1/n}(\mathbb{Z}^n hg))$$

and denote by $\widehat{\mathcal{P}}^x$ the corresponding set of visible points. Both sets are well defined since $\overline{\pi_{\text{int}}(\delta^{1/n}(\mathbb{Z}^n hg))} \subset \mathcal{A}$ for all $h \in H_g$; in fact $\overline{\pi_{\text{int}}(\delta^{1/n}(\mathbb{Z}^n hg))} = \mathcal{A}$ for μ -almost all $h \in H_g$; cf. [6, Prop. 3.5]. Note that \mathcal{P}^x and $\widehat{\mathcal{P}}^x$ with x random in (X,μ) define random point processes on \mathbb{R}^d . The fact that $\varphi_q(\mathrm{SL}(d,\mathbb{R})) \subset H_q$ implies that these processes are $\mathrm{SL}(d,\mathbb{R})$ -invariant.

Theorem 4. The limit distributions in Theorem 2 are given by

(3.5)
$$E(r,\sigma,\mathcal{P}) = \mu(\{x \in X : \#(\mathcal{P}^x \cap \mathfrak{C}(\sigma)) = r\})$$

and

(3.6)
$$E(r,\sigma,\widehat{\mathcal{P}}) = \mu(\{x \in X : \#(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma)) = r\})$$

where

(3.7)
$$\mathfrak{C}(\sigma) = \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : 0 < x_1 < 1, \ \| (x_2, \dots, x_d) \| < \left(\frac{\sigma d}{C_{\mathcal{P}} v_{d-1}} \right)^{1/(d-1)} x_1 \right\}.$$

We note that relation (3.5) is a special case of [6, Thm. A.1]. The new result of the present study is (3.6).

In [6, Section 1.4] we also consider the closed connected subgroup \widetilde{H}_g of G such that $\Gamma \cap \widetilde{H}_g$ is a lattice in \widetilde{H}_g , $\varphi_g(\mathrm{ASL}(d,\mathbb{R})) \subset \widetilde{H}_g$, and the closure of $\Gamma \setminus \Gamma \varphi_g(\mathrm{ASL}(d,\mathbb{R}))$ in $\Gamma \setminus G$ is given by $\widetilde{X} := \Gamma \setminus \Gamma \widetilde{H}_g$. The unique right- \widetilde{H}_g invariant probability measure on \widetilde{X} is denoted by $\widetilde{\mu}$. The point process \mathcal{P}^x in (3.4) with x random in $(\widetilde{X}, \widetilde{\mu})$ is now $\mathrm{ASL}(d,\mathbb{R})$ -invariant, i.e., in addition to the previous $\mathrm{SL}(d,\mathbb{R})$ -invariance we also have translation-invariance. The latter implies that $\mathcal{P}^x = \widehat{\mathcal{P}}^x$ for $\widetilde{\mu}$ -almost every $x \in \widetilde{X}$. Proposition 4.5 in [6] shows that for Lebesgue-almost all $y \in \mathbb{R}^d \times \{\mathbf{0}\}$ we have $H_{g(1_n, y)} = \widetilde{H}_g$. This has the following interesting consequence.

Corollary 5. Given any regular cut-and-project set \mathcal{P} there is a subset $\mathfrak{S} \subset \mathbb{R}^d$ of Lebesgue measure zero such that for every $\mathbf{y} \in \mathbb{R}^d \setminus \mathfrak{S}$

(3.8)
$$E(r,\sigma,\mathcal{P}+\boldsymbol{y}) = E(r,\sigma,\widehat{\mathcal{P}+\boldsymbol{y}}) = \widetilde{\mu}(\{x\in\widetilde{X} : \#(\mathcal{P}^x\cap\mathfrak{C}(\sigma))=r\}).$$

That is, all limit distributions are independent of y for Lebesgue-almost every y.

4. The Siegel-Veech formula for visible points

Throughout the remaining sections, we let $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ be a given regular cut-and-project set. We fix $g \in G$ and $\delta > 0$ so that $\mathcal{L} = \delta^{1/n}(\mathbb{Z}^n g)$. In fact, by an appropriate scaling of the length units, we can assume without loss of generality that $\delta = 1$. This assumption will be in force throughout the remaining sections except the last one. Hence we now have $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathbb{Z}^n g)$ and $\mathcal{P}^x = \mathcal{P}(\mathcal{W}, \mathbb{Z}^n h g)$ for each $x = \Gamma h \in X$.

The following Siegel-Veech formulas will serve as a crucial technical tool in our proofs of the main theorems.

Theorem 6. For any $f \in L^1(\mathbb{R}^d)$,

(4.1)
$$\int_X \sum_{\boldsymbol{q} \in \mathcal{P}^x} f(\boldsymbol{q}) \, d\mu(x) = C_{\mathcal{P}} \int_{\mathbb{R}^d} f(\boldsymbol{x}) \, d\boldsymbol{x}$$

and

(4.2)
$$\int_X \sum_{\boldsymbol{q} \in \widehat{\mathcal{P}}^x} f(\boldsymbol{q}) \, d\mu(x) = \kappa_{\mathcal{P}} C_{\mathcal{P}} \int_{\mathbb{R}^d} f(\boldsymbol{x}) \, d\boldsymbol{x}.$$

Veech has proved formulas of the above type for general $SL(d, \mathbb{R})$ -invariant measures [13, Thm. 0.12]. The proof of Theorem 6 is simpler in the present setting. Relation (4.1) was proved in [6, Theorem 1.5]. In the present section we will prove that there exists $0 < \kappa_{\mathcal{P}} \leq 1$ such that relation (4.2) holds for all $f \in L^1(\mathbb{R}^d)$. We will then later establish that this $\kappa_{\mathcal{P}}$ indeed yields the relative density defined in (1.6).

Consider the map

(4.3)
$$B \mapsto \int_X \#(\widehat{\mathcal{P}}^x \cap B) \, d\mu(x) \qquad (B \text{ any Borel subset of } \mathbb{R}^d).$$

This map defines a Borel measure on \mathbb{R}^d , which is finite on any compact set B (by [6, Theorem 1.5]), invariant under $\mathrm{SL}(d,\mathbb{R})$, and gives zero point mass to $\mathbf{0} \in \mathbb{R}^d$. Hence up to a constant, the measure must equal Lebesgue measure, i.e. there exists a constant $\kappa_{\mathcal{P}} \geq 0$ such that

(4.4)
$$\int_X \#(\widehat{\mathcal{P}}^x \cap B) \, d\mu(x) = \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(B)$$

for every Borel set $B \subset \mathbb{R}^d$. By a standard approximation argument, this implies that (4.2) holds for all $f \in L^1(\mathbb{R}^d)$. Also $\kappa_{\mathcal{P}} \leq 1$ is immediate from (4.1).

It remains to verify that $\kappa_{\mathcal{P}} > 0$. Recall that we are assuming that \mathcal{W} has non-empty interior \mathcal{W}° in $\mathcal{A} = \overline{\pi_{int}(\mathcal{L})}$. Now take B to be any bounded open set in \mathbb{R}^d which is starshaped with center $\mathbf{0}$ and such that $(B \setminus \{\mathbf{0}\}) \times \mathcal{W}^{\circ}$ contains some point in the (affine) lattice \mathcal{L} . Then the set of $x = \Gamma h$ in X for which $\mathbb{Z}^n hg$ has at least one point in $(B \setminus \{\mathbf{0}\}) \times \mathcal{W}^{\circ}$ is non-empty and open. Note that for any such $x, \mathcal{P}^x = \mathcal{P}(\mathcal{W}, \mathbb{Z}^n hg)$ has a point in $B \setminus \{\mathbf{0}\}$, and hence also a visible point in $B \setminus \{\mathbf{0}\}$, since B is star-shaped. It follows that the left hand side of (4.4) is positive for our set B. Therefore $\kappa_{\mathcal{P}} > 0$, as claimed.

5. The limit distribution for small σ

From now on we take $E(r, \sigma, \mathcal{P})$ and $E(r, \sigma, \widehat{\mathcal{P}})$ to be defined by the relations (3.5), (3.6). Then (1.7) holds by [6, Thm. A.1], and we will prove in Section 10 that also (1.8) holds.

In the present section we will prove that the relation (1.9),

(5.1)
$$E(0,\sigma,\mathcal{P}) = 1 - \kappa_{\mathcal{P}} \sigma + o(\sigma),$$

holds with the same $\kappa_{\mathcal{P}} \in (0, 1]$ as in the Siegel-Veech formula (4.2). Rel. (1.10) is then a simple consequence of the observation that

(5.2)
$$E(0,\sigma,\widehat{\mathcal{P}}) = E(0,\kappa_{\mathcal{P}}^{-1}\sigma,\mathcal{P}).$$

To prove (5.1), first note that, for any $\sigma > 0$,

(5.3)
$$1 - E(0, \sigma, \mathcal{P}) = \mu(\{x \in X : \mathcal{P}^x \cap \mathfrak{C}(\sigma) \neq \emptyset\}) = \mu(\{x \in X : \mathcal{P}^x \cap \mathfrak{C}(\sigma) \neq \emptyset\})$$
$$\leq \int_X \#(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\sigma)) \, d\mu(x) = \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathfrak{C}(\sigma)) = \kappa_{\mathcal{P}} \sigma,$$

where the integral was evaluated using (4.4).

On the other hand using the fact that the point process \mathcal{P}^x $(x \in (X, \mu))$ is invariant under SO(d), and $\widehat{\mathcal{P}'k} = \widehat{\mathcal{P}}'k$ for every point set \mathcal{P}' and every $k \in SO(d)$, we have

(5.4)
$$1 - E(0, \sigma, \mathcal{P}) = \int_X A(\sigma, \mathcal{P}^x) \, d\mu(x)$$

with

(5.5)
$$A(\sigma, \mathcal{P}^x) = \int_{\mathrm{SO}(d)} I\left(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\sigma)k \neq \emptyset\right) dk$$

where dk is Haar measure on SO(d) normalized by $\int_{SO(d)} dk = 1$.

We write $\varphi(\mathbf{p}, \mathbf{q}) \in [0, \pi]$ for the angle between any two points $\mathbf{p}, \mathbf{q} \in \mathbb{R}^d \setminus \{\mathbf{0}\}$, as seen from **0**. Also for any $x \in X$ we set

(5.6)
$$\sigma_0(\mathcal{P}^x) = \frac{C_{\mathcal{P}} v_{d-1}}{d} \left(\tan \frac{\varphi_0(\mathcal{P}^x)}{2} \right)^{d-1}$$

where

(5.7)
$$\varphi_0(\mathcal{P}^x) = \min\{\varphi(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p}, \boldsymbol{q} \in \widehat{\mathcal{P}}^x \cap \mathcal{B}_1^d, \, \boldsymbol{p} \neq \boldsymbol{q}\},\$$

with the convention that $\varphi_0(\mathcal{P}^x) = \pi$ and $\sigma_0(\mathcal{P}^x) = +\infty$ whenever $\#(\widehat{\mathcal{P}}^x \cap \mathcal{B}_1^d) \leq 1$. These are measurable functions on X, and $\varphi_0(\mathcal{P}^x) > 0$ and $\sigma_0(\mathcal{P}^x) > 0$ for all $x \in X$.

Now if $0 < \sigma < \sigma_0(\mathcal{P}^x)$ then for any two distinct points $\boldsymbol{p}, \boldsymbol{q} \in \widehat{\mathcal{P}}^x \cap \mathcal{B}_1^d$ we have

(5.8)
$$\varphi(\boldsymbol{p}, \boldsymbol{q}) > 2 \arctan\left(\left(\frac{\sigma d}{C_{\mathcal{P}} v_{d-1}}\right)^{1/(d-1)}\right),$$

and because of the definition of $\mathfrak{C}(\sigma)$, (3.7), this implies that there does not exist any $k \in$ SO(d) for which $\mathfrak{C}(\sigma)k$ contains both p and q. Hence for $0 < \sigma < \sigma_0(\mathcal{P}^x)$ we have (writing $e_1 = (1, 0, \ldots, 0) \in \mathbb{R}^d$)

$$A(\sigma, \mathcal{P}^{x}) \geq \sum_{\boldsymbol{p} \in \widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}} \int_{\mathrm{SO}(d)} I\left(\boldsymbol{p} \in \mathfrak{C}(\sigma)k\right) dk = \#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right) \cdot \int_{\mathrm{SO}(d)} I\left(\boldsymbol{e}_{1} \in \mathfrak{C}(\sigma)k\right) dk$$

(5.9)
$$= \frac{\mathrm{vol}(\mathfrak{C}(\sigma) \cap \mathcal{B}_{1}^{d})}{\mathrm{vol}(\mathcal{B}_{1}^{d})} \#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right),$$

and here

(5.10)
$$\frac{\operatorname{vol}(\mathfrak{C}(\sigma) \cap \mathcal{B}_1^d)}{\operatorname{vol}(\mathcal{B}_1^d)} \sim \frac{\operatorname{vol}(\mathfrak{C}(\sigma))}{\operatorname{vol}(\mathcal{B}_1^d)} = \frac{\sigma}{v_d C_{\mathcal{P}}} \quad \text{as } \sigma \to 0.$$

Hence given any number $K < (v_d C_P)^{-1}$, there is some $\sigma(K) > 0$ such that for all $0 < \sigma < \sigma(K)$ we have

(5.11)
$$1 - E(0,\sigma,\mathcal{P}) = \int_X A(\sigma,\mathcal{P}^x) \, d\mu(x) \ge K\sigma \int_X I(\sigma < \sigma_0(\mathcal{P}^x)) \# \left(\widehat{\mathcal{P}}^x \cap \mathcal{B}_1^d\right) d\mu(x).$$

Furthermore, by the Monotone Convergence Theorem and (4.4),

(5.12)
$$\lim_{\sigma \to 0} \int_X I(\sigma < \sigma_0(\mathcal{P}^x)) \# (\widehat{\mathcal{P}}^x \cap \mathcal{B}_1^d) \, d\mu(x) = \int_X \# (\widehat{\mathcal{P}}^x \cap \mathcal{B}_1^d) \, d\mu(\mathcal{P}^x) = \kappa_{\mathcal{P}} C_{\mathcal{P}} v_d.$$

We thus conclude

(5.13)
$$\liminf_{\sigma \to 0} \frac{1 - E(0, \sigma, \mathcal{P})}{\sigma} \ge K \kappa_{\mathcal{P}} C_{\mathcal{P}} v_d.$$

The claim (5.1) follows from (5.3) and the fact that (5.13) holds for every $K < (v_d C_P)^{-1}$.

6. Lower bound on the density of visible points

Combining (5.1) and (1.7) (recall that the latter was proved in [6, Thm. A.1]), we get the following lower bound on the density $\theta(\hat{\mathcal{P}}) = \kappa_{\mathcal{P}} C_{\mathcal{P}}$ in Theorem 1:

Lemma 7. Let \mathfrak{U} be any subset of S_1^{d-1} with boundary of measure zero (w.r.t. ω), and let $\mathcal{D} = \{ \boldsymbol{v} \in \mathbb{R}^d : 0 < \|\boldsymbol{v}\| < 1, \|\boldsymbol{v}\|^{-1} \boldsymbol{v} \in \mathfrak{U} \}$ be the corresponding sector in \mathcal{B}_1^d . Then

(6.1)
$$\liminf_{T \to \infty} \frac{\#(\widehat{\mathcal{P}} \cap T\mathcal{D})}{T^d} \ge \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}).$$

Proof. We may assume $\omega(\mathfrak{U}) > 0$, since otherwise $\operatorname{vol}(\mathcal{D}) = 0$ and the lemma is trivial. Let $\varepsilon > 0$ be given, and let $\mathfrak{U}_{\varepsilon}^{-} \subset S_{1}^{d-1}$ be the " ε -thinning" of \mathfrak{U} , that is

(6.2)
$$\mathfrak{U}_{\varepsilon}^{-} = \left\{ \boldsymbol{v} \in \mathcal{S}_{1}^{d-1} : \left[\varphi(\boldsymbol{w}, \boldsymbol{v}) < \varepsilon \Rightarrow \boldsymbol{w} \in \mathfrak{U} \right], \, \forall \boldsymbol{w} \in \mathcal{S}_{1}^{d-1} \right\}.$$

(Recall that $\varphi(\boldsymbol{w}, \boldsymbol{v}) \in [0, \pi]$ is the angle between \boldsymbol{w} and \boldsymbol{v} as seen from $\boldsymbol{0}$.) Then $\omega(\mathfrak{U}_{\varepsilon}^{-}) \to \omega(\mathfrak{U})$ as $\varepsilon \to 0$, since \mathfrak{U} by assumption is a Jordan measurable subset of S_1^{d-1} . From now on we assume that ε is so small that $\omega(\mathfrak{U}_{\varepsilon}^{-}) > 0$. We let λ be ω restricted to $\mathfrak{U}_{\varepsilon}^{-}$ and normalized to be a probability measure; thus $\lambda(B) = \omega(\mathfrak{U}_{\varepsilon}^{-})^{-1}\omega(B \cap \mathfrak{U}_{\varepsilon}^{-})$ for any Borel subset $B \subset S_1^{d-1}$.

Now note that, by the definitions of $\mathcal{N}_T(\sigma, \boldsymbol{v}, \mathcal{P})$ and $\widehat{\mathcal{P}}$, for any $\sigma > 0, T > 0$ and $\boldsymbol{v} \in S_1^{d-1}$ we have $\mathcal{N}_T(\sigma, \boldsymbol{v}, \mathcal{P}) > 0$ if and only if there is some $\boldsymbol{y} \in \widehat{\mathcal{P}} \cap \mathcal{B}_T^d$ such that $\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_T(\sigma, \boldsymbol{v})$. Furthermore, if T is larger than a certain constant depending on $\sigma, \mathcal{P}, \varepsilon$, then $\mathfrak{D}_T(\sigma, \boldsymbol{v}) \subset \mathfrak{U}$ for every $\boldsymbol{v} \in \mathfrak{U}_{\varepsilon}^{-}$, meaning that $\|\boldsymbol{y}\|^{-1}\boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})$ implies $\boldsymbol{y} \in \mathbb{R}_{>0}\mathcal{D}$. Hence for such T and σ we have

$$\lambda(\{\boldsymbol{v} \in \mathbf{S}_{1}^{d-1} : \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \mathcal{P}) > 0\}) = \lambda(\{\boldsymbol{v} \in \mathbf{S}_{1}^{d-1} : [\exists \boldsymbol{y} \in \widehat{\mathcal{P}} \cap \mathcal{B}_{T}^{d} : \|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})]\})$$

$$\leq \sum_{\boldsymbol{y} \in \widehat{\mathcal{P}} \cap T\mathcal{D}} \lambda(\{\boldsymbol{v} \in \mathbf{S}_{1}^{d-1} : \|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})\}) \leq \frac{\omega(\mathfrak{D}_{T}(\sigma, \boldsymbol{e}_{1}))}{\omega(\mathfrak{U}_{\varepsilon}^{-})} \cdot \#(\widehat{\mathcal{P}} \cap T\mathcal{D})$$

$$= \frac{\sigma d}{\omega(\mathfrak{U}_{\varepsilon}^{-})C_{\mathcal{P}}T^{d}} \cdot \#(\widehat{\mathcal{P}} \cap T\mathcal{D}).$$
(6.3)

Hence, letting $T \to \infty$ and applying (1.7) we have, for any fixed $\sigma > 0$,

(6.4)
$$\liminf_{T \to \infty} \frac{\# \mathcal{P} \cap T\mathcal{D}}{T^d} \ge \frac{\omega(\mathfrak{U}_{\varepsilon}^-)C_{\mathcal{P}}}{d} \cdot \frac{1 - E(0, \sigma, \mathcal{P})}{\sigma}$$

Letting $\sigma \to 0$ in the right hand side and using (5.1), this gives

(6.5)
$$\liminf_{T \to \infty} \frac{\#\widehat{\mathcal{P}} \cap T\mathcal{D}}{T^d} \ge \kappa_{\mathcal{P}} C_{\mathcal{P}} \frac{\omega(\mathfrak{U}_{\varepsilon}^-)}{d}.$$

Finally letting $\varepsilon \to 0$ and using $\omega(\mathfrak{U})/d = \operatorname{vol}(\mathcal{D})$ we obtain the statement of the lemma.

7. CONTINUITY IN THE SPACE OF CUT-AND-PROJECT SETS

Next, in Lemma 9 and Lemma 10, we will prove that for almost all $x \in X$, both \mathcal{P}^x and $\widehat{\mathcal{P}}^x$ vary continuously as we perturb x.

Lemma 8. For any $m \in \mathbb{R}^n$, if $\pi(mhg) \neq 0$ for some $h \in H_g$ then $\pi(mhg) \neq 0$ for μ -almost all $h \in H_g$. Similarly, for any $m, n \in \mathbb{R}^n$, if dim Span $\{\pi(nhg), \pi(mhg)\} = 2$ for some $h \in H_g$ then dim Span{ $\pi(\mathbf{n}hg), \pi(\mathbf{n}hg)$ } = 2 for μ -almost all $h \in H_g$.

Proof. H_g is a connected, real-analytic manifold; hence any real-analytic function on H_g which does not vanish identically is non-zero almost everywhere. The first part of the lemma follows by applying this principle to the coordinate functions $h \mapsto \pi(\mathbf{m}hg) \cdot \mathbf{e}_j$ for $j = 1, \dots, d$. The second part of the lemma follows by applying the same principle to the functions

(7.1)
$$h \mapsto (\pi(\boldsymbol{m}hg) \cdot \boldsymbol{e}_i)(\pi(\boldsymbol{n}hg) \cdot \boldsymbol{e}_j) - (\pi(\boldsymbol{m}hg) \cdot \boldsymbol{e}_j)(\pi(\boldsymbol{n}hg) \cdot \boldsymbol{e}_i),$$
for $1 \le i < j \le d.$

Lemma 9. For μ -almost every $x \in X$, and for every bounded open set $U \subset \mathbb{R}^d$ with $\mathcal{P}^x \cap \partial U =$ \emptyset , there is an open set $\Omega \subset X$ with $x \in \Omega$ such that $\#(\mathcal{P}^{x'} \cap U) = \#(\mathcal{P}^x \cap U)$ for all $x' \in \Omega$.

Proof. For each $m \in \mathbb{Z}^n$, by an argument as in Lemma 8 we either have $mhg \neq 0$ for almost all $h \in H_g$ or else mhg = 0 for all $h \in H_g$. By taking h = 1 we see that the latter property can hold for at most one $\mathbf{m} \in \mathbb{Z}^n$, and if it holds then we necessarily have $\mathbf{m} = \mathbf{0}g^{-1}$, and $H_g \subset g \operatorname{SL}(n, \mathbb{R})g^{-1}$. If such an exceptional \mathbf{m} exists we call it \mathbf{m}_E , and we set $(\mathbb{Z}^n)' := \mathbb{Z}^n \setminus \{\mathbf{m}_E\}$; otherwise we set $(\mathbb{Z}^n)' := \mathbb{Z}^n$.

Now consider the following two subsets of H_a :

 $S_1 = \left\{ h \in H_g : (\mathbb{Z}^n)' hg \cap (\mathbb{R}^d \times \partial \mathcal{W}) \neq \emptyset \right\};$ (7.2)

(7.3)
$$S_2 = \left\{ h \in H_q : \exists \boldsymbol{\ell}_1 \neq \boldsymbol{\ell}_2 \in \mathbb{Z}^n hg \cap \pi_{\text{int}}^{-1}(\mathcal{W}) \text{ satisfying } \pi(\boldsymbol{\ell}_1) = \pi(\boldsymbol{\ell}_2) \right\}$$

We have $\mu(S_1) = 0$, by [6, Theorem 5.1]. Also $\mu(S_2) = 0$, by [6, Prop. 3.7] applied to \mathcal{W}° . We will prove the lemma by showing that for every $h \in H_q \setminus (S_1 \cup S_2)$, the point $x = \Gamma h \in X$ has the property described in the lemma.

Thus let $h \in H_g \setminus (S_1 \cup S_2)$ be given, set $x = \Gamma h \in X$, and let U be an arbitrary bounded open subset of \mathbb{R}^d with boundary disjoint from $\mathcal{P}^x = \mathcal{P}(\mathcal{W}, \mathbb{Z}^n hg)$. Assume that the desired property does not hold. Then there is a sequence h_1, h_2, \ldots in H_q tending to h such that

(7.4)
$$\#(\mathcal{P}(\mathcal{W},\mathbb{Z}^n h_j g) \cap U) \neq \#(\mathcal{P}(\mathcal{W},\mathbb{Z}^n h g) \cap U), \quad \forall j.$$

Let F be the (finite) set

(7.5)
$$F = \{ \boldsymbol{m} \in \mathbb{Z}^n : \boldsymbol{m} h g \in U \times \mathcal{W} \}$$

Note that $\boldsymbol{m}hg \in U \times W^{\circ}$ for every $\boldsymbol{m} \in F \cap (\mathbb{Z}^n)'$, since $h \notin S_1$. But $U \times W^{\circ}$ is open; hence by continuity we also have $\boldsymbol{m}h'g \in U \times W^{\circ}$ for every $h' \in H_g$ sufficiently near h and all $\boldsymbol{m} \in F \cap (\mathbb{Z}^n)'$. Note also that if the exceptional point \boldsymbol{m}_E exists and belongs to F then $\boldsymbol{0} = \boldsymbol{m}_E h'g \in U \times W$ for all $h' \in H_g$. Hence, for every $h' \in H_g$ near h we have

(7.6)
$$\mathcal{P}(\mathcal{W},\mathbb{Z}^n h'g) \supset \{\pi(\boldsymbol{m}h'g) : \boldsymbol{m} \in F\}.$$

Because of $h \notin S_2$, the points $\pi(\mathbf{m}hg)$ for $\mathbf{m} \in F$ are pairwise distinct. By continuity it then also follows that for any $h' \in H_g$ sufficiently near h, the points $\pi(\mathbf{m}h'g)$ for $\mathbf{m} \in F$ are pairwise distinct. Hence $\#(\mathcal{P}(\mathcal{W}, \mathbb{Z}^n hg) \cap U) = \#F$ and $\#(\mathcal{P}(\mathcal{W}, \mathbb{Z}^n h'g) \cap U) \geq \#F$ for every h' near h. Therefore in (7.4), the left hand side must be *larger* than #F, for all large j. Hence for each large j there is some $\mathbf{m} \in \mathbb{Z}^n \setminus F$ such that $\mathbf{m}h_jg \in U \times \mathcal{W}$. But for any compact $C \subset H_g$ the set $\cup_{h' \in C} (U \times \mathcal{W})g^{-1}h'^{-1}$ is bounded and hence has finite intersection with \mathbb{Z}^n . Therefore there is a bounded number of possibilities for \mathbf{m} as j varies, and by passing to a subsequence we may assume that \mathbf{m} is independent of j.

Now for our fixed $\boldsymbol{m} \in \mathbb{Z}^n \setminus F$ we have $\boldsymbol{m}h_jg \in U \times W$ for all j, but $\boldsymbol{m}h_jg \to \boldsymbol{m}hg \notin U \times W$ as $j \to \infty$; this forces $\boldsymbol{m}hg \in \partial(U \times W)$, and it also implies that we cannot have $\boldsymbol{m} = \boldsymbol{m}_E$. But $\pi_{int}(\boldsymbol{m}hg) \notin \partial W$ since $h \notin S_1$, and thus we must have $\pi(\boldsymbol{m}hg) \in \partial U$. Note also that $\pi_{int}(\boldsymbol{m}hg)$ cannot belong to the exterior of W, since then the same would hold for $\pi_{int}(\boldsymbol{m}h_jg)$ for j large, contradicting $\boldsymbol{m}h_jg \in U \times W$. Hence $\pi_{int}(\boldsymbol{m}hg)$ must belong to the interior of W; therefore $\pi(\boldsymbol{m}hg) \in \mathcal{P}^x = \mathcal{P}(W, \mathbb{Z}^n hg)$. This contradicts our assumption that \mathcal{P}^x is disjoint from ∂U , and so the lemma is proved.

Lemma 10. For μ -almost every $x \in X$, and for every bounded open set $U \subset \mathbb{R}^d$ with $\widehat{\mathcal{P}}^x \cap \partial U = \emptyset$, there is an open set $\Omega \subset X$ with $x \in \Omega$ such that $\#(\widehat{\mathcal{P}}^{x'} \cap U) = \#(\widehat{\mathcal{P}}^x \cap U)$ for all $x' \in \Omega$.

Proof. Let \mathbf{m}_E , $(\mathbb{Z}^n)'$, S_1 and S_2 be as in the proof of Lemma 9. Also set

$$S_{3} = \left\{ h \in H_{g} : \exists \boldsymbol{m} \in \mathbb{Z}^{n}, h' \in H_{g} \text{ satisfying } \pi(\boldsymbol{m}hg) = \boldsymbol{0}, \ \pi(\boldsymbol{m}h'g) \neq \boldsymbol{0} \right\}$$
$$S_{4} = \left\{ h \in H_{g} : \exists \boldsymbol{m}, \boldsymbol{n} \in \mathbb{Z}^{n}, \ h' \in H_{g} \text{ satisfying } \dim \operatorname{Span}\{\pi(\boldsymbol{n}hg), \pi(\boldsymbol{m}hg)\} \leq 1$$
and $\dim \operatorname{Span}\{\pi(\boldsymbol{n}h'g), \pi(\boldsymbol{m}h'g)\} = 2 \right\}.$

Using Lemma 8 and the fact that \mathbb{Z}^n is countable, we have $\mu(S_3) = \mu(S_4) = 0$.

Now let $h \in H_g \setminus (S_1 \cup S_2 \cup S_3 \cup S_4)$ be given, set $x = \Gamma h \in X$, and let U be an arbitrary bounded open subset of \mathbb{R}^d with boundary disjoint from $\widehat{\mathcal{P}}^x = \widehat{\mathcal{P}}(\mathcal{W}, \mathbb{Z}^n hg)$. Assume that there is a sequence h_1, h_2, \ldots in H_g tending to h such that

(7.7)
$$\#(\widehat{\mathcal{P}}(\mathcal{W},\mathbb{Z}^n h_j g) \cap U) \neq \#(\widehat{\mathcal{P}}(\mathcal{W},\mathbb{Z}^n h g) \cap U), \quad \forall j$$

We will show that this leads to a contradiction, and this will complete the proof of the lemma (cf. the proof of Lemma 9).

As an initial reduction, let us note that we may assume $\mathcal{P}^x \cap \partial U = \emptyset$. Indeed, recall that \mathcal{P}^x is locally finite (cf. [6, Prop. 3.1]); hence the set $A = \mathcal{P}^x \cap \partial U$ is certainly finite. Also every point in A is invisible in \mathcal{P}^x , since we are assuming $\widehat{\mathcal{P}}^x \cap \partial U = \emptyset$. If $A \neq \emptyset$ then fix r > 0 so small that $(\mathbf{p} + \mathcal{B}_{2r}^d) \cap \mathcal{P}^x = \{\mathbf{p}\}$ for each $\mathbf{p} \in A$, and set $U' = U \cup (\cup_{\mathbf{p} \in A}(\mathbf{p} + \mathcal{B}_r^d))$ and $U'' = U \setminus (\cup_{\mathbf{p} \in A}(\mathbf{p} + \mathcal{B}_r^d))$. These are bounded open sets satisfying $\#(\widehat{\mathcal{P}}^x \cap U') = \#(\widehat{\mathcal{P}}^x \cap U'') = \#(\widehat{\mathcal{P}}^x \cap U)$ and $\mathcal{P}^x \cap \partial U' = \mathcal{P}^x \cap \partial U'' = \emptyset$. For each j we must have either $\#(\widehat{\mathcal{P}}(W, \mathbb{Z}^n h_j g) \cap U') > \#(\widehat{\mathcal{P}}^x \cap U)$ or $\#(\widehat{\mathcal{P}}(W, \mathbb{Z}^n h_j g) \cap U'') < \#(\widehat{\mathcal{P}}^x \cap U)$, because of $U'' \subset U \subset U'$ and (7.7). Hence after replacing U by U' or U'', and passing to a subsequence, we are in a situation where (7.7) holds, and also $\mathcal{P}^x \cap \partial U = \emptyset$.

Now take F as in (7.5); it then follows from the proof of Lemma 9 that $\#(\mathcal{P}^x \cap U) = \#F$ and also $\#(\mathcal{P}(\mathcal{W}, \mathbb{Z}^n h_j g) \cap U) = \#F$ for every large j. Hence (7.7) implies that for every large j there is some $m \in F$ such that either $\pi(mh_jg)$ is visible in $\mathcal{P}(\mathcal{W}, \mathbb{Z}^n h_jg)$ but $\pi(mhg)$ is invisible in \mathcal{P}^x , or the other way around. Since F is finite we may assume, by passing to a subsequence, that m is independent of j.

First assume that $\pi(\boldsymbol{m}hg)$ is invisible in \mathcal{P}^x but $\pi(\boldsymbol{m}h_jg)$ is visible in $\mathcal{P}(\mathcal{W}, \mathbb{Z}^n h_jg)$ for every large j. In particular then $\pi(\boldsymbol{m}h_jg) \neq \mathbf{0}$ for large j, and since $h \notin S_3$ this implies $\pi(\boldsymbol{m}hg) \neq \mathbf{0}$. The invisibility of $\pi(\boldsymbol{m}hg)$ means that there exist $\boldsymbol{n} \in \mathbb{Z}^n$ and 0 < t < 1 such that $\pi_{int}(\boldsymbol{n}hg) \in \mathcal{W}$ and $\pi(\boldsymbol{n}hg) = t\pi(\boldsymbol{m}hg)$. Now $\pi_{int}(\boldsymbol{n}hg) \in \mathcal{W}$ and $h \notin S_1$ force $\pi_{int}(\boldsymbol{n}hg) \in$ \mathcal{W}° ; hence $\pi_{int}(\boldsymbol{n}h_jg) \in \mathcal{W}^\circ$ for all large j and so $\pi(\boldsymbol{n}h_jg) \in \mathcal{P}(\mathcal{W},\mathbb{Z}^n h_jg)$. On the other hand dim Span{ $\pi(\boldsymbol{n}hg), \pi(\boldsymbol{m}hg)$ } = 1 together with $h \notin S_4$ imply dim Span{ $\pi(\boldsymbol{n}h'g), \pi(\boldsymbol{m}h'g)$ } ≤ 1 for all $h' \in H_g$. Using also $h_j \to h, \pi(\boldsymbol{m}hg) \neq 0$ and 0 < t < 1, this implies that for every large j there is $0 < t_j < 1$ such that $\pi(\boldsymbol{n}h_jg) = t_j\pi(\boldsymbol{m}h_jg)$. Hence $\pi(\boldsymbol{m}h_jg)$ is invisible in $\mathcal{P}(\mathcal{W}, \mathbb{Z}^n h_jg)$ for every large j, contradicting our earlier assumption.

It remains to treat the case when $\pi(\mathbf{m}hg)$ is visible in \mathcal{P}^x but $\pi(\mathbf{m}h_jg)$ is invisible in $\mathcal{P}(\mathcal{W}, \mathbb{Z}^n h_j g)$ for every large j. Then for every large j there exist $\mathbf{n} \in \mathbb{Z}^n$ and $0 < t_j < 1$ such that $\pi_{int}(\mathbf{n}h_jg) \in \mathcal{W}$ and $\pi(\mathbf{n}h_jg) = t_j\pi(\mathbf{m}h_jg)$. It is easily seen that there are only a finite number of possibilities for \mathbf{n} , and hence by passing to a subsequence we may assume that \mathbf{n} is independent of j. Since $\pi(\mathbf{m}hg)$ is visible in \mathcal{P}^x we have $\pi(\mathbf{m}hg) \neq \mathbf{0}$; hence also $\pi(\mathbf{m}h_jg) \neq \mathbf{0}$ for all large j, and this forces $\mathbf{n} \neq \mathbf{m}$. Also $\pi(\mathbf{m}h_jg) \to \pi(\mathbf{m}hg) \neq \mathbf{0}$ and $t_j\pi(\mathbf{m}h_jg) = \pi(\mathbf{n}h_jg) \to \pi(\mathbf{n}hg)$ imply that $t = \lim_{j\to\infty} t_j \in [0,1]$ exists, and $\pi(\mathbf{n}hg) = t\pi(\mathbf{m}hg)$. Using $h \notin S_1$ and $\pi_{int}(\mathbf{n}h_jg) \neq \mathbf{0}$ for j large, it follows that $\pi(\mathbf{n}hg) \neq \mathbf{0}$; furthermore using $h \notin S_2$ we have $\pi(\mathbf{n}hg) \neq \pi(\mathbf{m}hg)$. Hence 0 < t < 1, and so $\pi(\mathbf{m}hg)$ is invisible in \mathcal{P}^x , contradicting our earlier assumption.

8. Upper bound on the density of visible points

We are now in position to prove an upper bound complementing Lemma 7.

Lemma 11. We have
$$\lim_{T \to \infty} \frac{\#(\mathcal{P} \cap \mathcal{B}_T^d)}{T^d} = \kappa_{\mathcal{P}} C_{\mathcal{P}} v_d$$

Proof. For any $\mathcal{P}' \subset \mathbb{R}^d$, let us write $\widetilde{\mathcal{P}}' = \mathcal{P}' \setminus \widehat{\mathcal{P}}'$ for the set of *invisible* points in \mathcal{P}' . Define $F: X \to \mathbb{Z}_{\geq 0}$ through

(8.1)
$$F(x) = \liminf_{x' \to x} \#(\widetilde{\mathcal{P}}^{x'} \cap \mathcal{B}_1^d).$$

Then F is lower semicontinuous by construction. Hence by [6, Thm. 4.1] and the Portmanteau theorem (cf., e.g., [15, Thm. 1.3.4(iv)]),

(8.2)
$$\liminf_{R \to \infty} \int_{\mathrm{SO}(d)} F(\Gamma \varphi_g(k \Phi^{\log R})) \, dk \ge \int_X F \, d\mu,$$

with

(8.3)
$$\Phi^t = \begin{pmatrix} e^{-(d-1)t} & \mathbf{0} \\ \mathbf{0} & e^t \mathbf{1}_{d-1} \end{pmatrix} \in \mathrm{SL}(d, \mathbb{R}).$$

Now in the left hand side of (8.2), we use the fact that for any $x = \Gamma \varphi_g(T), T \in SL(d, \mathbb{R})$, we have

(8.4)
$$F(x) \le \#(\widetilde{\mathcal{P}}^x \cap \mathcal{B}_1^d) = \#(\widetilde{\mathcal{P}}(\mathcal{W}, \mathbb{Z}^n \varphi_g(T)g) \cap \mathcal{B}_1^d) = \#(\widetilde{\mathcal{P}} \cap \mathcal{B}_1^d T^{-1}).$$

In the right hand side of (8.2) we note that if $x = \Gamma h$ has both the continuity properties described in Lemmata 9 and 10, and if furthermore $\mathcal{P}^x \cap S_1^{d-1} = \emptyset$, then in fact $F(x) = #(\widetilde{\mathcal{P}}^x \cap \mathcal{B}_1^d)$. But these conditions are fulfilled for μ -almost all $x \in X$ (concerning $\mathcal{P}^x \cap S_1^{d-1} = \emptyset$, use [6, Thm. 1.5]). Hence it follows from (8.2) that

(8.5)
$$\liminf_{R \to \infty} \int_{\mathrm{SO}(d)} \# \left(\widetilde{\mathcal{P}} \cap \mathcal{B}_1^d \Phi^{-\log R} k^{-1} \right) dk \ge \int_X \# \left(\widetilde{\mathcal{P}}^x \cap \mathcal{B}_1^d \right) d\mu(x) = (1 - \kappa_{\mathcal{P}}) C_{\mathcal{P}} v_d,$$

where the last equality holds by Theorem 6.

But exactly as in the proof of Theorem 5.1 in [6], we have for any R > 1

(8.6)
$$\int_{\mathrm{SO}(d)} \#(\widetilde{\mathcal{P}} \cap \mathcal{B}_1 \Phi^{-\log R} k^{-1}) \, dk = \sum_{\boldsymbol{p} \in \widetilde{\mathcal{P}}} A_R(\|\boldsymbol{p}\|) = \int_0^\infty A_R(\tau) \, d\widetilde{N}(\tau) = -\int_0^\infty \widetilde{N}(\tau) \, dA_R(\tau),$$

where

(8.7)
$$\widetilde{N}(T) = \#(\widetilde{\mathcal{P}} \cap \mathcal{B}_T^d),$$

and A_R is the continuous and decreasing function from $\mathbb{R}_{>0}$ to [0,1] given by $A_R(0) = 1$ and

(8.8)
$$A_R(\tau) = \frac{\omega \left(S_1^{d-1} \cap \tau^{-1} \mathcal{B}_1^d \Phi^{-\log R} \right)}{\omega (S_1^{d-1})} \quad \text{for } \tau > 0$$

(Thus $A_R(\tau) = 1$ for $0 \le \tau \le R^{-1}$ and $A_R(\tau) = 0$ for $\tau \ge R^{d-1}$.) Hence (8.5) says that

(8.9)
$$\liminf_{R \to \infty} \int_0^\infty \widetilde{N}(\tau) \left(-dA_R(\tau) \right) \ge C' := (1 - \kappa_{\mathcal{P}}) C_{\mathcal{P}} v_d.$$

In view of (2.5) and Lemma 7 (with $\mathcal{D} = \mathcal{B}_1^d$), the statement of the present lemma is equivalent with $\liminf_{\tau\to\infty} \tau^{-d} \widetilde{N}(\tau) \geq C'$. Assume that this is *false*. Then there is some $\eta > 0$ and a sequence $1 < \tau_1 < \tau_2 < \cdots$ with $\tau_j \to \infty$ such that $\widetilde{N}(\tau_j) < (1-\eta)C'\tau_j^d$ for all j. Using the fact that $\widetilde{N}(\tau)$ is an increasing function of τ we see that by shrinking $\eta > 0$ if necessary, we may actually assume that $\widetilde{N}(\tau) < (1-\eta)C'\tau^d$ for all $\tau \in [(1-\eta)\tau_j, \tau_j]$ and all j. By Lemma 7 and (2.5) we have $\limsup_{\tau\to\infty} \tau^{-d}\widetilde{N}(\tau) \leq C'$; thus for any given $\varepsilon > 0$ there is some $\tau_0 > 0$ such that $\widetilde{N}(\tau) \leq (1+\varepsilon)C'\tau^d$ for all $\tau \geq \tau_0$. Now for any j with $(1-\eta)\tau_j > \tau_0$, and any $R > \tau_j^{1/(d-1)}$:

$$(8.10) \qquad \int_0^\infty \widetilde{N}(\tau) \left(-dA_R(\tau) \right) \le \int_0^{\tau_0} \widetilde{N}(\tau) \left(-dA_R(\tau) \right) + (1+\varepsilon)C' \int_{\tau_0}^{R^{d-1}} \tau^d \left(-dA_R(\tau) \right) \\ - \left(\varepsilon + \eta \right)C' \int_{(1-\eta)\tau_j}^{\tau_j} \tau^d \left(-dA_R(\tau) \right).$$

Here the sum of the first two terms tends to $(1 + \varepsilon)C'$ as $R \to \infty$, as in [6, (5.11)-(5.13)]. Furthermore, if we choose $R = (2\tau_j)^{1/(d-1)}$ and let $j \to \infty$ then

(8.11)
$$\int_{(1-\eta)\tau_j}^{\tau_j} \tau^d \left(-dA_R(\tau)\right) = \frac{d}{\omega(S_1^{d-1})} \operatorname{vol}\left(\mathcal{B}_1^d \Phi^{-\log R} \cap \mathcal{B}_{\frac{1}{2}R^{d-1}}^d \setminus \mathcal{B}_{\frac{1}{2}(1-\eta)R^{d-1}}^d\right) \\ \to \frac{2v_{d-1}}{v_d} \int_{(1-\eta)/2}^{1/2} (1-x^2)^{(d-1)/2} dx.$$

Hence we conclude that there is a constant $c(\eta) > 0$, independent of ε , such that

(8.12)
$$\liminf_{R \to \infty} \int_0^\infty \widetilde{N}(\tau) \left(-dA_R(\tau) \right) \le (1 + \varepsilon - c(\eta))C'.$$

Letting now $\varepsilon \to 0$ we run into a contradiction against (8.9). This concludes the proof of the lemma.

9. Proof of Theorem 1

Combining Lemma 7 and Lemma 11 we can now complete the proof of Theorem 1. First let $\mathfrak{U}, \mathcal{D}$ be as in Lemma 7. Then by Lemma 7 applied to $S_1^{d-1} \setminus \mathfrak{U}$,

(9.1)
$$\liminf_{T \to \infty} \frac{\#(\mathcal{P} \cap \mathcal{B}_T^d \setminus T\mathcal{D})}{T^d} \ge \kappa_{\mathcal{P}} C_{\mathcal{P}} \big(v_d - \operatorname{vol}(\mathcal{D}) \big).$$

Combining this with Lemma 11 we get

(9.2)
$$\limsup_{T \to \infty} \frac{\#(\widehat{\mathcal{P}} \cap T\mathcal{D})}{T^d} = \limsup_{T \to \infty} \left(\frac{\#(\widehat{\mathcal{P}} \cap \mathcal{B}_T^d)}{T^d} - \frac{\#(\widehat{\mathcal{P}} \cap \mathcal{B}_T^d \setminus T\mathcal{D})}{T^d} \right) \le \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}).$$

Combining this with Lemma 7 (applied to \mathfrak{U} itself) we conclude

(9.3)
$$\lim_{T \to \infty} \frac{\#(\mathcal{P} \cap T\mathcal{D})}{T^d} = \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}).$$

By a scaling and subtraction argument it follows that (9.3) is true more generally for any $\mathcal{D} \in \mathcal{F}$, where \mathcal{F} is the family of sets of the form $\mathcal{D} = \{ \boldsymbol{v} \in \mathbb{R}^d : r_1 \leq ||\boldsymbol{v}|| < r_2, \boldsymbol{v} \in ||\boldsymbol{v}||\mathfrak{U}\},$ for any $0 \leq r_1 < r_2$ and any $\mathfrak{U} \subset S_1^{d-1}$ with $\omega(\partial \mathfrak{U}) = 0$.

Now let \mathcal{D} be an arbitrary subset of \mathbb{R}^d with boundary of measure zero. Note that the validity of (9.3) does not change if we replace \mathcal{D} by $\mathcal{D} \cup \{\mathbf{0}\}$ or by $\mathcal{D} \setminus \{\mathbf{0}\}$. The proof of Theorem 6 is now completed by approximating $\mathcal{D} \cup \{\mathbf{0}\}$ from above and $\mathcal{D} \setminus \{\mathbf{0}\}$ from below by finite unions of sets in \mathcal{F} .

10. Proof of Theorem 2

Recall that (1.7) was proved in [6, Thm. A.1] and we have proved (1.9) and (1.10) in Section 5. Also the continuity of $E(r, \sigma, \mathcal{P})$ and $E(r, \sigma, \widehat{\mathcal{P}})$ with respect to σ is immediate from (3.5), (3.6) combined with Theorem 6. Hence it remains to prove (1.8).

Thus let λ be a Borel probability measure on S_1^{d-1} which is absolutely continuous with respect to ω , and let $\sigma > 0$ and $r \in \mathbb{Z}_{\geq 0}$. Let us fix, once and for all, a map $K : S_1^{d-1} \to SO(d)$ such that $\boldsymbol{v}K(\boldsymbol{v}) = \boldsymbol{e}_1 = (1, 0, \dots, 0)$ for all $\boldsymbol{v} \in S_1^{d-1}$; we assume that K is smooth when restricted to S_1^{d-1} minus one point, cf. [5, Footnote 3, p. 1968]. Recall the definitions of $\mathfrak{C}(\sigma)$ and Φ^t in (3.7) and (8.3).

On verifies that if $\sigma', \sigma'', \alpha$ are any fixed numbers satisfying $0 < \sigma' < \sigma < \sigma''$ and $\sigma'/\sigma < \alpha < 1$, then for any $\boldsymbol{v} \in \mathbf{S}_1^{d-1}$ and all sufficiently large T, the set of $\boldsymbol{y} \in \mathcal{B}_T^d \setminus \{\mathbf{0}\}$ satisfying $\|\boldsymbol{y}\|^{-1}\boldsymbol{y} \in \mathfrak{D}_T(\kappa_{\mathcal{P}}^{-1}\sigma, \boldsymbol{v})$ is contained in $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma'')\Phi^{-(\log T)/(d-1)}K(\boldsymbol{v})^{-1}$, and contains $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma'')\Phi^{-(\log(\alpha T))/(d-1)}K(\boldsymbol{v})^{-1}$. It follows that

$$\lambda \left(\left\{ \boldsymbol{v} \in \mathbf{S}_{1}^{d-1} : \# \left(\widehat{\mathcal{P}} \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1} \sigma'') \Phi^{-(\log T)/(d-1)} K(\boldsymbol{v})^{-1} \right) \leq r \right\} \right)$$

$$(10.1) \qquad \leq \lambda \left(\left\{ \boldsymbol{v} \in \mathbf{S}_{1}^{d-1} : \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \leq r \right\} \right)$$

$$\leq \lambda \left(\left\{ \boldsymbol{v} \in \mathbf{S}_{1}^{d-1} : \# \left(\widehat{\mathcal{P}} \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1} \sigma') \Phi^{-(\log(\alpha T))/(d-1)} K(\boldsymbol{v})^{-1} \right) \leq r \right\} \right).$$

Recalling the definition of $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathbb{Z}^n g)$ we see that $\widehat{\mathcal{P}}A = \widehat{\mathcal{P}}(\mathcal{W}, \mathbb{Z}^n \varphi_g(A)g)$ for any $A \in \mathrm{SL}(d, \mathbb{R})$. Hence if we define

(10.2)
$$\mathcal{E}(\sigma, r) = \left\{ x \in X : \# \left(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1} \sigma) \right) \le r \right\},$$

then the left hand side in (10.1) equals

(10.3)
$$\lambda(\{\boldsymbol{v}\in \mathbf{S}_1^{d-1} : \Gamma\varphi_g(K(\boldsymbol{v})\Phi^{(\log T)/(d-1)}) \in \mathcal{E}(\sigma'',r)\})$$

Hence by [6, Thm. 4.1] and the Portmanteau theorem:

(10.4)
$$\liminf_{T \to \infty} \lambda \left(\left\{ \boldsymbol{v} \in \mathcal{S}_1^{d-1} : \mathcal{N}_T(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \le r \right\} \right) \ge \mu \left(\mathcal{E}(\sigma'', r)^{\circ} \right) = \mu \left(\mathcal{E}(\sigma'', r) \right).$$

Here the last equality is proved by using Lemma 10 with $U = \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma'')$, and noticing that Theorem 6 implies that $\widehat{\mathcal{P}}^x \cap \partial U = \emptyset$ for μ -almost all $x \in X$. Similarly, using the right relation in (10.1), we obtain

(10.5)
$$\limsup_{T \to \infty} \lambda \left(\left\{ \boldsymbol{v} \in \mathcal{S}_1^{d-1} : \mathcal{N}_T(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \le r \right\} \right) \le \mu \left(\overline{\mathcal{E}(\sigma', r)} \right) = \mu \left(\mathcal{E}(\sigma', r) \right).$$

Note that $\mathcal{E}(\sigma'', r) \subset \mathcal{E}(\sigma, r) \subset \mathcal{E}(\sigma', r)$, since $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma'') \supset \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma) \supset \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma')$. Also, if x lies in $\mathcal{E}(\sigma, r)$ but not in $\mathcal{E}(\sigma'', r)$, then $\widehat{\mathcal{P}}^x$ must have some point in $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma'') \setminus \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma)$, and so by Theorem 6,

(10.6)
$$\mu(\mathcal{E}(\sigma,r)) - \mu(\mathcal{E}(\sigma'',r)) \le \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma'') \setminus \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma)).$$

Similarly

(10.7)
$$\mu \left(\mathcal{E}(\sigma', r) \right) - \mu \left(\mathcal{E}(\sigma, r) \right) \leq \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol} \left(\mathfrak{C}(\kappa_{\mathcal{P}}^{-1} \sigma) \setminus \mathfrak{C}(\kappa_{\mathcal{P}}^{-1} \sigma') \right).$$

Now by taking σ', σ'' sufficiently near σ , the right hand sides of (10.6) and (10.7) can be made as small as we like. Hence from (10.4) and (10.5) we obtain in fact

(10.8)

$$\lim_{T \to \infty} \lambda \big(\big\{ \boldsymbol{v} \in \mathcal{S}_1^{d-1} : \mathcal{N}_T(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \le r \big\} \big) = \mu \big(\mathcal{E}(\sigma, r) \big) = \mu \big(\big\{ x \in X : \# \big(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma) \big) \le r \big\} \big).$$

Note here that the right hand side is the same as $\sum_{r'=0}^{r} E(r, \sigma, \widehat{\mathcal{P}})$; cf. (3.6). Hence since (10.8) has been proved for arbitrary $r \ge 0$, also (1.8) holds for arbitrary $r \ge 0$, and we are done.

11. Proof of Corollary 3

It follows from Theorem 2 and a general statistical argument (cf. e.g. [4]) that if we define F(0) = 0 and

(11.1)
$$F(s) = -\frac{d}{ds}E(0, s, \widehat{\mathcal{P}}),$$

then the limit relation (1.14) holds at each point $s \ge 0$ where F(s) is defined. In fact the function $s \mapsto E(0, s, \widehat{\mathcal{P}})$ is convex; hence F(s) exists for all s > 0 except at most a countable number of points, and is continuous at each point where it exists. Also F(s) is decreasing, and satisfies $\lim_{s\to 0^+} F(s) = 1 = F(0)$ (cf. (1.10)) and $\lim_{s\to\infty} F(s) = 0$. Note also that (1.15) is an immediate consequence of (1.14), the definition of $\widehat{\xi}_{T,j}$ and the fact that $N(T) \sim \kappa_{\mathcal{P}}^{-1} \widehat{N}(T)$ as $T \to \infty$ (cf. Theorem 1 and (1.6)).

It now only remains to prove that F(s) is continuous, or equivalently that the derivative in (11.1) exists for every s > 0. Assume the contrary, and let $s_0 > 0$ be a point where the derivative does *not* exist. By convexity, both the left and right derivative exist at s_0 ; thus

(11.2)
$$-\lim_{s \to s_0^-} \frac{E(0, s_0, \hat{\mathcal{P}}) - E(0, s, \hat{\mathcal{P}})}{s_0 - s} > -\lim_{s \to s_0^+} \frac{E(0, s, \hat{\mathcal{P}}) - E(0, s_0, \hat{\mathcal{P}})}{s - s_0} \ge 0.$$

In dimension d = 2, using the fact that the point process $x \mapsto \widehat{\mathcal{P}}^x$ is invariant under $\begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} \in \mathrm{SL}(2,\mathbb{R})$ for any $r \in \mathbb{R}$, it follows that the formula (3.5) holds with $\mathfrak{C}(\sigma)$ replaced by $\mathfrak{C}(a, a + \sigma)$ for any $a \in \mathbb{R}$, where

$$\mathfrak{C}(a_1, a_2) = \left\{ \boldsymbol{y} = (y_1, y_2) \in \mathbb{R}^2 : 0 < y_1 < 1, \ \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} a_1 y_1 < y_2 < \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} a_2 y_1 \right\}$$

In particular, for any 0 < s < s' and $a \in \mathbb{R}$,

(11.3)
$$E(0,s,\widehat{\mathcal{P}}) - E(0,s',\widehat{\mathcal{P}}) = \mu\left(\left\{x \in X : \widehat{\mathcal{P}}^x \cap \mathfrak{C}(a,a+s) = \emptyset, \widehat{\mathcal{P}}^x \cap \mathfrak{C}(a,a+s') \neq \emptyset\right\}\right).$$

For given $x \in X$, we order the numbers

$$\frac{\kappa_{\mathcal{P}}C_{\mathcal{P}}}{2} \cdot \frac{y_2}{y_1} \quad \text{for } \boldsymbol{y} = (y_1, y_2) \in \widehat{\mathcal{P}}^x \cap ((0, 1) \times \mathbb{R}_{>0})$$

as $0 < \lambda_{x,1} < \lambda_{x,2} < \dots$ We also set $\lambda_{x,0} = 0$. Taking $s' = s_0 > s$ in (11.3), integrating over $a \in (0, a_0)$ for some fixed $a_0 > 0$, and using Fubini's Theorem, we obtain

$$a_0(E(0,s,\widehat{\mathcal{P}}) - E(0,s_0,\widehat{\mathcal{P}})) \le \int_X (s_0 - s) \#\{j \ge 0 : \lambda_{x,j+1} - \lambda_{x,j} > s, \ \lambda_{x,j+1} < a_0 + s_0\} d\mu(x) \le a_0(E(0,s,\widehat{\mathcal{P}})) - E(0,s_0,\widehat{\mathcal{P}})) \le b_0(s_0 - s_0) + b_0(s_0 -$$

Hence (11 1)

$$-a_0 \lim_{s \to s_0^-} \frac{E(0, s_0, \widehat{\mathcal{P}}) - E(0, s, \widehat{\mathcal{P}})}{s_0 - s} \le \int_X \# \{ j \ge 0 : \lambda_{x, j+1} - \lambda_{x, j} \ge s_0, \ \lambda_{x, j+1} < a_0 + s_0 \} d\mu(x).$$

Similarly, replacing s by s_0 and s' by s in (11.3), we obtain (11.5)

$$-a_0 \lim_{s \to s_0^+} \frac{E(0, s, \widehat{\mathcal{P}}) - E(0, s_0, \widehat{\mathcal{P}})}{s - s_0} \ge \int_X \# \left\{ j \ge 0 \ : \ \lambda_{x, j+1} - \lambda_{x, j} > s_0, \ \lambda_{x, j+1} < a_0 + s_0 \right\} d\mu(x).$$

It follows from (11.2), (11.4) and (11.5) that there is a set $A \subset X$ with $\mu(A) > 0$ such that for every $x \in A$, there is some $j \ge 0$ such that $\lambda_{x,j+1} - \lambda_{x,j} = s_0$ and $\lambda_{x,j} < a_0$. Note that $\lambda_{x,1} \ne s_0$ for μ -almost all $x \in X$, by Theorem 6 applied with f as the characteristic function of the line $y_2 = s_0 \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} y_1$ in \mathbb{R}^2 . Hence after removing a null set from A, we have for each $x \in A$ that $\widehat{\mathcal{P}}^x$ contains a pair of points $\boldsymbol{y} = (y_1, y_2)$ and $\boldsymbol{y}' = (y_1', y_2')$ satisfying

$$0 < y_1, y'_1 < 1, \qquad \frac{y'_2}{y'_1} - \frac{y_2}{y_1} = \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} s_0, \qquad 0 < \frac{y_2}{y_1} < \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} a_0.$$

However this is easily seen to violate the $SL(2,\mathbb{R})$ -invariance of the point process $x \mapsto \widehat{\mathcal{P}}^x$. For example, for each $\frac{1}{2} \leq \lambda \leq 1$, because of the invariance under $\begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & 1/\sqrt{\lambda} \end{pmatrix}$, there is a subset $A_{\lambda} \subset X$ with $\mu(A_{\lambda}) = \mu(A) > 0$ such that for each $x \in A_{\lambda}$, $\widehat{\mathcal{P}}^x$ contains a pair of points $\boldsymbol{y} = (y_1, y_2)$ and $\boldsymbol{y}' = (y_1', y_2')$ satisfying

$$0 < y_1, y_1' < \sqrt{\lambda}, \qquad \frac{y_2'}{y_1'} - \frac{y_2}{y_1} = \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} \frac{s_0}{\lambda}, \qquad 0 < \frac{y_2}{y_1} < \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} \frac{a_0}{\lambda}.$$

Let R be the rectangle $(0,1) \times (0, \frac{4}{\kappa_{\mathcal{P}}C_{\mathcal{P}}}(a_0+s_0))$ in \mathbb{R}^2 . By taking N sufficiently large we can ensure that the set $X_{R,N} := \{x \in X : \#(\widehat{\mathcal{P}}^x \cap R) \leq N\}$ has measure $\mu(X_{R,N}) \geq 1 - \frac{1}{2}\mu(A)$. It follows that $\mu(A_\lambda \cap X_{R,N}) \geq \frac{1}{2}\mu(A)$ for each $\frac{1}{2} \leq \lambda \leq 1$, and so if Λ is any infinite subset of $[\frac{1}{2}, 1]$ then the integral $\int_{X_{R,N}} \sum_{\lambda \in \Lambda} I(x \in A_\lambda) d\mu(x)$ is infinite. On the other hand the definition of $X_{R,N}$ implies that $\sum_{\lambda \in \Lambda} I(x \in A_{\lambda}) \leq {N \choose 2}$ for each $x \in X_{R,N}$. We have thus reached a contradiction, and we conclude that (11.2) cannot hold, i.e. F(s)

is continuous for all $s \ge 0$.

12. VANISHING NEAR ZERO OF THE GAP DISTRIBUTION

The gap distribution obtained in Corollary 3 may sometimes vanish near zero. This phenomenon was noted numerically in [1] in several examples. In the case when \mathcal{P} is a *lattice*, this vanishing is well understood; cf. [2], [5].

Let $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set. We define $m_{\widehat{\mathcal{P}}} \geq 0$ to be the supremum of all $\sigma \geq 0$ with the property that $\#(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma)) \leq 1$ for $(\mu$ -)almost all $x \in X$. Then the computation in (5.3) (together with (5.2)) shows that

(12.1)
$$E(0,\sigma,\widehat{\mathcal{P}}) \quad \begin{cases} = 1 - \sigma \quad \text{when} \quad 0 \le \sigma \le m_{\widehat{\mathcal{P}}} \\ > 1 - \sigma \quad \text{when} \quad \sigma > m_{\widehat{\mathcal{P}}}. \end{cases}$$

We note that if $d \geq 3$ then $m_{\widehat{\mathcal{P}}} = 0$, because of the $SL(d, \mathbb{R})$ -invariance and the fact that $SL(d,\mathbb{R})$ acts transitively on pairs of non-proportional vectors in $\mathbb{R}^d \setminus \{\mathbf{0}\}$ when $d \geq 3$.

Let us now assume d = 2. Note that by (12.1) and the discussion at the beginning of Sec. 11, the function F in Corollary 3 satisfies

$$F(s) \quad \begin{cases} = 1 & \text{if } 0 \le s \le m_{\widehat{\mathcal{P}}} \\ < 1 & \text{if } s > m_{\widehat{\mathcal{P}}}. \end{cases}$$

In other words, $m_{\widehat{\mathcal{P}}}$ is the largest number with the property that the limiting gap distribution obtained in Corollary 3 is supported on the interval $[m_{\widehat{\mathcal{P}}}, \infty)$. In particular, the support of the limiting gap distribution is separated from 0 if and only if $m_{\widehat{\mathcal{P}}} > 0$.

Let us also note that if d = 2, $m \ge 1$, and \mathcal{L} is a "generic" lattice or affine lattice, so that either $H_g = \mathrm{SL}(n,\mathbb{R})$ or $H_g = G = \mathrm{ASL}(n,\mathbb{R})$, then we have $m_{\widehat{\mathcal{P}}} = 0$, again using the transitivity of the action of $\mathrm{SL}(n,\mathbb{R})$ on pairs of non-proportional vectors in $\mathbb{R}^n \setminus \{\mathbf{0}\}$ for $n \ge 3$.

On the other hand, we will now recall (for general d) a standard construction of cut-andproject sets using algebraic number theory, which can be used to produce several of the most well-known quasicrystals (cf., e.g., [9]; see also [7, Ch. II, Prop. 6] and [8, Thm. 6]). We will see that in special cases with d = 2, this construction leads to quasicrystals for which $m_{\hat{\mathcal{D}}} > 0$.

We follow [6, Sec. 2.2]. Let K be a totally real number field of degree $N \geq 2$ over \mathbb{Q} , let \mathcal{O}_K be its subring of algebraic integers, and let π_1, \ldots, π_N be the distinct embeddings of K into \mathbb{R} . We will always view K as a subset of \mathbb{R} via π_1 ; in other words we agree that π_1 is the identity map. Fix $d \geq 1$ and set n = dN. By abuse of notation we write π_j also for the coordinate-wise embedding of K^d into \mathbb{R}^d , and for the entry-wise embedding of $M_d(K)$ (the algebra of $d \times d$ matrices with entries in K) into $M_d(\mathbb{R})$. Let \mathcal{L} be the lattice in $\mathbb{R}^n = (\mathbb{R}^d)^N$ given by

(12.2)
$$\mathcal{L} = \mathcal{L}_K^d := \left\{ (\boldsymbol{x}, \pi_2(\boldsymbol{x}), \dots, \pi_N(\boldsymbol{x})) : \boldsymbol{x} \in \mathcal{O}_K^d \right\}.$$

As usual we set m = n - d = (N - 1)d, let π and π_{int} be the projections of $\mathbb{R}^n = (\mathbb{R}^d)^N = \mathbb{R}^d \times \mathbb{R}^m$ onto the first d and last m coordinates. It follows from [14, Cor. 2 in Ch. IV-2] that $\pi_{int}(\mathcal{L})$ is dense in \mathbb{R}^m , i.e. we have $\mathcal{A} = \mathbb{R}^m$ and $\mathcal{V} = \mathbb{R}^n$ in the present situation. Hence the window \mathcal{W} should be taken as a subset of \mathbb{R}^m , and we consider the cut-and-project set $\mathcal{P}(\mathcal{W}, \mathcal{L}) \subset \mathbb{R}^d$.

Choose $\delta > 0$ and $g \in SL(n, \mathbb{R})$ such that

(12.3)
$$\mathcal{L} = \delta^{1/n} \mathbb{Z}^n g$$

In fact

(12.4)
$$\delta = |D_K|^{d/2}$$

where D_K is the discriminant of K; cf., e.g., [3, Ch. V.2, Lemma 2]. As proved in [6, Sec. 2.2.1], in this situation we have

(12.5)
$$H_g = g \operatorname{SL}(d, \mathbb{R})^N g^{-1}$$

where $\mathrm{SL}(d,\mathbb{R})^N$ is embedded as a subgroup of $G = \mathrm{ASL}(n,\mathbb{R})$ through

(12.6)
$$(A_1, \ldots, A_N) \mapsto \left(\operatorname{diag}[A_1, \ldots, A_N], \mathbf{0} \right),$$

where diag $[A_1, \ldots, A_N]$ is the block matrix whose diagonal blocks are A_1, \ldots, A_N in this order, and all other blocks vanish.

Lemma 12. Let $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set with \mathcal{L} as in (12.2), and with d = N = 2 (thus K is a real quadratic number field). Let $\varepsilon > 1$ be the fundamental unit of \mathcal{O}_K , and set $R = \sup\{\|\boldsymbol{w}\| : \boldsymbol{w} \in \mathcal{W}\}$. Then

(12.7)
$$m_{\widehat{\mathcal{P}}} \ge \frac{\kappa_{\mathcal{P}} C_{\mathcal{P}} \delta}{(\varepsilon^2 + \varepsilon^{-2})^2 R^2}.$$

Proof. Let $\sigma > 0$ and $x \in X$ be given and assume that $\#(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma)) \geq 2$. It suffices to prove that we must then have $\sigma \geq \frac{\kappa_{\mathcal{P}}C_{\mathcal{P}}\delta}{(\varepsilon^2+\varepsilon^{-2})^2R^2}$. The area of $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma)$ equals r^2 where $r := \sqrt{\frac{\sigma}{\kappa_{\mathcal{P}}C_{\mathcal{P}}}}$; hence there is some $A \in \mathrm{SL}(2,\mathbb{R})$ which maps $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma)$ to the open triangle $\mathfrak{C}_r := \{ \boldsymbol{x} \in \mathbb{R}^2 : 0 < x_1 < r, |x_2| < x_1 \}$. Take $(A_1, A_2) \in \mathrm{SL}(2,\mathbb{R})^2$ (embedded in G as in (12.6)) so that $x = \Gamma g(A_1, A_2)g^{-1}$. Set $\widetilde{A} = (A_1A, A_2)$; then $\mathcal{P}^x A = \mathcal{P}(\mathcal{W}, \mathcal{L}\widetilde{A})$. We set $\gamma = \operatorname{diag}[\varepsilon^{-k}, \varepsilon^{-k}, \varepsilon^{k}, \varepsilon^{k}] \in \operatorname{SL}(4, \mathbb{R})$, where k is an integer which we will choose below. Then $\mathcal{L}\widetilde{A} = \mathcal{L}\gamma\widetilde{A} = \mathcal{L}\widetilde{A}\gamma$, by (12.2) and since \widetilde{A} is block diagonal. Hence

$$\mathcal{P}^{x}A = \mathcal{P}(\mathcal{W}, \mathcal{L}\widetilde{A}) = \mathcal{P}(\mathcal{W}, \mathcal{L}\widetilde{A}\gamma) = \varepsilon^{-k}\mathcal{P}(\varepsilon^{-k}\mathcal{W}, \mathcal{L}\widetilde{A}).$$

Now $\#(\widehat{\mathcal{P}}^{x}A \cap \mathfrak{C}_{r}) \geq 2$ and thus $\mathcal{L}\widetilde{A}$ contains two points in $(\varepsilon^{k}\mathfrak{C}_{r}) \times (\varepsilon^{-k}\mathcal{W})$ which have non-proportional images under π (the projection onto the physical space \mathbb{R}^{2}). In other words, there exist $\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{O}_{K}^{2} \subset \mathbb{R}^{2}$ which are linearly independent over \mathbb{R} (thus also over K) such that $\boldsymbol{b}_{1} = (\boldsymbol{x}, \overline{\boldsymbol{x}})\widetilde{A}$ and $\boldsymbol{b}_{2} = (\boldsymbol{x}', \overline{\boldsymbol{x}'})\widetilde{A}$ lie in $(\varepsilon^{k}\mathfrak{C}_{r}) \times (\varepsilon^{-k}\mathcal{W})$. Here we write $\boldsymbol{x} \mapsto \overline{\boldsymbol{x}}$ for the nontrivial automorphism of K. It follows that also $\boldsymbol{b}_{3} = (\varepsilon \boldsymbol{x}, \overline{\varepsilon \boldsymbol{x}})\widetilde{A}$ and $\boldsymbol{b}_{4} = (\varepsilon \boldsymbol{x}', \overline{\varepsilon \boldsymbol{x}'})\widetilde{A}$ lie in $(\varepsilon^{k+1}\mathfrak{C}_{r}) \times (\varepsilon^{-k-1}\mathcal{W})$. However the four vectors $(\boldsymbol{x}, \overline{\boldsymbol{x}}), (\boldsymbol{x}', \overline{\boldsymbol{x}'}), (\varepsilon \boldsymbol{x}, \overline{\varepsilon \boldsymbol{x}}), (\varepsilon \boldsymbol{x}', \overline{\varepsilon \boldsymbol{x}'})$ lie in \mathcal{L} and form a K-linear basis of K^{4} . Hence $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}$ lie in $\mathcal{L}\widetilde{A}$ and are linearly independent over \mathbb{R} . However $\|\boldsymbol{b}_{j}\| < r'$ for j = 1, 2, 3, 4, where

$$r' = \max\left(\sqrt{(\varepsilon^k r)^2 + (\varepsilon^{-k} R)^2}, \sqrt{(\varepsilon^{k+1} r)^2 + (\varepsilon^{-k-1} R)^2}\right),$$

and thus δ , the covolume of $\mathcal{L}\widetilde{A}$, must be less than r'^4 . Now choose k so as to minimize r'. Then $r' \leq \sqrt{\varepsilon^2 + \varepsilon^{-2}}\sqrt{Rr}$, and combining this with $\delta < r'^4$ and $r = \sqrt{\frac{\sigma}{\kappa_{\mathcal{P}}C_{\mathcal{P}}}}$ we obtain $\sigma > \frac{\kappa_{\mathcal{P}}C_{\mathcal{P}}\delta}{(\varepsilon^2 + \varepsilon^{-2})^2 R^2}$, as desired.

Let us make some further observations in this vein. First, note the general relation

$$\mathcal{P}(\mathcal{W}, q^{-1}\mathcal{L}) = q^{-1}\mathcal{P}(q\mathcal{W}, \mathcal{L}), \qquad \forall \ q > 0 \ (real).$$

Using this relation with q an appropriate positive integer, it is clear that if \mathcal{L} is any lattice in \mathbb{R}^n such that the cut-and-project set $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ satisfies $m_{\widehat{\mathcal{P}}} > 0$ for every admissible window set \mathcal{W} (for example this holds when \mathcal{L} is as in Lemma 12), then $m_{\widehat{\mathcal{P}}} > 0$ also holds for any cut-and-project set obtained from $\mathcal{P}(\mathcal{W}, \mathcal{L})$ by the "union of rational translates" construction in [6, Sec. 2.3.1]. Furthermore, the property of having $m_{\widehat{\mathcal{P}}} > 0$ is also, obviously, preserved under "passing to a sublattice" as in [6, Sec. 2.4]. In particular, by [6, Sec. 2.5], we have $m_{\widehat{\mathcal{P}}} > 0$ for any \mathcal{P} associated with a Penrose tiling.

Remark 12.1. We do not expect the lower bound in Lemma 12 to be sharp, and the argument which we gave regarding the construction in [6, Sec. 2.3.1] certainly does not lead to a sharp bound. It would be interesting to try to determine the *exact* value of $m_{\widehat{\mathcal{P}}}$ for the Penrose tiling, and also for some of the cases discussed in [1].

It is interesting to note that for a large class of regular cut-and-project sets with $m_{\widehat{\mathcal{P}}} > 0$, a corresponding lower bound on the gap length is present in the set of directions (1.13) not only in the limit $T \to \infty$, but for any fixed T:

Lemma 13. Let $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set in dimension d = 2 such that either $\mathbf{0} \notin \mathcal{P}$ or $\mathbf{0} \in \mathcal{P}^x$ for all $x \in X$, and furthermore $\pi_{int}(\mathbf{y}) \notin \partial \mathcal{W}$ for all $\mathbf{y} \in \mathcal{L}$ (viz., there are no "singular vertices"; cf. [1, p. 6]). Then for any non-proportional vectors $\mathbf{p}_1, \mathbf{p}_2 \in \widehat{\mathcal{P}}$, the triangle with vertices $\mathbf{0}, \mathbf{p}_1, \mathbf{p}_2$ has area $\geq (\kappa_{\mathcal{P}}C_{\mathcal{P}})^{-1}m_{\widehat{\mathcal{P}}}$. In particular, for any T > 0 and $1 \leq j \leq \widehat{N}(T)$ we have $\widehat{\xi}_{T,j} - \widehat{\xi}_{T,j-1} \geq \min(\frac{1}{2}, (\pi\kappa_{\mathcal{P}}C_{\mathcal{P}})^{-1}m_{\widehat{\mathcal{P}}}T^{-2})$.

(Using the last bound of Lemma 13 together with $\widehat{N}(T) \sim \pi \kappa_{\mathcal{P}} C_{\mathcal{P}} T^2$ as $T \to \infty$ in the limit relation (1.14) in Corollary 3, we immediately recover the fact that F(s) = 1 for $0 \leq s \leq m_{\widehat{\mathcal{P}}}$. We also remark that the condition $\mathbf{0} \in \mathcal{P}^x$ for all $x \in X$ is fulfilled whenever $\mathbf{0} \in \mathcal{W}$ and \mathcal{L} is a lattice, since then $H_g \subset \mathrm{SL}(n, \mathbb{R})$.)

Proof. Assume that $\mathbf{p}_1, \mathbf{p}_2 \in \widehat{\mathcal{P}}$ are non-proportial vectors and that the triangle $\triangle(\mathbf{0}, \mathbf{p}_1, \mathbf{p}_2)$ has area less than $(\kappa_{\mathcal{P}}C_{\mathcal{P}})^{-1}m_{\widehat{\mathcal{P}}}$. Note that for any $\mathbf{p}'_1, \mathbf{p}'_2 \in \mathbb{R}^2$ such that $\triangle(\mathbf{0}, \mathbf{p}'_1, \mathbf{p}'_2)$ has the same area and orientation as $\triangle(\mathbf{0}, \mathbf{p}_1, \mathbf{p}_2)$, there exists $A \in \mathrm{SL}(2, \mathbb{R})$ with $\mathbf{p}'_1 = \mathbf{p}_1 A$ and $\mathbf{p}'_2 = \mathbf{p}_2 A$. In particular there are some $A \in \mathrm{SL}(2, \mathbb{R})$ and $\sigma_0 \in (0, m_{\widehat{\mathcal{P}}})$ such that $\mathbf{p}_1 A, \mathbf{p}_2 A \in \mathbb{R}$.

 $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma_0)$. Now there are $\mathbf{y}_1, \mathbf{y}_2 \in \mathcal{L}$ such that $\pi(\mathbf{y}_j) = \mathbf{p}_j$ and $\pi_{int}(\mathbf{y}_j) \in \mathcal{W}$ for j = 1, 2,and by assumption neither $\pi_{int}(\mathbf{y}_1)$ nor $\pi_{int}(\mathbf{y}_2)$ lie in $\partial \mathcal{W}$; hence $\mathbf{y}_j \begin{pmatrix} A & 0 \\ 0 & 1_m \end{pmatrix} \in \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma_0) \times \mathcal{W}^\circ$ for j = 1, 2. It follows that $\#(\widehat{\mathcal{P}}^x \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma_0)) \geq 2$ for $x = \Gamma \varphi_g(A) \in X$. In fact, using our assumptions on \mathcal{P} and the fact that $\mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma_0) \times \mathcal{W}^\circ$ is open, we have $\#(\widehat{\mathcal{P}}^{x'} \cap \mathfrak{C}(\kappa_{\mathcal{P}}^{-1}\sigma_0)) \geq 2$ for all x' in some open neighbourhood of $x = \Gamma \varphi_g(A)$ (cf. the proof of Lemma 10). However this violates our definition of $m_{\widehat{\mathcal{P}}}$. We have thus proved the first part of the lemma.

To prove the second statement we merely have to note that $\hat{\xi}_{T,j} - \hat{\xi}_{T,j-1} = (2\pi)^{-1} \varphi(\mathbf{p}_1, \mathbf{p}_2)$ for some $\mathbf{p}_1 \neq \mathbf{p}_2 \in \widehat{\mathcal{P}}_T$. If $\mathbf{p}_1, \mathbf{p}_2$ are not proportional then since $\triangle(\mathbf{0}, \mathbf{p}_1, \mathbf{p}_2)$ has area $\frac{1}{2} \|\mathbf{p}_1\| \|\mathbf{p}_2\| \sin \varphi(\mathbf{p}_1, \mathbf{p}_2) < \frac{1}{2}T^2 \sin \varphi(\mathbf{p}_1, \mathbf{p}_2)$, the first part of the lemma implies $\varphi(\mathbf{p}_1, \mathbf{p}_2) > \sin \varphi(\mathbf{p}_1, \mathbf{p}_2) > 2(\kappa_{\mathcal{P}}C_{\mathcal{P}})^{-1}m_{\widehat{\mathcal{P}}}T^{-2}$; on the other hand if $\mathbf{p}_1, \mathbf{p}_2$ are proportional then necessarily $\varphi(\mathbf{p}_1, \mathbf{p}_2) = \pi$.

References

- M. Baake, F. Götze, C. Huck, and T. Jakobi, Radial spacing distributions from planar point sets, arXiv:1402.2818.
- [2] F.P. Boca, C. Cobeli and A. Zaharescu, Distribution of lattice points visible from the origin. Comm. Math. Phys. 213 (2000), 433–470.
- [3] S. Lang, Algebraic Number Theory, Springer-Verlag, New York, 1994.
- [4] J. Marklof, Distribution modulo one and Ratner's theorem, Equidistribution in Number Theory, An Introduction, eds. A. Granville and Z. Rudnick, Springer 2007, pp. 217-244.
- [5] J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Annals of Math. 172 (2010), 1949–2033.
- [6] J. Marklof and A. Strömbergsson, Free path lengths in quasicrystals, Comm. Math. Phys. DOI 10.1007/s00220-014-2011-3, arXiv:1304.2044.
- [7] Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland Publishing Co., Amsterdam, 1972.
- [8] Y. Meyer, Quasicrystals, Diophantine approximation and algebraic numbers, in Beyond quasicrystals (Les Houches, 1994), pp. 3–16, Springer, Berlin, 1995.
- [9] P.A.B. Pleasants, Lines and planes in 2- and 3-dimensional quasicrystals, in Coverings of discrete quasiperiodic sets, Springer Tracts Modern Phys., 180, pp. 185–225, Springer, Berlin, 2003.
- [10] M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. 134 (1991) 545-607.
- [11] M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235–280.
- [12] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972.
- [13] W. A. Veech, Siegel measures, Ann. of Math. 148 (1998), 895–944.
- [14] A. Weil, Basic Number Theory, 3rd ed., Springer-Verlag, New York, 1974.
- [15] Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer-Verlag, New York, 1996.

SCHOOL OF MATHEMATICS, UNIVERSITY OF BRISTOL, BRISTOL BS8 1TW, U.K. j.marklof@bristol.ac.uk

DEPARTMENT OF MATHEMATICS, BOX 480, UPPSALA UNIVERSITY, SE-75106 UPPSALA, SWEDEN astrombe@math.uu.se