VISIBILITY AND DIRECTIONS IN QUASICRYSTALS

JENS MARKLOF AND ANDREAS STRÖMBERGSSON

Abstract

It is well known that a positive proportion of all points in a d-dimensional lattice is visible from the origin, and that these visible lattice points have constant density in \mathbb{R}^{d}. In the present paper we prove an analogous result for a large class of quasicrystals, including the vertex set of a Penrose tiling. We furthermore establish that the statistical properties of the directions of visible points are described by certain $\mathrm{SL}(d, \mathbb{R})$-invariant point processes. Our results imply in particular existence and continuity of the gap distribution for directions in certain two-dimensional cut-and-project sets. This answers a recent question of Baake et al. [arXiv:1402.2818].

1. Introduction

A point set $\mathcal{P} \subset \mathbb{R}^{d}$ has constant density in \mathbb{R}^{d} if there exists $\theta(\mathcal{P})<\infty$ such that, for any $\mathcal{D} \subset \mathbb{R}^{d}$ with boundary of Lebesgue measure zero,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#(\mathcal{P} \cap T \mathcal{D})}{T^{d}}=\theta(\mathcal{P}) \operatorname{vol}(\mathcal{D}) \tag{1.1}
\end{equation*}
$$

We refer to $\theta(\mathcal{P})$ as the density of \mathcal{P}. It is interesting to compare the density of \mathcal{P} with the density of the subset of visible points given by

$$
\begin{equation*}
\widehat{\mathcal{P}}=\{\boldsymbol{y} \in \mathcal{P}: t \boldsymbol{y} \notin \mathcal{P} \forall t \in(0,1)\} \tag{1.2}
\end{equation*}
$$

This definition assumes that the observer is at the origin $\mathbf{0}$. Note also that, by definition, $\mathbf{0} \notin \widehat{\mathcal{P}}$. A classic example is the set of integer lattice points $\mathcal{P}=\mathbb{Z}^{d}$. In this case, the set of visible points is given by the primitive lattice points $\widehat{\mathcal{P}}=\left\{\boldsymbol{m} \in \mathbb{Z}^{d}: \operatorname{gcd}(\boldsymbol{m})=1\right\}$. Both sets have constant density with $\theta(\mathcal{P})=1$ and $\theta(\widehat{\mathcal{P}})=1 / \zeta(d)$, where $\zeta(d)$ denotes the Riemann zeta function.

In this paper we are interested in the visible points of a regular cut-and-project set $\mathcal{P}=$ $\mathcal{P}(\mathcal{W}, \mathcal{L})$ constructed from a (possibly affine) lattice $\mathcal{L} \subset \mathbb{R}^{d+m}$ and a window set $\mathcal{W} \subset \mathbb{R}^{m}$ (see Section 2 for detailed definitions). Our first observation is the following.
Theorem 1. If $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a regular cut-and-project set, then \mathcal{P} and $\widehat{\mathcal{P}}$ have constant density with $0<\theta(\widehat{\mathcal{P}}) \leq \theta(\mathcal{P})$.

The constant density of \mathcal{P} is a well known fact, cf. Section 2 below. The main point of Theorem 1 is that the visible set $\widehat{\mathcal{P}}$ also has a strictly positive constant density. Although for cut-and-project sets \mathcal{P} with generic choices of \mathcal{L} we have $\theta(\widehat{\mathcal{P}})=\theta(\mathcal{P})$, there are important examples with $\theta(\widehat{\mathcal{P}})<\theta(\mathcal{P})$. The Penrose tilings and other cut-and-project sets which are based on the construction in [6, Sec. 2.2] fall into this category, cf. 9].

The second result of this paper concerns the distribution of directions in \mathcal{P}. Consider a general point set with constant density $\theta(\mathcal{P})>0(\mathcal{P}$ may be the visible set itself). We write $\mathcal{P}_{T}=\mathcal{P} \cap \mathcal{B}_{T}^{d} \backslash\{\mathbf{0}\}$ for the subset of points lying in the punctured open ball of radius T, centered at the origin. The number of such points is $\# \mathcal{P}_{T} \sim v_{d} \theta(\mathcal{P}) T^{d}$ as $T \rightarrow \infty$, where $v_{d}=\operatorname{vol}\left(\mathcal{B}_{1}^{d}\right)=\pi^{d / 2} / \Gamma\left(\frac{d+2}{2}\right)$ is the volume of the unit ball. For each T, we study

[^0]the directions $\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathrm{~S}_{1}^{d-1}$ with $\boldsymbol{y} \in \mathcal{P}_{T}$, counted with multiplicity (if $\mathcal{P}=\widehat{\mathcal{P}}$ then the multiplicity is naturally one). The asymptotics (1.1) implies that, as $T \rightarrow \infty$, the directions become uniformly distributed on S_{1}^{d-1}. That is, for any set $\mathfrak{U} \subset S_{1}^{d-1}$ with boundary of measure zero (with respect to the volume element ω on S_{1}^{d-1}) we have
\[

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#\left\{\boldsymbol{y} \in \mathcal{P}_{T}:\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{U}\right\}}{\# \mathcal{P}_{T}}=\frac{\omega(\mathfrak{U})}{\omega\left(\mathrm{S}_{1}^{d-1}\right)} \tag{1.3}
\end{equation*}
$$

\]

Recall that $\omega\left(\mathrm{S}_{1}^{d-1}\right)=d v_{d}$.
To understand the fine-scale distribution of the directions in \mathcal{P}_{T}, we consider the probability of finding r directions in a small open $\operatorname{disc} \mathfrak{D}_{T}(\sigma, \boldsymbol{v}) \subset \mathrm{S}_{1}^{d-1}$ with random center $\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}$ and volume $\omega\left(\mathfrak{D}_{T}(\sigma, \boldsymbol{v})\right)=\frac{\sigma d}{\theta(\mathcal{P}) T^{d}}$ with $\sigma>0$ fixed. Denote by

$$
\begin{equation*}
\mathcal{N}_{T}(\sigma, \boldsymbol{v}, \mathcal{P})=\#\left\{\boldsymbol{y} \in \mathcal{P}_{T}:\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})\right\} \tag{1.4}
\end{equation*}
$$

the number of points in $\mathfrak{D}_{T}(\sigma, \boldsymbol{v})$. The scaling of the disc size ensures that the expectation value for the counting function is asymptotically equal to σ. That is, for any probability measure λ on S_{1}^{d-1} with continuous density,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \int_{S_{1}^{d-1}} \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \mathcal{P}) d \lambda(\boldsymbol{v})=\sigma \tag{1.5}
\end{equation*}
$$

This fact follows directly from (1.1). In the following, we denote by

$$
\begin{equation*}
\kappa \mathcal{P}:=\frac{\theta(\widehat{\mathcal{P}})}{\theta(\mathcal{P})} \tag{1.6}
\end{equation*}
$$

the relative density of visible points in \mathcal{P}. We will prove:
Theorem 2. Let $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set, $\sigma>0, r \in \mathbb{Z}_{\geq 0}$, and let λ be a Borel probability measure on S_{1}^{d-1} which is absolutely continuous with respect to ω. Then the limits

$$
\begin{align*}
& E(r, \sigma, \mathcal{P}):=\lim _{T \rightarrow \infty} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \mathcal{P})=r\right\}\right), \tag{1.7}\\
& E(r, \sigma, \widehat{\mathcal{P}}):=\lim _{T \rightarrow \infty} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}})=r\right\}\right) \tag{1.8}
\end{align*}
$$

exist, are continuous in σ and independent of λ. For $\sigma \rightarrow 0$ we have

$$
\begin{gather*}
E(0, \sigma, \mathcal{P})=1-\kappa_{\mathcal{P}} \sigma+o(\sigma) \tag{1.9}\\
E(0, \sigma, \widehat{\mathcal{P}})=1-\sigma+o(\sigma) \tag{1.10}
\end{gather*}
$$

This theorem generalizes our previous work on directions in Euclidean lattices [5, Section 2]. The existence of the limit (1.7) has already been established in [6, Thm. A.1]. It is worthwhile noting that, if the set of directions in \mathcal{P} were independent and uniformly distributed random variables in S_{1}^{d-1}, then (1.7) would converge almost surely to the Poisson distribution

$$
\begin{equation*}
E(r, \sigma)=\frac{\sigma^{r}}{r!} \mathrm{e}^{-\sigma} \tag{1.11}
\end{equation*}
$$

Although (1.10) is consistent with the Poisson distribution, we will see in Section 3 that $E(r, \sigma, \widehat{\mathcal{P}})$ is characterized by a certain point process in \mathbb{R}^{d} which is determined by a finitedimensional probability space.

Theorem 2allows us to answer a recent question of Baake et al. [1] on the existence of the gap distribution for the directions in the class of two-dimensional cut-and-project sets considered here. In dimension $d=2$, it is convenient to identify the circle S_{1}^{1} with the unit interval mod 1 , and represent the set of directions in \mathcal{P}_{T} as $\frac{1}{2 \pi} \arg \left(y_{1}+\mathrm{i} y_{2}\right)$ with $\boldsymbol{y}=\left(y_{1}, y_{2}\right) \in \mathcal{P}_{T}$. We label these numbers (with multiplicity) in increasing order by

$$
\begin{equation*}
-\frac{1}{2}<\xi_{T, 1} \leq \xi_{T, 2} \leq \cdots \leq \xi_{T, N(T)} \leq \frac{1}{2} \tag{1.12}
\end{equation*}
$$

where $N(T):=\# \mathcal{P}_{T}$. The analogous construction for the visible set $\widehat{\mathcal{P}}$ yields the multiplicityfree set of directions

$$
\begin{equation*}
-\frac{1}{2}<\widehat{\xi}_{T, 1}<\widehat{\xi}_{T, 2}<\cdots<\widehat{\xi}_{T, \widehat{N}(T)} \leq \frac{1}{2} \tag{1.13}
\end{equation*}
$$

where $\widehat{N}(T):=\# \widehat{\mathcal{P}}_{T} \leq N(T)$. We also set $\xi_{T, 0}=\widehat{\xi}_{T, 0}=\xi_{T, N(T)}-1=\widehat{\xi}_{T, \widehat{N}(T)}-1$.
Corollary 3. If $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a regular cut-and-project set in dimension $d=2$, there exists a continuous decreasing function F on $\mathbb{R}_{\geq 0}$ satisfying $F(0)=1$ and $\lim _{s \rightarrow \infty} F(s)=0$, such that for every $s \geq 0$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#\left\{1 \leq j \leq \widehat{N}(T): \widehat{N}(T)\left(\widehat{\xi}_{T, j}-\widehat{\xi}_{T, j-1}\right) \geq s\right\}}{\widehat{N}(T)}=F(s) \tag{1.14}
\end{equation*}
$$

and

$$
\lim _{T \rightarrow \infty} \frac{\#\left\{1 \leq j \leq N(T): N(T)\left(\xi_{T, j}-\xi_{T, j-1}\right) \geq s\right\}}{N(T)}= \begin{cases}1 & \text { if } s=0 \tag{1.15}\\ \kappa \mathcal{P} F\left(\kappa_{\mathcal{P}} s\right) & \text { if } s>0\end{cases}
$$

It follows from the properties of $F(s)$ that the limit distribution function in (1.15) is continuous at $s=0$ if and only if $\kappa_{\mathcal{P}}=1$.

In the special case when $\mathcal{P}=\mathbb{Z}^{2}$, (1.14) was proved earlier by Boca, Cobeli and Zaharescu [2], who also gave an explicit formula for the limit distribution. More generally for \mathcal{P} any affine lattice in \mathbb{R}^{2}, Corollary 3 was proved in [5, Thm. 1.3, Cor. 2.7].

Baake et al. [1] have observed numerically that the limiting gap distribution in Corollary [3] may vanish near zero. In Section 12 we will explain this hard-core repulsion between visible directions in the case of two-dimensional cut-and-project sets constructed over algebraic number fields, including any \mathcal{P} associated with a Penrose tiling. There is no hard-core repulsion for typical two-dimensional cut-and-project sets. The phenomenon can be completely ruled out in higher dimensions $d \geq 3$, where we show that $E(0, \sigma, \widehat{\mathcal{P}})>1-\sigma$ for all $\sigma>0$.

The organization of this paper is as follows. In Section 2 we recall the definition of a cut-and-project set of a higher-dimensional lattice. In Section 3 we construct random point processes in \mathbb{R}^{d} whose realizations yield the visible points in certain $\operatorname{SL}(d, \mathbb{R})$-invariant families of cut-and-project sets. These point processes describe the limit distributions in Theorem 2, cf. Theorem 4 in Section 3. This follows closely the construction in [6] for the full cut-andproject set. An important technical tool in our approach is the Siegel-Veech formula, which is stated and proved in Section 4. In Section 50 we describe the small- σ asymptotics of the void distribution in (1.9) and (1.10). Sections 6 (9) are devoted to the proof of Theorem (1) Sections 10 and 11 to the proofs of Theorem 2 and Corollary 3, respectively. Finally in Section 12 we discuss the possible vanishing of the limiting gap distribution near zero.

2. Cut-and-Project sets

We start by recalling the definition of a cut-and-project set in \mathbb{R}^{d} from [6]. Denote by π and $\pi_{\text {int }}$ the orthogonal projection of $\mathbb{R}^{n}=\mathbb{R}^{d} \times \mathbb{R}^{m}$ onto the first d and last m coordinates. We refer to \mathbb{R}^{d} and \mathbb{R}^{m} as the physical space and internal space, respectively. Let $\mathcal{L} \subset \mathbb{R}^{n}$ be a lattice of full rank. Then the closure of the set $\pi_{\text {int }}(\mathcal{L})$ is an abelian subgroup \mathcal{A} of \mathbb{R}^{m}. We denote by \mathcal{A}° the connected subgroup of \mathcal{A} containing $\mathbf{0}$; then \mathcal{A}° is a linear subspace of \mathbb{R}^{m}, say of dimension m_{1}, and there exist $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m_{2}} \in \mathcal{L}\left(m=m_{1}+m_{2}\right)$ such that $\pi_{\text {int }}\left(\boldsymbol{b}_{1}\right), \ldots, \pi_{\text {int }}\left(\boldsymbol{b}_{m_{2}}\right)$ are linearly independent in $\mathbb{R}^{m} / \mathcal{A}^{\circ}$ and

$$
\begin{equation*}
\mathcal{A}=\mathcal{A}^{\circ}+\mathbb{Z} \pi_{\text {int }}\left(\boldsymbol{b}_{1}\right)+\ldots+\mathbb{Z} \pi_{\text {int }}\left(\boldsymbol{b}_{m_{2}}\right) \tag{2.1}
\end{equation*}
$$

Given \mathcal{L} and a bounded subset $\mathcal{W} \subset \mathcal{A}$ with non-empty interior, we define

$$
\begin{equation*}
\mathcal{P}(\mathcal{W}, \mathcal{L})=\left\{\pi(\boldsymbol{y}): \boldsymbol{y} \in \mathcal{L}, \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\} \subset \mathbb{R}^{d} . \tag{2.2}
\end{equation*}
$$

We will call $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ a cut-and-project set, and \mathcal{W} the window. We denote by $\mu_{\mathcal{A}}$ the Haar measure of \mathcal{A}, normalized so that its restriction to \mathcal{A}° is the standard m_{1}-dimensional

Lebesgue measure. If \mathcal{W} has boundary of measure zero with respect to $\mu_{\mathcal{A}}$, we will say $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is regular. Set $\mathcal{V}=\mathbb{R}^{d} \times \mathcal{A}^{\circ}$; then $\mathcal{L}_{\mathcal{V}}=\mathcal{L} \cap \mathcal{V}$ is a lattice of full rank in \mathcal{V}. Let $\mu \mathcal{V}=\operatorname{vol} \times \mu_{\mathcal{A}}$ be the natural volume measure on $\mathbb{R}^{d} \times \mathcal{A}$ (this restricts to the standard $d+m_{1}$ dimensional Lebesgue measure on \mathcal{V}). It follows from Weyl equidistribution (cf. [6, Prop. 3.2]) that for any regular cut-and-project set \mathcal{P} and any bounded $\mathcal{D} \subset \mathbb{R}^{d}$ with boundary of measure zero with respect to Lebesgue measure,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#\{\boldsymbol{b} \in \mathcal{L}: \pi(\boldsymbol{b}) \in \mathcal{P} \cap T \mathcal{D}\}}{T^{d}}=C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{\mathcal{P}}:=\frac{\mu_{\mathcal{A}}(\mathcal{W})}{\mu_{\mathcal{V}}\left(\mathcal{V} / \mathcal{L}_{\mathcal{V}}\right)} \tag{2.4}
\end{equation*}
$$

A further condition often imposed in the quasicrystal literature is that $\left.\pi\right|_{\mathcal{L}}$ is injective (i.e., the map $\mathcal{L} \rightarrow \pi(\mathcal{L})$ is one-to-one); we will not require this here. To avoid coincidences in \mathcal{P}, we assume throughout this paper that the window is appropriately chosen so that the map $\pi_{\mathcal{W}}:\left\{\boldsymbol{y} \in \mathcal{L}: \pi_{\mathrm{int}}(\boldsymbol{y}) \in \mathcal{W}\right\} \rightarrow \mathcal{P}$ is bijective. Then (2.3) implies

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#(\mathcal{P} \cap T \mathcal{D})}{T^{d}}=C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}) \tag{2.5}
\end{equation*}
$$

i.e., \mathcal{P} has density $\theta(\mathcal{P})=C_{\mathcal{P}}$. Under the above assumptions $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^{d}.

We furthermore extend the definition of cut-and-project sets $\mathcal{P}(\mathcal{W}, \mathcal{L})$ to affine lattices $\mathcal{L}=\mathcal{L}_{0}+\boldsymbol{x}$ with $\boldsymbol{x} \in \mathbb{R}^{n}$ and \mathcal{L}_{0} a lattice; note that $\mathcal{P}(\mathcal{W}, \mathcal{L}+\boldsymbol{x})=\mathcal{P}\left(\mathcal{W}-\pi_{\text {int }}(\boldsymbol{x}), \mathcal{L}\right)+\pi(\boldsymbol{x})$.

3. RANDOM CUT-AND-PROJECT SETS

Following our approach in [6], we will now, for any given regular cut-and-project set $\mathcal{P}=$ $\mathcal{P}(\mathcal{W}, \mathcal{L})$, construct two $\mathrm{SL}(d, \mathbb{R})$-invariant random point processes on \mathbb{R}^{d} which will describe the limit distributions in Theorem 2, Let $G=\operatorname{ASL}(n, \mathbb{R})=\mathrm{SL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}$, with multiplication law

$$
\begin{equation*}
(M, \boldsymbol{\xi})\left(M^{\prime}, \boldsymbol{\xi}^{\prime}\right)=\left(M M^{\prime}, \boldsymbol{\xi} M^{\prime}+\boldsymbol{\xi}^{\prime}\right) \tag{3.1}
\end{equation*}
$$

Also set $\Gamma=\operatorname{ASL}(n, \mathbb{Z}) \subset G$. Choose $g \in G$ and $\delta>0$ so that $\mathcal{L}=\delta^{1 / n}\left(\mathbb{Z}^{n} g\right)$, and let φ_{g} be the embedding of $\operatorname{ASL}(d, \mathbb{R})$ in G given by

$$
\varphi_{g}: \operatorname{ASL}(d, \mathbb{R}) \rightarrow G, \quad(A, \boldsymbol{x}) \mapsto g\left(\left(\begin{array}{cc}
A & 0 \tag{3.2}\\
0 & 1_{m}
\end{array}\right),(\boldsymbol{x}, \mathbf{0})\right) g^{-1}
$$

It then follows from Ratner's work [10], 11] that there exists a unique closed connected subgroup H_{g} of G such that $\Gamma \cap H_{g}$ is a lattice in $H_{g}, \varphi_{g}(\mathrm{SL}(d, \mathbb{R})) \subset H_{g}$, and the closure of $\Gamma \backslash \Gamma \varphi_{g}(\mathrm{SL}(d, \mathbb{R}))$ in $\Gamma \backslash G$ is given by

$$
\begin{equation*}
X=\Gamma \backslash \Gamma H_{g} \tag{3.3}
\end{equation*}
$$

Note that X can be naturally identified with the homogeneous space $\left(\Gamma \cap H_{g}\right) \backslash H_{g}$. We denote the unique right- H_{g} invariant probability measure on either of these spaces by μ; sometimes we will also let μ denote the corresponding Haar measure on H_{g}. For each $x=\Gamma h \in X$ we set

$$
\begin{equation*}
\mathcal{P}^{x}:=\mathcal{P}\left(\mathcal{W}, \delta^{1 / n}\left(\mathbb{Z}^{n} h g\right)\right) \tag{3.4}
\end{equation*}
$$

and denote by $\widehat{\mathcal{P}}^{x}$ the corresponding set of visible points. Both sets are well defined since $\overline{\pi_{\text {int }}\left(\delta^{1 / n}\left(\mathbb{Z}^{n} h g\right)\right)} \subset \mathcal{A}$ for all $h \in H_{g}$; in fact $\overline{\pi_{\text {int }}\left(\delta^{1 / n}\left(\mathbb{Z}^{n} h g\right)\right)}=\mathcal{A}$ for μ-almost all $h \in H_{g}$; cf. [6, Prop. 3.5]. Note that \mathcal{P}^{x} and $\widehat{\mathcal{P}}^{x}$ with x random in (X, μ) define random point processes on \mathbb{R}^{d}. The fact that $\varphi_{g}(\mathrm{SL}(d, \mathbb{R})) \subset H_{g}$ implies that these processes are $\mathrm{SL}(d, \mathbb{R})$-invariant.

Theorem 4. The limit distributions in Theorem 2 are given by

$$
\begin{equation*}
E(r, \sigma, \mathcal{P})=\mu\left(\left\{x \in X: \#\left(\mathcal{P}^{x} \cap \mathfrak{C}(\sigma)\right)=r\right\}\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
E(r, \sigma, \widehat{\mathcal{P}})=\mu\left(\left\{x \in X: \#\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)\right)=r\right\}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{C}(\sigma)=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: 0<x_{1}<1,\left\|\left(x_{2}, \ldots, x_{d}\right)\right\|<\left(\frac{\sigma d}{C_{\mathcal{P}} v_{d-1}}\right)^{1 /(d-1)} x_{1}\right\} \tag{3.7}
\end{equation*}
$$

We note that relation (3.5) is a special case of [6, Thm. A.1]. The new result of the present study is (3.6).

In [6, Section 1.4] we also consider the closed connected subgroup \widetilde{H}_{g} of G such that $\Gamma \cap \widetilde{H}_{g}$ is a lattice in $\widetilde{H}_{g}, \varphi_{g}(\operatorname{ASL}(d, \mathbb{R})) \subset \widetilde{H}_{g}$, and the closure of $\Gamma \backslash \Gamma \varphi_{g}(\operatorname{ASL}(d, \mathbb{R}))$ in $\Gamma \backslash G$ is given by $\widetilde{X}:=\Gamma \backslash \Gamma \widetilde{H}_{g}$. The unique right $-\widetilde{H}_{g}$ invariant probability measure on \widetilde{X} is denoted by $\widetilde{\mu}$. The point process \mathcal{P}^{x} in (3.4) with x random in $(\widetilde{X}, \widetilde{\mu})$ is now $\operatorname{ASL}(d, \mathbb{R})$-invariant, i.e., in addition to the previous $\mathrm{SL}(d, \mathbb{R})$-invariance we also have translation-invariance. The latter implies that $\mathcal{P}^{x}=\widehat{\mathcal{P}}^{x}$ for $\widetilde{\mu}$-almost every $x \in \widetilde{X}$. Proposition 4.5 in 6] shows that for Lebesgue-almost all $\boldsymbol{y} \in \mathbb{R}^{d} \times\{\mathbf{0}\}$ we have $H_{g\left(1_{n}, \boldsymbol{y}\right)}=\widetilde{H}_{g}$. This has the following interesting consequence.

Corollary 5. Given any regular cut-and-project set \mathcal{P} there is a subset $\mathfrak{S} \subset \mathbb{R}^{d}$ of Lebesgue measure zero such that for every $\boldsymbol{y} \in \mathbb{R}^{d} \backslash \mathfrak{S}$

$$
\begin{equation*}
E(r, \sigma, \mathcal{P}+\boldsymbol{y})=E(r, \sigma, \widehat{\mathcal{P}+\boldsymbol{y}})=\widetilde{\mu}\left(\left\{x \in \widetilde{X}: \#\left(\mathcal{P}^{x} \cap \mathfrak{C}(\sigma)\right)=r\right\}\right) \tag{3.8}
\end{equation*}
$$

That is, all limit distributions are independent of \boldsymbol{y} for Lebesgue-almost every \boldsymbol{y}.

4. The Siegel-Veech formula for visible points

Throughout the remaining sections, we let $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ be a given regular cut-and-project set. We fix $g \in G$ and $\delta>0$ so that $\mathcal{L}=\delta^{1 / n}\left(\mathbb{Z}^{n} g\right)$. In fact, by an appropriate scaling of the length units, we can assume without loss of generality that $\delta=1$. This assumption will be in force throughout the remaining sections except the last one. Hence we now have $\mathcal{P}=\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} g\right)$ and $\mathcal{P}^{x}=\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right)$ for each $x=\Gamma h \in X$.

The following Siegel-Veech formulas will serve as a crucial technical tool in our proofs of the main theorems.

Theorem 6. For any $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\int_{X} \sum_{\boldsymbol{q} \in \mathcal{P}^{x}} f(\boldsymbol{q}) d \mu(x)=C_{\mathcal{P}} \int_{\mathbb{R}^{d}} f(\boldsymbol{x}) d \boldsymbol{x} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{X} \sum_{\boldsymbol{q} \in \widehat{\mathcal{P}}^{x}} f(\boldsymbol{q}) d \mu(x)=\kappa_{\mathcal{P}} C_{\mathcal{P}} \int_{\mathbb{R}^{d}} f(\boldsymbol{x}) d \boldsymbol{x} \tag{4.2}
\end{equation*}
$$

Veech has proved formulas of the above type for general $\operatorname{SL}(d, \mathbb{R})$-invariant measures [13, Thm. 0.12]. The proof of Theorem 6 is simpler in the present setting. Relation (4.1) was proved in [6, Theorem 1.5]. In the present section we will prove that there exists $0<\kappa_{\mathcal{P}} \leq 1$ such that relation (4.2) holds for all $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{d}\right)$. We will then later establish that this $\kappa_{\mathcal{P}}$ indeed yields the relative density defined in (1.6).

Consider the map

$$
\begin{equation*}
B \mapsto \int_{X} \#\left(\widehat{\mathcal{P}}^{x} \cap B\right) d \mu(x) \quad\left(B \text { any Borel subset of } \mathbb{R}^{d}\right) \tag{4.3}
\end{equation*}
$$

This map defines a Borel measure on \mathbb{R}^{d}, which is finite on any compact set B (by [6, Theorem $1.5]$), invariant under $\operatorname{SL}(d, \mathbb{R})$, and gives zero point mass to $\mathbf{0} \in \mathbb{R}^{d}$. Hence up to a constant, the measure must equal Lebesgue measure, i.e. there exists a constant $\kappa_{\mathcal{P}} \geq 0$ such that

$$
\begin{equation*}
\int_{X} \#\left(\widehat{\mathcal{P}}^{x} \cap B\right) d \mu(x)=\kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(B) \tag{4.4}
\end{equation*}
$$

for every Borel set $B \subset \mathbb{R}^{d}$. By a standard approximation argument, this implies that (4.2) holds for all $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{d}\right)$. Also $\kappa_{\mathcal{P}} \leq 1$ is immediate from (4.1).

It remains to verify that $\kappa_{\mathcal{P}}>0$. Recall that we are assuming that \mathcal{W} has non-empty interior \mathcal{W}° in $\mathcal{A}=\overline{\pi_{\text {int }}(\mathcal{L})}$. Now take B to be any bounded open set in \mathbb{R}^{d} which is starshaped with center $\mathbf{0}$ and such that $(B \backslash\{\mathbf{0}\}) \times \mathcal{W}^{\circ}$ contains some point in the (affine) lattice \mathcal{L}. Then the set of $x=\Gamma h$ in X for which $\mathbb{Z}^{n} h g$ has at least one point in $(B \backslash\{\mathbf{0}\}) \times \mathcal{W}^{\circ}$ is non-empty and open. Note that for any such $x, \mathcal{P}^{x}=\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right)$ has a point in $B \backslash\{\mathbf{0}\}$, and hence also a visible point in $B \backslash\{\mathbf{0}\}$, since B is star-shaped. It follows that the left hand side of (4.4) is positive for our set B. Therefore $\kappa_{\mathcal{P}}>0$, as claimed.

5. The limit distribution for small σ

From now on we take $E(r, \sigma, \mathcal{P})$ and $E(r, \sigma, \widehat{\mathcal{P}})$ to be defined by the relations (3.5), (3.6). Then (1.7) holds by [6, Thm. A.1], and we will prove in Section 10 that also (1.8) holds.

In the present section we will prove that the relation (1.9),

$$
\begin{equation*}
E(0, \sigma, \mathcal{P})=1-\kappa_{\mathcal{P}} \sigma+o(\sigma), \tag{5.1}
\end{equation*}
$$

holds with the same $\kappa_{\mathcal{P}} \in(0,1]$ as in the Siegel-Veech formula (4.2). Rel. (1.10) is then a simple conseqence of the observation that

$$
\begin{equation*}
E(0, \sigma, \widehat{\mathcal{P}})=E\left(0, \kappa_{\mathcal{P}}^{-1} \sigma, \mathcal{P}\right) . \tag{5.2}
\end{equation*}
$$

To prove (5.1), first note that, for any $\sigma>0$,

$$
\begin{array}{r}
1-E(0, \sigma, \mathcal{P})=\mu\left(\left\{x \in X: \mathcal{P}^{x} \cap \mathfrak{C}(\sigma) \neq \emptyset\right\}\right)=\mu\left(\left\{x \in X: \widehat{\mathcal{P}}^{x} \cap \mathfrak{C}(\sigma) \neq \emptyset\right\}\right) \\
\leq \int_{X} \#\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}(\sigma)\right) d \mu(x)=\kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathfrak{C}(\sigma))=\kappa_{\mathcal{P}} \sigma, \tag{5.3}
\end{array}
$$

where the integral was evaluated using (4.4).
On the other hand using the fact that the point process $\mathcal{P}^{x}(x \in(X, \mu))$ is invariant under $\mathrm{SO}(d)$, and $\widehat{\mathcal{P}^{\prime} k}=\widehat{\mathcal{P}}^{\prime} k$ for every point set \mathcal{P}^{\prime} and every $k \in \mathrm{SO}(d)$, we have

$$
\begin{equation*}
1-E(0, \sigma, \mathcal{P})=\int_{X} A\left(\sigma, \mathcal{P}^{x}\right) d \mu(x) \tag{5.4}
\end{equation*}
$$

with

$$
\begin{equation*}
A\left(\sigma, \mathcal{P}^{x}\right)=\int_{\mathrm{SO}(d)} I\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}(\sigma) k \neq \emptyset\right) d k \tag{5.5}
\end{equation*}
$$

where $d k$ is Haar measure on $\mathrm{SO}(d)$ normalized by $\int_{\mathrm{SO}(d)} d k=1$.
We write $\varphi(\boldsymbol{p}, \boldsymbol{q}) \in[0, \pi]$ for the angle between any two points $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}^{d} \backslash\{\boldsymbol{0}\}$, as seen from 0. Also for any $x \in X$ we set

$$
\begin{equation*}
\sigma_{0}\left(\mathcal{P}^{x}\right)=\frac{C_{\mathcal{P}} v_{d-1}}{d}\left(\tan \frac{\varphi_{0}\left(\mathcal{P}^{x}\right)}{2}\right)^{d-1} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{0}\left(\mathcal{P}^{x}\right)=\min \left\{\varphi(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p}, \boldsymbol{q} \in \widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}, \boldsymbol{p} \neq \boldsymbol{q}\right\}, \tag{5.7}
\end{equation*}
$$

with the convention that $\varphi_{0}\left(\mathcal{P}^{x}\right)=\pi$ and $\sigma_{0}\left(\mathcal{P}^{x}\right)=+\infty$ whenever $\#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right) \leq 1$. These are measurable functions on X, and $\varphi_{0}\left(\mathcal{P}^{x}\right)>0$ and $\sigma_{0}\left(\mathcal{P}^{x}\right)>0$ for all $x \in X$.

Now if $0<\sigma<\sigma_{0}\left(\mathcal{P}^{x}\right)$ then for any two distinct points $\boldsymbol{p}, \boldsymbol{q} \in \widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}$ we have

$$
\begin{equation*}
\varphi(\boldsymbol{p}, \boldsymbol{q})>2 \arctan \left(\left(\frac{\sigma d}{C_{\mathcal{P}} v_{d-1}}\right)^{1 /(d-1)}\right) \tag{5.8}
\end{equation*}
$$

and because of the definition of $\mathfrak{C}(\sigma)$, (3.7), this implies that there does not exist any $k \in$ $\mathrm{SO}(d)$ for which $\mathfrak{C}(\sigma) k$ contains both \boldsymbol{p} and \boldsymbol{q}. Hence for $0<\sigma<\sigma_{0}\left(\mathcal{P}^{x}\right)$ we have (writing $\left.\boldsymbol{e}_{1}=(1,0, \ldots, 0) \in \mathbb{R}^{d}\right)$

$$
\begin{array}{r}
A\left(\sigma, \mathcal{P}^{x}\right) \geq \sum_{p \in \widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}} \int_{\mathrm{SO}(d)} I(\boldsymbol{p} \in \mathfrak{C}(\sigma) k) d k=\#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right) \cdot \int_{\mathrm{SO}(d)} I\left(\boldsymbol{e}_{1} \in \mathfrak{C}(\sigma) k\right) d k \\
=\frac{\operatorname{vol}\left(\mathfrak{C}(\sigma) \cap \mathcal{B}_{1}^{d}\right)}{\operatorname{vol}\left(\mathcal{B}_{1}^{d}\right)} \#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right),
\end{array}
$$

and here

$$
\begin{equation*}
\frac{\operatorname{vol}\left(\mathfrak{C}(\sigma) \cap \mathcal{B}_{1}^{d}\right)}{\operatorname{vol}\left(\mathcal{B}_{1}^{d}\right)} \sim \frac{\operatorname{vol}(\mathfrak{C}(\sigma))}{\operatorname{vol}\left(\mathcal{B}_{1}^{d}\right)}=\frac{\sigma}{v_{d} C_{\mathcal{P}}} \quad \text { as } \sigma \rightarrow 0 . \tag{5.10}
\end{equation*}
$$

Hence given any number $K<\left(v_{d} C_{\mathcal{P}}\right)^{-1}$, there is some $\sigma(K)>0$ such that for all $0<\sigma<\sigma(K)$ we have

$$
\begin{equation*}
1-E(0, \sigma, \mathcal{P})=\int_{X} A\left(\sigma, \mathcal{P}^{x}\right) d \mu(x) \geq K \sigma \int_{X} I\left(\sigma<\sigma_{0}\left(\mathcal{P}^{x}\right)\right) \#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right) d \mu(x) . \tag{5.11}
\end{equation*}
$$

Furthermore, by the Monotone Convergence Theorem and (4.4),

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0} \int_{X} I\left(\sigma<\sigma_{0}\left(\mathcal{P}^{x}\right)\right) \#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right) d \mu(x)=\int_{X} \#\left(\widehat{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right) d \mu\left(\mathcal{P}^{x}\right)=\kappa_{\mathcal{P}} C_{\mathcal{P}} v_{d} \tag{5.12}
\end{equation*}
$$

We thus conclude

$$
\begin{equation*}
\liminf _{\sigma \rightarrow 0} \frac{1-E(0, \sigma, \mathcal{P})}{\sigma} \geq K \kappa_{\mathcal{P}} C_{\mathcal{P}} v_{d} . \tag{5.13}
\end{equation*}
$$

The claim (5.1) follows from (5.3) and the fact that (5.13) holds for every $K<\left(v_{d} C_{\mathcal{P}}\right)^{-1}$.

6. LOWER BOUND ON THE DENSITY OF VISIBLE POINTS

Combining (5.1) and (1.7) (recall that the latter was proved in [6, Thm. A.1]), we get the following lower bound on the density $\theta(\widehat{\mathcal{P}})=\kappa_{\mathcal{P}} C_{\mathcal{P}}$ in Theorem 11:
Lemma 7. Let \mathfrak{U} be any subset of S_{1}^{d-1} with boundary of measure zero (w.r.t. ω), and let $\mathcal{D}=\left\{\boldsymbol{v} \in \mathbb{R}^{d}: 0<\|\boldsymbol{v}\|<1,\|\boldsymbol{v}\|^{-1} \boldsymbol{v} \in \mathfrak{U}\right\}$ be the corresponding sector in \mathcal{B}_{1}^{d}. Then

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\#(\widehat{\mathcal{P}} \cap T \mathcal{D})}{T^{d}} \geq \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}) . \tag{6.1}
\end{equation*}
$$

Proof. We may assume $\omega(\mathfrak{U})>0$, since otherwise $\operatorname{vol}(\mathcal{D})=0$ and the lemma is trivial. Let $\varepsilon>0$ be given, and let $\mathfrak{U}_{\varepsilon}^{-} \subset S_{1}^{d-1}$ be the " ε-thinning" of \mathfrak{U}, that is

$$
\begin{equation*}
\mathfrak{U}_{\varepsilon}^{-}=\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}:[\varphi(\boldsymbol{w}, \boldsymbol{v})<\varepsilon \Rightarrow \boldsymbol{w} \in \mathfrak{U}], \forall \boldsymbol{w} \in \mathrm{S}_{1}^{d-1}\right\} . \tag{6.2}
\end{equation*}
$$

(Recall that $\varphi(\boldsymbol{w}, \boldsymbol{v}) \in[0, \pi]$ is the angle between \boldsymbol{w} and \boldsymbol{v} as seen from $\mathbf{0}$.) Then $\omega\left(\mathfrak{U}_{\varepsilon}^{-}\right) \rightarrow$ $\omega(\mathfrak{U})$ as $\varepsilon \rightarrow 0$, since \mathfrak{U} by assumption is a Jordan measurable subset of S_{1}^{d-1}. From now on we assume that ε is so small that $\omega\left(\mathfrak{U}_{\varepsilon}^{-}\right)>0$. We let λ be ω restricted to $\mathfrak{U}_{\varepsilon}^{-}$and normalized to be a probability measure; thus $\lambda(B)=\omega\left(\mathfrak{U}_{\varepsilon}^{-}\right)^{-1} \omega\left(B \cap \mathfrak{U}_{\varepsilon}^{-}\right)$for any Borel subset $B \subset \mathrm{~S}_{1}^{d-1}$.

Now note that, by the definitions of $\mathcal{N}_{T}(\sigma, \boldsymbol{v}, \mathcal{P})$ and $\widehat{\mathcal{P}}$, for any $\sigma>0, T>0$ and $\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}$ we have $\mathcal{N}_{T}(\sigma, \boldsymbol{v}, \mathcal{P})>0$ if and only if there is some $\boldsymbol{y} \in \widehat{\mathcal{P}} \cap \mathcal{B}_{T}^{d}$ such that $\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})$. Furthermore, if T is larger than a certain constant depending on $\sigma, \mathcal{P}, \varepsilon$, then $\mathfrak{D}_{T}(\sigma, \boldsymbol{v}) \subset \mathfrak{U}$
for every $\boldsymbol{v} \in \mathfrak{U}_{\varepsilon}^{-}$, meaning that $\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})$ implies $\boldsymbol{y} \in \mathbb{R}_{>0} \mathcal{D}$. Hence for such T and σ we have
$\lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \mathcal{P})>0\right\}\right)=\lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}:\left[\exists \boldsymbol{y} \in \widehat{\mathcal{P}} \cap \mathcal{B}_{T}^{d}:\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})\right]\right\}\right)$

$$
\begin{align*}
\leq \sum_{\boldsymbol{y} \in \widehat{\mathcal{P}} \cap T \mathcal{D}} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}:\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}(\sigma, \boldsymbol{v})\right\}\right) \leq & \frac{\omega\left(\mathfrak{D}_{T}\left(\sigma, \boldsymbol{e}_{1}\right)\right)}{\omega\left(\mathfrak{U}_{\varepsilon}^{-}\right)} \cdot \#(\widehat{\mathcal{P}} \cap T \mathcal{D}) \tag{6.3}\\
& =\frac{\sigma d}{\omega\left(\mathfrak{U}_{\varepsilon}^{-}\right) C_{\mathcal{P}} T^{d}} \cdot \#(\widehat{\mathcal{P}} \cap T \mathcal{D}) .
\end{align*}
$$

Hence, letting $T \rightarrow \infty$ and applying (1.7) we have, for any fixed $\sigma>0$,

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\# \widehat{\mathcal{P}} \cap T \mathcal{D}}{T^{d}} \geq \frac{\omega\left(\mathfrak{U}_{\varepsilon}^{-}\right) C_{\mathcal{P}}}{d} \cdot \frac{1-E(0, \sigma, \mathcal{P})}{\sigma} . \tag{6.4}
\end{equation*}
$$

Letting $\sigma \rightarrow 0$ in the right hand side and using (5.1), this gives

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\# \widehat{\mathcal{P}} \cap T \mathcal{D}}{T^{d}} \geq \kappa_{\mathcal{P}} C_{\mathcal{P}} \frac{\omega\left(\mathfrak{U}_{\varepsilon}^{-}\right)}{d} \tag{6.5}
\end{equation*}
$$

Finally letting $\varepsilon \rightarrow 0$ and using $\omega(\mathfrak{U}) / d=\operatorname{vol}(\mathcal{D})$ we obtain the statement of the lemma.

7. Continuity in the space of cut-And-project sets

Next, in Lemma 9 and Lemma 10, we will prove that for almost all $x \in X$, both \mathcal{P}^{x} and $\widehat{\mathcal{P}}^{x}$ vary continuously as we perturb x.
Lemma 8. For any $\boldsymbol{m} \in \mathbb{R}^{n}$, if $\pi(\boldsymbol{m h g}) \neq \mathbf{0}$ for some $h \in H_{g}$ then $\pi(\boldsymbol{m} h g) \neq \mathbf{0}$ for μ-almost all $h \in H_{g}$. Similarly, for any $\boldsymbol{m}, \boldsymbol{n} \in \mathbb{R}^{n}$, if $\operatorname{dim} \operatorname{Span}\{\pi(\boldsymbol{n} h g), \pi(\boldsymbol{m} h g)\}=2$ for some $h \in H_{g}$ then $\operatorname{dim} \operatorname{Span}\{\pi(\boldsymbol{n h g}), \pi(\boldsymbol{m h g})\}=2$ for μ-almost all $h \in H_{g}$.
Proof. H_{g} is a connected, real-analytic manifold; hence any real-analytic function on H_{g} which does not vanish identically is non-zero almost everywhere. The first part of the lemma follows by applying this principle to the coordinate functions $h \mapsto \pi(\boldsymbol{m} h g) \cdot \boldsymbol{e}_{j}$ for $j=1, \ldots, d$. The second part of the lemma follows by applying the same principle to the functions

$$
\begin{equation*}
h \mapsto\left(\pi(\boldsymbol{m} h g) \cdot \boldsymbol{e}_{i}\right)\left(\pi(\boldsymbol{n} h g) \cdot \boldsymbol{e}_{j}\right)-\left(\pi(\boldsymbol{m} h g) \cdot \boldsymbol{e}_{j}\right)\left(\pi(\boldsymbol{n} h g) \cdot \boldsymbol{e}_{i}\right), \tag{7.1}
\end{equation*}
$$

for $1 \leq i<j \leq d$.
Lemma 9. For μ-almost every $x \in X$, and for every bounded open set $U \subset \mathbb{R}^{d}$ with $\mathcal{P}^{x} \cap \partial U=$ \emptyset, there is an open set $\Omega \subset X$ with $x \in \Omega$ such that $\#\left(\mathcal{P}^{x^{\prime}} \cap U\right)=\#\left(\mathcal{P}^{x} \cap U\right)$ for all $x^{\prime} \in \Omega$.
Proof. For each $\boldsymbol{m} \in \mathbb{Z}^{n}$, by an argument as in Lemma 8 we either have $\boldsymbol{m} h g \neq \mathbf{0}$ for almost all $h \in H_{g}$ or else $\boldsymbol{m} h g=\mathbf{0}$ for all $h \in H_{g}$. By taking $h=1$ we see that the latter property can hold for at most one $\boldsymbol{m} \in \mathbb{Z}^{n}$, and if it holds then we necessarily have $\boldsymbol{m}=\mathbf{0} g^{-1}$, and $H_{g} \subset g \operatorname{SL}(n, \mathbb{R}) g^{-1}$. If such an exceptional \boldsymbol{m} exists we call it \boldsymbol{m}_{E}, and we set $\left(\mathbb{Z}^{n}\right)^{\prime}:=\mathbb{Z}^{n} \backslash\left\{\boldsymbol{m}_{E}\right\} ;$ otherwise we set $\left(\mathbb{Z}^{n}\right)^{\prime}:=\mathbb{Z}^{n}$.

Now consider the following two subsets of H_{g} :

$$
\begin{align*}
& S_{1}=\left\{h \in H_{g}:\left(\mathbb{Z}^{n}\right)^{\prime} h g \cap\left(\mathbb{R}^{d} \times \partial \mathcal{W}\right) \neq \emptyset\right\} ; \tag{7.2}\\
& S_{2}=\left\{h \in H_{g}: \exists \boldsymbol{\ell}_{1} \neq \boldsymbol{\ell}_{2} \in \mathbb{Z}^{n} h g \cap \pi_{\text {int }}^{-1}(\mathcal{W}) \text { satisfying } \pi\left(\boldsymbol{\ell}_{1}\right)=\pi\left(\boldsymbol{\ell}_{2}\right)\right\} . \tag{7.3}
\end{align*}
$$

We have $\mu\left(S_{1}\right)=0$, by [6, Theorem 5.1]. Also $\mu\left(S_{2}\right)=0$, by [6, Prop. 3.7] applied to \mathcal{W}°. We will prove the lemma by showing that for every $h \in H_{g} \backslash\left(S_{1} \cup S_{2}\right)$, the point $x=\Gamma h \in X$ has the property described in the lemma.

Thus let $h \in H_{g} \backslash\left(S_{1} \cup S_{2}\right)$ be given, set $x=\Gamma h \in X$, and let U be an arbitrary bounded open subset of \mathbb{R}^{d} with boundary disjoint from $\mathcal{P}^{x}=\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right)$. Assume that the desired property does not hold. Then there is a sequence h_{1}, h_{2}, \ldots in H_{g} tending to h such that

$$
\begin{equation*}
\#\left(\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right) \cap U\right) \neq \#\left(\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right) \cap U\right), \quad \forall j \tag{7.4}
\end{equation*}
$$

Let F be the (finite) set

$$
\begin{equation*}
F=\left\{\boldsymbol{m} \in \mathbb{Z}^{n}: \boldsymbol{m} h g \in U \times \mathcal{W}\right\} . \tag{7.5}
\end{equation*}
$$

Note that $\boldsymbol{m} h g \in U \times \mathcal{W}^{\circ}$ for every $\boldsymbol{m} \in F \cap\left(\mathbb{Z}^{n}\right)^{\prime}$, since $h \notin S_{1}$. But $U \times \mathcal{W}^{\circ}$ is open; hence by continuity we also have $\boldsymbol{m} h^{\prime} g \in U \times \mathcal{W}^{\circ}$ for every $h^{\prime} \in H_{g}$ sufficiently near h and all $\boldsymbol{m} \in F \cap\left(\mathbb{Z}^{n}\right)^{\prime}$. Note also that if the exceptional point \boldsymbol{m}_{E} exists and belongs to F then $\mathbf{0}=\boldsymbol{m}_{E} h^{\prime} g \in U \times \mathcal{W}$ for all $h^{\prime} \in H_{g}$. Hence, for every $h^{\prime} \in H_{g}$ near h we have

$$
\begin{equation*}
\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h^{\prime} g\right) \supset\left\{\pi\left(\boldsymbol{m} h^{\prime} g\right): \boldsymbol{m} \in F\right\} \tag{7.6}
\end{equation*}
$$

Because of $h \notin S_{2}$, the points $\pi(\boldsymbol{m} h g)$ for $\boldsymbol{m} \in F$ are pairwise distinct. By continuity it then also follows that for any $h^{\prime} \in H_{g}$ sufficiently near h, the points $\pi\left(\boldsymbol{m} h^{\prime} g\right)$ for $\boldsymbol{m} \in F$ are pairwise distinct. Hence $\#\left(\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right) \cap U\right)=\# F$ and $\#\left(\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h^{\prime} g\right) \cap U\right) \geq \# F$ for every h^{\prime} near h. Therefore in (7.4), the left hand side must be larger than $\# F$, for all large j. Hence for each large j there is some $\boldsymbol{m} \in \mathbb{Z}^{n} \backslash F$ such that $\boldsymbol{m} h_{j} g \in U \times \mathcal{W}$. But for any compact $C \subset H_{g}$ the set $\cup_{h^{\prime} \in C}(U \times \mathcal{W}) g^{-1} h^{\prime-1}$ is bounded and hence has finite intersection with \mathbb{Z}^{n}. Therefore there is a bounded number of possibilities for \boldsymbol{m} as j varies, and by passing to a subsequence we may assume that \boldsymbol{m} is independent of j.

Now for our fixed $\boldsymbol{m} \in \mathbb{Z}^{n} \backslash F$ we have $\boldsymbol{m} h_{j} g \in U \times \mathcal{W}$ for all j, but $\boldsymbol{m} h_{j} g \rightarrow \boldsymbol{m} h g \notin U \times \mathcal{W}$ as $j \rightarrow \infty$; this forces $\boldsymbol{m} h g \in \partial(U \times \mathcal{W})$, and it also implies that we cannot have $\boldsymbol{m}=\boldsymbol{m}_{E}$. But $\pi_{\text {int }}(\boldsymbol{m} h g) \notin \partial \mathcal{W}$ since $h \notin S_{1}$, and thus we must have $\pi(\boldsymbol{m} h g) \in \partial U$. Note also that $\pi_{\text {int }}(\boldsymbol{m} h g)$ cannot belong to the exterior of \mathcal{W}, since then the same would hold for $\pi_{\text {int }}\left(\boldsymbol{m} h_{j} g\right)$ for j large, contradicting $\boldsymbol{m} h_{j} g \in U \times \mathcal{W}$. Hence $\pi_{\text {int }}(\boldsymbol{m} h g)$ must belong to the interior of \mathcal{W}; therefore $\pi(\boldsymbol{m} h g) \in \mathcal{P}^{x}=\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right)$. This contradicts our assumption that \mathcal{P}^{x} is disjoint from ∂U, and so the lemma is proved.
Lemma 10. For μ-almost every $x \in X$, and for every bounded open set $U \subset \mathbb{R}^{d}$ with $\widehat{\mathcal{P}}^{x} \cap$ $\partial U=\emptyset$, there is an open set $\Omega \subset X$ with $x \in \Omega$ such that $\#\left(\widehat{\mathcal{P}}^{x^{\prime}} \cap U\right)=\#\left(\widehat{\mathcal{P}}^{x} \cap U\right)$ for all $x^{\prime} \in \Omega$.

Proof. Let $\boldsymbol{m}_{E},\left(\mathbb{Z}^{n}\right)^{\prime}, S_{1}$ and S_{2} be as in the proof of Lemma 9, Also set

$$
\begin{aligned}
& S_{3}=\left\{h \in H_{g}: \exists \boldsymbol{m} \in \mathbb{Z}^{n}, h^{\prime} \in H_{g} \text { satisfying } \pi(\boldsymbol{m} h g)=\mathbf{0}, \pi\left(\boldsymbol{m} h^{\prime} g\right) \neq \mathbf{0}\right\} \\
& S_{4}=\left\{h \in H_{g}: \exists \boldsymbol{m}, \boldsymbol{n} \in \mathbb{Z}^{n}, h^{\prime} \in H_{g} \text { satisfying } \operatorname{dim} \operatorname{Span}\{\pi(\boldsymbol{n} h g), \pi(\boldsymbol{m} h g)\} \leq 1\right. \\
& \left.\quad \text { and } \operatorname{dim} \operatorname{Span}\left\{\pi\left(\boldsymbol{n} h^{\prime} g\right), \pi\left(\boldsymbol{m} h^{\prime} g\right)\right\}=2\right\} .
\end{aligned}
$$

Using Lemma \mathbb{Z} and the fact that \mathbb{Z}^{n} is countable, we have $\mu\left(S_{3}\right)=\mu\left(S_{4}\right)=0$.
Now let $h \in H_{g} \backslash\left(S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right)$ be given, set $x=\Gamma h \in X$, and let U be an arbitrary bounded open subset of \mathbb{R}^{d} with boundary disjoint from $\widehat{\mathcal{P}}^{x}=\widehat{\mathcal{P}}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right)$. Assume that there is a sequence h_{1}, h_{2}, \ldots in H_{g} tending to h such that

$$
\begin{equation*}
\#\left(\widehat{\mathcal{P}}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right) \cap U\right) \neq \#\left(\widehat{\mathcal{P}}\left(\mathcal{W}, \mathbb{Z}^{n} h g\right) \cap U\right), \quad \forall j \tag{7.7}
\end{equation*}
$$

We will show that this leads to a contradiction, and this will complete the proof of the lemma (cf. the proof of Lemma (9).

As an initial reduction, let us note that we may assume $\mathcal{P}^{x} \cap \partial U=\emptyset$. Indeed, recall that \mathcal{P}^{x} is locally finite (cf. [6, Prop. 3.1]); hence the set $A=\mathcal{P}^{x} \cap \partial U$ is certainly finite. Also every point in A is invisible in \mathcal{P}^{x}, since we are assuming $\widehat{\mathcal{P}}^{x} \cap \partial U=\emptyset$. If $A \neq \emptyset$ then fix $r>0$ so small that $\left(\boldsymbol{p}+\mathcal{B}_{2 r}^{d}\right) \cap \mathcal{P}^{x}=\{\boldsymbol{p}\}$ for each $\boldsymbol{p} \in A$, and set $U^{\prime}=U \cup\left(\cup_{\boldsymbol{p} \in A}\left(\boldsymbol{p}+\mathcal{B}_{r}^{d}\right)\right)$ and $U^{\prime \prime}=U \backslash\left(\cup_{\boldsymbol{p} \in A}(\boldsymbol{p}+\right.$ $\left.\overline{\mathcal{B}_{r}^{d}}\right)$. These are bounded open sets satisfying $\#\left(\widehat{\mathcal{P}}^{x} \cap U^{\prime}\right)=\#\left(\widehat{\mathcal{P}}^{x} \cap U^{\prime \prime}\right)=\#\left(\widehat{\mathcal{P}}^{x} \cap U\right)$ and $\mathcal{P}^{x} \cap \partial U^{\prime}=\mathcal{P}^{x} \cap \partial U^{\prime \prime}=\emptyset$. For each j we must have either $\#\left(\widehat{\mathcal{P}}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right) \cap U^{\prime}\right)>\#\left(\widehat{\mathcal{P}}^{x} \cap U\right)$ or $\#\left(\widehat{\mathcal{P}}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right) \cap U^{\prime \prime}\right)<\#\left(\widehat{\mathcal{P}}^{x} \cap U\right)$, because of $U^{\prime \prime} \subset U \subset U^{\prime}$ and (7.7). Hence after replacing U by U^{\prime} or $U^{\prime \prime}$, and passing to a subsequence, we are in a situation where (7.7) holds, and also $\mathcal{P}^{x} \cap \partial U=\emptyset$.

Now take F as in (7.5); it then follows from the proof of Lemma 9 that $\#\left(\mathcal{P}^{x} \cap U\right)=\# F$ and also $\#\left(\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right) \cap U\right)=\# F$ for every large j. Hence (7.7) implies that for every
large j there is some $\boldsymbol{m} \in F$ such that either $\pi\left(\boldsymbol{m} h_{j} g\right)$ is visible in $\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right)$ but $\pi(\boldsymbol{m} h g)$ is invisible in \mathcal{P}^{x}, or the other way around. Since F is finite we may assume, by passing to a subsequence, that \boldsymbol{m} is independent of j.

First assume that $\pi(\boldsymbol{m} h g)$ is invisible in \mathcal{P}^{x} but $\pi\left(\boldsymbol{m} h_{j} g\right)$ is visible in $\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right)$ for every large j. In particular then $\pi\left(\boldsymbol{m} h_{j} g\right) \neq \mathbf{0}$ for large j, and since $h \notin S_{3}$ this implies $\pi(\boldsymbol{m} h g) \neq$ $\mathbf{0}$. The invisibility of $\pi(\boldsymbol{m} h g)$ means that there exist $\boldsymbol{n} \in \mathbb{Z}^{n}$ and $0<t<1$ such that $\pi_{\text {int }}(\boldsymbol{n} h g) \in \mathcal{W}$ and $\pi(\boldsymbol{n} h g)=t \pi(\boldsymbol{m} h g)$. Now $\pi_{\text {int }}(\boldsymbol{n} h g) \in \mathcal{W}$ and $h \notin S_{1}$ force $\pi_{\text {int }}(\boldsymbol{n} h g) \in$ \mathcal{W}°; hence $\pi_{\text {int }}\left(\boldsymbol{n} h_{j} g\right) \in \mathcal{W}^{\circ}$ for all large j and so $\pi\left(\boldsymbol{n} h_{j} g\right) \in \mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right)$. On the other hand $\operatorname{dim} \operatorname{Span}\{\pi(\boldsymbol{n} h g), \pi(\boldsymbol{m} h g)\}=1$ together with $h \notin S_{4} \operatorname{imply} \operatorname{dim} \operatorname{Span}\left\{\pi\left(\boldsymbol{n} h^{\prime} g\right), \pi\left(\boldsymbol{m} h^{\prime} g\right)\right\} \leq 1$ for all $h^{\prime} \in H_{g}$. Using also $h_{j} \rightarrow h, \pi(\boldsymbol{m} h g) \neq 0$ and $0<t<1$, this implies that for every large j there is $0<t_{j}<1$ such that $\pi\left(\boldsymbol{n} h_{j} g\right)=t_{j} \pi\left(\boldsymbol{m} h_{j} g\right)$. Hence $\pi\left(\boldsymbol{m} h_{j} g\right)$ is invisible in $\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right)$ for every large j, contradicting our earlier assumption.

It remains to treat the case when $\pi(\boldsymbol{m} h g)$ is visible in \mathcal{P}^{x} but $\pi\left(\boldsymbol{m} h_{j} g\right)$ is invisible in $\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} h_{j} g\right)$ for every large j. Then for every large j there exist $\boldsymbol{n} \in \mathbb{Z}^{n}$ and $0<t_{j}<1$ such that $\pi_{\text {int }}\left(\boldsymbol{n} h_{j} g\right) \in \mathcal{W}$ and $\pi\left(\boldsymbol{n} h_{j} g\right)=t_{j} \pi\left(\boldsymbol{m} h_{j} g\right)$. It is easily seen that there are only a finite number of possibilities for \boldsymbol{n}, and hence by passing to a subsequence we may assume that \boldsymbol{n} is independent of j. Since $\pi(\boldsymbol{m} h g)$ is visible in \mathcal{P}^{x} we have $\pi(\boldsymbol{m} h g) \neq \mathbf{0}$; hence also $\pi\left(\boldsymbol{m} h_{j} g\right) \neq \mathbf{0}$ for all large j, and this forces $\boldsymbol{n} \neq \boldsymbol{m}$. Also $\pi\left(\boldsymbol{m} h_{j} g\right) \rightarrow \pi(\boldsymbol{m} h g) \neq \mathbf{0}$ and $t_{j} \pi\left(\boldsymbol{m} h_{j} g\right)=\pi\left(\boldsymbol{n} h_{j} g\right) \rightarrow \pi(\boldsymbol{n} h g)$ imply that $t=\lim _{j \rightarrow \infty} t_{j} \in[0,1]$ exists, and $\pi(\boldsymbol{n} h g)=$ $t \pi(\boldsymbol{m} h g)$. Using $h \notin S_{1}$ and $\pi_{\text {int }}\left(\boldsymbol{n} h_{j} g\right) \in \mathcal{W}$ it follows that also $\pi_{\text {int }}(\boldsymbol{n} h g) \in \mathcal{W}$ and so $\pi(\boldsymbol{n} h g) \in \mathcal{P}^{x}$. Using $h \notin S_{3}$ and $\pi\left(\boldsymbol{n} h_{j} g\right) \neq \mathbf{0}$ for j large, it follows that $\pi(\boldsymbol{n} h g) \neq \mathbf{0}$; furthermore using $h \notin S_{2}$ we have $\pi(\boldsymbol{n} h g) \neq \pi(\boldsymbol{m} h g)$. Hence $0<t<1$, and so $\pi(\boldsymbol{m} h g)$ is invisible in \mathcal{P}^{x}, contradicting our earlier assumption.

8. Upper bound on the density of visible points

We are now in position to prove an upper bound complementing Lemma 7 .
Lemma 11. We have $\lim _{T \rightarrow \infty} \frac{\#\left(\widehat{\mathcal{P}} \cap \mathcal{B}_{T}^{d}\right)}{T^{d}}=\kappa_{\mathcal{P}} C_{\mathcal{P}} v_{d}$.
Proof. For any $\mathcal{P}^{\prime} \subset \mathbb{R}^{d}$, let us write $\widetilde{\mathcal{P}}^{\prime}=\mathcal{P}^{\prime} \backslash \widehat{\mathcal{P}}^{\prime}$ for the set of invisible points in \mathcal{P}^{\prime}. Define $F: X \rightarrow \mathbb{Z}_{\geq 0}$ through

$$
\begin{equation*}
F(x)=\liminf _{x^{\prime} \rightarrow x} \#\left(\widetilde{\mathcal{P}}^{x^{\prime}} \cap \mathcal{B}_{1}^{d}\right) \tag{8.1}
\end{equation*}
$$

Then F is lower semicontinuous by construction. Hence by [6, Thm. 4.1] and the Portmanteau theorem (cf., e.g., [15, Thm. 1.3.4(iv)]),

$$
\begin{equation*}
\liminf _{R \rightarrow \infty} \int_{\mathrm{SO}(d)} F\left(\Gamma \varphi_{g}\left(k \Phi^{\log R}\right)\right) d k \geq \int_{X} F d \mu \tag{8.2}
\end{equation*}
$$

with

$$
\Phi^{t}=\left(\begin{array}{cc}
e^{-(d-1) t} & \mathbf{0} \tag{8.3}\\
{ }^{\mathrm{t}} & e^{t} 1_{d-1}
\end{array}\right) \in \mathrm{SL}(d, \mathbb{R})
$$

Now in the left hand side of (8.2), we use the fact that for any $x=\Gamma \varphi_{g}(T), T \in \mathrm{SL}(d, \mathbb{R})$, we have

$$
\begin{equation*}
F(x) \leq \#\left(\widetilde{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right)=\#\left(\widetilde{\mathcal{P}}\left(\mathcal{W}, \mathbb{Z}^{n} \varphi_{g}(T) g\right) \cap \mathcal{B}_{1}^{d}\right)=\#\left(\widetilde{\mathcal{P}} \cap \mathcal{B}_{1}^{d} T^{-1}\right) \tag{8.4}
\end{equation*}
$$

In the right hand side of (8.2) we note that if $x=\Gamma h$ has both the continuity properties described in Lemmata 9 and 10, and if furthermore $\mathcal{P}^{x} \cap \mathrm{~S}_{1}^{d-1}=\emptyset$, then in fact $F(x)=$ $\#\left(\widetilde{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right)$. But these conditions are fulfilled for μ-almost all $x \in X$ (concerning $\mathcal{P}^{x} \cap \mathrm{~S}_{1}^{d-1}=\emptyset$, use [6, Thm. 1.5]). Hence it follows from (8.2) that

$$
\begin{equation*}
\liminf _{R \rightarrow \infty} \int_{\mathrm{SO}(d)} \#\left(\widetilde{\mathcal{P}} \cap \mathcal{B}_{1}^{d} \Phi^{-\log R} k^{-1}\right) d k \geq \int_{X} \#\left(\widetilde{\mathcal{P}}^{x} \cap \mathcal{B}_{1}^{d}\right) d \mu(x)=\left(1-\kappa_{\mathcal{P}}\right) C_{\mathcal{P}} v_{d} \tag{8.5}
\end{equation*}
$$

where the last equality holds by Theorem 6.
But exactly as in the proof of Theorem 5.1 in [6], we have for any $R>1$

$$
\begin{equation*}
\int_{\mathrm{SO}(d)} \#\left(\widetilde{\mathcal{P}} \cap \mathcal{B}_{1} \Phi^{-\log R} k^{-1}\right) d k=\sum_{\boldsymbol{p} \in \widetilde{\mathcal{P}}} A_{R}(\|\boldsymbol{p}\|)=\int_{0}^{\infty} A_{R}(\tau) d \widetilde{N}(\tau)=-\int_{0}^{\infty} \tilde{N}(\tau) d A_{R}(\tau), \tag{8.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{N}(T)=\#\left(\widetilde{\mathcal{P}} \cap \mathcal{B}_{T}^{d}\right), \tag{8.7}
\end{equation*}
$$

and A_{R} is the continuous and decreasing function from $\mathbb{R}_{\geq 0}$ to $[0,1]$ given by $A_{R}(0)=1$ and

$$
\begin{equation*}
A_{R}(\tau)=\frac{\omega\left(\mathrm{S}_{1}^{d-1} \cap \tau^{-1} \mathcal{B}_{1}^{d} \Phi^{-\log R}\right)}{\omega\left(\mathrm{S}_{1}^{d-1}\right)} \quad \text { for } \tau>0 \tag{8.8}
\end{equation*}
$$

(Thus $A_{R}(\tau)=1$ for $0 \leq \tau \leq R^{-1}$ and $A_{R}(\tau)=0$ for $\tau \geq R^{d-1}$.) Hence (8.5) says that

$$
\begin{equation*}
\liminf _{R \rightarrow \infty} \int_{0}^{\infty} \tilde{N}(\tau)\left(-d A_{R}(\tau)\right) \geq C^{\prime}:=\left(1-\kappa_{\mathcal{P}}\right) C_{\mathcal{P}} v_{d} \tag{8.9}
\end{equation*}
$$

In view of (2.5) and Lemma 7 (with $\mathcal{D}=\mathcal{B}_{1}^{d}$), the statement of the present lemma is equivalent with $\lim _{\inf }^{\tau \rightarrow \infty} \boldsymbol{\tau ^ { - d }} \widetilde{N}(\tau) \geq C^{\prime}$. Assume that this is false. Then there is some $\eta>0$ and a sequence $1<\tau_{1}<\tau_{2}<\cdots$ with $\tau_{j} \rightarrow \infty$ such that $\widetilde{N}\left(\tau_{j}\right)<(1-\eta) C^{\prime} \tau_{j}^{d}$ for all j. Using the fact that $\widetilde{N}(\tau)$ is an increasing function of τ we see that by shrinking $\eta>0$ if necessary, we may actually assume that $\widetilde{N}(\tau)<(1-\eta) C^{\prime} \tau^{d}$ for all $\tau \in\left[(1-\eta) \tau_{j}, \tau_{j}\right]$ and all j. By Lemma 7 and (2.5) we have $\lim \sup _{\tau \rightarrow \infty} \tau^{-d} \widetilde{N}(\tau) \leq C^{\prime}$; thus for any given $\varepsilon>0$ there is some $\tau_{0}>0$ such that $\widetilde{N}(\tau) \leq(1+\varepsilon) C^{\prime} \tau^{d}$ for all $\tau \geq \tau_{0}$. Now for any j with $(1-\eta) \tau_{j}>\tau_{0}$, and any $R>\tau_{j}^{1 /(d-1)}$:

$$
\begin{align*}
\int_{0}^{\infty} \widetilde{N}(\tau)\left(-d A_{R}(\tau)\right) \leq \int_{0}^{\tau_{0}} \widetilde{N}(\tau)\left(-d A_{R}(\tau)\right) & +(1+\varepsilon) C^{\prime} \int_{\tau_{0}}^{R^{d-1}} \tau^{d}\left(-d A_{R}(\tau)\right) \tag{8.10}\\
& -(\varepsilon+\eta) C^{\prime} \int_{(1-\eta) \tau_{j}}^{\tau_{j}} \tau^{d}\left(-d A_{R}(\tau)\right)
\end{align*}
$$

Here the sum of the first two terms tends to $(1+\varepsilon) C^{\prime}$ as $R \rightarrow \infty$, as in [6, (5.11)-(5.13)]. Furthermore, if we choose $R=\left(2 \tau_{j}\right)^{1 /(d-1)}$ and let $j \rightarrow \infty$ then

$$
\begin{align*}
\int_{(1-\eta) \tau_{j}}^{\tau_{j}} \tau^{d}\left(-d A_{R}(\tau)\right)=\frac{d}{\omega\left(\mathrm{~S}_{1}^{d-1}\right)} \operatorname{vol} & \left(\mathcal{B}_{1}^{d} \Phi^{-\log R} \cap \mathcal{B}_{\frac{1}{2} R^{d-1}}^{d} \backslash \mathcal{B}_{\frac{1}{2}(1-\eta) R^{d-1}}^{d}\right) \tag{8.11}\\
& \rightarrow \frac{2 v_{d-1}}{v_{d}} \int_{(1-\eta) / 2}^{1 / 2}\left(1-x^{2}\right)^{(d-1) / 2} d x .
\end{align*}
$$

Hence we conclude that there is a constant $c(\eta)>0$, independent of ε, such that

$$
\begin{equation*}
\liminf _{R \rightarrow \infty} \int_{0}^{\infty} \widetilde{N}(\tau)\left(-d A_{R}(\tau)\right) \leq(1+\varepsilon-c(\eta)) C^{\prime} \tag{8.12}
\end{equation*}
$$

Letting now $\varepsilon \rightarrow 0$ we run into a contradiction against (8.9). This concludes the proof of the lemma.

9. Proof of Theorem $\mathbb{1}$

Combining Lemma 7 and Lemma 11 we can now complete the proof of Theorem 11 First let $\mathfrak{U}, \mathcal{D}$ be as in Lemma 7 . Then by Lemma 7 applied to $\mathrm{S}_{1}^{d-1} \backslash \mathfrak{U}$,

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\#\left(\widehat{\mathcal{P}} \cap \mathcal{B}_{T}^{d} \backslash T \mathcal{D}\right)}{T^{d}} \geq \kappa_{\mathcal{P}} C_{\mathcal{P}}\left(v_{d}-\operatorname{vol}(\mathcal{D})\right) . \tag{9.1}
\end{equation*}
$$

Combining this with Lemma 11 we get

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\#(\widehat{\mathcal{P}} \cap T \mathcal{D})}{T^{d}}=\limsup _{T \rightarrow \infty}\left(\frac{\#\left(\widehat{\mathcal{P}} \cap \mathcal{B}_{T}^{d}\right)}{T^{d}}-\frac{\#\left(\widehat{\mathcal{P}} \cap \mathcal{B}_{T}^{d} \backslash T \mathcal{D}\right)}{T^{d}}\right) \leq \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}) \tag{9.2}
\end{equation*}
$$

Combining this with Lemma 7 (applied to \mathfrak{U} itself) we conclude

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#(\widehat{\mathcal{P}} \cap T \mathcal{D})}{T^{d}}=\kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}(\mathcal{D}) \tag{9.3}
\end{equation*}
$$

By a scaling and subtraction argument it follows that (9.3) is true more generally for any $\mathcal{D} \in \mathcal{F}$, where \mathcal{F} is the family of sets of the form $\mathcal{D}=\left\{\boldsymbol{v} \in \mathbb{R}^{d}: r_{1} \leq\|\boldsymbol{v}\|<r_{2}, \boldsymbol{v} \in\|\boldsymbol{v}\| \mathfrak{U}\right\}$, for any $0 \leq r_{1}<r_{2}$ and any $\mathfrak{U} \subset \mathrm{S}_{1}^{d-1}$ with $\omega(\partial \mathfrak{U})=0$.

Now let \mathcal{D} be an arbitrary subset of \mathbb{R}^{d} with boundary of measure zero. Note that the validity of (9.3) does not change if we replace \mathcal{D} by $\mathcal{D} \cup\{\mathbf{0}\}$ or by $\mathcal{D} \backslash\{\mathbf{0}\}$. The proof of Theorem 6 is now completed by approximating $\mathcal{D} \cup\{\mathbf{0}\}$ from above and $\mathcal{D} \backslash\{\mathbf{0}\}$ from below by finite unions of sets in \mathcal{F}.

10. Proof of Theorem 2

Recall that (1.7) was proved in [6, Thm. A.1] and we have proved (1.9) and (1.10) in Section 5. Also the continuity of $E(r, \sigma, \mathcal{P})$ and $E(r, \sigma, \widehat{\mathcal{P}})$ with respect to σ is immediate from (3.5), (3.6) combined with Theorem [6. Hence it remains to prove (1.8).

Thus let λ be a Borel probability measure on S_{1}^{d-1} which is absolutely continuous with respect to ω, and let $\sigma>0$ and $r \in \mathbb{Z}_{\geq 0}$. Let us fix, once and for all, a map $K: \mathrm{S}_{1}^{d-1} \rightarrow \mathrm{SO}(d)$ such that $\boldsymbol{v} K(\boldsymbol{v})=\boldsymbol{e}_{1}=(1,0, \ldots, 0)$ for all $\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}$; we assume that K is smooth when restricted to S_{1}^{d-1} minus one point, cf. [5, Footnote 3, p. 1968]. Recall the definitions of $\mathfrak{C}(\sigma)$ and Φ^{t} in (3.7) and (8.3).

On verifies that if $\sigma^{\prime}, \sigma^{\prime \prime}, \alpha$ are any fixed numbers satisfying $0<\sigma^{\prime}<\sigma<\sigma^{\prime \prime}$ and $\sigma^{\prime} / \sigma<\alpha<1$, then for any $\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}$ and all sufficiently large T, the set of $\boldsymbol{y} \in \mathcal{B}_{T}^{d} \backslash\{\mathbf{0}\}$ satisfying $\|\boldsymbol{y}\|^{-1} \boldsymbol{y} \in \mathfrak{D}_{T}\left(\kappa_{\mathcal{P}}^{-1} \sigma, \boldsymbol{v}\right)$ is contained in $\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime \prime}\right) \Phi^{-(\log T) /(d-1)} K(\boldsymbol{v})^{-1}$, and contains $\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime}\right) \Phi^{-(\log (\alpha T)) /(d-1)} K(\boldsymbol{v})^{-1}$. It follows that

$$
\begin{align*}
& \lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \#\left(\widehat{\mathcal{P}} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime \prime}\right) \Phi^{-(\log T) /(d-1)} K(\boldsymbol{v})^{-1}\right) \leq r\right\}\right) \\
& \quad \leq \lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \leq r\right\}\right) \tag{10.1}\\
& \quad \leq \lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \#\left(\widehat{\mathcal{P}} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime}\right) \Phi^{-(\log (\alpha T)) /(d-1)} K(\boldsymbol{v})^{-1}\right) \leq r\right\}\right) .
\end{align*}
$$

Recalling the definition of $\mathcal{P}=\mathcal{P}\left(\mathcal{W}, \mathbb{Z}^{n} g\right)$ we see that $\widehat{\mathcal{P}} A=\widehat{\mathcal{P}}\left(\mathcal{W}, \mathbb{Z}^{n} \varphi_{g}(A) g\right)$ for any $A \in \mathrm{SL}(d, \mathbb{R})$. Hence if we define

$$
\begin{equation*}
\mathcal{E}(\sigma, r)=\left\{x \in X: \#\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)\right) \leq r\right\}, \tag{10.2}
\end{equation*}
$$

then the left hand side in (10.1) equals

$$
\begin{equation*}
\lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \Gamma \varphi_{g}\left(K(\boldsymbol{v}) \Phi^{(\log T) /(d-1)}\right) \in \mathcal{E}\left(\sigma^{\prime \prime}, r\right)\right\}\right) \tag{10.3}
\end{equation*}
$$

Hence by [6, Thm. 4.1] and the Portmanteau theorem:

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \leq r\right\}\right) \geq \mu\left(\mathcal{E}\left(\sigma^{\prime \prime}, r\right)^{\circ}\right)=\mu\left(\mathcal{E}\left(\sigma^{\prime \prime}, r\right)\right) . \tag{10.4}
\end{equation*}
$$

Here the last equality is proved by using Lemma 10 with $U=\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime \prime}\right)$, and noticing that Theorem ${ }^{6}$ implies that $\widehat{\mathcal{P}}^{x} \cap \partial U=\emptyset$ for μ-almost all $x \in X$. Similarly, using the right relation in (10.1), we obtain

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \leq r\right\}\right) \leq \mu\left(\overline{\mathcal{E}\left(\sigma^{\prime}, r\right)}\right)=\mu\left(\mathcal{E}\left(\sigma^{\prime}, r\right)\right) \tag{10.5}
\end{equation*}
$$

Note that $\mathcal{E}\left(\sigma^{\prime \prime}, r\right) \subset \mathcal{E}(\sigma, r) \subset \mathcal{E}\left(\sigma^{\prime}, r\right)$, since $\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime \prime}\right) \supset \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right) \supset \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime}\right)$. Also, if x lies in $\mathcal{E}(\sigma, r)$ but not in $\mathcal{E}\left(\sigma^{\prime \prime}, r\right)$, then $\widehat{\mathcal{P}}^{x}$ must have some point in $\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime \prime}\right) \backslash \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)$, and so by Theorem 6,

$$
\begin{equation*}
\mu(\mathcal{E}(\sigma, r))-\mu\left(\mathcal{E}\left(\sigma^{\prime \prime}, r\right)\right) \leq \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}\left(\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime \prime}\right) \backslash \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)\right) \tag{10.6}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\mu\left(\mathcal{E}\left(\sigma^{\prime}, r\right)\right)-\mu(\mathcal{E}(\sigma, r)) \leq \kappa_{\mathcal{P}} C_{\mathcal{P}} \operatorname{vol}\left(\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right) \backslash \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma^{\prime}\right)\right) \tag{10.7}
\end{equation*}
$$

Now by taking $\sigma^{\prime}, \sigma^{\prime \prime}$ sufficiently near σ, the right hand sides of (10.6) and (10.7) can be made as small as we like. Hence from (10.4) and (10.5) we obtain in fact
$\lim _{T \rightarrow \infty} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \mathcal{N}_{T}(\sigma, \boldsymbol{v}, \widehat{\mathcal{P}}) \leq r\right\}\right)=\mu(\mathcal{E}(\sigma, r))=\mu\left(\left\{x \in X: \#\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)\right) \leq r\right\}\right)$.
Note here that the right hand side is the same as $\sum_{r^{\prime}=0}^{r} E(r, \sigma, \widehat{\mathcal{P}})$; cf. (3.6). Hence since (10.8) has been proved for arbitrary $r \geq 0$, also (1.8) holds for arbitrary $r \geq 0$, and we are done.

11. Proof of Corollary 3

It follows from Theorem 2 and a general statistical argument (cf. e.g. 4]) that if we define $F(0)=0$ and

$$
\begin{equation*}
F(s)=-\frac{d}{d s} E(0, s, \widehat{\mathcal{P}}) \tag{11.1}
\end{equation*}
$$

then the limit relation (1.14) holds at each point $s \geq 0$ where $F(s)$ is defined. In fact the function $s \mapsto E(0, s, \widehat{\mathcal{P}})$ is convex; hence $F(s)$ exists for all $s>0$ except at most a countable number of points, and is continuous at each point where it exists. Also $F(s)$ is decreasing, and satisfies $\lim _{s \rightarrow 0^{+}} F(s)=1=F(0)($ cf. (1.10) $)$ and $\lim _{s \rightarrow \infty} F(s)=0$. Note also that (1.15) is an immediate consequence of (1.14), the definition of $\widehat{\xi}_{T, j}$ and the fact that $N(T) \sim \kappa_{\mathcal{P}}^{-1} \widehat{N}(T)$ as $T \rightarrow \infty$ (cf. Theorem 1 and (1.6)).

It now only remains to prove that $F(s)$ is continuous, or equivalently that the derivative in (11.1) exists for every $s>0$. Assume the contrary, and let $s_{0}>0$ be a point where the derivative does not exist. By convexity, both the left and right derivative exist at s_{0}; thus

$$
\begin{equation*}
-\lim _{s \rightarrow s_{0}^{-}} \frac{E\left(0, s_{0}, \widehat{\mathcal{P}}\right)-E(0, s, \widehat{\mathcal{P}})}{s_{0}-s}>-\lim _{s \rightarrow s_{0}^{+}} \frac{E(0, s, \widehat{\mathcal{P}})-E\left(0, s_{0}, \widehat{\mathcal{P}}\right)}{s-s_{0}} \geq 0 \tag{11.2}
\end{equation*}
$$

In dimension $d=2$, using the fact that the point process $x \mapsto \widehat{\mathcal{P}}^{x}$ is invariant under $\left(\begin{array}{cc}1 & r \\ 0 & 1\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})$ for any $r \in \mathbb{R}$, it follows that the formula (3.5) holds with $\mathfrak{C}(\sigma)$ replaced by $\mathfrak{C}(a, a+\sigma)$ for any $a \in \mathbb{R}$, where

$$
\mathfrak{C}\left(a_{1}, a_{2}\right)=\left\{\boldsymbol{y}=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: 0<y_{1}<1, \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} a_{1} y_{1}<y_{2}<\frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} a_{2} y_{1}\right\}
$$

In particular, for any $0<s<s^{\prime}$ and $a \in \mathbb{R}$,

$$
\begin{equation*}
E(0, s, \widehat{\mathcal{P}})-E\left(0, s^{\prime}, \widehat{\mathcal{P}}\right)=\mu\left(\left\{x \in X: \widehat{\mathcal{P}}^{x} \cap \mathfrak{C}(a, a+s)=\emptyset, \widehat{\mathcal{P}}^{x} \cap \mathfrak{C}\left(a, a+s^{\prime}\right) \neq \emptyset\right\}\right) \tag{11.3}
\end{equation*}
$$

For given $x \in X$, we order the numbers

$$
\frac{\kappa_{\mathcal{P}} C_{\mathcal{P}}}{2} \cdot \frac{y_{2}}{y_{1}} \quad \text { for } \boldsymbol{y}=\left(y_{1}, y_{2}\right) \in \widehat{\mathcal{P}}^{x} \cap\left((0,1) \times \mathbb{R}_{>0}\right)
$$

as $0<\lambda_{x, 1}<\lambda_{x, 2}<\ldots$. We also set $\lambda_{x, 0}=0$. Taking $s^{\prime}=s_{0}>s$ in (11.3), integrating over $a \in\left(0, a_{0}\right)$ for some fixed $a_{0}>0$, and using Fubini's Theorem, we obtain
$a_{0}\left(E(0, s, \widehat{\mathcal{P}})-E\left(0, s_{0}, \widehat{\mathcal{P}}\right)\right) \leq \int_{X}\left(s_{0}-s\right) \#\left\{j \geq 0: \lambda_{x, j+1}-\lambda_{x, j}>s, \lambda_{x, j+1}<a_{0}+s_{0}\right\} d \mu(x)$.

Hence

$$
\begin{equation*}
-a_{0} \lim _{s \rightarrow s_{0}^{-}} \frac{E\left(0, s_{0}, \widehat{\mathcal{P}}\right)-E(0, s, \widehat{\mathcal{P}})}{s_{0}-s} \leq \int_{X} \#\left\{j \geq 0: \lambda_{x, j+1}-\lambda_{x, j} \geq s_{0}, \lambda_{x, j+1}<a_{0}+s_{0}\right\} d \mu(x) \tag{11.4}
\end{equation*}
$$

Similarly, replacing s by s_{0} and s^{\prime} by s in (11.3), we obtain

$$
\begin{equation*}
-a_{0} \lim _{s \rightarrow s_{0}^{+}} \frac{E(0, s, \widehat{\mathcal{P}})-E\left(0, s_{0}, \widehat{\mathcal{P}}\right)}{s-s_{0}} \geq \int_{X} \#\left\{j \geq 0: \lambda_{x, j+1}-\lambda_{x, j}>s_{0}, \lambda_{x, j+1}<a_{0}+s_{0}\right\} d \mu(x) . \tag{11.5}
\end{equation*}
$$

It follows from (11.2), (11.4) and (11.5) that there is a set $A \subset X$ with $\mu(A)>0$ such that for every $x \in A$, there is some $j \geq 0$ such that $\lambda_{x, j+1}-\lambda_{x, j}=s_{0}$ and $\lambda_{x, j}<a_{0}$. Note that $\lambda_{x, 1} \neq s_{0}$ for μ-almost all $x \in X$, by Theorem 6 applied with f as the characteristic function of the line $y_{2}=s_{0} \frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} y_{1}$ in \mathbb{R}^{2}. Hence after removing a null set from A, we have for each $x \in A$ that $\widehat{\mathcal{P}}^{x}$ contains a pair of points $\boldsymbol{y}=\left(y_{1}, y_{2}\right)$ and $\boldsymbol{y}^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ satisfying

$$
0<y_{1}, y_{1}^{\prime}<1, \quad \frac{y_{2}^{\prime}}{y_{1}^{\prime}}-\frac{y_{2}}{y_{1}}=\frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} s_{0}, \quad 0<\frac{y_{2}}{y_{1}}<\frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} a_{0} .
$$

However this is easily seen to violate the $\mathrm{SL}(2, \mathbb{R})$-invariance of the point process $x \mapsto \widehat{\mathcal{P}}^{x}$. For example, for each $\frac{1}{2} \leq \lambda \leq 1$, because of the invariance under $\left(\begin{array}{cc}\sqrt{\lambda} & 0 \\ 0 & 1 / \sqrt{\lambda}\end{array}\right)$, there is a subset $A_{\lambda} \subset X$ with $\mu\left(A_{\lambda}\right)=\mu(A)>0$ such that for each $x \in A_{\lambda}, \widehat{\mathcal{P}}^{x}$ contains a pair of points $\boldsymbol{y}=\left(y_{1}, y_{2}\right)$ and $\boldsymbol{y}^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ satisfying

$$
0<y_{1}, y_{1}^{\prime}<\sqrt{\lambda}, \quad \frac{y_{2}^{\prime}}{y_{1}^{\prime}}-\frac{y_{2}}{y_{1}}=\frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} \frac{s_{0}}{\lambda}, \quad 0<\frac{y_{2}}{y_{1}}<\frac{2}{\kappa_{\mathcal{P}} C_{\mathcal{P}}} \frac{a_{0}}{\lambda} .
$$

Let R be the rectangle $(0,1) \times\left(0, \frac{4}{\kappa_{\mathcal{P} C_{\mathcal{P}}}}\left(a_{0}+s_{0}\right)\right)$ in \mathbb{R}^{2}. By taking N sufficiently large we can ensure that the set $X_{R, N}:=\left\{x \in X: \#\left(\widehat{\mathcal{P}}^{x} \cap R\right) \leq N\right\}$ has measure $\mu\left(X_{R, N}\right) \geq 1-\frac{1}{2} \mu(A)$. It follows that $\mu\left(A_{\lambda} \cap X_{R, N}\right) \geq \frac{1}{2} \mu(A)$ for each $\frac{1}{2} \leq \lambda \leq 1$, and so if Λ is any infinite subset of $\left[\frac{1}{2}, 1\right]$ then the integral $\int_{X_{R, N}} \sum_{\lambda \in \Lambda} I\left(x \in A_{\lambda}\right) d \mu(x)$ is infinite. On the other hand the definition of $X_{R, N}$ implies that $\sum_{\lambda \in \Lambda} I\left(x \in A_{\lambda}\right) \leq\binom{ N}{2}$ for each $x \in X_{R, N}$.

We have thus reached a contradiction, and we conclude that (11.2) cannot hold, i.e. $F(s)$ is continuous for all $s \geq 0$.

12. Vanishing near zero of the gap distribution

The gap distribution obtained in Corollary 3 may sometimes vanish near zero. This phenomenon was noted numerically in [1] in several examples. In the case when \mathcal{P} is a lattice, this vanishing is well understood; cf. [2], [5].

Let $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set. We define $m_{\hat{\mathcal{P}}} \geq 0$ to be the supremum of all $\sigma \geq 0$ with the property that $\#\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)\right) \leq 1$ for $(\mu$-)almost all $x \in X$. Then the computation in (5.3) (together with (5.2)) shows that

$$
E(0, \sigma, \widehat{\mathcal{P}}) \quad \begin{cases}=1-\sigma & \text { when } 0 \leq \sigma \leq m_{\widehat{\mathcal{P}}} \tag{12.1}\\ >1-\sigma & \text { when } \sigma>m_{\widehat{\mathcal{P}}}\end{cases}
$$

We note that if $d \geq 3$ then $m_{\widehat{\mathcal{P}}}=0$, because of the $\mathrm{SL}(d, \mathbb{R})$-invariance and the fact that $\operatorname{SL}(d, \mathbb{R})$ acts transitively on pairs of non-proportional vectors in $\mathbb{R}^{d} \backslash\{\mathbf{0}\}$ when $d \geq 3$.

Let us now assume $d=2$. Note that by (12.1) and the discussion at the beginning of Sec. 111, the function F in Corollary 3 satisfies

$$
F(s) \quad \begin{cases}=1 & \text { if } 0 \leq s \leq m_{\widehat{\mathcal{P}}} \\ <1 & \text { if } s>m_{\widehat{\mathcal{P}}} .\end{cases}
$$

In other words, $m_{\widehat{\mathcal{P}}}$ is the largest number with the property that the limiting gap distribution obtained in Corollary 3 is supported on the interval $\left[m_{\hat{\mathcal{P}}}, \infty\right)$. In particular, the support of the limiting gap distribution is separated from 0 if and only if $m_{\hat{\mathcal{P}}}>0$.

Let us also note that if $d=2, m \geq 1$, and \mathcal{L} is a "generic" lattice or affine lattice, so that either $H_{g}=\mathrm{SL}(n, \mathbb{R})$ or $H_{g}=G=\operatorname{ASL}(n, \mathbb{R})$, then we have $m_{\widehat{\mathcal{P}}}=0$, again using the transitivity of the action of $\mathrm{SL}(n, \mathbb{R})$ on pairs of non-proportional vectors in $\mathbb{R}^{n} \backslash\{\mathbf{0}\}$ for $n \geq 3$.

On the other hand, we will now recall (for general d) a standard construction of cut-andproject sets using algebraic number theory, which can be used to produce several of the most well-known quasicrystals (cf., e.g., [9; see also [7, Ch. II, Prop. 6] and [8, Thm. 6]). We will see that in special cases with $d=2$, this construction leads to quasicrystals for which $m_{\hat{\mathcal{P}}}>0$.

We follow [6, Sec. 2.2]. Let K be a totally real number field of degree $N \geq 2$ over \mathbb{Q}, let \mathcal{O}_{K} be its subring of algebraic integers, and let π_{1}, \ldots, π_{N} be the distinct embeddings of K into \mathbb{R}. We will always view K as a subset of \mathbb{R} via π_{1}; in other words we agree that π_{1} is the identity map. Fix $d \geq 1$ and set $n=d N$. By abuse of notation we write π_{j} also for the coordinate-wise embedding of K^{d} into \mathbb{R}^{d}, and for the entry-wise embedding of $M_{d}(K)$ (the algebra of $d \times d$ matrices with entries in K) into $M_{d}(\mathbb{R})$. Let \mathcal{L} be the lattice in $\mathbb{R}^{n}=\left(\mathbb{R}^{d}\right)^{N}$ given by

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{K}^{d}:=\left\{\left(\boldsymbol{x}, \pi_{2}(\boldsymbol{x}), \ldots, \pi_{N}(\boldsymbol{x})\right): \boldsymbol{x} \in \mathcal{O}_{K}^{d}\right\} . \tag{12.2}
\end{equation*}
$$

As usual we set $m=n-d=(N-1) d$, let π and $\pi_{\text {int }}$ be the projections of $\mathbb{R}^{n}=\left(\mathbb{R}^{d}\right)^{N}=$ $\mathbb{R}^{d} \times \mathbb{R}^{m}$ onto the first d and last m coordinates. It follows from [14, Cor. 2 in Ch. IV-2] that $\pi_{\text {int }}(\mathcal{L})$ is dense in \mathbb{R}^{m}, i.e. we have $\mathcal{A}=\mathbb{R}^{m}$ and $\mathcal{V}=\mathbb{R}^{n}$ in the present situation. Hence the window \mathcal{W} should be taken as a subset of \mathbb{R}^{m}, and we consider the cut-and-project set $\mathcal{P}(\mathcal{W}, \mathcal{L}) \subset \mathbb{R}^{d}$.

Choose $\delta>0$ and $g \in \operatorname{SL}(n, \mathbb{R})$ such that

$$
\begin{equation*}
\mathcal{L}=\delta^{1 / n} \mathbb{Z}^{n} g \tag{12.3}
\end{equation*}
$$

In fact

$$
\begin{equation*}
\delta=\left|D_{K}\right|^{d / 2} \tag{12.4}
\end{equation*}
$$

where D_{K} is the discriminant of K; cf., e.g., [3, Ch. V.2, Lemma 2]. As proved in [6, Sec. 2.2.1], in this situation we have

$$
\begin{equation*}
H_{g}=g \mathrm{SL}(d, \mathbb{R})^{N} g^{-1} \tag{12.5}
\end{equation*}
$$

where $\operatorname{SL}(d, \mathbb{R})^{N}$ is embedded as a subgroup of $G=\operatorname{ASL}(n, \mathbb{R})$ through

$$
\begin{equation*}
\left(A_{1}, \ldots, A_{N}\right) \mapsto\left(\operatorname{diag}\left[A_{1}, \ldots, A_{N}\right], \mathbf{0}\right) \tag{12.6}
\end{equation*}
$$

where $\operatorname{diag}\left[A_{1}, \ldots, A_{N}\right]$ is the block matrix whose diagonal blocks are A_{1}, \ldots, A_{N} in this order, and all other blocks vanish.

Lemma 12. Let $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set with \mathcal{L} as in (12.2), and with $d=N=2$ (thus K is a real quadratic number field). Let $\varepsilon>1$ be the fundamental unit of \mathcal{O}_{K}, and set $R=\sup \{\|\boldsymbol{w}\|: \boldsymbol{w} \in \mathcal{W}\}$. Then

$$
\begin{equation*}
m_{\widehat{\mathcal{P}}} \geq \frac{\kappa_{\mathcal{P}} C_{\mathcal{P}} \delta}{\left(\varepsilon^{2}+\varepsilon^{-2}\right)^{2} R^{2}} \tag{12.7}
\end{equation*}
$$

Proof. Let $\sigma>0$ and $x \in X$ be given and assume that $\#\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)\right) \geq 2$. It suffices to prove that we must then have $\sigma \geq \frac{\kappa \mathcal{P} C_{\mathcal{P}} \delta}{\left(\varepsilon^{2}+\varepsilon^{-2}\right)^{2} R^{2}}$. The area of $\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)$ equals r^{2} where $r:=\sqrt{\frac{\sigma}{\kappa_{\mathcal{P}} C_{\mathcal{P}}}}$; hence there is some $A \in \mathrm{SL}(2, \mathbb{R})$ which maps $\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma\right)$ to the open triangle $\mathfrak{C}_{r}:=\left\{\boldsymbol{x} \in \mathbb{R}^{2}: 0<x_{1}<r,\left|x_{2}\right|<x_{1}\right\}$. Take $\left(A_{1}, A_{2}\right) \in \operatorname{SL}(2, \mathbb{R})^{2}$ (embedded in G as in (12.6)) so that $x=\Gamma g\left(A_{1}, A_{2}\right) g^{-1}$. Set $\widetilde{A}=\left(A_{1} A, A_{2}\right)$; then $\mathcal{P}^{x} A=\mathcal{P}(\mathcal{W}, \mathcal{L} \widetilde{A})$. We set
$\gamma=\operatorname{diag}\left[\varepsilon_{\sim}^{-k}, \varepsilon^{-k}, \varepsilon^{k}, \varepsilon^{k}\right] \in \operatorname{SL}(4, \mathbb{R})$, where k is an integer which we will choose below. Then $\mathcal{L} \widetilde{A}=\mathcal{L} \gamma \widetilde{A}=\mathcal{L} \widetilde{A} \gamma$, by (12.2) and since \widetilde{A} is block diagonal. Hence

$$
\mathcal{P}^{x} A=\mathcal{P}(\mathcal{W}, \mathcal{L} \widetilde{A})=\mathcal{P}(\mathcal{W}, \mathcal{L} \widetilde{A} \gamma)=\varepsilon^{-k} \mathcal{P}\left(\varepsilon^{-k} \mathcal{W}, \mathcal{L} \widetilde{A}\right) .
$$

Now $\#\left(\widehat{\mathcal{P}}^{x} A \cap \mathfrak{C}_{r}\right) \geq 2$ and thus $\mathcal{L} \widetilde{A}$ contains two points in $\left(\varepsilon^{k} \mathfrak{C}_{r}\right) \times\left(\varepsilon^{-k} \mathcal{W}\right)$ which have non-proportional images under π (the projection onto the physical space \mathbb{R}^{2}). In other words, there exist $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{O}_{K}^{2} \subset \mathbb{R}^{2}$ which are linearly independent over \mathbb{R} (thus also over K) such that $\boldsymbol{b}_{1}=(\boldsymbol{x}, \overline{\boldsymbol{x}}) \widetilde{A}$ and $\boldsymbol{b}_{2}=\left(\boldsymbol{x}^{\prime}, \overline{\boldsymbol{x}^{\prime}}\right) \widetilde{A}$ lie in $\left(\varepsilon^{k} \mathfrak{C}_{r}\right) \times\left(\varepsilon^{-k} \mathcal{W}\right)$. Here we write $\boldsymbol{x} \mapsto \overline{\boldsymbol{x}}$ for the nontrivial automorphism of K. It follows that also $\boldsymbol{b}_{3}=(\varepsilon \boldsymbol{x}, \overline{\varepsilon \boldsymbol{x}}) \widetilde{A}$ and $\boldsymbol{b}_{4}=\left(\varepsilon \boldsymbol{x}^{\prime}, \overline{\varepsilon \boldsymbol{x}^{\prime}}\right) \widetilde{A}$ lie in $\left(\varepsilon^{k+1} \mathfrak{C}_{r}\right) \times\left(\varepsilon^{-k-1} \mathcal{W}\right)$. However the four vectors $(\boldsymbol{x}, \overline{\boldsymbol{x}}),\left(\boldsymbol{x}^{\prime}, \overline{\boldsymbol{x}^{\prime}}\right),(\varepsilon \boldsymbol{x}, \overline{\varepsilon \boldsymbol{x}}),\left(\varepsilon \boldsymbol{x}^{\prime}, \overline{\overline{\boldsymbol{x}^{\prime}}}\right)$ lie in \mathcal{L} and form a K-linear basis of K^{4}. Hence $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}$ lie in $\mathcal{L} \widetilde{A}$ and are linearly independent over \mathbb{R}. However $\left\|\boldsymbol{b}_{j}\right\|<r^{\prime}$ for $j=1,2,3,4$, where

$$
r^{\prime}=\max \left(\sqrt{\left(\varepsilon^{k} r\right)^{2}+\left(\varepsilon^{-k} R\right)^{2}}, \sqrt{\left(\varepsilon^{k+1} r\right)^{2}+\left(\varepsilon^{-k-1} R\right)^{2}}\right),
$$

and thus δ, the covolume of $\mathcal{L} \widetilde{A}$, must be less than $r^{\prime 4}$. Now choose k so as to minimize r^{\prime}. Then $r^{\prime} \leq \sqrt{\varepsilon^{2}+\varepsilon^{-2}} \sqrt{R r}$, and combining this with $\delta<r^{\prime 4}$ and $r=\sqrt{\frac{\sigma}{\kappa_{\mathcal{P}} C_{\mathcal{P}}}}$ we obtain $\sigma>\frac{\kappa_{p} C_{p} \delta}{\left(\varepsilon^{2}+\varepsilon^{-2}\right)^{2} R^{2}}$, as desired.

Let us make some further observations in this vein. First, note the general relation

$$
\mathcal{P}\left(\mathcal{W}, q^{-1} \mathcal{L}\right)=q^{-1} \mathcal{P}(q \mathcal{W}, \mathcal{L}), \quad \forall q>0 \text { (real). }
$$

Using this relation with q an appropriate positive integer, it is clear that if \mathcal{L} is any lattice in \mathbb{R}^{n} such that the cut-and-project set $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ satisfies $m_{\widehat{\mathcal{P}}}>0$ for every admissible window set \mathcal{W} (for example this holds when \mathcal{L} is as in Lemma (12), then $m_{\hat{\mathcal{P}}}>0$ also holds for any cut-and-project set obtained from $\mathcal{P}(\mathcal{W}, \mathcal{L})$ by the "union of rational translates" construction in [6, Sec. 2.3.1]. Furthermore, the property of having $m_{\hat{\mathcal{P}}}>0$ is also, obviously, preserved under "passing to a sublattice" as in [6, Sec. 2.4]. In particular, by [6, Sec. 2.5], we have $m_{\hat{\mathcal{P}}}>0$ for any \mathcal{P} associated with a Penrose tiling.
Remark 12.1. We do not expect the lower bound in Lemma 12 to be sharp, and the argument which we gave regarding the construction in [6, Sec. 2.3.1] certainly does not lead to a sharp bound. It would be interesting to try to determine the exact value of $m_{\hat{\mathcal{P}}}$ for the Penrose tiling, and also for some of the cases discussed in [1].

It is interesting to note that for a large class of regular cut-and-project sets with $m_{\hat{\mathcal{P}}}>0$, a corresponding lower bound on the gap length is present in the set of directions (1.13) not only in the limit $T \rightarrow \infty$, but for any fixed T :
Lemma 13. Let $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ be a regular cut-and-project set in dimension $d=2$ such that either $\mathbf{0} \notin \mathcal{P}$ or $\mathbf{0} \in \mathcal{P}^{x}$ for all $x \in X$, and furthermore $\pi_{\mathrm{int}}(\boldsymbol{y}) \notin \partial \mathcal{W}$ for all $\boldsymbol{y} \in \mathcal{L}$ (viz., there are no "singular vertices"; cf. [1, p. 6]). Then for any non-proportional vectors $\boldsymbol{p}_{1}, \boldsymbol{p}_{2} \in \widehat{\mathcal{P}}$, the triangle with vertices $\mathbf{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ has area $\geq\left(\kappa_{\mathcal{P}} C_{\mathcal{P}}\right)^{-1} m_{\hat{\mathcal{P}}}$. In particular, for any $T>0$ and $1 \leq j \leq \widehat{N}(T)$ we have $\widehat{\xi}_{T, j}-\widehat{\xi}_{T, j-1} \geq \min \left(\frac{1}{2},\left(\pi \kappa_{\mathcal{P}} C_{\mathcal{P}}\right)^{-1} m_{\widehat{\mathcal{P}}} T^{-2}\right)$.
(Using the last bound of Lemma 13 together with $\widehat{N}(T) \sim \pi \kappa_{\mathcal{P}} C_{\mathcal{P}} T^{2}$ as $T \rightarrow \infty$ in the limit relation (1.14) in Corollary 3, we immediately recover the fact that $F(s)=1$ for $0 \leq s \leq m_{\hat{\mathcal{P}}}$. We also remark that the condition $\mathbf{0} \in \mathcal{P}^{x}$ for all $x \in X$ is fulfilled whenever $\mathbf{0} \in \mathcal{W}$ and \mathcal{L} is a lattice, since then $H_{g} \subset \operatorname{SL}(n, \mathbb{R})$.)
Proof. Assume that $\boldsymbol{p}_{1}, \boldsymbol{p}_{2} \in \widehat{\mathcal{P}}$ are non-proportial vectors and that the triangle $\triangle\left(\mathbf{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$ has area less than $\left(\kappa_{\mathcal{P}} C_{\mathcal{P}}\right)^{-1} m_{\hat{\mathcal{P}}}$. Note that for any $\boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}^{\prime} \in \mathbb{R}^{2}$ such that $\triangle\left(\mathbf{0}, \boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}^{\prime}\right)$ has the same area and orientation as $\triangle\left(\mathbf{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$, there exists $A \in \operatorname{SL}(2, \mathbb{R})$ with $\boldsymbol{p}_{1}^{\prime}=\boldsymbol{p}_{1} A$ and $\boldsymbol{p}_{2}^{\prime}=\boldsymbol{p}_{2} A$. In particular there are some $A \in \operatorname{SL}(2, \mathbb{R})$ and $\sigma_{0} \in\left(0, m_{\widehat{p}}\right)$ such that $\boldsymbol{p}_{1} A, \boldsymbol{p}_{2} A \in$
$\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma_{0}\right)$. Now there are $\boldsymbol{y}_{1}, \boldsymbol{y}_{2} \in \mathcal{L}$ such that $\pi\left(\boldsymbol{y}_{j}\right)=\boldsymbol{p}_{j}$ and $\pi_{\mathrm{int}}\left(\boldsymbol{y}_{j}\right) \in \mathcal{W}$ for $j=1,2$, and by assumption neither $\pi_{\text {int }}\left(\boldsymbol{y}_{1}\right)$ nor $\pi_{\text {int }}\left(\boldsymbol{y}_{2}\right)$ lie in $\partial \mathcal{W}$; hence $\boldsymbol{y}_{j}\left(\begin{array}{cc}A & 0 \\ 0 & 1_{m}\end{array}\right) \in \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma_{0}\right) \times \mathcal{W}^{\circ}$ for $j=1,2$. It follows that $\#\left(\widehat{\mathcal{P}}^{x} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma_{0}\right)\right) \geq 2$ for $x=\Gamma \varphi_{g}(A) \in X$. In fact, using our assumptions on \mathcal{P} and the fact that $\mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma_{0}\right) \times \mathcal{W}^{\circ}$ is open, we have $\#\left(\widehat{\mathcal{P}}^{x^{\prime}} \cap \mathfrak{C}\left(\kappa_{\mathcal{P}}^{-1} \sigma_{0}\right)\right) \geq 2$ for all x^{\prime} in some open neighbourhood of $x=\Gamma \varphi_{g}(A)$ (cf. the proof of Lemma 10). However this violates our definition of $m_{\widehat{\mathcal{P}}}$. We have thus proved the first part of the lemma.

To prove the second statement we merely have to note that $\widehat{\xi}_{T, j}-\widehat{\xi}_{T, j-1}=(2 \pi)^{-1} \varphi\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$ for some $\boldsymbol{p}_{1} \neq \boldsymbol{p}_{2} \in \widehat{\mathcal{P}}_{T}$. If $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ are not proportional then since $\triangle\left(\mathbf{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$ has area $\frac{1}{2}\left\|\boldsymbol{p}_{1}\right\|\left\|\boldsymbol{p}_{2}\right\| \sin \varphi\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)<\frac{1}{2} T^{2} \sin \varphi\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$, the first part of the lemma implies $\varphi\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)>$ $\sin \varphi\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)>2\left(\kappa_{\mathcal{P}} C_{\mathcal{P}}\right)^{-1} m_{\widehat{\mathcal{P}}} T^{-2}$; on the other hand if $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ are proportional then necessarily $\varphi\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)=\pi$.

References

[1] M. Baake, F. Götze, C. Huck, and T. Jakobi, Radial spacing distributions from planar point sets, arXiv:1402.2818.
[2] F.P. Boca, C. Cobeli and A. Zaharescu, Distribution of lattice points visible from the origin. Comm. Math. Phys. 213 (2000), 433-470.
[3] S. Lang, Algebraic Number Theory, Springer-Verlag, New York, 1994.
[4] J. Marklof, Distribution modulo one and Ratner's theorem, Equidistribution in Number Theory, An Introduction, eds. A. Granville and Z. Rudnick, Springer 2007, pp. 217-244.
[5] J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Annals of Math. 172 (2010), 1949-2033.
[6] J. Marklof and A. Strömbergsson, Free path lengths in quasicrystals, Comm. Math. Phys. DOI 10.1007/s00220-014-2011-3, arXiv:1304.2044.
[7] Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland Publishing Co., Amsterdam, 1972.
[8] Y. Meyer, Quasicrystals, Diophantine approximation and algebraic numbers, in Beyond quasicrystals (Les Houches, 1994), pp. 3-16, Springer, Berlin, 1995.
[9] P.A.B. Pleasants, Lines and planes in 2- and 3-dimensional quasicrystals, in Coverings of discrete quasiperiodic sets, Springer Tracts Modern Phys., 180, pp. 185-225, Springer, Berlin, 2003.
[10] M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. 134 (1991) 545-607.
[11] M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235-280.
[12] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972.
[13] W. A. Veech, Siegel measures, Ann. of Math. 148 (1998), 895-944.
[14] A. Weil, Basic Number Theory, 3rd ed., Springer-Verlag, New York, 1974.
[15] Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer-Verlag, New York, 1996.

School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K.
j.marklof@bristol.ac.uk

Department of Mathematics, Box 480, Uppsala University, SE-75106 Uppsala, Sweden
astrombe@math.uu.se

[^0]: Date: April 5, 2014.
 The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 291147. J.M. is furthermore supported by a Royal Society Wolfson Research Merit Award, and A.S. is supported by a grant from the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine.

