
VISIBILITY AND DIRECTIONS IN QUASICRYSTALS

JENS MARKLOF AND ANDREAS STRÖMBERGSSON

Abstract. It is well known that a positive proportion of all points in a d-dimensional lattice
is visible from the origin, and that these visible lattice points have constant density in Rd.
In the present paper we prove an analogous result for a large class of quasicrystals, including
the vertex set of a Penrose tiling. We furthermore establish that the statistical properties
of the directions of visible points are described by certain SL(d,R)-invariant point processes.
Our results imply in particular existence and continuity of the gap distribution for directions
in certain two-dimensional cut-and-project sets. This answers a recent question of Baake et
al. [arXiv:1402.2818].

1. Introduction

A point set P ⊂ Rd has constant density in Rd if there exists θ(P) < ∞ such that, for any
D ⊂ Rd with boundary of Lebesgue measure zero,

(1.1) lim
T→∞

#(P ∩ TD)

T d
= θ(P) vol(D).

We refer to θ(P) as the density of P. It is interesting to compare the density of P with the
density of the subset of visible points given by

P̂ =
{
y ∈ P : ty /∈ P ∀t ∈ (0, 1)

}
.(1.2)

This definition assumes that the observer is at the origin 0. Note also that, by definition,

0 /∈ P̂. A classic example is the set of integer lattice points P = Zd. In this case, the set of

visible points is given by the primitive lattice points P̂ = {m ∈ Zd : gcd(m) = 1}. Both sets

have constant density with θ(P) = 1 and θ(P̂) = 1/ζ(d), where ζ(d) denotes the Riemann
zeta function.

In this paper we are interested in the visible points of a regular cut-and-project set P =
P(W,L) constructed from a (possibly affine) lattice L ⊂ Rd+m and a window set W ⊂ Rm

(see Section 2 for detailed definitions). Our first observation is the following.

Theorem 1. If P = P(W,L) is a regular cut-and-project set, then P and P̂ have constant

density with 0 < θ(P̂) ≤ θ(P).

The constant density of P is a well known fact, cf. Section 2 below. The main point of

Theorem 1 is that the visible set P̂ also has a strictly positive constant density. Although for

cut-and-project sets P with generic choices of L we have θ(P̂) = θ(P), there are important

examples with θ(P̂) < θ(P). The Penrose tilings and other cut-and-project sets which are
based on the construction in [6, Sec. 2.2] fall into this category, cf. [9].

The second result of this paper concerns the distribution of directions in P. Consider
a general point set with constant density θ(P) > 0 (P may be the visible set itself). We
write PT = P ∩ Bd

T \ {0} for the subset of points lying in the punctured open ball of radius

T , centered at the origin. The number of such points is #PT ∼ vd θ(P)T d as T → ∞,

where vd = vol(Bd
1) = πd/2/Γ(d+2

2 ) is the volume of the unit ball. For each T , we study
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the directions ‖y‖−1y ∈ Sd−1
1 with y ∈ PT , counted with multiplicity (if P = P̂ then the

multiplicity is naturally one). The asymptotics (1.1) implies that, as T → ∞, the directions

become uniformly distributed on Sd−1
1 . That is, for any set U ⊂ Sd−1

1 with boundary of measure

zero (with respect to the volume element ω on Sd−1
1 ) we have

(1.3) lim
T→∞

#{y ∈ PT : ‖y‖−1y ∈ U}
#PT

=
ω(U)

ω(Sd−1
1 )

.

Recall that ω(Sd−1
1 ) = d vd.

To understand the fine-scale distribution of the directions in PT , we consider the probability
of finding r directions in a small open disc DT (σ,v) ⊂ Sd−1

1 with random center v ∈ Sd−1
1 and

volume ω(DT (σ,v)) =
σd

θ(P)T d with σ > 0 fixed. Denote by

(1.4) NT (σ,v,P) = #{y ∈ PT : ‖y‖−1y ∈ DT (σ,v)}
the number of points in DT (σ,v). The scaling of the disc size ensures that the expectation
value for the counting function is asymptotically equal to σ. That is, for any probability
measure λ on Sd−1

1 with continuous density,

(1.5) lim
T→∞

∫

Sd−1

1

NT (σ,v,P) dλ(v) = σ.

This fact follows directly from (1.1). In the following, we denote by

(1.6) κP :=
θ(P̂)

θ(P)

the relative density of visible points in P. We will prove:

Theorem 2. Let P = P(W,L) be a regular cut-and-project set, σ > 0, r ∈ Z≥0, and let λ

be a Borel probability measure on Sd−1
1 which is absolutely continuous with respect to ω. Then

the limits

(1.7) E(r, σ,P) := lim
T→∞

λ({v ∈ Sd−1
1 : NT (σ,v,P) = r}),

(1.8) E(r, σ, P̂) := lim
T→∞

λ({v ∈ Sd−1
1 : NT (σ,v, P̂) = r})

exist, are continuous in σ and independent of λ. For σ → 0 we have

(1.9) E(0, σ,P) = 1− κP σ + o(σ),

(1.10) E(0, σ, P̂) = 1− σ + o(σ).

This theorem generalizes our previous work on directions in Euclidean lattices [5, Section 2].
The existence of the limit (1.7) has already been established in [6, Thm. A.1]. It is worthwhile
noting that, if the set of directions in P were independent and uniformly distributed random
variables in Sd−1

1 , then (1.7) would converge almost surely to the Poisson distribution

(1.11) E(r, σ) =
σr

r!
e−σ.

Although (1.10) is consistent with the Poisson distribution, we will see in Section 3 that

E(r, σ, P̂) is characterized by a certain point process in Rd which is determined by a finite-
dimensional probability space.

Theorem 2 allows us to answer a recent question of Baake et al. [1] on the existence of the gap
distribution for the directions in the class of two-dimensional cut-and-project sets considered
here. In dimension d = 2, it is convenient to identify the circle S11 with the unit interval mod
1, and represent the set of directions in PT as 1

2π arg
(
y1 + iy2) with y = (y1, y2) ∈ PT . We

label these numbers (with multiplicity) in increasing order by

−1
2 < ξT,1 ≤ ξT,2 ≤ · · · ≤ ξT,N(T ) ≤ 1

2 ,(1.12)
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where N(T ) := #PT . The analogous construction for the visible set P̂ yields the multiplicity-
free set of directions

−1
2 < ξ̂T,1 < ξ̂T,2 < · · · < ξ̂T,N̂(T ) ≤ 1

2(1.13)

where N̂(T ) := #P̂T ≤ N(T ). We also set ξT,0 = ξ̂T,0 = ξT,N(T ) − 1 = ξ̂T,N̂(T ) − 1.

Corollary 3. If P = P(W,L) is a regular cut-and-project set in dimension d = 2, there exists
a continuous decreasing function F on R≥0 satisfying F (0) = 1 and lims→∞ F (s) = 0, such
that for every s ≥ 0,

lim
T→∞

#{1 ≤ j ≤ N̂(T ) : N̂(T )(ξ̂T,j − ξ̂T,j−1) ≥ s}
N̂(T )

= F (s)(1.14)

and

lim
T→∞

#{1 ≤ j ≤ N(T ) : N(T )(ξT,j − ξT,j−1) ≥ s}
N(T )

=

{
1 if s = 0

κPF (κPs) if s > 0.
(1.15)

It follows from the properties of F (s) that the limit distribution function in (1.15) is con-
tinuous at s = 0 if and only if κP = 1.

In the special case when P = Z2, (1.14) was proved earlier by Boca, Cobeli and Zaharescu
[2], who also gave an explicit formula for the limit distribution. More generally for P any
affine lattice in R2, Corollary 3 was proved in [5, Thm. 1.3, Cor. 2.7].

Baake et al. [1] have observed numerically that the limiting gap distribution in Corollary 3
may vanish near zero. In Section 12 we will explain this hard-core repulsion between visible
directions in the case of two-dimensional cut-and-project sets constructed over algebraic num-
ber fields, including any P associated with a Penrose tiling. There is no hard-core repulsion
for typical two-dimensional cut-and-project sets. The phenomenon can be completely ruled

out in higher dimensions d ≥ 3, where we show that E(0, σ, P̂) > 1− σ for all σ > 0.
The organization of this paper is as follows. In Section 2 we recall the definition of a

cut-and-project set of a higher-dimensional lattice. In Section 3 we construct random point
processes in Rd whose realizations yield the visible points in certain SL(d,R)-invariant families
of cut-and-project sets. These point processes describe the limit distributions in Theorem 2,
cf. Theorem 4 in Section 3. This follows closely the construction in [6] for the full cut-and-
project set. An important technical tool in our approach is the Siegel-Veech formula, which is
stated and proved in Section 4. In Section 5 we describe the small-σ asymptotics of the void
distribution in (1.9) and (1.10). Sections 6–9 are devoted to the proof of Theorem 1, Sections
10 and 11 to the proofs of Theorem 2 and Corollary 3, respectively. Finally in Section 12 we
discuss the possible vanishing of the limiting gap distribution near zero.

2. Cut-and-project sets

We start by recalling the definition of a cut-and-project set in Rd from [6]. Denote by π
and πint the orthogonal projection of Rn = Rd × Rm onto the first d and last m coordinates.
We refer to Rd and Rm as the physical space and internal space, respectively. Let L ⊂ Rn

be a lattice of full rank. Then the closure of the set πint(L) is an abelian subgroup A of Rm.
We denote by A◦ the connected subgroup of A containing 0; then A◦ is a linear subspace
of Rm, say of dimension m1, and there exist b1, . . . , bm2

∈ L (m = m1 + m2) such that
πint(b1), . . . , πint(bm2

) are linearly independent in Rm/A◦ and

A = A◦ + Zπint(b1) + . . . + Zπint(bm2
).(2.1)

Given L and a bounded subset W ⊂ A with non-empty interior, we define

(2.2) P(W,L) = {π(y) : y ∈ L, πint(y) ∈ W} ⊂ Rd.

We will call P = P(W,L) a cut-and-project set, and W the window. We denote by µA the
Haar measure of A, normalized so that its restriction to A◦ is the standard m1-dimensional



4 JENS MARKLOF AND ANDREAS STRÖMBERGSSON

Lebesgue measure. IfW has boundary of measure zero with respect to µA, we will say P(W,L)
is regular. Set V = Rd ×A◦; then LV = L ∩ V is a lattice of full rank in V. Let µV = vol×µA
be the natural volume measure on Rd ×A (this restricts to the standard d+m1 dimensional
Lebesgue measure on V). It follows from Weyl equidistribution (cf. [6, Prop. 3.2]) that for any
regular cut-and-project set P and any bounded D ⊂ Rd with boundary of measure zero with
respect to Lebesgue measure,

(2.3) lim
T→∞

#{b ∈ L : π(b) ∈ P ∩ TD}
T d

= CP vol(D)

where

CP :=
µA(W)

µV(V/LV)
.(2.4)

A further condition often imposed in the quasicrystal literature is that π|L is injective (i.e.,
the map L → π(L) is one-to-one); we will not require this here. To avoid coincidences in P,
we assume throughout this paper that the window is appropriately chosen so that the map
πW : {y ∈ L : πint(y) ∈ W} → P is bijective. Then (2.3) implies

(2.5) lim
T→∞

#(P ∩ TD)

T d
= CP vol(D),

i.e., P has density θ(P) = CP . Under the above assumptions P(W,L) is a Delone set, i.e.,
uniformly discrete and relatively dense in Rd.

We furthermore extend the definition of cut-and-project sets P(W,L) to affine lattices
L = L0+x with x ∈ Rn and L0 a lattice; note that P(W,L+x) = P(W −πint(x),L)+π(x).

3. Random cut-and-project sets

Following our approach in [6], we will now, for any given regular cut-and-project set P =
P(W,L), construct two SL(d,R)-invariant random point processes on Rd which will describe
the limit distributions in Theorem 2. Let G = ASL(n,R) = SL(n,R)⋉Rn, with multiplication
law

(M, ξ)(M ′, ξ′) = (MM ′, ξM ′ + ξ′).(3.1)

Also set Γ = ASL(n,Z) ⊂ G. Choose g ∈ G and δ > 0 so that L = δ1/n(Zng), and let ϕg be
the embedding of ASL(d,R) in G given by

(3.2) ϕg : ASL(d,R) → G, (A,x) 7→ g

((
A 0
0 1m

)
, (x,0)

)
g−1.

It then follows from Ratner’s work [10], [11] that there exists a unique closed connected
subgroup Hg of G such that Γ ∩Hg is a lattice in Hg, ϕg(SL(d,R)) ⊂ Hg, and the closure of
Γ\Γϕg(SL(d,R)) in Γ\G is given by

X = Γ\ΓHg.(3.3)

Note that X can be naturally identified with the homogeneous space (Γ∩Hg)\Hg. We denote
the unique right-Hg invariant probability measure on either of these spaces by µ; sometimes
we will also let µ denote the corresponding Haar measure on Hg. For each x = Γh ∈ X we set

Px := P(W, δ1/n(Znhg))(3.4)

and denote by P̂x the corresponding set of visible points. Both sets are well defined since

πint(δ1/n(Znhg)) ⊂ A for all h ∈ Hg; in fact πint(δ1/n(Znhg)) = A for µ-almost all h ∈ Hg; cf.

[6, Prop. 3.5]. Note that Px and P̂x with x random in (X,µ) define random point processes
on Rd. The fact that ϕg(SL(d,R)) ⊂ Hg implies that these processes are SL(d,R)-invariant.
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Theorem 4. The limit distributions in Theorem 2 are given by

(3.5) E(r, σ,P) = µ({x ∈ X : #(Px ∩ C(σ)) = r})
and

(3.6) E(r, σ, P̂) = µ({x ∈ X : #(P̂x ∩ C(κ−1
P σ)) = r})

where

(3.7) C(σ) =

{
(x1, . . . , xd) ∈ Rd : 0 < x1 < 1, ‖(x2, . . . , xd)‖ <

( σd

CPvd−1

)1/(d−1)
x1

}
.

We note that relation (3.5) is a special case of [6, Thm. A.1]. The new result of the present
study is (3.6).

In [6, Section 1.4] we also consider the closed connected subgroup H̃g of G such that Γ∩H̃g is

a lattice in H̃g, ϕg(ASL(d,R)) ⊂ H̃g, and the closure of Γ\Γϕg(ASL(d,R)) in Γ\G is given by

X̃ := Γ\ΓH̃g. The unique right-H̃g invariant probability measure on X̃ is denoted by µ̃. The

point process Px in (3.4) with x random in (X̃, µ̃) is now ASL(d,R)-invariant, i.e., in addition
to the previous SL(d,R)-invariance we also have translation-invariance. The latter implies that

Px = P̂x for µ̃-almost every x ∈ X̃ . Proposition 4.5 in [6] shows that for Lebesgue-almost all

y ∈ Rd × {0} we have Hg(1n,y) = H̃g. This has the following interesting consequence.

Corollary 5. Given any regular cut-and-project set P there is a subset S ⊂ Rd of Lebesgue
measure zero such that for every y ∈ Rd \S

(3.8) E(r, σ,P + y) = E(r, σ, P̂ + y) = µ̃({x ∈ X̃ : #(Px ∩ C(σ)) = r}).
That is, all limit distributions are independent of y for Lebesgue-almost every y.

4. The Siegel-Veech formula for visible points

Throughout the remaining sections, we let P = P(W,L) be a given regular cut-and-project

set. We fix g ∈ G and δ > 0 so that L = δ1/n(Zng). In fact, by an appropriate scaling
of the length units, we can assume without loss of generality that δ = 1. This assumption
will be in force throughout the remaining sections except the last one. Hence we now have
P = P(W,Zng) and Px = P(W,Znhg) for each x = Γh ∈ X.

The following Siegel-Veech formulas will serve as a crucial technical tool in our proofs of
the main theorems.

Theorem 6. For any f ∈ L1(Rd),
∫

X

∑

q∈Px

f(q) dµ(x) = CP

∫

Rd

f(x) dx(4.1)

and ∫

X

∑

q∈P̂x

f(q) dµ(x) = κP CP

∫

Rd

f(x) dx.(4.2)

Veech has proved formulas of the above type for general SL(d,R)-invariant measures [13,
Thm. 0.12]. The proof of Theorem 6 is simpler in the present setting. Relation (4.1) was
proved in [6, Theorem 1.5]. In the present section we will prove that there exists 0 < κP ≤ 1
such that relation (4.2) holds for all f ∈ L1(Rd). We will then later establish that this κP
indeed yields the relative density defined in (1.6).

Consider the map

B 7→
∫

X
#(P̂x ∩B) dµ(x) (B any Borel subset of Rd).(4.3)
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This map defines a Borel measure on Rd, which is finite on any compact set B (by [6, Theorem
1.5]), invariant under SL(d,R), and gives zero point mass to 0 ∈ Rd. Hence up to a constant,
the measure must equal Lebesgue measure, i.e. there exists a constant κP ≥ 0 such that

∫

X
#(P̂x ∩B) dµ(x) = κPCP vol(B)(4.4)

for every Borel set B ⊂ Rd. By a standard approximation argument, this implies that (4.2)
holds for all f ∈ L1(Rd). Also κP ≤ 1 is immediate from (4.1).

It remains to verify that κP > 0. Recall that we are assuming that W has non-empty
interior W◦ in A = πint(L). Now take B to be any bounded open set in Rd which is star-
shaped with center 0 and such that (B \ {0})×W◦ contains some point in the (affine) lattice
L. Then the set of x = Γh in X for which Znhg has at least one point in (B \ {0}) ×W◦ is
non-empty and open. Note that for any such x, Px = P(W,Znhg) has a point in B \ {0},
and hence also a visible point in B \ {0}, since B is star-shaped. It follows that the left hand
side of (4.4) is positive for our set B. Therefore κP > 0, as claimed.

5. The limit distribution for small σ

From now on we take E(r, σ,P) and E(r, σ, P̂) to be defined by the relations (3.5), (3.6).
Then (1.7) holds by [6, Thm. A.1], and we will prove in Section 10 that also (1.8) holds.

In the present section we will prove that the relation (1.9),

(5.1) E(0, σ,P) = 1− κP σ + o(σ),

holds with the same κP ∈ (0, 1] as in the Siegel-Veech formula (4.2). Rel. (1.10) is then a
simple conseqence of the observation that

(5.2) E(0, σ, P̂) = E(0, κ−1
P σ,P).

To prove (5.1), first note that, for any σ > 0,

1− E(0, σ,P) = µ
({

x ∈ X : Px ∩ C(σ) 6= ∅
})

= µ
({

x ∈ X : P̂x ∩ C(σ) 6= ∅
})

≤
∫

X
#
(
P̂x ∩ C(σ)

)
dµ(x) = κPCP vol(C(σ)) = κPσ,(5.3)

where the integral was evaluated using (4.4).
On the other hand using the fact that the point process Px (x ∈ (X,µ)) is invariant under

SO(d), and P̂ ′k = P̂ ′k for every point set P ′ and every k ∈ SO(d), we have

1−E(0, σ,P) =

∫

X
A(σ,Px) dµ(x)(5.4)

with

A(σ,Px) =

∫

SO(d)
I
(
P̂x ∩ C(σ)k 6= ∅

)
dk,(5.5)

where dk is Haar measure on SO(d) normalized by
∫
SO(d) dk = 1.

We write ϕ(p, q) ∈ [0, π] for the angle between any two points p, q ∈ Rd \ {0}, as seen from
0. Also for any x ∈ X we set

σ0(Px) =
CPvd−1

d

(
tan

ϕ0(Px)

2

)d−1
(5.6)

where

ϕ0(Px) = min
{
ϕ(p, q) : p, q ∈ P̂x ∩ Bd

1 , p 6= q
}
,(5.7)

with the convention that ϕ0(Px) = π and σ0(Px) = +∞ whenever #(P̂x ∩ Bd
1) ≤ 1. These

are measurable functions on X, and ϕ0(Px) > 0 and σ0(Px) > 0 for all x ∈ X.
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Now if 0 < σ < σ0(Px) then for any two distinct points p, q ∈ P̂x ∩ Bd
1 we have

ϕ(p, q) > 2 arctan

(( σd

CPvd−1

)1/(d−1)
)
,(5.8)

and because of the definition of C(σ), (3.7), this implies that there does not exist any k ∈
SO(d) for which C(σ)k contains both p and q. Hence for 0 < σ < σ0(Px) we have (writing
e1 = (1, 0, . . . , 0) ∈ Rd)

A(σ,Px) ≥
∑

p∈P̂x∩Bd
1

∫

SO(d)
I
(
p ∈ C(σ)k

)
dk = #

(
P̂x ∩ Bd

1

)
·
∫

SO(d)
I
(
e1 ∈ C(σ)k

)
dk

=
vol(C(σ) ∩ Bd

1)

vol(Bd
1)

#
(
P̂x ∩ Bd

1

)
,(5.9)

and here

vol(C(σ) ∩ Bd
1)

vol(Bd
1)

∼ vol(C(σ))

vol(Bd
1)

=
σ

vdCP
as σ → 0.(5.10)

Hence given any numberK < (vdCP)−1, there is some σ(K) > 0 such that for all 0 < σ < σ(K)
we have

1− E(0, σ,P) =

∫

X
A(σ,Px) dµ(x) ≥ Kσ

∫

X
I
(
σ < σ0(Px)

)
#
(
P̂x ∩ Bd

1

)
dµ(x).(5.11)

Furthermore, by the Monotone Convergence Theorem and (4.4),

lim
σ→0

∫

X
I
(
σ < σ0(Px)

)
#
(
P̂x ∩ Bd

1

)
dµ(x) =

∫

X
#
(
P̂x ∩ Bd

1

)
dµ(Px) = κPCPvd.(5.12)

We thus conclude

lim inf
σ→0

1− E(0, σ,P)

σ
≥ KκPCPvd.(5.13)

The claim (5.1) follows from (5.3) and the fact that (5.13) holds for every K < (vdCP)−1.

6. Lower bound on the density of visible points

Combining (5.1) and (1.7) (recall that the latter was proved in [6, Thm. A.1]), we get the

following lower bound on the density θ(P̂) = κPCP in Theorem 1:

Lemma 7. Let U be any subset of Sd−1
1 with boundary of measure zero (w.r.t. ω), and let

D = {v ∈ Rd : 0 < ‖v‖ < 1, ‖v‖−1v ∈ U} be the corresponding sector in Bd
1. Then

lim inf
T→∞

#(P̂ ∩ TD)

T d
≥ κPCP vol(D).(6.1)

Proof. We may assume ω(U) > 0, since otherwise vol(D) = 0 and the lemma is trivial. Let

ε > 0 be given, and let U−
ε ⊂ Sd−1

1 be the “ε-thinning” of U, that is

U
−
ε =

{
v ∈ Sd−1

1 :
[
ϕ(w,v) < ε ⇒ w ∈ U

]
, ∀w ∈ Sd−1

1

}
.(6.2)

(Recall that ϕ(w,v) ∈ [0, π] is the angle between w and v as seen from 0.) Then ω(U−
ε ) →

ω(U) as ε → 0, since U by assumption is a Jordan measurable subset of Sd−1
1 . From now on

we assume that ε is so small that ω(U−
ε ) > 0. We let λ be ω restricted to U

−
ε and normalized

to be a probability measure; thus λ(B) = ω(U−
ε )

−1ω(B ∩ U
−
ε ) for any Borel subset B ⊂ Sd−1

1 .

Now note that, by the definitions of NT (σ,v,P) and P̂, for any σ > 0, T > 0 and v ∈ Sd−1
1

we have NT (σ,v,P) > 0 if and only if there is some y ∈ P̂ ∩Bd
T such that ‖y‖−1y ∈ DT (σ,v).

Furthermore, if T is larger than a certain constant depending on σ,P, ε, then DT (σ,v) ⊂ U
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for every v ∈ U
−
ε , meaning that ‖y‖−1y ∈ DT (σ,v) implies y ∈ R>0D. Hence for such T and

σ we have

λ({v ∈ Sd−1
1 : NT (σ,v,P) > 0}) = λ

({
v ∈ Sd−1

1 :
[
∃y ∈ P̂ ∩ Bd

T : ‖y‖−1y ∈ DT (σ,v)
]})

≤
∑

y∈P̂∩TD

λ
({

v ∈ Sd−1
1 : ‖y‖−1y ∈ DT (σ,v)

})
≤ ω(DT (σ,e1))

ω(U−
ε )

·#
(
P̂ ∩ TD

)

=
σd

ω(U−
ε )CPT d

·#
(
P̂ ∩ TD

)
.(6.3)

Hence, letting T → ∞ and applying (1.7) we have, for any fixed σ > 0,

lim inf
T→∞

#P̂ ∩ TD
T d

≥ ω(U−
ε )CP
d

· 1− E(0, σ,P)

σ
.(6.4)

Letting σ → 0 in the right hand side and using (5.1), this gives

lim inf
T→∞

#P̂ ∩ TD
T d

≥ κPCP
ω(U−

ε )

d
.(6.5)

Finally letting ε → 0 and using ω(U)/d = vol(D) we obtain the statement of the lemma. �

7. Continuity in the space of cut-and-project sets

Next, in Lemma 9 and Lemma 10, we will prove that for almost all x ∈ X, both Px and

P̂x vary continuously as we perturb x.

Lemma 8. For any m ∈ Rn, if π(mhg) 6= 0 for some h ∈ Hg then π(mhg) 6= 0 for µ-almost
all h ∈ Hg. Similarly, for any m,n ∈ Rn, if dimSpan{π(nhg), π(mhg)} = 2 for some h ∈ Hg

then dimSpan{π(nhg), π(mhg)} = 2 for µ-almost all h ∈ Hg.

Proof. Hg is a connected, real-analytic manifold; hence any real-analytic function on Hg which
does not vanish identically is non-zero almost everywhere. The first part of the lemma follows
by applying this principle to the coordinate functions h 7→ π(mhg) · ej for j = 1, . . . , d. The
second part of the lemma follows by applying the same principle to the functions

h 7→ (π(mhg) · ei)(π(nhg) · ej)− (π(mhg) · ej)(π(nhg) · ei),(7.1)

for 1 ≤ i < j ≤ d. �

Lemma 9. For µ-almost every x ∈ X, and for every bounded open set U ⊂ Rd with Px∩∂U =
∅, there is an open set Ω ⊂ X with x ∈ Ω such that #(Px′ ∩ U) = #(Px ∩ U) for all x′ ∈ Ω.

Proof. For each m ∈ Zn, by an argument as in Lemma 8 we either have mhg 6= 0 for
almost all h ∈ Hg or else mhg = 0 for all h ∈ Hg. By taking h = 1 we see that the
latter property can hold for at most one m ∈ Zn, and if it holds then we necessarily have
m = 0g−1, and Hg ⊂ g SL(n,R)g−1. If such an exceptional m exists we call it mE , and we
set (Zn)′ := Zn \ {mE}; otherwise we set (Zn)′ := Zn.

Now consider the following two subsets of Hg:

S1 =
{
h ∈ Hg : (Zn)′hg ∩ (Rd × ∂W) 6= ∅

}
;(7.2)

S2 =
{
h ∈ Hg : ∃ℓ1 6= ℓ2 ∈ Znhg ∩ π−1

int (W) satisfying π(ℓ1) = π(ℓ2)
}
.(7.3)

We have µ(S1) = 0, by [6, Theorem 5.1]. Also µ(S2) = 0, by [6, Prop. 3.7] applied to W◦. We
will prove the lemma by showing that for every h ∈ Hg \ (S1 ∪ S2), the point x = Γh ∈ X has
the property described in the lemma.

Thus let h ∈ Hg \ (S1 ∪ S2) be given, set x = Γh ∈ X, and let U be an arbitrary bounded

open subset of Rd with boundary disjoint from Px = P(W,Znhg). Assume that the desired
property does not hold. Then there is a sequence h1, h2, . . . in Hg tending to h such that

#(P(W,Znhjg) ∩ U) 6= #(P(W,Znhg) ∩ U), ∀j.(7.4)
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Let F be the (finite) set

F =
{
m ∈ Zn : mhg ∈ U ×W

}
.(7.5)

Note that mhg ∈ U × W◦ for every m ∈ F ∩ (Zn)′, since h /∈ S1. But U × W◦ is open;
hence by continuity we also have mh′g ∈ U ×W◦ for every h′ ∈ Hg sufficiently near h and
all m ∈ F ∩ (Zn)′. Note also that if the exceptional point mE exists and belongs to F then
0 = mEh

′g ∈ U ×W for all h′ ∈ Hg. Hence, for every h′ ∈ Hg near h we have

P(W,Znh′g) ⊃ {π(mh′g) : m ∈ F}.(7.6)

Because of h /∈ S2, the points π(mhg) for m ∈ F are pairwise distinct. By continuity it
then also follows that for any h′ ∈ Hg sufficiently near h, the points π(mh′g) for m ∈ F are
pairwise distinct. Hence #(P(W,Znhg)∩U) = #F and #(P(W,Znh′g)∩U) ≥ #F for every
h′ near h. Therefore in (7.4), the left hand side must be larger than #F , for all large j. Hence
for each large j there is some m ∈ Zn \ F such that mhjg ∈ U ×W. But for any compact

C ⊂ Hg the set ∪h′∈C(U ×W)g−1h′−1 is bounded and hence has finite intersection with Zn.
Therefore there is a bounded number of possibilities for m as j varies, and by passing to a
subsequence we may assume that m is independent of j.

Now for our fixed m ∈ Zn \F we have mhjg ∈ U×W for all j, but mhjg → mhg /∈ U×W
as j → ∞; this forces mhg ∈ ∂(U ×W), and it also implies that we cannot have m = mE .
But πint(mhg) /∈ ∂W since h /∈ S1, and thus we must have π(mhg) ∈ ∂U . Note also that
πint(mhg) cannot belong to the exterior of W, since then the same would hold for πint(mhjg)
for j large, contradicting mhjg ∈ U ×W. Hence πint(mhg) must belong to the interior of W;
therefore π(mhg) ∈ Px = P(W,Znhg). This contradicts our assumption that Px is disjoint
from ∂U , and so the lemma is proved. �

Lemma 10. For µ-almost every x ∈ X, and for every bounded open set U ⊂ Rd with P̂x ∩
∂U = ∅, there is an open set Ω ⊂ X with x ∈ Ω such that #(P̂x′ ∩ U) = #(P̂x ∩ U) for all
x′ ∈ Ω.

Proof. Let mE , (Z
n)′, S1 and S2 be as in the proof of Lemma 9. Also set

S3 =
{
h ∈ Hg : ∃m ∈ Zn, h′ ∈ Hg satisfying π(mhg) = 0, π(mh′g) 6= 0

}

S4 =
{
h ∈ Hg : ∃m,n ∈ Zn, h′ ∈ Hg satisfying dimSpan{π(nhg), π(mhg)} ≤ 1

and dimSpan{π(nh′g), π(mh′g)} = 2
}
.

Using Lemma 8 and the fact that Zn is countable, we have µ(S3) = µ(S4) = 0.
Now let h ∈ Hg \ (S1 ∪ S2 ∪ S3 ∪ S4) be given, set x = Γh ∈ X, and let U be an arbitrary

bounded open subset of Rd with boundary disjoint from P̂x = P̂(W,Znhg). Assume that
there is a sequence h1, h2, . . . in Hg tending to h such that

#(P̂(W,Znhjg) ∩ U) 6= #(P̂(W,Znhg) ∩ U), ∀j.(7.7)

We will show that this leads to a contradiction, and this will complete the proof of the lemma
(cf. the proof of Lemma 9).

As an initial reduction, let us note that we may assume Px∩∂U = ∅. Indeed, recall that Px

is locally finite (cf. [6, Prop. 3.1]); hence the set A = Px∩∂U is certainly finite. Also every point

in A is invisible in Px, since we are assuming P̂x∩∂U = ∅. If A 6= ∅ then fix r > 0 so small that
(p+Bd

2r)∩Px = {p} for each p ∈ A, and set U ′ = U ∪(∪p∈A(p+Bd
r)) and U ′′ = U \(∪p∈A(p+

Bd
r )). These are bounded open sets satisfying #(P̂x ∩ U ′) = #(P̂x ∩ U ′′) = #(P̂x ∩ U) and

Px∩∂U ′ = Px∩∂U ′′ = ∅. For each j we must have either #(P̂(W,Znhjg)∩U ′) > #(P̂x∩U)

or #(P̂(W,Znhjg) ∩ U ′′) < #(P̂x ∩ U), because of U ′′ ⊂ U ⊂ U ′ and (7.7). Hence after
replacing U by U ′ or U ′′, and passing to a subsequence, we are in a situation where (7.7)
holds, and also Px ∩ ∂U = ∅.

Now take F as in (7.5); it then follows from the proof of Lemma 9 that #(Px ∩ U) = #F
and also #(P(W,Znhjg) ∩ U) = #F for every large j. Hence (7.7) implies that for every
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large j there is some m ∈ F such that either π(mhjg) is visible in P(W,Znhjg) but π(mhg)
is invisible in Px, or the other way around. Since F is finite we may assume, by passing to a
subsequence, that m is independent of j.

First assume that π(mhg) is invisible in Px but π(mhjg) is visible in P(W,Znhjg) for every
large j. In particular then π(mhjg) 6= 0 for large j, and since h /∈ S3 this implies π(mhg) 6=
0. The invisibility of π(mhg) means that there exist n ∈ Zn and 0 < t < 1 such that
πint(nhg) ∈ W and π(nhg) = tπ(mhg). Now πint(nhg) ∈ W and h /∈ S1 force πint(nhg) ∈
W◦; hence πint(nhjg) ∈ W◦ for all large j and so π(nhjg) ∈ P(W,Znhjg). On the other hand
dimSpan{π(nhg), π(mhg)} = 1 together with h /∈ S4 imply dimSpan{π(nh′g), π(mh′g)} ≤ 1
for all h′ ∈ Hg. Using also hj → h, π(mhg) 6= 0 and 0 < t < 1, this implies that for every
large j there is 0 < tj < 1 such that π(nhjg) = tjπ(mhjg). Hence π(mhjg) is invisible in
P(W,Znhjg) for every large j, contradicting our earlier assumption.

It remains to treat the case when π(mhg) is visible in Px but π(mhjg) is invisible in
P(W,Znhjg) for every large j. Then for every large j there exist n ∈ Zn and 0 < tj < 1
such that πint(nhjg) ∈ W and π(nhjg) = tjπ(mhjg). It is easily seen that there are only a
finite number of possibilities for n, and hence by passing to a subsequence we may assume
that n is independent of j. Since π(mhg) is visible in Px we have π(mhg) 6= 0; hence also
π(mhjg) 6= 0 for all large j, and this forces n 6= m. Also π(mhjg) → π(mhg) 6= 0 and
tjπ(mhjg) = π(nhjg) → π(nhg) imply that t = limj→∞ tj ∈ [0, 1] exists, and π(nhg) =
tπ(mhg). Using h /∈ S1 and πint(nhjg) ∈ W it follows that also πint(nhg) ∈ W and so
π(nhg) ∈ Px. Using h /∈ S3 and π(nhjg) 6= 0 for j large, it follows that π(nhg) 6= 0;
furthermore using h /∈ S2 we have π(nhg) 6= π(mhg). Hence 0 < t < 1, and so π(mhg) is
invisible in Px, contradicting our earlier assumption. �

8. Upper bound on the density of visible points

We are now in position to prove an upper bound complementing Lemma 7.

Lemma 11. We have lim
T→∞

#(P̂ ∩ Bd
T )

T d
= κPCPvd.

Proof. For any P ′ ⊂ Rd, let us write P̃ ′ = P ′ \ P̂ ′ for the set of invisible points in P ′. Define
F : X → Z≥0 through

F (x) = lim inf
x′→x

#(P̃x′ ∩ Bd
1).(8.1)

Then F is lower semicontinuous by construction. Hence by [6, Thm. 4.1] and the Portmanteau
theorem (cf., e.g., [15, Thm. 1.3.4(iv)]),

lim inf
R→∞

∫

SO(d)
F (Γϕg(kΦ

logR)) dk ≥
∫

X
F dµ,(8.2)

with

Φt =

(
e−(d−1)t 0

t0 et1d−1

)
∈ SL(d,R).(8.3)

Now in the left hand side of (8.2), we use the fact that for any x = Γϕg(T ), T ∈ SL(d,R),
we have

F (x) ≤ #(P̃x ∩ Bd
1) = #(P̃(W,Znϕg(T )g) ∩ Bd

1) = #(P̃ ∩ Bd
1T

−1).(8.4)

In the right hand side of (8.2) we note that if x = Γh has both the continuity properties

described in Lemmata 9 and 10, and if furthermore Px ∩ Sd−1
1 = ∅, then in fact F (x) =

#(P̃x∩Bd
1). But these conditions are fulfilled for µ-almost all x ∈ X (concerning Px∩Sd−1

1 = ∅,
use [6, Thm. 1.5]). Hence it follows from (8.2) that

lim inf
R→∞

∫

SO(d)
#
(
P̃ ∩ Bd

1Φ
− logRk−1

)
dk ≥

∫

X
#
(
P̃x ∩ Bd

1

)
dµ(x) = (1− κP)CPvd,(8.5)
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where the last equality holds by Theorem 6.
But exactly as in the proof of Theorem 5.1 in [6], we have for any R > 1

∫

SO(d)
#(P̃ ∩ B1Φ

− logRk−1) dk =
∑

p∈P̃

AR(‖p‖) =
∫ ∞

0
AR(τ) dÑ (τ) = −

∫ ∞

0
Ñ(τ) dAR(τ),

(8.6)

where

Ñ(T ) = #(P̃ ∩ Bd
T ),(8.7)

and AR is the continuous and decreasing function from R≥0 to [0, 1] given by AR(0) = 1 and

AR(τ) =
ω
(
Sd−1
1 ∩ τ−1Bd

1Φ
− logR

)

ω(Sd−1
1 )

for τ > 0.(8.8)

(Thus AR(τ) = 1 for 0 ≤ τ ≤ R−1 and AR(τ) = 0 for τ ≥ Rd−1.) Hence (8.5) says that

lim inf
R→∞

∫ ∞

0
Ñ(τ)

(
−dAR(τ)

)
≥ C ′ := (1− κP)CPvd.(8.9)

In view of (2.5) and Lemma 7 (with D = Bd
1), the statement of the present lemma is

equivalent with lim infτ→∞ τ−dÑ(τ) ≥ C ′. Assume that this is false. Then there is some

η > 0 and a sequence 1 < τ1 < τ2 < · · · with τj → ∞ such that Ñ(τj) < (1 − η)C ′τdj for all

j. Using the fact that Ñ(τ) is an increasing function of τ we see that by shrinking η > 0 if

necessary, we may actually assume that Ñ(τ) < (1 − η)C ′τd for all τ ∈ [(1 − η)τj , τj] and all

j. By Lemma 7 and (2.5) we have lim supτ→∞ τ−dÑ(τ) ≤ C ′; thus for any given ε > 0 there

is some τ0 > 0 such that Ñ(τ) ≤ (1+ ε)C ′τd for all τ ≥ τ0. Now for any j with (1− η)τj > τ0,

and any R > τ
1/(d−1)
j :

∫ ∞

0
Ñ(τ)

(
−dAR(τ)

)
≤

∫ τ0

0
Ñ(τ)(−dAR(τ)) + (1 + ε)C ′

∫ Rd−1

τ0

τd (−dAR(τ))(8.10)

− (ε+ η)C ′
∫ τj

(1−η)τj

τd (−dAR(τ)).

Here the sum of the first two terms tends to (1 + ε)C ′ as R → ∞, as in [6, (5.11)-(5.13)].

Furthermore, if we choose R = (2τj)
1/(d−1) and let j → ∞ then

∫ τj

(1−η)τj

τd (−dAR(τ)) =
d

ω(Sd−1
1 )

vol
(
Bd
1Φ

− logR ∩ Bd
1

2
Rd−1 \ Bd

1

2
(1−η)Rd−1

)
(8.11)

→ 2vd−1

vd

∫ 1/2

(1−η)/2
(1− x2)(d−1)/2 dx.

Hence we conclude that there is a constant c(η) > 0, independent of ε, such that

lim inf
R→∞

∫ ∞

0
Ñ(τ)

(
−dAR(τ)

)
≤ (1 + ε− c(η))C ′.(8.12)

Letting now ε → 0 we run into a contradiction against (8.9). This concludes the proof of the
lemma. �

9. Proof of Theorem 1

Combining Lemma 7 and Lemma 11 we can now complete the proof of Theorem 1. First
let U, D be as in Lemma 7. Then by Lemma 7 applied to Sd−1

1 \U,

lim inf
T→∞

#(P̂ ∩ Bd
T \ TD)

T d
≥ κPCP

(
vd − vol(D)

)
.(9.1)



12 JENS MARKLOF AND ANDREAS STRÖMBERGSSON

Combining this with Lemma 11 we get

lim sup
T→∞

#(P̂ ∩ TD)

T d
= lim sup

T→∞

(
#(P̂ ∩ Bd

T )

T d
− #(P̂ ∩ Bd

T \ TD)

T d

)
≤ κPCP vol(D).(9.2)

Combining this with Lemma 7 (applied to U itself) we conclude

lim
T→∞

#(P̂ ∩ TD)

T d
= κPCP vol(D).(9.3)

By a scaling and subtraction argument it follows that (9.3) is true more generally for any
D ∈ F , where F is the family of sets of the form D = {v ∈ Rd : r1 ≤ ‖v‖ < r2, v ∈ ‖v‖U},
for any 0 ≤ r1 < r2 and any U ⊂ Sd−1

1 with ω(∂U) = 0.
Now let D be an arbitrary subset of Rd with boundary of measure zero. Note that the

validity of (9.3) does not change if we replace D by D ∪ {0} or by D \ {0}. The proof of
Theorem 6 is now completed by approximating D ∪ {0} from above and D \ {0} from below
by finite unions of sets in F .

10. Proof of Theorem 2

Recall that (1.7) was proved in [6, Thm. A.1] and we have proved (1.9) and (1.10) in

Section 5. Also the continuity of E(r, σ,P) and E(r, σ, P̂) with respect to σ is immediate from
(3.5), (3.6) combined with Theorem 6. Hence it remains to prove (1.8).

Thus let λ be a Borel probability measure on Sd−1
1 which is absolutely continuous with

respect to ω, and let σ > 0 and r ∈ Z≥0. Let us fix, once and for all, a map K : Sd−1
1 → SO(d)

such that vK(v) = e1 = (1, 0, . . . , 0) for all v ∈ Sd−1
1 ; we assume that K is smooth when

restricted to Sd−1
1 minus one point, cf. [5, Footnote 3, p. 1968]. Recall the definitions of C(σ)

and Φt in (3.7) and (8.3).
On verifies that if σ′, σ′′, α are any fixed numbers satisfying 0 < σ′ < σ < σ′′ and

σ′/σ < α < 1, then for any v ∈ Sd−1
1 and all sufficiently large T , the set of y ∈ Bd

T \ {0}
satisfying ‖y‖−1y ∈ DT (κ

−1
P σ,v) is contained in C(κ−1

P σ′′)Φ−(log T )/(d−1)K(v)−1, and contains

C(κ−1
P σ′)Φ−(log(αT ))/(d−1)K(v)−1. It follows that

λ
({

v ∈ Sd−1
1 : #

(
P̂ ∩ C(κ−1

P σ′′)Φ−(log T )/(d−1)K(v)−1
)
≤ r

})

≤ λ
({

v ∈ Sd−1
1 : NT (σ,v, P̂) ≤ r

})
(10.1)

≤ λ
({

v ∈ Sd−1
1 : #

(
P̂ ∩ C(κ−1

P σ′)Φ−(log(αT ))/(d−1)K(v)−1
)
≤ r

})
.

Recalling the definition of P = P(W,Zng) we see that P̂A = P̂(W,Znϕg(A)g) for any
A ∈ SL(d,R). Hence if we define

E(σ, r) =
{
x ∈ X : #

(
P̂x ∩ C(κ−1

P σ)
)
≤ r

}
,(10.2)

then the left hand side in (10.1) equals

λ
({

v ∈ Sd−1
1 : Γϕg

(
K(v)Φ(log T )/(d−1)

)
∈ E(σ′′, r)

})
(10.3)

Hence by [6, Thm. 4.1] and the Portmanteau theorem:

lim inf
T→∞

λ
({

v ∈ Sd−1
1 : NT (σ,v, P̂) ≤ r

})
≥ µ

(
E(σ′′, r)◦

)
= µ

(
E(σ′′, r)

)
.(10.4)

Here the last equality is proved by using Lemma 10 with U = C(κ−1
P σ′′), and noticing that

Theorem 6 implies that P̂x∩∂U = ∅ for µ-almost all x ∈ X. Similarly, using the right relation
in (10.1), we obtain

lim sup
T→∞

λ
({

v ∈ Sd−1
1 : NT (σ,v, P̂) ≤ r

})
≤ µ

(
E(σ′, r)

)
= µ

(
E(σ′, r)

)
.(10.5)



VISIBILITY AND DIRECTIONS IN QUASICRYSTALS 13

Note that E(σ′′, r) ⊂ E(σ, r) ⊂ E(σ′, r), since C(κ−1
P σ′′) ⊃ C(κ−1

P σ) ⊃ C(κ−1
P σ′). Also, if x

lies in E(σ, r) but not in E(σ′′, r), then P̂x must have some point in C(κ−1
P σ′′) \ C(κ−1

P σ), and
so by Theorem 6,

µ
(
E(σ, r)

)
− µ

(
E(σ′′, r)

)
≤ κPCP vol

(
C(κ−1

P σ′′) \ C(κ−1
P σ)

)
.(10.6)

Similarly

µ
(
E(σ′, r)

)
− µ

(
E(σ, r)

)
≤ κPCP vol

(
C(κ−1

P σ) \ C(κ−1
P σ′)

)
.(10.7)

Now by taking σ′, σ′′ sufficiently near σ, the right hand sides of (10.6) and (10.7) can be made
as small as we like. Hence from (10.4) and (10.5) we obtain in fact

lim
T→∞

λ
({

v ∈ Sd−1
1 : NT (σ,v, P̂) ≤ r

})
= µ

(
E(σ, r)

)
= µ

({
x ∈ X : #

(
P̂x ∩ C(κ−1

P σ)
)
≤ r

})
.

(10.8)

Note here that the right hand side is the same as
∑r

r′=0E(r, σ, P̂); cf. (3.6). Hence since (10.8)
has been proved for arbitrary r ≥ 0, also (1.8) holds for arbitrary r ≥ 0, and we are done.

11. Proof of Corollary 3

It follows from Theorem 2 and a general statistical argument (cf. e.g. [4]) that if we define
F (0) = 0 and

F (s) = − d

ds
E(0, s, P̂),(11.1)

then the limit relation (1.14) holds at each point s ≥ 0 where F (s) is defined. In fact the

function s 7→ E(0, s, P̂) is convex; hence F (s) exists for all s > 0 except at most a countable
number of points, and is continuous at each point where it exists. Also F (s) is decreasing, and
satisfies lims→0+ F (s) = 1 = F (0) (cf. (1.10)) and lims→∞ F (s) = 0. Note also that (1.15) is

an immediate consequence of (1.14), the definition of ξ̂T,j and the fact that N(T ) ∼ κ−1
P N̂(T )

as T → ∞ (cf. Theorem 1 and (1.6)).
It now only remains to prove that F (s) is continuous, or equivalently that the derivative

in (11.1) exists for every s > 0. Assume the contrary, and let s0 > 0 be a point where the
derivative does not exist. By convexity, both the left and right derivative exist at s0; thus

− lim
s→s−

0

E(0, s0, P̂)− E(0, s, P̂)

s0 − s
> − lim

s→s+
0

E(0, s, P̂)− E(0, s0, P̂)

s− s0
≥ 0.(11.2)

In dimension d = 2, using the fact that the point process x 7→ P̂x is invariant under(
1 r
0 1

)
∈ SL(2,R) for any r ∈ R, it follows that the formula (3.5) holds with C(σ) replaced by

C(a, a+ σ) for any a ∈ R, where

C(a1, a2) =
{
y = (y1, y2) ∈ R2 : 0 < y1 < 1,

2

κPCP
a1y1 < y2 <

2

κPCP
a2y1

}

In particular, for any 0 < s < s′ and a ∈ R,

E(0, s, P̂)− E(0, s′, P̂) = µ
({

x ∈ X : P̂x ∩ C(a, a+ s) = ∅, P̂x ∩ C(a, a+ s′) 6= ∅
})

.(11.3)

For given x ∈ X, we order the numbers

κPCP
2

· y2
y1

for y = (y1, y2) ∈ P̂x ∩ ((0, 1) × R>0)

as 0 < λx,1 < λx,2 < . . .. We also set λx,0 = 0. Taking s′ = s0 > s in (11.3), integrating over
a ∈ (0, a0) for some fixed a0 > 0, and using Fubini’s Theorem, we obtain

a0
(
E(0, s, P̂)−E(0, s0, P̂)

)
≤

∫

X
(s0 − s)#

{
j ≥ 0 : λx,j+1 − λx,j > s, λx,j+1 < a0 + s0

}
dµ(x).
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Hence

−a0 lim
s→s−

0

E(0, s0, P̂)− E(0, s, P̂)

s0 − s
≤

∫

X
#
{
j ≥ 0 : λx,j+1 − λx,j ≥ s0, λx,j+1 < a0 + s0

}
dµ(x).

(11.4)

Similarly, replacing s by s0 and s′ by s in (11.3), we obtain

−a0 lim
s→s+

0

E(0, s, P̂)− E(0, s0, P̂)

s− s0
≥

∫

X
#
{
j ≥ 0 : λx,j+1 − λx,j > s0, λx,j+1 < a0 + s0

}
dµ(x).

(11.5)

It follows from (11.2), (11.4) and (11.5) that there is a set A ⊂ X with µ(A) > 0 such that
for every x ∈ A, there is some j ≥ 0 such that λx,j+1 − λx,j = s0 and λx,j < a0. Note that
λx,1 6= s0 for µ-almost all x ∈ X, by Theorem 6 applied with f as the characteristic function
of the line y2 = s0

2
κPCP

y1 in R2. Hence after removing a null set from A, we have for each

x ∈ A that P̂x contains a pair of points y = (y1, y2) and y′ = (y′1, y
′
2) satisfying

0 < y1, y
′
1 < 1,

y′2
y′1

− y2
y1

=
2

κPCP
s0, 0 <

y2
y1

<
2

κPCP
a0.

However this is easily seen to violate the SL(2,R)-invariance of the point process x 7→ P̂x.

For example, for each 1
2 ≤ λ ≤ 1, because of the invariance under

(√
λ 0
0 1/

√
λ

)
, there is a subset

Aλ ⊂ X with µ(Aλ) = µ(A) > 0 such that for each x ∈ Aλ, P̂x contains a pair of points
y = (y1, y2) and y′ = (y′1, y

′
2) satisfying

0 < y1, y
′
1 <

√
λ,

y′2
y′1

− y2
y1

=
2

κPCP

s0
λ
, 0 <

y2
y1

<
2

κPCP

a0
λ
.

Let R be the rectangle (0, 1)× (0, 4
κPCP

(a0+ s0)) in R2. By taking N sufficiently large we can

ensure that the set XR,N := {x ∈ X : #(P̂x ∩R) ≤ N} has measure µ(XR,N ) ≥ 1− 1
2µ(A).

It follows that µ(Aλ ∩XR,N ) ≥ 1
2µ(A) for each 1

2 ≤ λ ≤ 1, and so if Λ is any infinite subset

of [12 , 1] then the integral
∫
XR,N

∑
λ∈Λ I(x ∈ Aλ) dµ(x) is infinite. On the other hand the

definition of XR,N implies that
∑

λ∈Λ I(x ∈ Aλ) ≤
(
N
2

)
for each x ∈ XR,N .

We have thus reached a contradiction, and we conclude that (11.2) cannot hold, i.e. F (s)
is continuous for all s ≥ 0.

12. Vanishing near zero of the gap distribution

The gap distribution obtained in Corollary 3 may sometimes vanish near zero. This phe-
nomenon was noted numerically in [1] in several examples. In the case when P is a lattice,
this vanishing is well understood; cf. [2], [5].

Let P = P(W,L) be a regular cut-and-project set. We define mP̂ ≥ 0 to be the supremum

of all σ ≥ 0 with the property that #(P̂x ∩ C(κ−1
P σ)) ≤ 1 for (µ-)almost all x ∈ X. Then the

computation in (5.3) (together with (5.2)) shows that

E(0, σ, P̂)

{
= 1− σ when 0 ≤ σ ≤ mP̂
> 1− σ when σ > mP̂ .

(12.1)

We note that if d ≥ 3 then mP̂ = 0, because of the SL(d,R)-invariance and the fact that

SL(d,R) acts transitively on pairs of non-proportional vectors in Rd \ {0} when d ≥ 3.
Let us now assume d = 2. Note that by (12.1) and the discussion at the beginning of Sec.

11, the function F in Corollary 3 satisfies

F (s)

{
= 1 if 0 ≤ s ≤ mP̂
< 1 if s > mP̂ .
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In other words, mP̂ is the largest number with the property that the limiting gap distribution
obtained in Corollary 3 is supported on the interval [mP̂ ,∞). In particular, the support of
the limiting gap distribution is separated from 0 if and only if mP̂ > 0.

Let us also note that if d = 2, m ≥ 1, and L is a “generic” lattice or affine lattice, so
that either Hg = SL(n,R) or Hg = G = ASL(n,R), then we have mP̂ = 0, again using the
transitivity of the action of SL(n,R) on pairs of non-proportional vectors in Rn\{0} for n ≥ 3.

On the other hand, we will now recall (for general d) a standard construction of cut-and-
project sets using algebraic number theory, which can be used to produce several of the most
well-known quasicrystals (cf., e.g., [9]; see also [7, Ch. II, Prop. 6] and [8, Thm. 6]). We will
see that in special cases with d = 2, this construction leads to quasicrystals for which mP̂ > 0.

We follow [6, Sec. 2.2]. Let K be a totally real number field of degree N ≥ 2 over Q, let
OK be its subring of algebraic integers, and let π1, . . . , πN be the distinct embeddings of K
into R. We will always view K as a subset of R via π1; in other words we agree that π1 is
the identity map. Fix d ≥ 1 and set n = dN . By abuse of notation we write πj also for the

coordinate-wise embedding of Kd into Rd, and for the entry-wise embedding of Md(K) (the
algebra of d× d matrices with entries in K) into Md(R). Let L be the lattice in Rn = (Rd)N

given by

L = Ld
K :=

{
(x, π2(x), . . . , πN (x)) : x ∈ Od

K

}
.(12.2)

As usual we set m = n − d = (N − 1)d, let π and πint be the projections of Rn = (Rd)N =
Rd ×Rm onto the first d and last m coordinates. It follows from [14, Cor. 2 in Ch. IV-2] that
πint(L) is dense in Rm, i.e. we have A = Rm and V = Rn in the present situation. Hence
the window W should be taken as a subset of Rm, and we consider the cut-and-project set
P(W,L) ⊂ Rd.

Choose δ > 0 and g ∈ SL(n,R) such that

L = δ1/nZng.(12.3)

In fact

δ = |DK |d/2,(12.4)

where DK is the discriminant of K; cf., e.g., [3, Ch. V.2, Lemma 2]. As proved in [6, Sec.
2.2.1], in this situation we have

Hg = g SL(d,R)Ng−1;(12.5)

where SL(d,R)N is embedded as a subgroup of G = ASL(n,R) through

(A1, . . . , AN ) 7→
(
diag[A1, . . . , AN ],0

)
,(12.6)

where diag[A1, . . . , AN ] is the block matrix whose diagonal blocks are A1, . . . , AN in this order,
and all other blocks vanish.

Lemma 12. Let P = P(W,L) be a regular cut-and-project set with L as in (12.2), and with
d = N = 2 (thus K is a real quadratic number field). Let ε > 1 be the fundamental unit of
OK , and set R = sup{‖w‖ : w ∈ W}. Then

mP̂ ≥ κPCPδ

(ε2 + ε−2)2R2
.(12.7)

Proof. Let σ > 0 and x ∈ X be given and assume that #(P̂x ∩ C(κ−1
P σ)) ≥ 2. It suffices

to prove that we must then have σ ≥ κPCPδ
(ε2+ε−2)2R2 . The area of C(κ−1

P σ) equals r2 where

r :=
√

σ
κPCP

; hence there is some A ∈ SL(2,R) which maps C(κ−1
P σ) to the open triangle

Cr := {x ∈ R2 : 0 < x1 < r, |x2| < x1}. Take (A1, A2) ∈ SL(2,R)2 (embedded in G as

in (12.6)) so that x = Γg(A1, A2)g
−1. Set Ã = (A1A,A2); then PxA = P(W,LÃ). We set
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γ = diag[ε−k, ε−k, εk, εk] ∈ SL(4,R), where k is an integer which we will choose below. Then

LÃ = LγÃ = LÃγ, by (12.2) and since Ã is block diagonal. Hence

PxA = P(W,LÃ) = P(W,LÃγ) = ε−kP(ε−kW,LÃ).

Now #(P̂xA ∩ Cr) ≥ 2 and thus LÃ contains two points in (εkCr) × (ε−kW) which have
non-proportional images under π (the projection onto the physical space R2). In other words,
there exist x,x′ ∈ O2

K ⊂ R2 which are linearly independent over R (thus also over K) such

that b1 = (x,x)Ã and b2 = (x′,x′)Ã lie in (εkCr) × (ε−kW). Here we write x 7→ x for the

nontrivial automorphism of K. It follows that also b3 = (εx, εx)Ã and b4 = (εx′, εx′)Ã lie
in (εk+1

Cr)× (ε−k−1W). However the four vectors (x,x), (x′,x′), (εx, εx), (εx′, εx′) lie in L
and form a K-linear basis of K4. Hence b1, b2, b3, b4 lie in LÃ and are linearly independent
over R. However ‖bj‖ < r′ for j = 1, 2, 3, 4, where

r′ = max

(√
(εkr)2 + (ε−kR)2,

√
(εk+1r)2 + (ε−k−1R)2

)
,

and thus δ, the covolume of LÃ, must be less than r′4. Now choose k so as to minimize

r′. Then r′ ≤
√
ε2 + ε−2

√
Rr, and combining this with δ < r′4 and r =

√
σ

κPCP
we obtain

σ > κPCPδ
(ε2+ε−2)2R2 , as desired. �

Let us make some further observations in this vein. First, note the general relation

P(W, q−1L) = q−1P(qW,L), ∀ q > 0 (real).

Using this relation with q an appropriate positive integer, it is clear that if L is any lattice in Rn

such that the cut-and-project set P = P(W,L) satisfies mP̂ > 0 for every admissible window
set W (for example this holds when L is as in Lemma 12), then mP̂ > 0 also holds for any
cut-and-project set obtained from P(W,L) by the “union of rational translates” construction
in [6, Sec. 2.3.1]. Furthermore, the property of having mP̂ > 0 is also, obviously, preserved
under “passing to a sublattice” as in [6, Sec. 2.4]. In particular, by [6, Sec. 2.5], we have
mP̂ > 0 for any P associated with a Penrose tiling.

Remark 12.1. We do not expect the lower bound in Lemma 12 to be sharp, and the argument
which we gave regarding the construction in [6, Sec. 2.3.1] certainly does not lead to a sharp
bound. It would be interesting to try to determine the exact value of mP̂ for the Penrose
tiling, and also for some of the cases discussed in [1].

It is interesting to note that for a large class of regular cut-and-project sets with mP̂ > 0,
a corresponding lower bound on the gap length is present in the set of directions (1.13) not
only in the limit T → ∞, but for any fixed T :

Lemma 13. Let P = P(W,L) be a regular cut-and-project set in dimension d = 2 such that
either 0 /∈ P or 0 ∈ Px for all x ∈ X, and furthermore πint(y) /∈ ∂W for all y ∈ L (viz., there

are no “singular vertices”; cf. [1, p. 6]). Then for any non-proportional vectors p1,p2 ∈ P̂,
the triangle with vertices 0,p1,p2 has area ≥ (κPCP)−1mP̂ . In particular, for any T > 0 and

1 ≤ j ≤ N̂(T ) we have ξ̂T,j − ξ̂T,j−1 ≥ min(12 , (πκPCP)−1mP̂T
−2).

(Using the last bound of Lemma 13 together with N̂(T ) ∼ πκPCPT 2 as T → ∞ in the limit
relation (1.14) in Corollary 3, we immediately recover the fact that F (s) = 1 for 0 ≤ s ≤ mP̂ .
We also remark that the condition 0 ∈ Px for all x ∈ X is fulfilled whenever 0 ∈ W and L is
a lattice, since then Hg ⊂ SL(n,R).)

Proof. Assume that p1,p2 ∈ P̂ are non-proportial vectors and that the triangle △(0,p1,p2)
has area less than (κPCP)−1mP̂ . Note that for any p′

1,p
′
2 ∈ R2 such that △(0,p′

1,p
′
2) has

the same area and orientation as △(0,p1,p2), there exists A ∈ SL(2,R) with p′
1 = p1A and

p′
2 = p2A. In particular there are some A ∈ SL(2,R) and σ0 ∈ (0,mP̂ ) such that p1A,p2A ∈
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C(κ−1
P σ0). Now there are y1,y2 ∈ L such that π(yj) = pj and πint(yj) ∈ W for j = 1, 2,

and by assumption neither πint(y1) nor πint(y2) lie in ∂W; hence yj

(
A 0
0 1m

)
∈ C(κ−1

P σ0)×W◦

for j = 1, 2. It follows that #(P̂x ∩ C(κ−1
P σ0)) ≥ 2 for x = Γϕg(A) ∈ X. In fact, using our

assumptions on P and the fact that C(κ−1
P σ0)×W◦ is open, we have #(P̂x′ ∩ C(κ−1

P σ0)) ≥ 2
for all x′ in some open neighbourhood of x = Γϕg(A) (cf. the proof of Lemma 10). However
this violates our definition of mP̂ . We have thus proved the first part of the lemma.

To prove the second statement we merely have to note that ξ̂T,j − ξ̂T,j−1 = (2π)−1ϕ(p1,p2)

for some p1 6= p2 ∈ P̂T . If p1,p2 are not proportional then since △(0,p1,p2) has area
1
2‖p1‖‖p2‖ sinϕ(p1,p2) < 1

2T
2 sinϕ(p1,p2), the first part of the lemma implies ϕ(p1,p2) >

sinϕ(p1,p2) > 2(κPCP)−1mP̂T
−2; on the other hand if p1,p2 are proportional then necessar-

ily ϕ(p1,p2) = π. �
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