PROBLEMS; "RIEMANNIAN GEOMETRY"

ANDREAS STRÖMBERGSSON

This is a collection of problems for the course "Riemannian Geometry", 1MA196, fall 2017, at Uppsala University.
(http://www.math.uu.se/~astrombe/riemanngeometri2017/rg2017.html) I remark that the purpose of many of the problems below is mainly to fill in or explain some (pedantic) facts or details which I felt were appropriate to mention in my lectures, and which I couldn't find in Jost's book. In a later version, I will probably move the content of these problems into some kind of appendices in the lecture notes.

Contents

1. Problems 1
2. Solution suggestions 45
References 244

1. Problems

Problem 1. [Manifolds are path-connected] Prove that if M is a topological manifold (in the sense defined in the course, in particular M is connected) then M is path-connected, i.e. for any two points $p, q \in M$ there is a curve $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=p$ and $\gamma(1)=q$.

Problem 2. [A criterion for paracompactness.]
(a). Let M be any topological space which is locally Euclidean. Prove that M is second countable iff M has a countable atlas.
[Pedantically, in Lecture \#1 we only defined the notation of an "atlas" when M is connected and Hausdorff; however the same defnition applies to any locally Euclidean topological space.]
(b). Let M be a connected Hausdorff space which is locally Euclidean. Prove that M is paracompact iff M has a countable atlas.

Solution:
p. 45,

Problem 3. [Invariance of dimension.] Brouwer's Theorem on invariance of dimension states: If nonempty open sets $U \subset \mathbb{R}^{d_{1}}$ and $V \subset \mathbb{R}^{d_{1}}$ are homeomorphic, then $d_{1}=d_{2}$. (Cf., e.g., Hatcher, [7, Thm. 2.26].) Using this result, prove the following: If M is a connected Hausdorff space for which every point has an open neighborhood U which is homeomorphic to an open subset Ω of \mathbb{R}^{d} for some $d \in \mathbb{Z}_{\geq 1}$ (which apriori may depend on U), then in fact all the dimensions d appearing must be one and the same.
(Thus, in Def. 1 in Lecture $\# 1$, we would not obtain any new objects if we modify the definition so that the dimension is allowed to depend on U.)

Solution: p. 47 ,

Solution:
p. 47 .

Problem 4. [Every C^{∞} atlas determines a unique C^{∞} structure.] Prove the following statement from Lecture \#1 (here made slightly more precise): "Any C^{∞} atlas on a topological manifold M is contained in a unique C^{∞} structure on M, namely the family of all charts which are compatible with every chart in the given atlas."

Problem 5. [Basic property of C^{∞} structures.]

(a). Let $B_{r}(0)$ be the open ball in \mathbb{R}^{d} of radius $r>0$, centered at the origin. Prove that there exists an uncountable family \mathcal{H} of homeomorphisms of $B_{1}(0)$ onto itself, with each $h \in \mathcal{H}$ satisfying $h(x)=x$ for all $x \notin B_{1 / 2}(0)$, such that for any two $h_{1} \neq h_{2} \in \mathcal{H}$, the function $h_{1} \circ h_{2}^{-1}$ is not C^{∞}.
[Hint. One can e.g. take each h to be of the form $h(x)=f(\|x\|)\|x\|^{-1} x($ for $x \neq 0)$ where f is a piecewise linear function on $(0,1)$.]
(b). Let M be a topological manifold. Prove that if M has one C^{∞} structure then there exists an uncountable family \mathcal{F} of distinct C^{∞} structures on M such that for any two structures in \mathcal{F}, the corresponding C^{∞} manifolds are diffeomorphic.
[Hint. One approach is as follows. Let \mathcal{H} be as in part (a) and fix a chart (U, x) on M with $x(U)=B_{1}(0)$ (prove that such a chart exists). Now for each $h \in \mathcal{H}$ we can define a homeomorphism $\varphi_{h}: M \rightarrow M$ by letting φ_{h} be "given by h inside U and the identity map everywhere else". Now we get a new C^{∞} structure by "composing the given C^{∞} structure with φ_{h} ". (These things have to be made precise.)]
Remark: The problem shows why it is much more interesting to ask for the number of diffeomorphism classes of C^{∞} structures on a given topological manifold M. (Cf. the end of Lecture \#1.)
Solution:

Problem 6. [Open submanifolds] Let M be a C^{∞} manifold and let U be an open subset of M.
(a). Prove that U inherits from M a natural structure of a (not necessarily connected) C^{∞} manifold. This C^{∞} manifold is called an open submanifold of M.
(b). Prove that the inclusion map $i: U \rightarrow M$ is C^{∞}.
(c). Let N be another C^{∞} manifold and f a map from M to N. Prove that if f is C^{∞}, then so is the map $f_{\mid U}: U \rightarrow N$ for every open subset $U \subset M$ (with its inherited C^{∞} manifold structure). Prove also the following converse: If $\left\{U_{\alpha}\right\}$ is a family of open sets covering M and $f_{\mid U_{\alpha}}$ is C^{∞} for every α, then f itself is C^{∞}.

Problem 7. [Existence of C^{∞} functions with desired properties.] Let M be a C^{∞} manifold.
(a). Let f be a function from M to \mathbb{R} and let U be an open subset of M such that $f_{\mid U} \in C^{\infty}(U)$ and $\operatorname{supp}(f) \subset U$. (Recall that $\operatorname{supp}(f)$ is the closure in M of the set $\{p \in M: f(p) \neq 0\}$.) Prove that $f \in C^{\infty}(M)$.
(b). Let U be an open subset of M and let $f: U \rightarrow \mathbb{R}$ be a C^{∞} function with compact support. Prove that the function

$$
\widetilde{f}: M \rightarrow \mathbb{R}, \quad \widetilde{f}(p)= \begin{cases}f(p) & \text { if } p \in U \\ 0 & \text { if } p \notin U\end{cases}
$$

is C^{∞}.
(c). Prove that for every $p \in M$ and every open subset $U \subset M$ with $p \in U$, there exists a C^{∞} function $f: M \rightarrow[0,1]$ which has compact support contained in U and which satisfies $f(p)=1$.
(d). (A strengthening of (c).) Prove that if K is compact and U is open with $K \subset U \subset M$, then there exists a C^{∞} function $f: M \rightarrow[0,1]$ which has compact support contained in U, and which satisfies $f_{\mid K} \equiv 1$.
[Hint: When $M=\mathbb{R}^{d}$ the claim is a well-known fact of analysis; cf., e.g., [10, Thm. 1.4.1]. Thus it remains to reduce to this Euclidean setting...]
(e). (A simple consequence of (d) and (a).) Prove that if K is compact and U is open with $K \subset U \subset M$, and if $f: U \rightarrow \mathbb{R}$ is a C^{∞} is a function, then there exists a C^{∞} function $f_{1}: M \rightarrow \mathbb{R}$ which satisfies $f_{1 \mid K} \equiv f_{\mid K}$.

Solution: p. 54

Problem 8. [Basic facts about product manifolds]

(a) Prove that if M and N are C^{∞} manifolds then the Cartesian product $M \times N$ also naturally carries the structure of a C^{∞} manifold. (Cf. [12, p. 4 (Ex. 4)].)
(b) Prove that the projection maps $\mathrm{pr}_{1}: M \times N \rightarrow M$ and $\mathrm{pr}_{2}: M \times N \rightarrow N$ are C^{∞}.
(c) Prove that if $f: M \rightarrow N_{1}$ and $g: M \rightarrow N_{2}$ are C^{∞} maps of manifolds then also the $\operatorname{map}(f, g): M \rightarrow N_{1} \times N_{2}$, defined by

$$
(f, g)(p):=(f(p), g(p))
$$

is C^{∞}.
(d) Prove that if $f: M_{1} \rightarrow N_{1}$ and $g: M_{2} \rightarrow N_{2}$ are C^{∞} maps of manifolds then also the map

$$
M_{1} \times M_{2} \rightarrow N_{1} \times N_{2}, \quad(p, q) \mapsto(f(p), g(q))
$$

Solution:
is C^{∞}.
p. 57.

Problem 9. [Definition of quotient manifold.] Let M be a topological manifold, and let $\operatorname{Homeo}(M)$ be the group of all homeomorphisms of M onto itself (the group operation is composition). Let Γ be a subgroup of Homeo (M). We assume that Γ acts freely on M, meaning that for any $\gamma \in \Gamma$ and $p \in M$, if $\gamma(p)=p$ then $\gamma=\mathrm{Id}$. We also assume that Γ acts properly discontinuously on M, meaning that for any compact set $K \subset M$, the set $\{\gamma \in \Gamma: \gamma(K) \cap K \neq \emptyset\}$ is finite. Let us define the relation \sim on M by $[p \sim q$ iff $\exists \gamma \in \Gamma$ s.t. $\gamma(p)=q]$.
(a) Prove that \sim is an equivalence relation.
(b) Let us write $[p]$ for the \sim equivalence class of a point $p \in M$; let $\Gamma \backslash M:=$ $\{[p]: p \in M\}$ be the set of all equivalence classes, and let $\pi: M \rightarrow \Gamma \backslash M$, $\pi(p):=[p]$, be the corresponding projection map. Define a topology on $\Gamma \backslash M$ by declaring $U \subset \Gamma \backslash M$ to be open iff $\pi^{-1}(U)$ is open in M. Prove that this indeed is a topology; it is called the quotient topology. Prove also that $\Gamma \backslash M$ with this topology is a topological manifold of the same dimension as M.
(c) Now on top of the previous assumptions we assume that M is a C^{∞} manifold, and that every $\gamma \in \Gamma$ is a diffeomorphism of M. (In other words, $\Gamma \subset \operatorname{Diff}(M)$.$) Prove that \Gamma \backslash M$ inherits from M a natural C^{∞} structure, and that π is a C^{∞} map.

Problem 10. [Constructing a C^{∞} manifold without requiring from start that it is a topological space.]
(a) Prove that if $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ is an atlas on a (topological) manifold M, and V is any subset of M, then V is open iff $V \cap U_{\alpha}$ is open in U_{α} for every α.
(b) Let us define a "(d-dimensional) C^{∞} fold" to be a set M together with a family $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}_{\alpha \in A}$ where for each $\alpha \in A, U_{\alpha}$ is a subset of M and x_{α} is a bijection from U_{α} onto an open subset of \mathbb{R}^{d}, such that $M=\cup_{\alpha \in A} U_{\alpha}$ and for any $\alpha, \beta \in A, x_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is an open subset of $x_{\alpha}\left(U_{\alpha}\right)$, and the map $x_{\beta} \circ x_{\alpha}^{-1}$ on $x_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is C^{∞}.

Given a " C^{∞} fold" M, let us call a subset $V \subset M$ "open" if $x_{\alpha}\left(V \cap U_{\alpha}\right)$ is open in \mathbb{R}^{d} for every $\alpha \in A$. Prove that this defines a topology on M. Prove also - by giving an example - that this topology is not always Hausdorff.
(c) Prove that a sufficient criterion for the topology defined in part (b) to be Hausdorff is that for any two points $p, q \in M$ there is $\alpha \in A$ such that $p, q \in U_{\alpha}$. (You may also like to prove the following partial converse: If M is a C^{∞} manifold then for any two points $p, q \in M$ there is a $C^{\infty} \operatorname{chart}(U, x)$ on M such that $p, q \in U$.)
(d) Let M be a " C^{∞} fold" and assume that the topology defined above is Hausdorff, and also connected and paracompact. Prove that then M is a C^{∞} manifold, with $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ being a C^{∞} atlas.

Solution:

Problem 11. [Partition of unity: Some variants.]

(a). Prove the following variation of [12, Lemma 1.1.1]: Let M be a C^{∞} manifold and let $\mathcal{U}=\left(U_{\alpha}\right)_{\alpha \in A}$ be an open cover of M. Then there exist C^{∞} functions $\varphi_{\alpha}: M \rightarrow[0,1](\alpha \in A)$ such that $\operatorname{supp} \varphi_{\alpha} \subset U_{\alpha}$ for every $\alpha \in A$, and $\sum_{\alpha \in A} \varphi_{\alpha}(x)=1$ for all $x \in M$.
(Remark: Note that in the above statement it is not always possible to make each φ_{α} have compact support; consider e.g. the case $\mathcal{U}=\{M\}$; then we are forced to choose the single φ-function to be $\varphi \equiv 1$.)
(Hint: The above statement can e.g. be deduced as a consequence of [12, Lemma 1.1.1].)
(b). Prove that both in [12, Lemma 1.1.1], and in the statement of (a) above, we can further require that all functions φ_{α} are such that also $\sqrt{\varphi_{\alpha}}$ is C^{∞}.

Solution: p. 67.

Solution: p. 69 .

Solution:
Problem 12. [Extending a function from a curve to a manifold.]
Let M be a C^{∞} manifold, let $c:[a, b] \rightarrow M$ be a C^{∞} curve, let $s \in(a, b)$, and assume $\dot{c}(s) \neq 0$.
(a) Prove that there is $\varepsilon>0$ and a $\left(C^{\infty}\right)$ chart (U, x) for M such that $a<s-\varepsilon<s+\varepsilon<b$ and

$$
c(t) \in U \text { and } x(c(t))=(t-s, 0, \ldots, 0), \quad \forall t \in(s-\varepsilon, s+\varepsilon)
$$

(b) Prove that given any C^{∞} function $f:[a, b] \rightarrow \mathbb{R}$, there is $\varepsilon>0$ and a C^{∞} function $g: M \rightarrow \mathbb{R}$ such that $a<s-\varepsilon<s+\varepsilon<b$ and $g(c(t))=f(t)$ for all $t \in(s-\varepsilon, s+\varepsilon)$.

Problem 13. [Details in the definition of tangent space.]

In the following all references are to Lecture $\# 2$:
(a). In Definition 3, verify that \sim is an equivalence relation.
(b). On p. 4 (below Definition 3): Prove that for any fixed chart (U, x) with $p \in U$, the map $u \mapsto[(U, x, u)]$ is indeed a bijection from \mathbb{R}^{d} onto $T_{p} M$.
(c). On p. 5: Verify the claim that if M is a ((connected)) open subset of a finite dimensional vector space V over \mathbb{R}, then there is a natural identification " $T_{p} M=V$ ", for every $p \in M$.
(d). On p. 7: Verify that $d f_{p}$ is well-defined.
(e). On p. 7: Verify the chain rule $d(g \circ f)_{p}=d g_{f(p)} \circ d f_{p}$, when $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{3}$ are C^{∞} maps between C^{∞} manifolds.
p. 70 .

Problem 14. [Tangent vector of a curve.] Let M be a C^{∞} manifold of dimension d, let $c: I \rightarrow M$ be a C^{∞} curve, and let (U, x) be a chart on M. For $t \in I$ with $c(t) \in U$, we define $c^{1}(t), \ldots, c^{d}(t) \in \mathbb{R}$ by

$$
x(c(t))=\left(c^{1}(t), \ldots, c^{d}(t)\right) .
$$

Then prove that

$$
\dot{c}(t)=\dot{c}^{j}(t) \frac{\partial}{\partial x^{j}}
$$

Also explain how this formula shows that the two definitions of "tangent vector of a curve" in Lecture \#2 (p. 2 and 8) are consistent with each other.

Problem 15. [Alternative definition of tangent space.]

Solution:
(a). Let M be a C^{∞} manifold and let $p \in M$. By definition, a derivation at p is an \mathbb{R}-linear map $D: C^{\infty}(M) \rightarrow \mathbb{R}$ that satisfies the Leibniz identity

$$
D(f g)=D(f) \cdot g(p)+f(p) \cdot D(g), \quad \forall f, g \in C^{\infty}(M)
$$

Prove that there is a natural bijection between the set of all derivations at p and the tangent space $T_{p}(M)$.
(b). A vector field X on M is by definition a $C^{\infty} \operatorname{map} X: M \rightarrow T M$ satisfying $\pi \circ X=1_{M}$. (Thus using notation from Lecture $\# 7$, a vector field on M is the same as a section in $\Gamma(T M)$.) Also by definition, a derivation of $C^{\infty}(M)$ is an \mathbb{R}-linear map $D: C^{\infty}(M) \rightarrow C^{\infty}(M)$ which satisfies $D(f g)=$ $D(f) g+f D(g)$ for all $f, g \in C^{\infty}(M)$. Prove that there is a natural bijection between the set of vector fields on M and the set of derivations of $C^{\infty}(M)$.

Problem 16. [The definition of the tangent bundle TM.] Prove that the construction in Lecture $\# 2$, p. 10, leads to a well-defined C^{∞} manifold $T M$, and that the projection map $\pi: T M \rightarrow M$ is C^{∞}.
[Hint: Use Problem 10.]
Solution:
p. 78

Solution:
p. 79

Problem 17. [Some facts about $d f$.]

Let M, N be C^{∞} manifolds and let $f: M \rightarrow N$ be a C^{∞}. Let $\pi: T M \rightarrow M$ and $\pi^{\prime}: T N \rightarrow N$ be the standard projection maps.
(a). Prove that $d f: T M \rightarrow T N$ is a C^{∞} map and $\pi^{\prime} \circ d f=f \circ \pi$. (Facts from Lecture \#2.)
(b). Prove that for any $C^{\infty} \operatorname{map} \varphi: N \rightarrow \mathbb{R}$ and any $X \in T M$,

$$
d f(X)(\varphi)=X(\varphi \circ f) .
$$

(c). Prove that if $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{3}$ are C^{∞} maps between C^{∞} manifolds, then $d(g \circ f)=d g \circ d f$ (equality between maps $T M_{1} \rightarrow T M_{3}$).

Solution:

Problem 18. [Riemannian structure on a submanifold of a Riemannian manifold.] Let $f: M \rightarrow N$ be a C^{∞} immersion of C^{∞} manifolds, and assume that N is equipped with a Riemannian metric.
(a). Prove that then also M gets naturally equipped with a Riemannian metric, by setting, for any $p \in M$ and $v, w \in T_{p} M$:

$$
\langle v, w\rangle:=\left\langle d f_{p}(v), d f_{p}(w)\right\rangle
$$

(In particular this means that any immersed submanifold of a Riemannian manifold gets naturally equipped with a Riemannian metric.)
(b). Prove also that for any piecewise C^{∞} curve $\gamma:[a, b] \rightarrow M$ we have $L(\gamma)=L(f \circ \gamma)$ and $E(\gamma)=E(f \circ \gamma)$.
(c). Prove that $d(p, q) \geq d(f(p), f(q))$ for all $p, q \in M$, and give an example

Solution:
p. 81 .

Solution: p. 83 .

Solution: p. 85 . where strict inequality holds.

Problem 19. [Existence of a C^{∞} curve between any two points.]

Let M be a C^{∞} manifold.
(a). Prove that for any two points $p, q \in M$ there exists a piecewise C^{∞} curve $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=p$ and $\gamma(1)=q$.
(b). Show that "piecewise C^{∞} " can be sharpened to " C^{∞} " in the previous statement.

Problem 20. [Basic properties of the hyperbolic space H^{n}.]

Go through the discussion in [12, Sec. 5.4], and verify all claims up until the computation of the curvature using Jacobi fields! In particular:
(a). Verify that if $p \in H^{n}$ then $T_{p} H^{n}$ is orthogonal to p wrt the form $\langle\cdot, \cdot\rangle$, and the restriction of I to $T_{p} H^{n}$ is positive definite, so that we obtain a Riemannian metric on H^{n}.
(b). Prove that $O(1, n)^{1}$ is a group, and that $O(1, n)$ has a normal subgroup of index 2 , which we call $O^{+}(1, n)$, such that each $T \in O^{+}(1, n)$ acts on H^{n} by isometries.
(c). Prove that for any $p \in H^{n}$ and $v \in T_{p} H^{n}, v \neq 0$, there is a transformation $R \in O^{+}(1, n)$ whose set of fixed points in \mathbb{R}^{n+1} equals the 2-dimensional plane spanned by p and v. (Hint: The map can be constructed as the " $\langle\cdot, \cdot\rangle$ reflection" in said plane.)
(d). Conclude by proving the formula which Jost states for a geodesic with an arbitrary starting condition.

[^0]Problem 21. [The maximal domain for exp, and the geodesic flow.]
The goal of this problem is to prove Theorem 2 in Lecture \#4. Note that the proof basically just consists in squeezing as much information as possible out of the local ODE existence and uniqueness result (Theorem 1).
(a). For each $p \in M$ and $v \in T_{p} M$ there is a uniquely determined open interval $I_{v} \subset \mathbb{R}$ containing 0 such that (i) there exists a geodesic $c_{v}: I_{v} \rightarrow M$ with $c_{v}(0)=p, \dot{c}_{v}(0)=v$ and (ii) given any open interval $J \subset \mathbb{R}$ containing 0 and any geodesic $\gamma: J \rightarrow M$ with $\gamma(0)=p, \dot{\gamma}(0)=v$, then $J \subset I_{v}$ and $\gamma \equiv c_{v \mid J}$.

We call the above curve c_{v} the (unique) maximal geodesic starting at $v \in T_{p} M$.
(b). Set $W=\left\{(t, v) \in \mathbb{R} \times T M: t \in I_{v}\right\}$ and define the map $\theta: W \rightarrow T M$ by $\theta(t, v):=\dot{c}_{v}(t)$. Prove that for all $v \in T M$ and $s \in I_{v}$ we have $\theta(0, v)=v$, $I_{\theta(s, v)}=I_{v}-s,{ }^{2}$ and $\theta(\theta(s, v), t)=\theta(t+s, v)\left(\forall t \in I_{\theta(s, v)}\right)$.
(c). There exist an open subset $\mathcal{D} \subset T M$ and a C^{∞} map $\exp : \mathcal{D} \rightarrow M$ such that for each $p \in M$ and $v \in T_{p} M, I_{v}:=\{t \in \mathbb{R}: t v \in \mathcal{D}\}$ is an an open interval containing 0 , and the curve $t \mapsto \exp (t v), I_{v} \rightarrow M$, is the unique maximal geodesic starting at v. (Note that it is obvious that \mathcal{D} and exp are uniquely determined by the required properties.)
(d). Note that by (c), the set W in part (b) equals

$$
W=\{(t, v) \in \mathbb{R} \times T M: t v \in \mathcal{D}\},
$$

and that this is an open subset of $\mathbb{R} \times T M$. For $t \in \mathbb{R}$, set

$$
W_{t}:=\{v \in T M:(t, v) \in W\}
$$

Prove that for each $t \in \mathbb{R}, W_{t}$ is an open subset of $T M$, and the map $\theta(t, \cdot)$ is a C^{∞} diffeomorphism of W_{t} onto W_{-t} with inverse $\theta(-t, \cdot)$.
(The map $\theta: W \rightarrow T M$ is called the geodesic flow on $T M$.)

Solution: p. 90

[^1]
Problem 22. [Varying the center of normal coordinates.]

(a). Prove Theorem 3' in Lecture \#4.
[Hint: One approach is as follows. First prove that the differential of the map $(\pi, \exp): \mathcal{D} \rightarrow M \times M$ at 0_{p} is non-singular; hence by the Inverse Function Theorem there is a neighborhood of 0_{p} in which (π, \exp) is a diffeomorphism.] (b). Let $r>0$ and let U be an open subset of a Riemannian manifold M, and assume that for every $p \in U, B_{r}\left(0_{p}\right) \subset \mathcal{D}$ and $\exp _{p \mid B_{r}\left(0_{p}\right)}$ is a diffeomorphism onto an open subset of M; let us agree to write simply $\exp _{p}^{-1}$ for the inverse map. Set

$$
V:=\left\{\left(p, \exp _{p}(v)\right): p \in U, v \in B_{r}\left(0_{p}\right)\right\} \subset M \times M .
$$

Prove that V is an open subset of $M \times M$, and that the map $V \rightarrow T M$, $(p, q) \mapsto \exp _{p}^{-1}(q)$ is C^{∞}. (More generally one may let r be a continuous function of p.)

Solution: p. 94 .

Solution: p. 96 ,

Solution: p. 98 ,

Problem 23. [The Riemannian metric wrt polar coordinates.]

(The point of this problem is to go through the details in the proof of Jost's [12, Thm. 1.4.5].)
Let M be a Riemannian manifold, $p \in M$, and take $r>0$ so that $\exp _{p}$ restricted to $B_{r}(0) \subset T_{p}(M)$ is a diffeomorphism onto an open subset $U \subset$ M. Let (U, x) be the corresponding normal coordinates. Let also (V, φ) be a chart on S^{d-1}, and define the ("polar coordinates") chart $\left(\mathbb{R}^{+} V, y\right)$ on \mathbb{R}^{d} by

$$
\mathbb{R}^{+} V:=\left\{r v: r \in \mathbb{R}^{+}, v \in V\right\}
$$

(an open cone) and

$$
\left(y^{1}, \ldots, y^{d}\right)=\left(\|x\|, \varphi\left(\frac{x}{\|x\|}\right)\right) .
$$

Set $U^{\prime}=x^{-1}\left(\mathbb{R}^{+} V \cap B_{r}(0)\right)$; then $\left(U^{\prime}, y \circ x\right)$ is a chart on M. Prove that in the coordinates defined by this chart, the Riemannian metric satisfies

$$
\left(h_{i j}(y)\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & h_{22}(y) & \cdots & h_{2 d}(y) \\
\vdots & \vdots & & \vdots \\
0 & h_{d 2}(y) & \cdots & h_{d d}(y)
\end{array}\right), \quad \forall y \in(0, r) \times \varphi(V) .
$$

Problem 24. [Any ($\mathrm{pw} C^{\infty}$) curve realizing $d(p, q)$ is a geodesic.]
Prove Theorem 2 in Lecture $\# 5$: Let M be a Riemannian manifold and let $\gamma:[a, b] \rightarrow M$ be a pw C^{∞} curve which is parametrized by arc length. Assume that $L(\gamma)=d(\gamma(a), \gamma(b))$. Then γ is a geodesic.

Problem 25. [Completeness.]

Let $M=\mathbb{R}^{d}$ with its standard C^{∞} manifold structure. Give an example of a complete Riemannian metric on M, and also an example of one noncomplete Riemannian metric on M.
(Thus, the parenthesis in Jost's [12, Thm. 1.7.1(i)] is misleading; completeness is not a property of the topology, but depends on the choice of metric.)

Problem 26. [A closed embedded submanifold is complete.]

(a). Let N be a complete Riemannian manifold and let M be an embedded submanifold of N which is closed. Prove that M is complete.
(b). Prove that if we replace "embedded submanifold" by "immersed submanifold" in (a), then the conclusion is no longer valid, in general!

Problem 27. [Spheres and distances.]

The following properties play a role in the proof of the Hopf-Rinow Theorem. Let (X, d) be an arbitrary metric space. Recall that for $p \in X$ and $r>0$ we write $B_{r}(p)$ for the open ball $B_{r}(p):=\{q \in X: d(p, q)<r\}$.
(a). Prove that d is a continuous function $\left(X \times X \rightarrow \mathbb{R}_{\geq 0}\right)$.
(b). Prove that for any $p \in X, r>0$,

$$
\partial B_{r}(p) \subset\{q \in X: d(p, q)=r\}
$$

and both these sets are closed. Furthermore if (X, d) is a Riemannian manifold ${ }^{3}$ then equality holds: $\partial B_{r}(p)=\{q \in X: d(p, q)=r\}$.
(c). Continue to assume that (X, d) is a Riemannian manifold. Let $p, q \in X$, $r>0$, and assume $d(p, q)>r$. Assume that p_{0} is a point on $\partial B_{r}(p)$ where $d(\cdot, q)_{\partial B_{r}(p)}$ is minimal. Prove that $d(p, q)=d\left(p, p_{0}\right)+d\left(p_{0}, q\right)$.

Problem 28. [Consequences of $B_{r}\left(0_{p}\right) \subset \mathcal{D}_{p}$.]
Let M be a Riemannian manifold, let $p \in M$ and $R>0$, and assume $B_{R}\left(0_{p}\right) \subset \mathcal{D}_{p}$. Prove that then for every point $q \in B_{R}(p)$, the distance $d(p, q)$ is realized by a geodesic, and hence $B_{R}(p)=\exp _{p}\left(B_{R}\left(0_{p}\right)\right)$.

Problem 29. [Existence of geodesics in homotopy classes.]
Prove that Theorem 1 in Lecture \#5 remains true for any complete (instead of compact) Riemannian manifold.

Solution:

Solution: p. 100 .

Solution: p. 101 .

Solution:
p. 102,

Solution: p. 103 .

[^2]
Problem 30. [Injectivity radius on a surface of revolution.]

(The following problem is a slight variation of [12, Ch. 1, Problem 11].) Consider the surface of revolution

$$
S:=\left\{\left(x, e^{x} \cos \alpha, e^{x} \sin \alpha\right): x, \alpha \in \mathbb{R}\right\} .
$$

(a). Prove that S is a closed differentiable submanifold of \mathbb{R}^{3} (cf. the notes to Lecture \#2).
(b). Equip S with the Riemannian metric induced by the standard Riemannian metric on \mathbb{R}^{3} (cf. Problem [18) note that S is complete by Problem 26). Fix $x_{0} \in \mathbb{R}$ and let $p_{0}=\left(x_{0}, e^{x_{0}}, 0\right) \in S$. Prove that the injectivity radius of

Solution:
p. 104 , p_{0} satisfies $i\left(p_{0}\right) \leq \pi e^{x_{0}}$.

Problem 31. [The fundamental group of the n-punctured plane.]
Let p_{1}, \ldots, p_{n} be n distinct points in \mathbb{R}^{2}. Compute $\pi_{1}\left(\mathbb{R}^{2} \backslash\left\{p_{1}, \ldots, p_{n}\right\}\right)$.
Problem 32. [Covering space; lifting of structure.]
A covering space of a topological space X is a topological space \widetilde{X} together with a continuous map $\pi: \widetilde{X} \rightarrow X$ satisfying the following condition: Each point $x \in X$ has an open neighborhood U in X such that $\pi^{-1}(U)$ is a union of disjoint open sets in \widetilde{X}, each of which is mapped homeomorphically onto U by π.
(a). Let M be a topological manifold of dimension d and let $\pi: \widetilde{M} \rightarrow M$ be a covering space of M which is connected and second countable. Prove that then also \widetilde{M} is a topological manifold of dimension d. (In fact the assumption that \widetilde{M} is second countable is redundant; see the remark at the end of the solution.)
(b). Let M be a C^{∞} manifold of dimension d and let $\pi: \widetilde{M} \rightarrow M$ be a covering space of M which is connected and second countable. Prove that then \widetilde{M} has a unique structure as a C^{∞} manifold such that π is C^{∞} and each point $p \in M$ has an open neighborhood U in M such that $\pi^{-1}(U)$ is a union of disjoint open sets in \widetilde{M}, each of which is mapped diffeomorphically onto U by π.
(c). Let M be a Riemannian manifold of dimension d and let $\pi: \widetilde{M} \rightarrow M$ be a covering space of M which is connected and second countable. Prove that then \widetilde{M} has a unique structure as a Riemannian manifold such that π is C^{∞} and each point $p \in M$ has an open neighborhood U in M such that $\pi^{-1}(U)$ is a union of disjoint open sets in \widetilde{M}, each of which is mapped $\left(C^{\infty}\right)$ isometrically onto U by π.
(d). Prove that for any topological manifold M and any subgroup $\Gamma<$ Homeo (M) acting freely and properly discontinuously on M, if $\Gamma \backslash M$ and $\pi: M \rightarrow \Gamma \backslash M$ are as in Problem 9, then $\pi: M \rightarrow \Gamma \backslash M$ is a covering space of $\Gamma \backslash M$.

Solution:
p. 108 .

Problem 33. [Trivial vector bundle; basis of sections.]
Let (E, π, M) be a vector bundle of rank n and let U be an open subset of M. Prove that the following statements are equivalent:
(a) $E_{\mid U}$ is trivial;
(b) there is some φ such that (U, φ) is a bundle chart for E;
(c) there is a basis of sections in $\Gamma E_{\mid U}$, i.e. sections $s_{1}, \ldots, s_{n} \in \Gamma E_{\mid U}$ such that $s_{1}(p), \ldots, s_{n}(p)$ is a basis of E_{p} for every $p \in U$.

Solution: p. 113 .

Solution: p. 115 .

Solution:
p. 115 ,

Solution:
p. 116 .
p. 116

Problem 34. [Trivial vector bundle; one more (very!) basic fact.] Let (E, π, M) be a vector bundle of rank n, let U be an open subset of M, and let $s_{1}, \ldots, s_{n} \in \Gamma E_{\mid U}$ be a basis of sections in $\Gamma E_{\mid U}$ (cf. Problem 33(c)). Prove that for every section $s \in \Gamma E_{\mid U}$ there exists a unique n-tuple of functions $\alpha^{1}, \ldots, \alpha^{n} \in C^{\infty}(U)$ such that $s=\alpha^{j} s_{j}$.

Problem 35. [About sections: restrictions and surjectivity to fibers.]
Let (E, π, M) be a vector bundle over a C^{∞} manifold M.
(a) Prove that for every open set $U \subset M$, every section $s \in \Gamma\left(E_{\mid U}\right)$, and every point $p \in U$, there exists a section $s^{\prime} \in \Gamma(E)$ such that $s_{\mid V}^{\prime}=s_{\mid V}$ for some open set $V \subset U$ containing p.
(b) Prove that for every point $p \in M$ there exist an open set $V \subset M$ with $p \in V$ and sections $b_{1}, \ldots, b_{n} \in \Gamma(E)$ such that $b_{1 \mid V}, \ldots, b_{n \mid V}$ form a basis of sections of $E_{\mid V}$.
(c) Prove that for every $p \in M$ and every $v \in E_{p}$, there is some $s \in \Gamma E$ such that $s(p)=v$.

Problem 36. [Defining a vector bundle without requiring from start that it is a manifold.] Let M be a C^{∞} manifold, let E be a set and let $\pi: E \rightarrow M$ be a surjective map. Assume that for every $p \in M$, $E_{p}:=\pi^{-1}(p)$ carries the structure of an n-dimensional real vector space. Also let $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in A}$ be a family such that for each $\alpha \in A, U_{\alpha}$ is an open subset of M and φ_{α} is a bijection of $\pi^{-1}\left(U_{\alpha}\right)$ onto $U_{\alpha} \times \mathbb{R}^{n}$ such that for every $p \in U_{\alpha}$, the map $\left(\varphi_{\alpha}\right)_{p}:=\left(\varphi_{\alpha}\right)_{\mid E_{p}}$ is a linear isomorphism of E_{p} onto $\{p\} \times \mathbb{R}^{n}$. Assume that $M=\cup_{\alpha \in A} U_{\alpha}$, and that for any $\alpha, \beta \in A$, the map $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ from $\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n}$ to itself is C^{∞}. Prove that then E has a unique C^{∞} manifold structure such that (E, π, M) is a vector bundle of rank n, and $\left(U_{\alpha}, \varphi_{\alpha}\right)$ is a bundle chart for every $\alpha \in A$.

Problem 37. [Classifying all vector bundles over S^{1}.]

(a). Prove that the Möbius bundle over S^{1} (cf. Lecture $\# 7$, p. 2) is not trivial.
(b). Classify all vector bundles over S^{1} up to isomorphism.

Problem 38. [Finite cover of trivializing sets.]

Let M be a C^{∞} manifold of dimension d and let E be a vector bundle over M. Prove that then there exists an open cover U_{1}, \ldots, U_{d+1} of M such that $E_{\mid U_{j}}$ is trivial for each $j=1, \ldots, d+1$.
[Remark: We will need to make use of this result a few times later. Then what will matter for us is the fact that U_{1}, \ldots, U_{d+1} is a finite open cover; the exact number of open sets used will not be of importance.
[Hint: You may make use of the following theorem from dimension theory: Let M be a topological manifold of dimension d. Then every open cover \mathcal{U} of M has a refinement \mathcal{W} such that for any $d+2$ tuple of distinct open sets $W_{1}, \ldots, W_{d+2} \in \mathcal{W}$, one has $W_{1} \cap \cdots \cap W_{d+2}=\emptyset$.
Cf. [9, Thm. V. 8 and p. 25 (Ex. III.4)].]
Problem 39. [Definitions of $E_{1} \otimes E_{2}, \operatorname{Hom}\left(E_{1}, E_{2}\right), E^{*}$.]
Let $\left(E_{1}, \pi_{1}, M\right)$ and $\left(E_{2}, \pi_{2}, M\right)$ be vector bundles over a C^{∞} manifold M.
(a) Verify that $E_{1} \otimes E_{2}$, as defined in Lecture $\# 7$, is indeed a vector bundle over M.
(b) Similarly define the vector bundle $\operatorname{Hom}\left(E_{1}, E_{2}\right)$.
(c) Similarly define the vector bundle E_{1}^{*}.

Hint for parts (a)-(c): See Problem 36.
Problem 40. $\left[\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)=\right.$ bundle homomorphisms $\left.E_{1} \rightarrow E_{2}.\right]$
Let $\left(E_{1}, \pi_{1}, M\right)$ and $\left(E_{2}, \pi_{2}, M\right)$ be vector bundles over a C^{∞} manifold M. Prove that there is a natural bijection between $\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$ and the set of bundle homomorphisms $E_{1} \rightarrow E_{2}$.
[Remarks: (1) From now on we will often identify these two sets, i.e. a bundle homomorphism $f: E_{1} \rightarrow E_{2}$ is automatically viewed as an element in $\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$, and vice versa. (2) See also Problem 43 below for another important property of $\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$.]

Solution:
p. 119 ,

Solution: p. 124 .

Solution:
p. 124.

Solution:
p. 128 .

Problem 41. [Definition of subbundle.] Let (E, π, M) be a vector bundle of rank n. Recall that in Lecture $\# 7$ we defined a subbundle of E to be a subset $E^{\prime} \subset E$ such that for every $p \in M$ there exists a bundle chart (U, φ) for E such that $p \in U$ and

$$
\begin{equation*}
\varphi\left(E^{\prime} \cap \pi^{-1}(U)\right)=U \times \mathbb{R}^{m} \tag{1}
\end{equation*}
$$

for some $m \leq n$, where we view $\mathbb{R}^{m} \subset \mathbb{R}^{n}$ through

$$
\mathbb{R}^{m}=\left\{\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}: x^{m+1}=\cdots=x^{n}=0\right\}
$$

In this situation, prove that
(a) m is independent of p and (U, φ);
(b) $\left(E^{\prime}, \pi_{\mid E^{\prime}}, M\right)$ is a vector bundle of rank m, and for every bundle chart (U, φ) satisfying (11), $\left(U, \varphi_{\mid E^{\prime} \cap \pi^{-1}(U)}\right)$ is a bundle chart for E^{\prime}.
[Hint: cf. Problem 36.]
(c) E^{\prime} is a differentiable submanifold of E.

Solution: p. 130 .

Solution:
p. 133 .

Solution:
Problem 42. [Basic facts about the pulled back bundle $f^{*} E$.]
Let $f: M \rightarrow N$ be a C^{∞} map and let (E, π, N) be a vector bundle.
(a). Prove that the pulled back bundle, $f^{*} E$, defined in Lecture $\# 7$ as a subset of $M \times E$ with extra structure, really is a vector bundle over M.
[Hint: cf. Problem 36.]
(b). Prove that $f^{*} E$ is a differentiable submanifold of $M \times E$.

Problem 43. [Properties of the functor Γ.]

Let $\left(E_{1}, \pi_{1}, M\right)$ and $\left(E_{2}, \pi_{2}, M\right)$ be vector bundles over a C^{∞} manifold M. Prove that there exist natural identifications (isomorphisms of $C^{\infty}(M)$ modules) as follows:
(a). $\Gamma\left(E_{1} \oplus E_{2}\right)=\Gamma\left(E_{1}\right) \oplus \Gamma\left(E_{2}\right)$.
(b). $\Gamma\left(E_{1}^{*}\right)=\left(\Gamma E_{1}\right)^{*}$.
(c). $\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)=\operatorname{Hom}\left(\Gamma E_{1}, \Gamma E_{2}\right)$.
(d). $\Gamma\left(E_{1} \otimes E_{2}\right)=\Gamma\left(E_{1}\right) \otimes \Gamma\left(E_{2}\right)$.
[Remarks: As we stressed in the lecture, any space of sections ΓE is a $C^{\infty} M$-module, and when applying dual, "Hom" or " \otimes " to spaces of sections, it should always be viewed as operations on $C^{\infty} M$-modules! Thus $\left(\Gamma E_{1}\right)^{*}$ is the $C^{\infty} M$-module of $C^{\infty} M$-linear maps from ΓE_{1} to $C^{\infty} M$, " $\operatorname{Hom}\left(\Gamma E_{1}, \Gamma E_{2}\right)$ " is the $C^{\infty} M$-modules of $C^{\infty} M$-linear maps from ΓE_{1} to ΓE_{2}, and " $\Gamma\left(E_{1}\right) \otimes \Gamma\left(E_{2}\right)$ " is the $C^{\infty} M$-module which in a more precise notation would be denoted $\Gamma\left(E_{1}\right) \otimes_{C^{\infty}(M)} \Gamma\left(E_{2}\right)$.]

Problem 44. [Sections along a function; $\Gamma_{f} E$.]

Let $f: M \rightarrow N$ be a C^{∞} map and let (E, π, N) be a vector bundle.
(a). A section of E along f (or "a lift of f to E ") is a $C^{\infty} \operatorname{map} \sigma: M \rightarrow E$ such that $\pi \circ \sigma=f$. The set of sections of E along f is denoted $\Gamma_{f} E$. Prove that $\Gamma_{f} E$ has a structure as a $C^{\infty} M$-module, and that there is a natural isomorphism of $C^{\infty} M$-modules $\Gamma f^{*} E \cong \Gamma_{f} E$.
[Remark: From now on we will often use the above isomorphism to identify $\Gamma f^{*} E$ and $\Gamma_{f} E$. As will be seen, to view a section $s \in \Gamma f^{*} E$ as an element in $\Gamma_{f} E$ simply means considering $\operatorname{pr}_{2} \circ s: M \rightarrow E$, i.e. "forgetting the first component of s, which anyway contains redundant information about the base point". On the other hand, one can not in any reasonable way define $f^{*} E$ directly as a subset of E, unless f is injective; indeed, for any two points $p \neq q$ in M with $f(p)=f(q)$ we want $\left(f^{*} E\right)_{p}$ and $\left(f^{*} E\right)_{q}$ to be two disjoint copies of $E_{f(p)}$.]
(b). Note that for any $s \in \Gamma E$ we have $s \circ f \in \Gamma_{f} E=\Gamma f^{*} E$; we call $s \circ f$ the $(f$-) pullback of s. Prove that if V is an open set in N and U is an open set in M with $f(U) \subset V$, and if s_{1}, \ldots, s_{n} is a basis of sections in $\Gamma E_{\mid V}$, then $s_{1} \circ f, \ldots, s_{n} \circ f$ is a basis of sections in $\Gamma\left(f^{*} E\right)_{\mid U}$.
(c). Prove any section of $f^{*} E$ can be expressed as a function-linear combination of f-pullbacks of sections of E. (In other words: Any $\sigma \in \Gamma f^{*} E$ can be expressed as a finite sum $\sigma=\sum_{j=1}^{m} \alpha_{j} \cdot\left(s_{j} \circ f\right)$ where $\alpha_{1}, \ldots, \alpha_{m} \in C^{\infty}(M)$ and $s_{1}, \ldots, s_{m} \in \Gamma E$. [Hint: Problems 11 and 38 may be useful.]

Problem 45. [Interpreting $\Gamma\left(\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)\right)$.]
Let $f: M \rightarrow N$ be a C^{∞} map and let $\left(E_{1}, \pi_{1}, M\right)$ and $\left(E_{2}, \pi_{2}, N\right)$ be vector bundles. We say that a map $h: E_{1} \rightarrow E_{2}$ is a bundle homomorphism along f if h is $C^{\infty}, \pi_{2} \circ h=f \circ \pi_{1}$, and for each $x \in M$ the fiber map $h_{x}:=h_{\mid E_{1, x}}: E_{1, x} \rightarrow E_{2, f(x)}$ is linear.
(a). Prove that there is a natural bijection between $\Gamma\left(\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)\right)$ and the set of bundle homomorphisms $E_{1} \rightarrow E_{2}$ along f.
(b). Explain how the result in (a) can be seen to generalize both Problem40 and Problem 44(a).

Problem 46. [Extending a section from a curve to the whole space.]
Let (E, π, M) be a vector bundle, let $c:(a, b) \rightarrow M$ be a C^{∞} curve, let $s \in \Gamma_{c} E$ (cf. Problem 44(a)), let $t_{0} \in(a, b)$, and assume $\dot{c}\left(t_{0}\right) \neq 0$. Prove that there exist $\varepsilon>0$ and a section $s_{1} \in \Gamma E$ such that $a<t_{0}-\varepsilon<t_{0}+\varepsilon<b$ and $s_{1}(c(t))=s(t)$ for all $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$.
(Hint:cf. Problems 12 and 35.)

Solution:
p. 144.

Solution:
p. 141 .

Solution:
p. 146.

Problem 47. [Lie product of vector fields.]

Let M be a C^{∞} manifold.
(a). For any vector fields X, Y on M, prove that there exists a unique vector field Z on M satisfying $Z(f)=X(Y(f))-Y(X(f))$ for all $f \in C^{\infty}(M)$. By definition, this vector field Z is denoted " $[X, Y]$ ", and called the Lie product of X and Y.
[Hint: Use Problem 15(b).]
(b). Prove that our definition in part a is equivalent with Jost, 12, Def. 2.2.4].
(c). Prove the Jacobi identity:

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0, \quad \forall X, Y, Z \in \Gamma(T M)
$$

(d). Prove that for any $X, Y \in \Gamma(T M)$ and $f \in C^{\infty}(M)$,

$$
[X, f Y]=(X f) \cdot Y+f \cdot[X, Y]
$$

and

$$
[f X, Y]=-(Y f) \cdot X+f \cdot[X, Y] .
$$

Solution: p. 147

Solution:

Problem 48. [Basic properties of the exterior derivative.]

Let M be a C^{∞} manifold.
(a) Following Jost, [12, Def. 2.1.15], we define $d: \Omega^{r}(M) \rightarrow \Omega^{r+1}(M)$ by the requirement that for any $\omega \in \Omega^{r}(M)$ and any $C^{\infty} \operatorname{chart}(U, x)$ on M, if $\omega_{\mid U}=\sum_{I} \omega_{I} d x^{I}\left(\right.$ with $\left.\omega_{I} \in C^{\infty}(U)\right)$ then $(d \omega)_{\mid U}=\sum_{I} d \omega_{I} \wedge d x^{I}$. 4 Prove that this indeed gives a well-defined, \mathbb{R}-linear map $d: \Omega^{r}(M) \rightarrow \Omega^{r+1}(M)$. (In other words, explain in detail what happens in [12, Cor. 2.1.2].)
(b) Prove that if $f: M \rightarrow N$ is a C^{∞} map then $d\left(f^{*}(\omega)\right)=f^{*}(d \omega)$ for all $\omega \in \Omega^{r}(N)$. (In other words, provide more details for [12, Lemma 2.1.3].)
(c) Prove that for any $\omega \in \Omega^{r}(M)$ and $X_{0}, \ldots, X_{r} \in \Gamma(T M)$,

$$
\begin{aligned}
{[d \omega]\left(X_{0}, \ldots, X_{r}\right) } & =\sum_{j=0}^{r}(-1)^{j} X_{j}\left(\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
& +\sum_{0 \leq j<k \leq r}(-1)^{j+k} \omega\left(\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) .
\end{aligned}
$$

[Explanation of notation: " $X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}$ " denotes " $X_{0}, X_{1}, X_{2}, \ldots, X_{r}$ but with the term X_{j} removed". Similarly " $\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}$ " denotes " $\left[X_{j}, X_{k}\right], X_{0}, X_{1}, X_{2}, \ldots, X_{r}$ but with both X_{j} and X_{k} removed". Also, the sum in the second line runs through all pairs $\langle j, k\rangle \in \mathbb{Z}^{2}$ satisfying $0 \leq j<k \leq r$.]

[^3]
Problem 49. [Wedge product of vector valued forms]

(a). Let E_{1} and E_{2} be vector bundles over a C^{∞} manifold M. We define the wedge product $\wedge: \Omega^{r}\left(E_{1}\right) \times \Omega^{s}\left(E_{2}\right) \rightarrow \Omega^{r+s}\left(E_{1} \otimes E_{2}\right)$, for any $r, s \geq 0$, to be the unique $C^{\infty}(M)$-bilinear map satisfying

$$
\begin{aligned}
& \left(\mu_{1} \otimes \omega_{1}\right) \wedge\left(\mu_{2} \otimes \omega_{2}\right)=\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right) \\
& \quad \forall \mu_{1} \in \Gamma\left(E_{1}\right), \omega_{1} \in \Omega^{r}(M), \mu_{2} \in \Gamma\left(E_{2}\right), \omega_{2} \in \Omega^{s}(M)
\end{aligned}
$$

Prove that this indeed makes \wedge a well-defined $C^{\infty}(M)$-bilinear map . Note also that in the special case $E_{1}=E_{2}=M \times \mathbb{R}$, this gives back the standard wedge product $\Omega^{r}(M) \times \Omega^{s}(M) \rightarrow \Omega^{r+s}(M)$.
(b). [Associativity and "commutativity".] Let E_{1}, E_{2}, E_{3} be vector bundles over M and let $r, s, t \geq 0$. Prove that
$s_{1} \wedge\left(s_{2} \wedge s_{3}\right)=\left(s_{1} \wedge s_{2}\right) \wedge s_{3}, \quad \forall s_{1} \in \Omega^{r}\left(E_{1}\right), s_{2} \in \Omega^{s}\left(E_{2}\right), s_{3} \in \Omega^{t}\left(E_{3}\right)$.
(Here both expressions lie in $\Omega^{r+s+t}(\widetilde{E})$, where $\widetilde{E}=E_{1} \otimes E_{2} \otimes E_{3}=E_{1} \otimes$ $\left.\left(E_{2} \otimes E_{3}\right)=\left(E_{1} \otimes E_{2}\right) \otimes E_{3}.\right)$ Prove also that

$$
s_{1} \wedge s_{2}=(-1)^{r s} \cdot J\left(s_{2} \wedge s_{1}\right), \quad \forall s_{1} \in \Omega^{r}\left(E_{1}\right), s_{2} \in \Omega^{s}\left(E_{2}\right)
$$

where J is the isomorphism of $C^{\infty}(M)$-modules

$$
J: \Omega^{r+s}\left(E_{2} \otimes E_{1}\right) \xrightarrow{\sim} \Omega^{r+s}\left(E_{1} \otimes E_{2}\right)
$$

which maps $J\left(\mu_{2} \otimes \mu_{1} \otimes \omega\right)=\mu_{1} \otimes \mu_{2} \otimes \omega$ for all $\mu_{1} \in \Gamma E_{1}, \mu_{2} \in \Gamma E_{2}$, $\omega \in \Omega^{r+s}(M)$.
(c). ["vector-wedge-product"; extending commutativity.] Let $E_{1}, E_{2}, \widetilde{E}$ be vector bundles over M and assume given a "multiplication rule" from E_{1}, E_{2} to \widetilde{E}, i.e. a $C^{\infty}(M)$-linear map $m: \Gamma\left(E_{1} \otimes E_{2}\right) \rightarrow \Gamma(\widetilde{E})$. By extending with the identity map on $\Omega^{r}(M)$, this defines for each $r \geq 0$ a $C^{\infty}(M)$-linear map $\Omega^{r}\left(E_{1} \otimes E_{2}\right) \rightarrow \Omega^{r}(\widetilde{E})$, which we also call m. Let m^{\prime} be the multiplication rule $m^{\prime}: \Gamma\left(E_{2} \otimes E_{1}\right) \rightarrow \Gamma(\widetilde{E})$ defined by $m^{\prime}\left(s_{2} \otimes s_{1}\right)=m\left(s_{1} \otimes s_{2}\right)$ for all $s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}$, and call m^{\prime} also the corresponding map $\Omega^{r}\left(E_{2} \otimes E_{1}\right) \rightarrow$ $\Omega^{r}(\widetilde{E})$. Prove that

$$
\begin{equation*}
m\left(s_{1} \wedge s_{2}\right)=(-1)^{r s} m^{\prime}\left(s_{2} \wedge s_{1}\right), \quad \forall s_{1} \in \Omega^{r}\left(E_{1}\right), s_{2} \in \Omega^{s}\left(E_{2}\right) \tag{2}
\end{equation*}
$$

[Comments: In many cases we will write simply " $m\left(s_{1}, s_{2}\right)$ " or " $s_{1} \wedge s_{2}$ " to denote the combined vector-wedge-product $m\left(s_{1} \wedge s_{2}\right)$! For example this appears in [12, (4.1.26)]; " $A \wedge A$ ", wherein $E_{1}=E_{2}=\widetilde{E}=$ End E and m is - of course - composition. Other examples appear in the computation of $D F$ a bit further down on [12, p. 139]; e.g. " $[A, F]$ "; here again $E_{1}=E_{2}=$ $\widetilde{E}=$ End E but m is Lie bracket. Another example, in a slightly generalized setting, is in [12, p. 154]; " $\widetilde{P}(F, \ldots, F)$ ". A main example where the relation (2) applies is when $E:=E_{1}=E_{2}=\widetilde{E}$ is a commutative (weak) algebra bundle over M (with m being the multiplication rule). In this case $m^{\prime}=m$,
and so (2) shows how the commutativity of E extends to $\Omega(E)$. On the other hand, a natural example with $E_{1} \neq E_{2}$ is when $E_{1}=E$ (an arbitrary vector bundle over M), $E_{2}=E^{*}$ and $\widetilde{E}=M \times \mathbb{R}$, with the multiplication rule m (as well as m^{\prime}) being the standard contraction from $\Gamma\left(E \otimes E^{*}\right)$ (or $\left.\Gamma\left(E^{*} \otimes E\right)\right)$ to $\left.C^{\infty}(M).\right]$
(d). [extension of associativity.] Let $E_{1}, E_{2}, E_{3}, E_{12}, E_{23}, E_{123}$ be vector bundles over M and assume given multiplication rules

$$
\begin{array}{ll}
\Gamma\left(E_{1} \otimes E_{2}\right) \rightarrow \Gamma\left(E_{12}\right) ; & \Gamma\left(E_{12} \otimes E_{3}\right) \rightarrow \Gamma\left(E_{123}\right) ; \\
\Gamma\left(E_{2} \otimes E_{3}\right) \rightarrow \Gamma\left(E_{23}\right) ; & \Gamma\left(E_{1} \otimes E_{23}\right) \rightarrow \Gamma\left(E_{123}\right) .
\end{array}
$$

For each of these, we denote the image of $s \otimes s^{\prime}$ simply by " $s \cdot s^{\prime \prime}$. . Assume that these multiplication rules satisfy the associativity relation

$$
\left(s_{1} \cdot s_{2}\right) \cdot s_{3}=s_{1} \cdot\left(s_{2} \cdot s_{3}\right), \quad \forall s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}, s_{3} \in \Gamma E_{3} .
$$

In line with the above comments, let us write $s_{1} \wedge s_{2} \in \Omega^{r+s}\left(E_{12}\right)$ for the combined vector-wedge-product of any $s_{1} \in \Omega^{r}\left(E_{1}\right)$ and $s_{2} \in \Omega^{s}\left(E_{2}\right)$; and similarly for the other three product rules. Then prove that
$\left(s_{1} \wedge s_{2}\right) \wedge s_{3}=s_{1} \wedge\left(s_{2} \wedge s_{3}\right), \quad \forall s_{1} \in \Omega^{r}\left(E_{1}\right), s_{2} \in \Omega^{s}\left(E_{2}\right), s_{3} \in \Omega^{t}\left(E_{3}\right)$.
[Comments: A main example of the above situation is of course when $E:=$ $E_{1}=E_{2}=E_{3}=E_{12}=E_{23}=E_{123}$ is an associative (weak) algebra bundle over M. A general example where E_{1}, E_{2}, E_{3} may be distinct vector bundles is when $E_{j}:=\operatorname{Hom}\left(F_{j+1}, F_{j}\right)$ for $j=1,2,3$, where $F_{1}, F_{2}, F_{3}, F_{4}$ are four arbitrary vector bundles over M, and all multiplication rules are composition (thus $E_{12}=\operatorname{Hom}\left(F_{3}, F_{1}\right)$, etc., and the associativity relation holds).]

Problem 50. [Wedge-product of matrix valued forms made explicit.]

Let E_{1}, E_{2}, E_{3} be vector bundles over M; then we have a standard multiplication rule "०" (composition of homomorphisms)

$$
\Gamma\left(\operatorname{Hom}\left(E_{2}, E_{3}\right)\right) \times \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{3}\right)\right) .
$$

Let us write "o" also for the corresponding vector-wedge-product

$$
\Omega^{r}\left(\operatorname{Hom}\left(E_{2}, E_{3}\right)\right) \times \Omega^{s}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow \Omega^{r+s}\left(\operatorname{Hom}\left(E_{1}, E_{3}\right)\right)
$$

(cf. Problem 49(c)). Let U be an open subset of M such that there exist bases of sections
$\alpha_{1}, \ldots, \alpha_{n_{1}} \in \Gamma E_{1 \mid U}$ and $\beta_{1}, \ldots, \beta_{n_{2}} \in \Gamma E_{2 \mid U} \quad$ and $\quad \gamma_{1}, \ldots, \gamma_{n_{3}} \in \Gamma E_{3 \mid U}$
(here $n_{\ell}=\operatorname{rank} E_{\ell}$). Let

$$
\begin{aligned}
& \alpha^{1 *}, \ldots, \alpha^{n_{1} *} \in \Gamma E_{1 \mid U}^{*} \text { and } \beta^{1 *}, \ldots, \beta^{n_{2} *} \in \Gamma E_{2 \mid U}^{*} \\
& \text { and } \gamma^{1 *}, \ldots, \gamma^{n_{3} *} \in \Gamma E_{3 \mid U}^{*}
\end{aligned}
$$

be the dual bases.
Then for each $\mu \in \Omega^{r}\left(\operatorname{Hom}\left(E_{2}, E_{3}\right)\right)$ there exist unique r-forms $\mu_{j}^{k} \in$ $\Omega^{r}(U)$ such that $\mu_{\mid U}=\beta^{j *} \otimes \gamma_{k} \otimes \mu_{j}^{k}$, and similarly for each $\eta \in \Omega^{s}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$ there exist unique s-forms $\eta_{j}^{k} \in \Omega^{s}(U)$ such that $\eta_{\mid U}=\alpha^{j *} \otimes \beta_{k} \otimes \eta_{j}^{k}$. Prove that in terms of this representation,

$$
(\mu \circ \eta)_{\mid U}=\alpha^{i *} \otimes \gamma_{k} \otimes\left(\mu_{\ell}^{k} \wedge \eta_{i}^{\ell}\right) .
$$

[Comment: Note that " $\mu_{\mid U}=\beta^{j *} \otimes \gamma_{k} \otimes \mu_{j}^{k}$ " means that if we use the given bases to identify $E_{2 \mid U}$ with $U \times \mathbb{R}^{n_{2}}$ and $E_{3 \mid U}$ with $U \times \mathbb{R}^{n_{3}}$, then $\mu_{\mid U}$ is represented by the matrix

$$
\left(\mu_{j}^{k}\right)=\left(\begin{array}{ccc}
\mu_{1}^{1} & \cdots & \mu_{n_{2}}^{1} \\
\vdots & & \vdots \\
\mu_{1}^{n_{3}} & \cdots & \mu_{n_{2}}^{n_{3}}
\end{array}\right)
$$

(wherein each entry is an r-form). Similarly " $\eta_{\mid U}=\alpha^{j *} \otimes \beta_{k} \otimes \eta_{j}^{k}$ " means that $\eta_{\mid U}$ is represented by the matrix $\left(\eta_{j}^{k}\right)$ and " $(\mu \circ \eta)_{\mid U}=\alpha^{i *} \otimes \gamma_{k} \otimes\left(\mu_{\ell}^{k} \wedge \eta_{i}^{\ell}\right)$ " means that $(\mu \circ \eta)_{\mid U}$ is represented by the matrix $\left(\mu_{\ell}^{k} \wedge \eta_{i}^{\ell}\right)_{k, i}$. Hence when $r=s=0$, the formula gives back the usual formula for matrix product; $(\mu \circ \eta)_{\mid U}=\left(\mu_{\ell}^{k} \cdot \eta_{i}^{\ell}\right)_{k, i}$, as it should.]

Problem 51. [Wedge product; alternative definition]

(a). Let (E, π, M) be a vector bundle. Prove that there is a natural identification of $\Omega^{r}(E)$ with the space of alternating $C^{\infty}(M)$-multilinear maps

$$
\Gamma(T M)^{(r)}=\underbrace{\Gamma(T M) \times \cdots \times \Gamma(T M)}_{r \text { times }} \longrightarrow \Gamma E .
$$

(b). Let E_{1} and E_{2} be vector bundles over M. Prove that using the identification in part (a), the wedge product $s_{1} \wedge s_{2}$ (cf. Problem 49(a)) of any $s_{1} \in \Omega^{r}\left(E_{1}\right)$ and $s_{2} \in \Omega^{s}\left(E_{2}\right)$ is given by

$$
\begin{aligned}
\left(s_{1} \wedge s_{2}\right) & \left(X_{1}, \ldots, X_{r+s}\right) \\
& =\frac{1}{r!s!} \sum_{\sigma \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\sigma) s_{1}\left(X_{\sigma(1)}, \ldots, X_{\sigma(r)}\right) \otimes s_{2}\left(X_{\sigma(r+1)}, \ldots, X_{\sigma(r+s)}\right)
\end{aligned}
$$

$$
\forall X_{1}, \ldots, X_{r+s} \in \Gamma(T M)
$$

where \mathfrak{S}_{r+s} is the group of all permutations of $\{1, \ldots, r+s\}$. Prove also a similar formula for the product " $s_{1} \cdot s_{2} \in \Omega^{r+s}(\widetilde{E})$ ", in the case when there is given a multiplication rule from E_{1}, E_{2} to \widetilde{E} (cf. Problem49(c)).
Solution: p. 159

Problem 52. [Restricting a connection to open sets.]

Complete the proof of Lemma 1 in Lecture $\# 9$; that is, prove the following: Let (E, π, M) be a vector bundle. For (a) and (b), let D be a connection on E and let $U \subset M$ be open.
(a) $\forall s_{1}, s_{2} \in \Gamma E: s_{1 \mid U}=s_{2 \mid U} \Rightarrow\left(D s_{1}\right)_{\mid U}=\left(D s_{2}\right)_{\mid U}$.
(b) There is a unique connection " $D_{\mid U}$ " on $E_{\mid U}$ satisfying $(D s)_{\mid U}=D_{\mid U}\left(s_{\mid U}\right)$ for all $s \in \Gamma(E)$.
(c) Let $\left(U_{\alpha}\right)_{\alpha \in A}$ be an open covering of M, and for each $\alpha \in A$ let D_{α} be a connection on $E_{\mid U_{\alpha}}$. Assume that for any two $\alpha, \beta \in A$, if $V:=U_{\alpha} \cap U_{\beta} \neq \emptyset$ then $\left(D_{\alpha}\right)_{\mid V}=\left(D_{\beta}\right)_{\mid V}$. Then there exists a unique connection D on E satisfying $D_{\mid U_{\alpha}}=D_{\alpha}$ for every $\alpha \in A$.

Problem 53. .

[$D_{v} s$ depends only on the values of s along a curve with $\dot{c}(0)=v$.]
Let (E, π, M) be a vector bundle and let D be a connection on E. Let $v \in T M$ and let $s_{1}, s_{2} \in \Gamma E$. Assume that there exists a C^{∞} curve c : $(-\varepsilon, \varepsilon) \rightarrow M$ such that $\dot{c}(0)=v$ and $s_{1}(c(t))=s_{2}(c(t))$ for all $t \in(-\varepsilon, \varepsilon)$. Prove that then $D_{v} s_{1}=D_{v} s_{2}$.

Problem 54. [The connection " d " (for given local coordinates).]
Let (U, φ) be a bundle chart of a vector bundle (E, π, M), let $s_{1}, \ldots, s_{n} \in$ $\Gamma\left(E_{\mid U}\right)$ be the corresponding basis of sections and define the map $d: \Gamma\left(E_{\mid U}\right) \rightarrow$ $\Gamma\left(\left(E \otimes T^{*} M\right)_{\mid U}\right)$ by $d\left(a^{k} s_{k}\right)=s_{k} \otimes d a^{k}$ for any $a^{1}, \ldots, a^{n} \in C^{\infty} U$. Prove that this is a connection on $E_{\mid U}$. (Cf. p. 6 in Lecture $\# 9$.)

Problem 55. [Restriction of a connection to a subbundle.]

Let D be a connection on a vector bundle (E, π, M) and let E^{\prime} be a vector subbundle of E. Then also $E^{\prime} \otimes T^{*} M$ is a vector subbundle of $E \otimes T^{*} M$. Assume that $D s \in \Gamma\left(E^{\prime} \otimes T^{*} M\right)$ for all $s \in \Gamma E^{\prime}$. Prove that then the restriction of D to ΓE^{\prime} is a connection on E^{\prime}. Also give an example to show that the given condition is not always satisfied.

Solution:
Solution:
p. 162 .
p. 164 .

Solution:
p. 165 .

Solution: p. 165 .

Problem 56. [Alternative definition of the dual of a connection.]

Let D be a connection on a vector bundle (E, π, M), and let D^{*} be the dual connection on E^{*}. (Cf. Lecture \#10.) Recall that given any C^{∞}-curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ we have a linear isomorphism

$$
\mathbb{P}_{\gamma(0) \underset{\gamma}{\rightarrow} \gamma(h)}: E_{\gamma(0)} \rightarrow E_{\gamma(h)}
$$

for each $h \in(-\varepsilon, \varepsilon)$; let us write $\mathbb{P}_{\gamma, h}^{*}$ for the dual of that map; this is a linear isomorphism $E_{\gamma(h)}^{*} \rightarrow E_{\gamma(0)}^{*}$. Prove that for any $\mu \in \Gamma E^{*}$,

$$
D_{\dot{\gamma}(0)}^{*}(\mu)=\lim _{h \rightarrow 0} \frac{\mathbb{P}_{\gamma, h}^{*}(\mu(\gamma(h)))-\mu(\gamma(0))}{h} \quad \text { in } E_{\gamma(0)}
$$

Problem 57. [Defining the pullback of a connection.]

(a). Let $f: M \rightarrow N$ be a C^{∞} map and let D be a connection on a vector bundle (E, π, N). Prove that there exists a unique connection $f^{*} D$ on $f^{*} E$ such that for any $s \in \Gamma E$,

$$
\left(f^{*} D\right)(s \circ f)=D_{d f(\cdot)}(s) \in \Gamma\left(\operatorname{Hom}\left(T M, f^{*} E\right)\right)=\Gamma\left(f^{*} E \otimes T^{*} M\right)
$$

[Explanation: " $D_{d f(\cdot)}(s)$ " stands for the map

$$
T M \rightarrow E, \quad\left[v \mapsto D_{d f(v)}(s)\right]
$$

which is a bundle homomorphism along f, and hence can be viewed as an element of $\Gamma\left(\operatorname{Hom}\left(T M, f^{*} E\right)\right)$ by Problem 45.]
(b). (Comparing with Jost's definition of $f^{*} D,\left[12\right.$, p. 205].) Prove that $f^{*} D$ in part (a) is the unique connection on $f^{*} E$ such that the following holds: For any $s \in \Gamma f^{*} E=\Gamma_{f} E$ and any C^{∞} curve $c:(-\varepsilon, \varepsilon) \rightarrow M$, if $s_{1} \in \Gamma E$ satisfies $s_{1}(f(c(t)))=s(c(t))$ for all $t \in(-\varepsilon, \varepsilon)$, then $\left(f^{*} D\right)_{\dot{c}(0)}(s)=D_{d f(\dot{c}(0))}\left(s_{1}\right)$.
(c). Let $c:(-\varepsilon, \varepsilon) \rightarrow M$ be any C^{∞} curve such that $f \circ c$ is a constant point $q \in N$. Prove that for any $s \in \Gamma f^{*} E$,

$$
\left(f^{*} D\right)_{\dot{c}(0)}(s)=\left(\frac{d}{d t}(s \circ c)(t)\right)_{\mid t=0} \in E_{q}
$$

where $\frac{d}{d t}(s \circ c)(t) \in T_{s(c(t))}\left(E_{q}\right)=E_{q}$ stands for the tangent vector of the curve $s \circ c$ in E_{q}.
(Comments: In the situation in (c), if s is not constant along c, the formula in (b) cannot be used directly to compute $\left(f^{*} D\right)_{\dot{c}(0)}(s)$, since there cannot exist any $s_{1} \in \Gamma E$ satisfying $s_{1}(f(c(t)))=s(c(t)), \forall t \in(-\varepsilon, \varepsilon)$. Note also that the tangent vector of the curve $s \circ c$, $\frac{d}{d t}(s \circ c)(t)$, is always a well-defined vector in $T_{s(c(t))}(E)$; however in the situation in (c) we can view $s \circ c$ as a curve in the fiber E_{q}; hence $\frac{d}{d t}(s \circ c)(t) \in T_{s(c(t))}\left(E_{q}\right)$, and this last tangent space can naturally be identified with E_{q} by Problem 13(c).)
Solution:
p. 165 .

Problem 58. [The tensor product of two connections.]

Prove Proposition 2 in Lecture $\# 10$, i.e. the following: Let E_{1}, E_{2} be vector bundles over M with connections D_{1}, D_{2}, respectively. Then there is a unique connection D on $E_{1} \otimes E_{2}$ such that

$$
D(\mu \otimes \nu)=\left(D_{1} \mu\right) \otimes \nu+\mu \otimes\left(D_{2} \nu\right), \quad \forall \mu \in \Gamma E_{1}, \nu \in \Gamma E_{2}
$$

Solution:
p. 171.

Problem 59. [A Leibniz rule for general connections.]

Let E_{1}, E_{2}, E_{3} be vector bundles over M, each equipped with a connection " D ". Let us write " D " also for the corresponding connections on E_{1}^{*} and $E_{1} \otimes E_{2}$ and $\operatorname{Hom}\left(E_{1}, E_{2}\right)=E_{1}^{*} \otimes E_{2}$, etc.
(a). Given any

$$
\alpha \in \Gamma\left(E_{1} \otimes E_{2}\right) \quad \text { and } \quad \beta \in \Gamma\left(E_{1}^{*} \otimes E_{3}\right)
$$

let us write " (α, β) " for the section in $\Gamma\left(E_{2} \otimes E_{3}\right)$ obtained by contracting the E_{1}-part of α against the E_{1}^{*}-part of β. Prove that then

$$
D(\alpha, \beta)=(D \alpha, \beta)+(\alpha, D \beta) \quad \text { in } \Omega^{1}\left(E_{2} \otimes E_{3}\right)
$$

(Here " $(D \alpha, \beta)$ " is again defined by contracting the E_{1}-part of $D \alpha$ against the E_{1}^{*}-part of β, and similarly for " $(\alpha, D \beta)$ "; note that these can be viewed as vector-wedge-products à la Problem49(c), from $\Omega^{r}\left(E_{1} \otimes E_{2}\right) \times \Omega^{s}\left(E_{1}^{*} \otimes E_{3}\right)$ to $\Omega^{r+s}\left(E_{2} \otimes E_{3}\right)$, coming from the given product (\cdot, \cdot) from $\Gamma\left(E_{1} \otimes E_{2}\right) \times \Gamma\left(E_{1}^{*} \otimes E_{3}\right)$ to $\Gamma\left(E_{2} \otimes E_{3}\right)$.)
(b). Prove that for any $\alpha \in \Gamma\left(\operatorname{Hom}\left(E_{2}, E_{3}\right)\right)$ and $\beta \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$,

$$
D(\alpha \circ \beta)=(D \alpha) \circ \beta+\alpha \circ(D \beta) \quad \text { in } \Omega^{1}\left(\operatorname{Hom}\left(E_{1}, E_{3}\right)\right)
$$

(c). Prove that for any $\alpha \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$ and $\beta \in \Gamma E_{1}$,

$$
D(\alpha(\beta))=(D \alpha)(\beta)+\alpha(D \beta) \quad \text { in } \Omega^{1}\left(E_{2}\right)
$$

Solution:

Problem 60. [The exterior covariant derivative.]

Let D be a connection on a vector bundle (E, π, M).
(a). Prove Proposition 4 in Lecture \#10, i.e. the following: Then for any $p \geq 0$ there exists a unique \mathbb{R}-linear map $D: \Omega^{p}(E) \rightarrow \Omega^{p+1}(E)$ satisfying

$$
D(\mu \otimes \omega)=(D \mu) \wedge \omega+\mu \otimes d \omega, \quad \forall \mu \in \Gamma E, \omega \in \Omega^{p}(M)
$$

(b). Let (U, φ) be a fixed bundle chart for E; let d be the corresponding naive connection on $E_{\mid U}$ and set $A=D-d \in \Omega^{1}\left(\operatorname{End} E_{\mid U}\right)$, as usual. Prove that for any $\mu \in \Omega^{p}\left(E_{\mid U}\right)$,

$$
D \mu=d \mu+A \wedge \mu \quad \text { in } \Omega^{p+1}\left(E_{\mid U}\right)
$$

where d is the naive exterior covariant derivative $\Omega^{p}\left(E_{\mid U}\right) \rightarrow \Omega^{p+1}\left(E_{\mid U}\right)$ coming from the given bundle chart, and $A \wedge \mu$ is the image of A and μ under the combined vector-wedge-product (cf. Problem 49(c)) $\Omega^{1}\left(\right.$ End $\left.E_{\mid U}\right) \times$ $\Omega^{p}\left(E_{\mid U}\right) \rightarrow \Omega^{p+1}\left(E_{\mid U}\right)$ coming from the standard contraction ("evaluation") $\Gamma\left(\right.$ End $\left.E_{\mid U}\right) \times \Gamma E_{\mid U} \rightarrow \Gamma E_{\mid U}$.
(c). Let $E_{1}, E_{2}, \widetilde{E}$ be vector bundles over M, each equipped with a connection " D ". Assume given a multiplication rule from E_{1}, E_{2} to \widetilde{E}, i.e. a $C^{\infty}(M)$-linear map $\Gamma\left(E_{1} \otimes E_{2}\right) \rightarrow \Gamma(\widetilde{E})$. We write $s_{1} \cdot s_{2} \in \Gamma \widetilde{E}$ for the product of $s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}$, and we write " \wedge " for the corresponding vector-wedge-product as in Problem 49(c). Assume that the connections respect the multiplication rule, in the sense that

$$
D\left(s_{1} \cdot s_{2}\right)=\left(D s_{1}\right) \wedge s_{2}+s_{1} \wedge\left(D s_{2}\right), \quad \forall s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2} .
$$

Prove that then for any $r, s \geq 0$,
$D\left(\mu_{1} \wedge \mu_{2}\right)=\left(D \mu_{1}\right) \wedge \mu_{2}+(-1)^{r} \mu_{1} \wedge D \mu_{2}, \quad \forall \mu_{1} \in \Omega^{r}\left(E_{1}\right), \mu_{2} \in \Omega^{s}\left(E_{2}\right)$, where " \wedge " is the vector-wedge-product as in Problem 49(c).
(d). Addendum to (c): Let m be the multiplication rule in (c), i.e. a $C^{\infty}(M)-$ linear map $\Gamma\left(E_{1} \otimes E_{2}\right) \rightarrow \Gamma(\widetilde{E})$. By Problem 43(c), the multiplication rule can be identified with a section $m \in \Gamma\left(\operatorname{Hom}\left(E_{1} \otimes E_{2}, \widetilde{E}\right)\right)$. Prove that the given connections on $E_{1}, E_{2}, \widetilde{E}$ respect the multiplication rule iff

$$
D m=0 .
$$

(Here D is the connection on $\operatorname{Hom}\left(E_{1} \otimes E_{2}, \widetilde{E}\right)$ induced by the given con-
Solution: nections on $E_{1}, E_{2}, \widetilde{E}$.)

Problem 61. [Explicit formula for exterior covariant derivative (using Lie product of vector fields).]

Let D be a connection on a vector bundle (E, π, M); let $r \geq 0$, and write " D " also for the corresponding exterior covariant derivative $\Omega^{r}(E) \rightarrow \Omega^{r+1}(E)$. Prove that for any $s \in \Omega^{r}(E)$ and $X_{0}, \ldots, X_{r} \in \Gamma(T M)$,

$$
\begin{aligned}
{[D s]\left(X_{0}, \ldots, X_{r}\right) } & =\sum_{j=0}^{r}(-1)^{j} D_{X_{j}}\left(s\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
& +\sum_{0 \leq j<k \leq r}(-1)^{j+k} s\left(\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right)
\end{aligned}
$$

[Here " $[D s]\left(X_{0}, \ldots, X_{r}\right)$ " stands for the contraction of the form part of $D s \in$ $\Omega^{r+1}(E)$ against X_{0}, \ldots, X_{r}; and similarly for all " $s(\cdots)$ " in the right hand side. For the rest of the notation, cf. Problem 48(c).]

Solution: p. 180 .

Problem 62. [One more explicit formula for exterior covariant derivative.]

Let D be a connection on a vector bundle (E, π, M); let $r \geq 0$, and write " D " also for the corresponding exterior covariant derivative $\Omega^{r}(E) \rightarrow \Omega^{r+1}(E)$. Recall from the solution of Problem 51 that $E \otimes \bigwedge^{r} M$ is in a natural way a subbundle of $E \otimes T_{r}^{0}(M)$; accordingly for any section $s \in \Omega^{r}(E)$ let us write " \widetilde{s} " for s viewed as a section in $\Gamma\left(E \otimes T_{r}^{0}(M)\right)$. Furthermore let ∇ be an arbitrary torsion free connection on $T M$, and let us write " $\left[\begin{array}{c}\nabla \\ D\end{array}\right]$ " for the connection on $E \otimes T_{r}^{0}(M)$ induced by D and ∇. Then prove that for any $s \in \Omega^{r}(E)$ and $X_{0}, \ldots, X_{r} \in \Gamma(T M)$,

$$
[D s]\left(X_{0}, \ldots, X_{r}\right)=\sum_{j=0}^{r}(-1)^{j}\left(\left[{ }_{D}^{\nabla}\right]_{X_{j}} \widetilde{s}\right)\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)
$$

Solution:

Problem 63. [Basic facts about $\operatorname{Ad} E$ (for E with a bundle metric).]

Let (E, π, M) be a vector bundle equipped with a bundle metric. Recall that $\operatorname{Ad} E$ (as a subset of End E) was defined in Lecture \#11, p. 11.
(a). Prove that $\operatorname{Ad} E$ is a vector subbundle of End E.
(b). Prove that if D is any metric connection on E, and if we write D also for the corresponding connection on End E, then $D s \in \Omega^{1}(\operatorname{Ad} E)$ for all $s \in \Gamma(\operatorname{Ad} E) \subset \Gamma($ End $E)$. (Hence by Problem 55, the connection D on End E descends to give a connection on $\operatorname{Ad} E$.)

Problem 64. [Some facts about $\bigwedge^{r}(V)$ for V a vector space]

(See Sec. 7.2 for the definition and some basic properties of $\bigwedge^{r}(V)$.)
Let V be a finite dimensional vector space over \mathbb{R} and let $r \geq 1$.
(a). For any $v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{r} \in V$, the following statement about vectors in $\bigwedge^{r}(V)$:

$$
\left[v_{1} \wedge \cdots \wedge v_{r}=c \cdot w_{1} \wedge \cdots \wedge w_{r} \text { for some } c \in \mathbb{R}, \text { and } v_{1} \wedge \cdots \wedge v_{r} \neq 0\right]
$$

holds if and only if v_{1}, \ldots, v_{r} are linearly independent and v_{1}, \ldots, v_{r} and w_{1}, \ldots, w_{r} span the same r-dimensional linear subspace of V.
(b). Prove that if V is equipped with a scalar product $\langle\cdot, \cdot\rangle$ then there is a corresponding scalar product $\langle\cdot, \cdot\rangle$ on $\bigwedge^{r}(V)$ which has the following two properties:
(i) If e_{1}, \ldots, e_{n} is any ON-basis for V then $\left(e_{I}\right)$ is an ON-basis for $\bigwedge^{r}(V)$, where I runs through all r-tuples $I=\left(i_{1}, \ldots, i_{r}\right) \in\{1, \ldots, n\}^{r}$ with $i_{1}<$ $\cdots<i_{r}$, and $e_{I}:=e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}$.
(ii) For any $v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{r} \in V$,

$$
\left\langle v_{1} \wedge \cdots \wedge v_{r}, w_{1} \wedge \cdots \wedge w_{r}\right\rangle=\operatorname{det}\left(\left\langle v_{i}, \beta_{j}\right\rangle\right)_{i, j}
$$

Prove also that this scalar product on $\bigwedge^{r}(V)$ is uniquely determined by the requirement that either (i) or (ii) hold.
(c). With notation as in (b), for any $v_{1}, \ldots, v_{r} \in V$, the "length"

$$
\left\|v_{1} \wedge \cdots \wedge v_{r}\right\|:=\sqrt{\left\langle v_{1} \wedge \cdots \wedge v_{r}, v_{1} \wedge \cdots \wedge v_{r}\right\rangle}
$$

equals the volume of the r-dimensional parallelotope spanned by v_{1}, \ldots, v_{r} (wrt. the natural r-dimensional volume measure induced by the the scalar product $\langle\cdot, \cdot\rangle$ on V).
Solution: p. 186 ,

Problem 65. [Equivalent criteria for a manifold being orientable.]
(a). Let M be a C^{∞} manifold of dimension d. Prove that the following three statements are equivalent:
(i) M possesses an oriented C^{∞} atlas, i.e. an atlas such that all chart transition maps have everywhere positive Jacobian determinant.
(ii) There exists an atlas of bundle charts for the vector bundle ($T M, \pi, M$) which makes it an oriented vector bundle (\Leftrightarrow makes it have structure group $\mathrm{GL}_{d}^{+}(\mathbb{R})$; cf. Lecture $\# 12$, Def. 4).
(iii) There exists a nowhere vanishing d-form $\omega \in \Omega^{d}(M)$.
[Comment: M is said to be orientable if one and hence all of the conditions (i)-(iii) hold. Note that (i) is the definition given in Jost, [12, Def. 1.1.3].]
(b). Prove that $T M$ is always an orientable manifold, regardless of whether M is orientable or not.

Solution:
p. 188 .

Problem 66. [Total covariant derivative of a tensor field.]

(a). Let M be a C^{∞} manifold of dimension d and let ∇ be a connection on $T M$. Write also ∇ for the corresponding connection on $T_{s}^{r} M$, for any $r, s \geq 0$. Let A be a tensor field in $\Gamma\left(T_{1}^{1} M\right)$, and let A_{i}^{j} be the coefficients of A wrt a given C^{∞} chart (U, x) on M. (Thus: $A_{i}^{j} \in C^{\infty}(U)$ for all $i, j \in\{1, \ldots, d\}$ and $A_{\mid U}=A_{i}^{j} \cdot d x^{i} \otimes \frac{\partial}{\partial x^{j}}$. . Also for each $k \in\{1, \ldots, d\}$ let $A_{i ; k}^{j}$ be the coefficients of $\nabla_{\frac{\partial}{\partial x^{k}}} A$. Prove that

$$
A_{i ; k}^{j}=\frac{\partial}{\partial x^{k}} A_{i}^{j}-\Gamma_{k i}^{\ell} \cdot A_{\ell}^{j}+\Gamma_{k \ell}^{j} \cdot A_{i}^{\ell} \quad \text { in } U
$$

(b). Generalize the above to the case of a tensor field $A \in \Gamma\left(T_{s}^{r} M\right)$, for any $r, s \geq 0$.

Solution:
p. 191.

Problem 67. [Some explicit computations in vector bundles over S^{d}.]

Consider the sphere

$$
S^{d}=\left\{x=\left(x^{1}, \ldots, x^{d+1}\right) \in \mathbb{R}^{d+1}:\left(x^{1}\right)^{2}+\cdots+\left(x^{d+1}\right)^{2}=1\right\}
$$

with its standard C^{∞} manifold structure (cf. [12, p. 3, Ex. 1]), and let (U, y) be the chart on S^{d} given by

$$
U=S^{d} \backslash\{(0, \ldots, 0,-1)\} ; \quad y(x)=\left(\frac{x^{1}}{1+x^{d+1}}, \ldots, \frac{x^{d}}{1+x^{d+1}}\right)
$$

(a). For $d=2$, prove that the vector field $y^{1} \frac{\partial}{\partial y^{1}}$ on U can not be extended to a $\left(C^{\infty}\right)$ vector field on S^{2}.
(b). For $d=3$, prove that the vector field

$$
\left(y^{1} y^{3}-y^{2}\right) \frac{\partial}{\partial y^{1}}+\left(y^{2} y^{3}+y^{1}\right) \frac{\partial}{\partial y^{2}}+\frac{1-\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}}{2} \frac{\partial}{\partial y^{3}}
$$

on U can be extended to a $\left(C^{\infty}\right)$ vector field on S^{3}.
(c). Prove that for $d=2$, the section

$$
\frac{1}{\left(1+\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}\right)^{4}}\left(d y^{1} \otimes d y^{1}+d y^{2} \otimes d y^{2}\right)
$$

of $T_{2}^{0}(U)$ has a unique extension to a $\left(C^{\infty}\right)$ section of $T_{2}^{0}\left(S^{2}\right)$. Prove also that the above section defines a Riemannian metric on U, but its extension to $T_{2}^{0}\left(S^{2}\right)$ does not define a Riemannian metric on S^{2}.
(d). Let $d=2$ and set $V=S^{2} \backslash\{(0,0,1)\}$ (recall $U=S^{2} \backslash\{(0,0,-1)\}$). Fix an integer m, and define the function $\mu: U \cap V \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ by

$$
\mu(y)=\left(\begin{array}{cc}
\cos (m \alpha(y)) & -\sin (m \alpha(y)) \\
\sin (m \alpha(y)) & \cos (m \alpha(y))
\end{array}\right), \quad \text { where } \alpha(y):=\arg \left(y^{1}+i y^{2}\right)
$$

(Thus $\alpha(y)$ is the argument of the complex number $y^{1}+i y^{2}$; note that this number is non-zero for all points in $U \cap V$.) Prove that there exists a vector bundle E of rank 2 over S^{2} which has bundle charts (U, ϕ) and (V, ψ) with transition function μ, that is, so that $\psi_{p}=\mu(p) \cdot \phi_{p}: E_{p} \rightarrow \mathbb{R}^{2}$ for every $p \in U \cap V$.
(Hint: Problem 36 may be useful.)
Solution:

Problem 68. [More about the pullback of a connection.]

Let $f: M \rightarrow N$ be a C^{∞} map; let (E, π, N) be a vector bundle of rank n, and let D be a connection on E.
(a). Let (U, x) be a chart for N and let s_{1}, \ldots, s_{n} be a basis of sections in $\Gamma\left(E_{\mid U}\right)$. Also let (V, y) be a chart for M with $V \subset f^{-1}(U)$, and recall that then $s_{1} \circ f, \ldots, s_{n} \circ f$ is a basis of sections in $\Gamma\left(\left(f^{*} E\right)_{\mid V}\right)$; cf. Problem44(b). Set $d=\operatorname{dim} N$ and $d^{\prime}=\operatorname{dim} M$. Let $\Gamma_{i j}^{k} \in C^{\infty}(U)$ be the Christoffel symbols of D with respect to the bases s_{1}, \ldots, s_{n} and $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{d}}$, and let $\widetilde{\Gamma}_{i j}^{k} \in C^{\infty}(V)$ be the Christoffel symbols of $f^{*} D$ with respect to the bases $s_{1} \circ f, \ldots, s_{n} \circ f$ and $\frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{d^{1}}}$. Give a formula for $\widetilde{\Gamma}_{i j}^{k}$ in terms of $\Gamma_{i j}^{k}$! (b). Let D be a connection on E. For clarity in this problem let us write $d^{D}: \Omega^{r}(E) \rightarrow \Omega^{r+1}(E)$ (instead of just " D ") for the exterior covariant derivative corresponding to D; then also write $d^{f^{*} D}: \Omega^{r}\left(f^{*} E\right) \rightarrow \Omega^{r+1}\left(f^{*} E\right)$ for the exterior covariant derivative corresponding to the connection $f^{*} D$ on $f^{*} E$ (cf. Problem 57). Prove that for every $r \geq 0$ there is a unique \mathbb{R}-linear map $f^{*}: \Omega^{r}(E) \rightarrow \Omega^{r}\left(f^{*} E\right)$ satisfying

$$
f^{*}(\mu \otimes \omega)=(\mu \circ f) \otimes f^{*}(\omega) \quad \text { for all } \mu \in \Gamma E \text { and } \omega \in \Omega^{r}(N)
$$

Next prove that for any $s \in \Omega^{r}(E)$,

$$
\left(d^{f^{*} D}\right)\left(f^{*}(s)\right)=f^{*}\left(d^{D} s\right)
$$

[Comment: In particular for $r=0$ we have $f^{*}(\mu)=\mu \circ f$ for all $\mu \in \Gamma E$, and $d^{D}=D: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$ and $d^{f^{*} D}=f^{*} D: \Omega^{0}\left(f^{*} E\right) \rightarrow \Omega^{1}\left(f^{*} E\right)$. In this case the above formula says:

$$
\left(f^{*} D\right)\left(f^{*}(s)\right)=f^{*}(D(s))
$$

which can be viewed as a (nicer!) reformulation of the formula in Problem 57(a)!]

Problem 69. [Basic about sectional curvature.]

In Lecture \#15, Def. 1, prove that $K(X \wedge Y)$ indeed only depends on the 2-dimensional plane spanned by X, Y in $T_{p} M$.

Problem 70. [Scaling a Riemannian metric.]

Let M be a C^{∞} manifold equipped with a Riemannian metric $\langle\cdot, \cdot\rangle$, and let $c>0$ be a constant. Let $[,, \cdot]$ be the Riemannian metric on M defined by $[\cdot, \cdot]:=c\langle\cdot, \cdot\rangle$ (that is, $[v, s]=c\langle v, w\rangle$ for any $p \in M, v, w \in T_{p} M$). Prove that the two Riemannian manifolds $(M,\langle\cdot, \cdot\rangle)$ and ($M,[\cdot, \cdot]$) have the same Levi-Civita connection and curvature tensor, but that the sectional curvatures K on $(M,\langle\cdot, \cdot\rangle)$ and \widetilde{K} on $(M,[\cdot, \cdot])$ are related by

$$
\widetilde{K}(X \wedge Y)=c^{-1} K(X \wedge Y)
$$

for any $p \in M$ and any linearly independent $X, Y \in T_{p} M$.
Solution:
p. 203

Problem 71. [Ricci curvature as average of sectional curvatures.]
(a). Let M be a Riemannian manifold of dimension d. Prove that there is a constant $C_{d}>0$ which only depends on d such that for any $p \in M$ and $X \in T_{p} M$ with $\|X\|=1$, the Ricci curvature in direction $X, \operatorname{Ric}(X, X)$, equals C_{d} times the uniform average of the sectional curvatures of all planes in $T_{p} M$ containing X. Also determine the constant C_{d} explicitly.
(b). Similarly, prove that there is a constant $C_{d}^{\prime}>0$ such that the scalar curvature at any point $p \in M$ equals C_{d}^{\prime} times the uniform average of the Ricci curvatures of all unit vectors in $T_{p} M$.

Problem 72. [Explicit formula for the curvature tensor in terms of
Solution:

$$
\mathcal{R}: V \times V \times V \times V \rightarrow \mathbb{R}
$$

be a multilinear form having the same symmetries as the curvature tensor field $R m$ (cf. Lemma 1 in Lecture \#14); that is, for all $X, Y, Z, W \in V$:

$$
\mathcal{R}(X, Y, Z, W)=-\mathcal{R}(Y, X, Z, W)=-\mathcal{R}(X, Y, W, Z)=\mathcal{R}(Z, W, X, Y)
$$

and

$$
\mathcal{R}(X, Y, Z, W)+\mathcal{R}(Y, Z, X, W)+\mathcal{R}(Z, X, Y, W)=0
$$

Set

$$
K(X, Y):=\mathcal{R}(X, Y, Y, X)
$$

Find an explicit formula expressing $\mathcal{R}(X, Y, Z, W)$ in terms of the function K. Note that this gives a proof of a corrected version of [12, Lemma 4.3.3].
[Hint: One way to obtain this is by appropriately working through the
Solution:
p. 206. steps in proof of the uniqueness Lemma 1 in lecture \#15.]

Problem 73. [Analogue of Schur's Theorem for Ricci curvature.]
Prove the second part of Theorem 1 in Lecture \#15 (=[12, Thm. 4.3.2]); "if $\operatorname{dim} M \geq 3$ and the Ricci curvature is constant at each point then M is Einstein".

Solution:

Problem 74. [The pullback of a metric connection is metric.]
Let $F: H \rightarrow M$ be a C^{∞} map of manifolds, let (E, π, M) be a vector bundle equipped with a bundle metric $\langle\cdot, \cdot\rangle$, and let D be a metric connection on E preserving the bundle metric. Prove that $\langle\cdot, \cdot\rangle$ in a natural way gives rise to a bundle metric on $F^{*}(E)$ (which we may also denote $\langle\cdot, \cdot\rangle$), and that the pullbacked connection $F^{*}(D)$ is metric with respect to this bundle metric.
(Comment: This fact is used in the proof of Lemma 1 in Lecture $\# 16$, and also in Jost, [12, p. 206, lines -5 to -4].)

Problem 75. [Pullback and torsion.]

Let $F: H \rightarrow M$ be a C^{∞} map of manifolds and let ∇ be a connection on $T M$.
(a). Prove that the map

$$
\begin{aligned}
& S: \quad \Gamma(T H) \times \Gamma(T H) \rightarrow \Gamma\left(F^{*}(T M)\right) \\
& \quad S(X, Y)=\left(F^{*} \nabla\right)_{X}(d F \circ Y)-\left(F^{*} \nabla\right)_{Y}(d F \circ X)-d F \circ[X, Y]
\end{aligned}
$$

is well-defined and $C^{\infty}(H)$-bilinear. Conclude that S can be identified with a section in $\Gamma\left(T^{*} H \otimes T^{*} H \otimes F^{*}(T M)\right)$.
(b). Prove that if ∇ is torsion free then $S=0$.
(c). Use the above to give a detailed justification of the identity

$$
\nabla_{\frac{\partial}{\partial s}} \dot{c}=\nabla_{\frac{\partial}{\partial t}} c^{\prime}
$$

appearing in the proof of Lemma 1 in Lecture \#16 (and also in Jost, [12, p. 206 (line -4 to -3)]).

Problem 76. [Pullback of curvature.]

(a). Let $f: M \rightarrow N$ be a C^{∞} map, and let D be a connection on a vector bundle (E, π, N), with curvature tensor $R \in \Omega^{2}($ End $E)$. Also let $\widetilde{R} \in \Omega^{2}\left(\operatorname{End}\left(f^{*} E\right)\right)$ be the curvature tensor of the connection $f^{*} D$ on $f^{*} E$. Prove that for any $p \in M$ and $X, Y \in T_{p}(M)$,

$$
\widetilde{R}(X, Y)=R(d f(X), d f(Y)) \quad \text { in } \operatorname{End}\left(f^{*} E\right)_{p}=\operatorname{End}\left(E_{f(p)}\right)
$$

(b). Use the above to give a detailed justification of the identity

$$
\nabla_{\frac{\partial}{\partial s}} \nabla_{\frac{\partial}{\partial t}} \frac{\partial c}{\partial s}(t, s)=\nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial s}} \frac{\partial c}{\partial s}(t, s)+R\left(\frac{\partial c}{\partial t}, \frac{\partial c}{\partial s}\right) \frac{\partial c}{\partial s}
$$

appearing in the proof of Theorem 1 in Lecture $\# 16$ (and also in Jost, 11 , p. 208 (lines 4,7,8)]).

Problem 77. [Interpretation of curvature in terms of parallel trans-

 port around a 'square']Let D be a connection on a vector bundle (E, π, M) and let $F=F_{D}$ be its curvature. Given $p \in M, X, Y \in T_{p} M$ and $v \in E_{p}$, prove the following formula for $F(X, Y)(v)$: Let $\eta>0$ and let f be a C^{∞} function from

$$
(-\eta, \eta)^{2}=\left\{(x, y) \in \mathbb{R}^{2}:-\eta<x, y<\eta\right\}
$$

to M satisfying $f(0,0)=p, d f_{(0,0)}\left(\frac{\partial}{\partial x}\right)=X$ and $d f_{(0,0)}\left(\frac{\partial}{\partial y}\right)=Y$. For $0<\varepsilon<\eta$, let $\mathbb{P}_{\varepsilon}: E_{p} \rightarrow E_{p}$ denote parallel transport around the ("square") curve

$$
c(t)= \begin{cases}f(t, 0) & \text { if } 0 \leq t \leq \varepsilon \\ f(\varepsilon, t-\varepsilon) & \text { if } \varepsilon \leq t \leq 2 \varepsilon \\ f(3 \varepsilon-t, \varepsilon) & \text { if } 2 \varepsilon \leq t \leq 3 \varepsilon \\ f(0,4 \varepsilon-t) & \text { if } 3 \varepsilon \leq t \leq 4 \varepsilon\end{cases}
$$

Then

$$
F(X, Y)(v)=-\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\varepsilon^{2}}\left(\mathbb{P}_{\varepsilon}(v)-v\right) .
$$

Problem 78. [Constant curvature metrics in normal coordinates.]

Let M be a Riemannian manifold with constant sectional curvature ρ. Let $p \in M$ and let (U, x) be normal coordinates with center p, and let $\left(g_{i j}(x)\right)$ represent the Riemannian metric with respect to (U, x). Prove that for any $x \in x(U) \backslash\{0\}:$

$$
g_{i j}(x)= \begin{cases}\frac{x_{i} x_{j}}{\|x\|^{2}}+\frac{\sin ^{2}\left(\rho^{1 / 2}\|x\|\right)}{\rho\|x\|^{2}}\left(\delta_{i j}-\frac{x_{i} x_{j}}{\|x\|^{2}}\right) & \text { if } \rho>0 \\ \delta_{i j} & \text { if } \rho=0 \\ \frac{x_{i} x_{j}}{\|x\|^{2}}+\frac{\sinh ^{2}\left(|\rho|^{1 / 2}\|x\|\right)}{|\rho|\|x\|^{2}}\left(\delta_{i j}-\frac{x_{i} x_{j}}{\|x\|^{2}}\right) & \text { if } \rho<0\end{cases}
$$

(Verify also that the above expression extends to a C^{∞} function on all of $x(U)$, as it should.)

Problem 79. [Some relations for $\left(g_{i j}\right)$ in normal coordinates.]

Let M be a Riemannian manifold, let $p \subset M$, and let (U, x) be a chart on M which gives normal coordinates centered at p. Let the Riemannian metric be represented by $\left(g_{i j}(x)\right)$ with respect to (U, x). Prove that for every i,

$$
g_{i i, i i}(0)=0
$$

and for any $i \neq j$,

$$
g_{i i, j j}(0)=g_{j j, i i}(0)=-2 g_{i j, i j}(0) .
$$

Here $g_{i j, k \ell}(x):=\frac{\partial}{\partial x^{k} \partial x^{\ell}} g_{i j}(x)$.
[Some hints/suggestions: For symmetry reasons we may assume $i, j \in\{1,2\}$ and then it suffices to study $g_{i j}(x)$ for $x=\left(x_{1}, x_{2}, 0, \ldots, 0\right)$. One can show that Jost's [12, Thm. 1.4.5] (\Leftrightarrow Problem [231) implies that at any point $x=\left(x_{1}, x_{2}, 0, \ldots, 0\right)$ the vector $x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}$ has length $\sqrt{x_{1}^{2}+x_{2}^{2}}$, and is orthogonal to the vector $-x_{2} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}$. Now investigate carefully what these facts imply for the functions $g_{i j}\left(x_{1}, x_{2}, 0, \ldots, 0\right)$ for $i, j \in\{1,2\}$.]
Solution: p. 214 .

Solution:

Problem 80. [A formula for sectional curvature.]

Let M be a Riemannian manifold, let $p \subset M$, and let Π be a plane in $T_{p} M$ (viz., a 2-dimensional linear subspace of $T_{p} M$). Let $D_{r} \subset T_{p} M$ be the open disc of radius r in the plane Π, centered at 0 . For r sufficiently small, we know (by Theorem 3 in Lecture \#4) that $\exp _{p}\left(D_{r}\right)$ is an embedded 2-dimensional submanifold of M; call its area A_{r}. Prove that

$$
K(\Pi)=\lim _{r \rightarrow 0^{+}} 12 \frac{\pi r^{2}-A_{r}}{\pi r^{4}} .
$$

(The Riemannian metric on $\exp _{p}\left(D_{r}\right)$ is the one induced from M; cf. Problem 18, Also the "area" of $\exp _{p}\left(D_{r}\right)$ is the same as its "volume"; cf. p. 1 in Lecture \#12.)
[Hint: The results from Problem 79 may be useful.]

Problem 81. [On a surface of revolution: geodesics, parallel transport and sectional curvature.]

Let f be a C^{∞} function from \mathbb{R} to $\mathbb{R}_{>0}$, and consider a surface of revolution

$$
S:=\{(x, f(x) \cos \alpha, f(x) \sin \alpha): x, \alpha \in \mathbb{R}\} .
$$

We take it as known ${ }^{5}$ that S is a closed differentiable submanifold of \mathbb{R}^{3}, and that for any real interval $J=(a, b)$ with $b<a+2 \pi$ the inverse of the map $(x, \alpha) \mapsto(x, f(x) \cos \alpha, f(x) \sin \alpha)$ from $\mathbb{R} \times J$ to S is a chart on S. Equip S with the Riemannian metric induced from the standard Riemannian metric on \mathbb{R}^{3}.
(a). Make explicit the ode describing an arbitrary geodesic on $S, \nabla_{\dot{\gamma}} \dot{\gamma}=0$ (cf. p. 9 in Lecture \#13), in the (x, α) coordinates. Your answer should be of the form

$$
\left\{\begin{array}{l}
\ddot{x}+{ }^{*} \dot{x} \dot{x}+\sqrt{*} \dot{x} \dot{\alpha}+{ }^{*} \dot{\alpha} \dot{\alpha}=0 \\
\ddot{\alpha}+* \dot{x} \dot{x}+\sqrt{*} \dot{x} \dot{\alpha}+* \dot{\alpha} \dot{\alpha}=0,
\end{array}\right.
$$

with each " *" being an explicit expression in x, α, f. Prove also from this equation that $f(x)^{2} \cdot \dot{\alpha}$ remains constant along any geodesic. Finally, describe all geodesics which have $x \equiv$ constant or $\alpha \equiv$ constant.
(b). Given $x \in \mathbb{R}$, consider the closed curve $c(t)=(x, f(x) \cos t, f(x) \sin t)$, $t \in[0,2 \pi]$, in S. Describe explicitly the parallel transport of an arbitrary tangent vector $v \in T_{c(0)} S$ along c.
(c). Compute the sectional curvature of S at an arbitrary point

$$
(x, f(x) \cos \alpha, f(x) \sin \alpha)
$$

(In particular, where is this sectional curvature positive/negative? Also, as a consistency check, verify that you get back the known answer for the case $f(x)=\sqrt{r^{2}-x^{2}},|x|<r$.)

[^4]
Problem 82. [A formula involving ∇^{2} of a 1-form.]

Let M be a Riemannian manifold and let ∇ be the Levi-Civita connection on $T M$. By the standard definitions of dual and tensor product connections (cf. Propositions 1,2 in Lecture $\# 10$) ∇ gives rise to a connection on any tensor bundle

$$
T_{s}^{r}(M)=\underbrace{T M \otimes \cdots \otimes T M}_{r \text { times }} \otimes \underbrace{T^{*} M \otimes \cdots \otimes T^{*} M}_{s \text { times }},
$$

which we also call ∇. This ∇ is a map from $\Gamma T_{s}^{r}(M)$ to

$$
\begin{equation*}
\Omega^{1}\left(T_{s}^{r}(M)\right)=\Gamma\left(T_{s}^{r}(M) \otimes T^{*} M\right)=\Gamma\left(T_{s+1}^{r}(M)\right) . \tag{3}
\end{equation*}
$$

Prove that for any $\eta \in \Gamma\left(T_{1}^{0}(M)\right)$, the tensor field

$$
\nabla^{2} \eta:=\nabla(\nabla \eta) \quad \text { in } \Gamma\left(T_{3}^{0}(M)\right)
$$

satisfies

$$
\left(\nabla^{2} \eta\right)(X, Y, Z)-\left(\nabla^{2} \eta\right)(X, Z, Y)=\eta(R(Y, Z) X)
$$

for all vector fields $X, Y, Z \in \Gamma(T M)$.
(Remark: We stress that the "new" $T^{*} M$-factor is put last in (3)); thus for any $F \in \Gamma\left(T_{s}^{r}(M)\right)$ and any $\omega^{1}, \ldots, \omega^{r} \in \Gamma\left(T^{*} M\right), Y_{1}, \ldots, Y_{s} \in \Gamma(T M)$, $X \in \Gamma(T M)$,

$$
(\nabla F)\left(\omega^{1}, \ldots, \omega^{r}, Y_{1}, \ldots, Y_{s}, X\right)=\left(\nabla_{X} F\right)\left(\omega^{1}, \ldots, \omega^{r}, Y_{1}, \ldots, Y_{s}\right) .
$$

Note also that the connections $\nabla: \Gamma\left(T_{s}^{r}(M)\right) \rightarrow \Gamma\left(T_{s+1}^{r}(M)\right)$ considered here should not be confused with the exterior covariant derivative defined in Proposition 4 in Lecture \#10.)
(Hint: The formula can be proved either by expressing everything in local coordinates using Christoffel symbols, or by working through the definitions expressing all " ∇ " appearing in terms of the original Levi-Civita connection $\left.\nabla: \Gamma(T M) \rightarrow \Omega^{1}(T M).\right)$

Solution:
p. 223 ,

Solution: p. 225 ,

Problem 83. [Basic fact on existence of variations of a curve.]

Let M be a C^{∞} manifold, let $c:[0,1] \rightarrow M$ be a C^{∞} curve, and let Y be a vector field along c.
(a). Prove that there exists a variation of c with $c^{\prime}=Y$, and that if $Y(0)=$ $0=Y(1)$ then this variation can be taken to be proper.
(b). Prove that if $\gamma_{0}, \gamma_{1}:\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right) \rightarrow M$ are C^{∞} curves with $\gamma_{0}(0)=c(0)$, $\dot{\gamma}_{0}(0)=Y(0), \gamma_{1}(0)=c(1), \dot{\gamma}_{1}(0)=Y(1)$, then there exists a variation of c with $c^{\prime}=Y$ such that $c(0, s)=\gamma_{0}(s)$ and $c(1, s)=\gamma_{1}(s)$ for all small s.

Problem 84. [On proper variations through geodesics.]

Prove that if $c(t, s)$ is a proper variation of a geodesic c through geodesics (viz., c_{s} is a geodesic for every s), then $E(s)=E\left(c_{s}\right)$ and $L(s)=L\left(c_{s}\right)$ are constant functions of s.
(Comment: This means that Jost's sentence in [12, p. 216 (lines 13-14)] is somewhat misleading; namely the length is always constant on the whole family, for a proper variation through geodesics.)

Solution:
Problem 85. [Around Cor. 3 in Lecture $\# 17 \approx$ Jost's Cor. 5.2.4.]
(a). Let $M=S^{d}$ with its standard Riemannian metric, and let $p \in M$. Give an example of a piecewise smooth curve $\gamma:[0,1] \rightarrow T_{p} M$ such that $L\left(\exp _{p} \circ \gamma\right)=\|\gamma(1)\|$ but γ is not a reparametrization of the curve $t \mapsto t \cdot \gamma(1)$ $(t \in[0,1])$.
(Comment: This shows that the last statement in Jost's [12, Cor. 5.2.4], i.e. the criterion for when equality holds, is incorrect.)
(b). Use "Gauss Lemma" ($=$ Cor. 2 in Lecture \#17 = Jost's [12, Cor. 5.2.3]) to derive the following strengthening of a result from Problem 23; Let M be a Riemannian manifold, let $p \in M$, and let $\mathcal{D}_{p}=T_{p} M \cap \mathcal{D}$ be the maximal domain of $\exp _{p}$ (cf. Problem 21). Let (W, y) be a C^{∞} chart on $T_{p} M$ with $W \subset \mathcal{D}_{p}$, which we assume is "polar coordinates" in the sense that

$$
y^{1}(w)=\|w\|, \quad \forall w \in W
$$

and
$\left(y^{2}(c w), \ldots, y^{d}(c w)\right)=\left(y^{2}(w), \ldots, y^{d}(w)\right)$ whenever $c>0, w \in W, c w \in W$.
Prove that at every point $\tilde{y} \in y(W)$, the matrix representing the symmetric bilinear form

$$
(v, w) \mapsto\left\langle d\left(\exp _{p} \circ y^{-1}\right)_{\tilde{y}}(v), d\left(\exp _{p} \circ y^{-1}\right)_{\tilde{y}}(w)\right\rangle, \quad v, w \in \mathbb{R}^{d}
$$

is of the form

$$
\left(h_{i j}(\tilde{y})\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & h_{22}(\tilde{y}) & \cdots & h_{2 d}(\tilde{y}) \\
\vdots & \vdots & & \vdots \\
0 & h_{d 2}(\tilde{y}) & \cdots & h_{d d}(\tilde{y})
\end{array}\right)
$$

(Comment: As explained in Lecture $\# 17$, the above fact can be used to prove Cor. 3 in Lecture $\# 17$, which is [12, Cor. 5.2.4] with a modified criterion for equality.)
(c). Prove the following alternative criterion for equality in \#17, Cor. 3: "If equality holds, and there does not exist a point conjugate to $c(0)$ along c, then γ must be a reparametrization of the curve $t \mapsto t v(t \in[0,1])$."

Problem 86. [Remark 2 in Lecture \#18]
Let $c:[a, b] \rightarrow M$ be a geodesic and let $t_{0} \neq t_{1} \in[a, b]$. Prove that $c\left(t_{0}\right)$ and $c\left(t_{1}\right)$ are conjugate along c iff the differential

$$
\left(d \exp _{c\left(t_{0}\right)}\right)_{\left(t_{1}-t_{0}\right) \cdot \dot{c}\left(t_{0}\right)}: T_{c\left(t_{0}\right)} M \rightarrow T_{c\left(t_{1}\right)} M
$$

Solution: p. 229 .

Solution: p. 230.

Problem 87. [On the metric space C_{M} of C^{∞} curves on M.]

Let M be a Riemannian manifold. Introduce the space C_{M} with its metric d as on p. 3 in Lecture \#18.
(a). Prove that d is well-defined, and is indeed a metric on C_{M}.
(b). Prove that the metric space $\left(C_{M}, d\right)$ is not complete.
(c). Prove that neither E nor L are continuous on (C_{M}, d); in fact for every $c \in C_{M}$ and $\delta>0$, both E and L are unbounded on the open ball $B_{\delta}(c)$.
(d). As a small consolation, prove that both E and L are lower semicontinuous on $\left(C_{M}, d\right)$.

Problem 88. [Approximating a non- C^{∞} vector field along a curve.]

Let $c:[a, b] \rightarrow M$ be a geodesic and let Y be a " $\mathrm{pw} C^{\infty}$ vector field along c ", i.e. Y is a continuous function $Y:[a, b] \rightarrow T M$ such that $Y(t) \in T_{c(t)}(M)$ for all $t \in[a, b]$, and such that there exist a finite number of 'break-points' $a=t_{0}<t_{1}<\cdots<t_{m}=b$ such that the restricted function $Y_{\left[\left[t_{j-1}, t_{j}\right]\right.}$ is C^{∞} for each $j=1,2, \ldots, m$. Prove that then for every $\varepsilon>0$ there exists some C^{∞} vector field Z along c such that

$$
Z(t)=Y(t) \quad \forall t \in[a, b] \backslash \bigcup_{j=1}^{m-1}\left(t_{j}-\varepsilon, t_{j}+\varepsilon\right)
$$

and

$$
|I(Z, Z)-I(Y, Y)|<\varepsilon
$$

(Of course here " $I(Y, Y)$ " is well-defined, for example it can be defined as $\left.\sum_{j=1}^{m} I\left(Y_{\left[t_{j-1}, t_{j}\right]}, Y_{\left[t_{j-1}, t_{j}\right]}\right].\right)$

Problem 89. [Equivalence of definitions of injectivity radius.]

Let M be a Riemannian manifold and let $p \in M$. Let $r>0$ be such that $\exp _{p}$ is defined and injective on the open ball $B_{r}(0)$ in $T_{p}(M)$. Prove that then $\exp _{p \mid B_{r}(0)}$ is a diffeomorphism of $B_{r}(0)$ onto an open subset of M.
(Comment: This proves that the injectivity radius of p can be defined either as the supremum of all $r>0$ for which $\exp _{p}$ is defined and injective on $B_{r}(0) \subset T_{p}(M)$, as in Jost [12, Def. 1.4.6], or as the supremum of all $r>0$ for which $\exp _{p \mid B_{r}(0)}$ is a diffeomorphism.)

Solution:

Problem 90. [Vanishing derivatives up to order k.]

Let M be a C^{∞} manifold and let $f \in C^{\infty}(M), p \in M$ and $k \in \mathbb{Z}_{\geq 0}$. We say that f has vanishing derivatives up to order k at p if for some chart (U, x) for M with $p \in U$, any $1 \leq r \leq k$ and any $j_{1}, \ldots, j_{r} \in\{1, \ldots, d\}(d=\operatorname{dim} M)$,

$$
\frac{\partial}{\partial x^{j_{1}}} \cdots \frac{\partial}{\partial x^{j_{r}}} f=0 \quad \text { at } p
$$

Prove that when this holds, it follows that every chart (U, x) with $p \in U$ has the same property.
Solution: p. 232.

Solution:

Problem 91. [Geodesics and conjugate points on a perturbed sphere.]

Let S^{d} be unit sphere equipped with its standard Riemannian metric, which we denote by $\langle\cdot, \cdot\rangle$. For any function $f \in C^{\infty}(M)$ which is everywhere positive, we write S_{f}^{d} for S^{d} equipped with the Riemannian metric

$$
[v, w]:=f(p) \cdot\langle v, w\rangle, \quad \forall p \in S^{d}, v, w \in T_{p} S^{d}
$$

Fix a geodesic $c:[0, \pi] \rightarrow S^{d}$ parametrized by arc length (thus the endpoints $c(0)$ and $c(\pi)$ are antipodal points). For $k \in \mathbb{Z}_{>0}$, let \mathcal{F}_{k} be the family of all positive functions $f \in C^{\infty}(M)$ such that for every point p along c we have $f(p)=1$ and f has vanishing derivatives up to order k at p (cf. Problem 90).
(a). Prove that c is a geodesic in S_{f}^{d} for every $f \in \mathcal{F}_{1}$.
(b). Prove that for every $f \in \mathcal{F}_{2}$, the following holds in $S_{f}^{d}: c$ is a geodesic, $c(0)$ and $c(\pi)$ are conjugate along c, and there is no point before $c(\pi)$ conjugate to $c(0)$ along c.
(c). Let $U \subset S^{d}$ be an open set which has nonempty intersection with the geodesic c, and let f be any function in \mathcal{F}_{1} which satisfies $f \geq 1$ on all S^{d} and $f(p)>1$ for all $p \in U \backslash c([0, \pi])$. Prove that then c is a strict local minimum for L in S_{f}^{d} among pw C^{∞} curves with fixed endpoints.
(d). Take U as in part (c), and let f be any function in \mathcal{F}_{1} which satisfies $f \leq 1$ on all S^{d} and $f(p)<1$ for all $p \in U \backslash c([0, \pi])$. Prove that then c is not a local minimum for L in S_{f}^{d} among pw C^{∞} curves with fixed endpoints.
[Comment: It is a standard fact from analysis that there exist functions f as in (c) and (d), also in \mathcal{F}_{k} with k arbitrarily large. It then follows from (b), (c), (d) that in the situation described in the remark immediately below Theorem 1 in Lecture \#18 - i.e. when the endpoints of c are conjugate but there is no previous point along c conjugate to the starting point - one cannot make any general statement about c being or not being a (strict or non-strict) local minimum for L !]

Problem 92. [A comparison result for lengths of curves.]

Let M_{0} and M be d-dimensional complete Riemannian manifolds such that M_{0} has constant sectional curvature μ and the sectional curvature of M is everywhere $\leq \mu$. Fix points $p \in M$ and $p_{0} \in M_{0}$, and identify both $T_{p} M$ and $T_{p_{0}} M$ with \mathbb{R}^{d} in a way carrying the respective Riemannian scalar products to the standard scalar product in \mathbb{R}^{d}. Take $r>0$ so small that $\exp _{p_{0}}$ restricted to the open ball $B_{r}(0) \subset \mathbb{R}^{d}$ is a diffeomorphism onto an open subset of M_{0}. Prove that for any pw C^{∞} curve $c:[a, b] \rightarrow B_{r}(0)$,

$$
L\left(\exp _{p} \circ c\right) \geq L\left(\exp _{p_{0}} \circ c\right)
$$

(Here $\exp _{p} \circ c$ is a curve on M while $\exp _{p_{0}} \circ c$ is a curve on M_{0}.)
[Hint: Try to prove a stronger statement comparing the norms of $d\left(\exp _{p}\right)_{x}(v)$ and $d\left(\exp _{p_{0}}\right)_{x}(v)$ for any $x \in B_{r}(0)$ and $v \in \mathbb{R}^{d}$. Here use can be made of Corollaries 1 and 2 in Lecture $\# 17$ and Theorem 1 in Lecture \#19 (the Rauch Comparison Theorem).]

Solution:

Problem 93. [Focal points (special case).]

Let $\gamma:[-\eta, \eta] \rightarrow M$ and $c:[a, b] \rightarrow M$ be geodesics on the Riemannian manifold M, satisfying $c(a)=\gamma(0), \dot{c}(a) \neq 0$, and $\langle\dot{c}(a), \dot{\gamma}(0)\rangle=0$. For $\tau \in(a, b], c(\tau)$ is called a focal point of γ along c if there exists a nontrivial Jacobi field X along c such that $X(\tau)=0$, and

$$
X(a) \in \operatorname{Span}(\dot{\gamma}(0)) \quad \text { and } \quad \dot{X}(a) \perp \dot{\gamma}(0) \quad \text { in } T_{c(a)}(M)
$$

Prove that if there is some $\tau \in(a, b)$ such that $c(\tau)$ is a focal point of γ along c, then there exists a variation $c:[a, b] \times(-\varepsilon, \varepsilon) \rightarrow M$ of the curve c such that $c(a, s) \in \gamma([-\eta, \eta])$ and $c(b, s)=c(b)$ for all $s \in(-\varepsilon, \varepsilon)$ and $L(s)<L(0)$ for all $s \in(-\varepsilon, \varepsilon) \backslash\{0\}$ (with $L(s):=L(c(\cdot, s)$), as usual).
[Hint: If γ is a constant point then the result follows from Theorem 1 in Lecture $\# 18$; thus try to extend the proof of that theorem to the present situation. See also Problem [83(b).]
[Comment: More generally one can define the notion of "focal point" for any submanifold of M (in the place of γ above); cf., e.g., [2, p. 23TM]. The general definition looks different from our definition above, however in the special case which we consider, i.e. that of a submanifold which is a geodesic, the two formulations can be shown to be equivalent. Note also that the definition given in Jost, [12, Exc. 5.2], is completely incorrect.]

Solution:

Problem 94. [Local isometry \Rightarrow covering map.]
Let \widetilde{M} and M be Riemannian manifolds with \widetilde{M} complete, and let

$$
\pi: \widetilde{M} \rightarrow M
$$

be a local isometry. Prove that then M is complete and π is a covering map.

Solution: p. 241,

Solution: p. 241,

Problem 95. [The Killing-Hopf Theorem.]
Prove the Killing-Hopf Theorem: Let M be an n-dimensional complete, simply connected Riemannian manifold with constant sectional curvature. Then M is isometric to \mathbb{R}^{n} (with its standard Riemannian metric) or a sphere of radius $r>0$ in \mathbb{R}^{n+1} (with its standard Riemannian metric) or the hyperbolic space $H^{n}(\rho)$ introduced in [12, Sec. 5.4] (cf. Problem [20).

2. Solution suggestions

Problem 1: For any $p \in M$, let U_{p} be the set of points $q \in M$ for which there exists a curve from p to q. Using the fact that M is locally Euclidean one verifies that

$$
\begin{equation*}
\forall p \in M:\left[U_{p} \text { is open }\right] . \tag{4}
\end{equation*}
$$

Next let us note:

$$
\begin{equation*}
\forall p, q \in M:\left[U_{p} \cap U_{q} \neq \emptyset \Rightarrow q \in U_{p}\right] . \tag{5}
\end{equation*}
$$

[Proof: Assume $U_{p} \cap U_{q} \neq \emptyset$; then there is a point $q^{\prime} \in U_{p} \cap U_{q}$. Now $q^{\prime} \in U_{p}$ means that there is a curve γ_{1} in M from p to q^{\prime}, and $q^{\prime} \in U_{q}$ means that there is a curve γ_{2} in M from q to q '. Then the "product path" of γ_{1} and the "inverse path" of $\gamma_{2}{ }^{6}$ is a curve in M from p to q. Hence $q \in U_{p}$.]

Now for any $p \in M$, if $q \in \complement U_{p}$ (complement wrt M) then also $U_{q} \subset \complement U_{p}$, by (5), and U_{q} is open (by (4)), and $q \in U_{q}$ (immediate from the definition of U_{q}). Hence every point in $\complement U_{p}$ has an open neighborhood which is contained in $\complement U_{p}$. Hence $\complement U_{p}$ is open (viz., U_{p} is closed).

Hence for every $p \in M$, both U_{p} and $\mathbb{C} U_{p}$ are open. Furthermore M equals the disjoint union of these two sets. Hence since M is connected, either U_{p} or $\complement U_{p}$ must be empty. But $p \in U_{p}$; hence $\complement U_{p}=\emptyset$, i.e. $U_{p}=M$. By the definition of U_{p}, this means that for every $q \in M$ there exists a curve from p to q.

[^5]
Problem 2,

(a). First assume that M has a countable atlas \mathcal{A}. For each chart $(U, x) \in$ \mathcal{A}, since $x(U)$ (an open subset of \mathbb{R}^{d}) is second countable, we can choose a base $\mathcal{U}=\mathcal{U}_{(U, x)}$ for the topology of $x(U)$. Then set

$$
\mathcal{U}^{\prime}=\mathcal{U}_{(U, x)}^{\prime}:=\left\{x^{-1}(V): V \in \mathcal{U}_{(U, x)}\right\} .
$$

This is a countable family of open subsets of U. Next let $\mathcal{U}^{\prime \prime}$ be the union of all families $\mathcal{U}_{(U, x)}^{\prime}$ as (U, x) runs through \mathcal{A}. This is a countable family of open subsets of M. We claim that $\mathcal{U}^{\prime \prime}$ is a base for the topology of M. In order to prove this, let Ω be an arbitrary open set in M, and let $p \in \Omega$. Take a chart $(U, x) \in \mathcal{A}$ with $p \in U$. Then $\Omega \cap U$ is an open set in U containing p, and so $x(\Omega \cap U)$ is an open subset of $x(U)$ and $x(p) \in x(\Omega \cap U)$. Hence, since $\mathcal{U}_{(U, x)}$ is a base for $x(U)$, there is $V \in \mathcal{U}_{(U, x)}$ such that

$$
x(p) \in V \subset x(\Omega \cap U) .
$$

Then $x^{-1}(V) \in \mathcal{U}^{\prime} \subset \mathcal{U}^{\prime \prime}$ and

$$
p \in x^{-1}(V) \subset \Omega \cap U \subset \Omega .
$$

This proves that $\mathcal{U}^{\prime \prime}$ is a base for the topology of M. Done!
We now prove the opposite implication. Thus assue that M is second countable; let \mathcal{U} be a countable base for the topology of M. Also let \mathcal{A} be the family of all charts on M; this is an atlas for M. Set

$$
\mathcal{U}^{\prime}:=\left\{U \in \mathcal{U}: \text { there is some } x: U \rightarrow \mathbb{R}^{d} \text { s.t. }(U, x) \in \mathcal{A}\right\} .
$$

We claim that \mathcal{U}^{\prime} covers M, i.e. $\cup_{U \in \mathcal{U}^{\prime}} U=M$. To prove this, take an arbitrary point $p \in M$. Then there is some chart $(U, x) \in \mathcal{A}$ with $p \in U$, and since \mathcal{U} is a base for M there is $V \in \mathcal{U}$ such that $p \in V \subset U$. Now ($V, x_{\mid V}$) is also a chart for M (since the restriction of a homeomorphism to an open subset is itself a homeomorphism onto its image), i.e. $\left(V, x_{\mid V}\right) \in \mathcal{A}$, and thus $V \in \mathcal{U}^{\prime}$. Hence \mathcal{U}^{\prime} indeed covers M. It follows that if for each $U \in \mathcal{U}^{\prime}$ we choose one map $x_{U}: U \rightarrow \mathbb{R}^{d}$ such that $\left(U, x_{U}\right) \in \mathcal{A}$, then

$$
\left\{\left(U, x_{U}\right): U \in \mathcal{U}^{\prime}\right\}
$$

is an atlas for M. This atlas is countable since \mathcal{U}^{\prime} is countable (since $\mathcal{U}^{\prime} \subset \mathcal{U}$). Done!
(b). By the notes to Lecture \#1, this is clear from part (a).

Problem [3: Let M be a connected topological space for which every point has an open neighborhood U which is homeomorphic to an open subset Ω of \mathbb{R}^{d} for some $d \in \mathbb{Z}_{\geq 1}$ (which apriori may depend on U). Note that we actually don't need to assume that M is Hausdorff for the following argument to work.

For each $d \in \mathbb{Z}_{\geq 1}$, let \mathcal{F}_{d} be the family of all open sets $U \subset M$ which are homeomorphic to an open subset of \mathbb{R}^{d}. Then the assumption on M implies that

$$
\begin{equation*}
M=\bigcup_{d=1}^{\infty}\left(\bigcup_{U \in \mathcal{F}_{d}} U\right) \tag{6}
\end{equation*}
$$

Using Brouwer's Theorem on invariance of dimension, we now have:

$$
\begin{equation*}
\forall d \neq d^{\prime} \in \mathbb{Z}_{\geq 1}: \quad \forall U \in \mathcal{F}_{d}, V \in \mathcal{F}_{d^{\prime}}: \quad U \cap V=\emptyset \tag{7}
\end{equation*}
$$

[Detailed proof: Take such U, V and set $W:=U \cap V$. Note that W is an open subset of both U and V. Now $U \in \mathcal{F}_{d}$ implies that U is homomorphic to an open subset of \mathbb{R}^{d}; this homeomorphism then restricts to a homeomorphism of W to a (smaller) open subset of \mathbb{R}^{d}. Similarly $V \in \mathcal{F}_{d^{\prime}}$ implies that W is also homeomorphic to an open subset of $\mathbb{R}^{d^{\prime}}$. Hence by Brouwer's Theorem on invariance of dimension, using $d=d^{\prime}$, we must have $W=\emptyset$, qed.]

The property (7) implies that the unions $\cup_{U \in \mathcal{F}_{d}} U$ are pairwise disjoint for $d=1,2, \ldots$. Also each such union is an open set, since it is a union of open sets. Hence (6) expresses M as a union of disjoint open sets. But M is connected; therefore $\cup_{U \in \mathcal{F}_{d}} U$ must be empty for all except (at most) one d, say d_{0}. This means that $\mathcal{F}_{d}=\{\emptyset\}$ for all $d \neq d_{0}$, and this implies the desired result.

Problem 4: Let the dimension of M be d. Let \mathcal{A} be the given C^{∞} atlas, and let \mathcal{A}^{\prime} be the family of all charts which are compatible with every chart in \mathcal{A}. Let us start by proving that \mathcal{A}^{\prime} is a C^{∞} atlas. Clearly $\mathcal{A} \subset \mathcal{A}^{\prime}$ and thus the charts in \mathcal{A}^{\prime} cover M. Thus it remains to prove that any two charts in \mathcal{A}^{\prime} are C^{∞} compatible. Thus consider any two charts $(U, x),(V, y) \in \mathcal{A}^{\prime}$; we need to prove that the map

$$
\begin{equation*}
y \circ x^{-1}: x(U \cap V) \rightarrow y(U \cap V) \subset \mathbb{R}^{d} \tag{8}
\end{equation*}
$$

is C^{∞}. (It is clear that that map in (8) is a homeomorphism, since (U, x) and (V, y) are charts.) Take $p \in U \cap V$; it suffices to prove that there is some open neighborhood $\Omega \subset x(U \cap V)$ of $x(p)$ such that $\left(y \circ x^{-1}\right)_{\mid \Omega}$ is C^{∞}. Since \mathcal{A} is an atlas, there is some chart $(W, z) \in \mathcal{A}$ with $p \in W$. By assumption both (U, x) and (V, y) are compatible with (W, z); hence both the maps

$$
\begin{equation*}
z \circ x^{-1}: x(U \cap W) \rightarrow z(U \cap W) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
y \circ z^{-1}: z(V \cap W) \rightarrow y(V \cap W) \tag{10}
\end{equation*}
$$

are diffeomorphisms. Now set

$$
\Omega:=x(U \cap V \cap W) .
$$

This is an open subset of $x(U)$, since $U \cap V \cap W$ is an open subset of U and x is a homeomorphism. Restricting the diffeomorphisms in (9) and (10) to the open subsets Ω and $z(U \cap V \cap W)$, respectively, we obtain diffeomorphisms

$$
\begin{equation*}
z \circ x^{-1}: \Omega \rightarrow z(U \cap V \cap W) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
y \circ z^{-1}: z(U \cap V \cap W) \rightarrow y(U \cap V \cap W) \tag{12}
\end{equation*}
$$

It follows that the composition of these two maps is also a diffeomorphism, from Ω onto $y(U \cap V \cap W)$. But this composition equals $\left(y \circ x^{-1}\right)_{\mid \Omega}$. Hence we have proved, in particular, that $\left(y \circ x^{-1}\right)_{\mid \Omega}$ is C^{∞}. This completes the proof that \mathcal{A}^{\prime} is a C^{∞} atlas.

It is immediate from the construction of \mathcal{A}^{\prime} that \mathcal{A}^{\prime} is C^{∞} structure, i.e. a maximal C^{∞} atlas. (Indeed, suppose that $\mathcal{A}^{\prime \prime}$ is any C^{∞} atlas with $\mathcal{A}^{\prime \prime} \supset \mathcal{A}^{\prime}$. Let $(U, x) \in \mathcal{A}^{\prime \prime}$. By definition of "atlas", (U, x) is compatible with every chart in $\mathcal{A}^{\prime \prime}$; and $\mathcal{A} \subset \mathcal{A}^{\prime} \subset \mathcal{A}^{\prime \prime}$; hence (U, x) is compatible with every chart in \mathcal{A}, and therefore $(U, x) \in \mathcal{A}^{\prime}$, by the definition of \mathcal{A}^{\prime}. Hence we have proved that $\mathcal{A}^{\prime \prime} \subset \mathcal{A}^{\prime}$, and so in fact $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime}$.)

It remains to prove that \mathcal{A}^{\prime} is the only C^{∞} structure on M with $\mathcal{A} \subset \mathcal{A}^{\prime}$. Thus assume that $\mathcal{A}^{\prime \prime}$ is an arbitrary C^{∞} structure on M with $\mathcal{A} \subset \mathcal{A}^{\prime \prime}$. Since $\mathcal{A}^{\prime \prime}$ is a C^{∞} atlas, every chart $(U, x) \in \mathcal{A}^{\prime \prime}$ is compatible with every chart in $\mathcal{A}^{\prime \prime}$; in particular (U, x) is compatible with every chart in \mathcal{A}, and thus $(U, x) \in \mathcal{A}^{\prime}$, by the definition of \mathcal{A}^{\prime}. Hence $\mathcal{A}^{\prime \prime} \subset \mathcal{A}^{\prime}$. But this implies that $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime}$, since $\mathcal{A}^{\prime \prime}$ is a maximal C^{∞} atlas. This completes the proof.

Problem 5:

(a) One simple way to construct such a set \mathcal{H} is as follows. Given any real number $0<t<2$, let

$$
f_{t}:(0,1) \rightarrow(0,1), \quad f_{t}(r):= \begin{cases}t r & \text { if } r \in\left(0, \frac{1}{4}\right] \\ \frac{1}{2}(t-1)+(2-t) r & \text { if } r \in\left(\frac{1}{4}, \frac{1}{2}\right] \\ r & \text { if } r \in\left(\frac{1}{2}, 1\right)\end{cases}
$$

One verifies that f_{t} is continuous, strictly increasing, and bijective, with inverse
$f_{t}^{-1}:(0,1) \rightarrow(0,1), \quad f_{t}^{-1}(r):= \begin{cases}t^{-1} r & \text { if } r \in\left(0, \frac{t}{4}\right] \\ (2-t)^{-1}\left(r+\frac{1}{2}(1-t)\right) & \text { if } r \in\left(\frac{t}{4}, \frac{1}{2}\right] \\ r & \text { if } r \in\left(\frac{1}{2}, 1\right)\end{cases}$
which is also continuous and strictly increasing. (These facts are most easily verified by simply drawing the graph of f_{t}; this graph is a union of three line segments: one from $(0,0)$ to $\left(\frac{1}{4}, \frac{1}{4} t\right)$, one from $\left(\frac{1}{4}, \frac{1}{4} t\right)$ to $\left(\frac{1}{2}, \frac{1}{2}\right)$, and one from $\left(\frac{1}{2}, \frac{1}{2}\right)$ to $(1,1)$.) Hence f_{t} is a homeomorphism of $(0,1)$ onto itself.

Next define $h_{t}: B_{1}(0) \rightarrow B_{1}(0)$ through

$$
h_{t}(x)= \begin{cases}0 & \text { if } x=0 \\ \frac{f_{t}(\|x\|)}{\|x\|} x & \text { if } x \neq 0\end{cases}
$$

Note that

$$
\left\|h_{t}(x)\right\|=f_{t}(\|x\|), \quad \forall x \in B_{1}(0) \backslash\{0\}
$$

and recall $f_{t}(r) \in(0,1)$ for all $r \in(0,1)$; hence h_{t} is indeed a map into $B_{1}(0)$. Clearly h_{t} is continuous in $B_{1}(0) \backslash\{0\}$; but we also have $\left\|h_{t}(x)\right\| \rightarrow 0$ (i.e. $h_{t}(x)$ tends to the origin) as $x \rightarrow 0$, since $f_{t}(r) \rightarrow 0$ as $r \rightarrow 0^{+}$; therefore h_{t} is continuous in all $B_{1}(0)$. Similarly one verifies that

$$
\tilde{h}_{t}(x)= \begin{cases}0 & \text { if } x=0 \\ \frac{f_{t}^{-1}(\|x\|)}{\|x\|} x & \text { if } x \neq 0\end{cases}
$$

defines a continuous map $\widetilde{h}_{t}: B_{1}(0) \rightarrow B_{1}(0)$ satisfying $\left\|\widetilde{h}_{t}(x)\right\|=f_{t}^{-1}(\|x\|)$ for all $x \in B_{1}(0) \backslash\{0\}$. Now we have

$$
h_{t}\left(\widetilde{h}_{t}(x)\right)=\widetilde{h}_{t}\left(h_{t}(x)\right)=x, \quad \forall x \in B_{1}(0)
$$

(Proof: This is immediate for $x=0$. Now assume $x \neq 0$. Then
$h_{t}\left(\widetilde{h}_{t}(x)\right)=\frac{f_{t}\left(\left\|\widetilde{h}_{t}(x)\right\|\right)}{\left\|\widetilde{h}_{t}(x)\right\|} \widetilde{h}_{t}(x)=\frac{f_{t}\left(f_{t}^{-1}(\|x\|)\right)}{f_{t}^{-1}(\|x\|)} \widetilde{h}_{t}(x)=\frac{\|x\|}{f_{t}^{-1}(\|x\|)} \widetilde{h}_{t}(x)=x$.
The proof of $\widetilde{h}_{t}\left(h_{t}(x)\right)=x$ is completely similar.) Hence h_{t} and \widetilde{h}_{t} are both bijections of $B_{1}(0)$ onto $B_{1}(0)$, and they are each other inverses. Since they
are both continuous, it follows that h_{t} is a homeomorphism of $B_{1}(0)$ onto itself.

Note also that h_{t} satisfies $h_{t}(x)=x$ for all $x \in B_{1}(0) \backslash B_{1 / 2}(0)$, since $f_{t}(r)=r$ for $r \in\left[\frac{1}{2}, 1\right)$.

We now let \mathcal{H} be the family of all these homeomorphisms h_{t} :

$$
\mathcal{H}:=\left\{h_{t}: t \in(0,2)\right\} .
$$

This family clearly satisfies all the requirements, if we can only prove that for any two $t_{1} \neq t_{2} \in(0,2)$, the homeomorphism $h_{t_{1}} \circ h_{t_{2}}^{-1}$ is not C^{∞}. (Indeed, this will in particular imply that $h_{t_{1}} \not \equiv h_{t_{2}}$ for all $t_{1} \neq t_{2} \in(0,2)$, and so the family \mathcal{H} is uncountable.)

Thus let $t_{1} \neq t_{2} \in(0,2)$ be given. Now for all $x \neq 0$ we have:

$$
\begin{equation*}
h_{t_{1}}\left(h_{t_{2}}^{-1}(x)\right)=\frac{f_{t_{1}}\left(f_{t_{2}}^{-1}(\|x\|)\right)}{f_{t_{2}}^{-1}(\|x\|)} \cdot \frac{f_{t_{2}}^{-1}(\|x\|)}{\|x\|} x=\frac{f_{t_{1}}\left(f_{t_{2}}^{-1}(\|x\|)\right)}{\|x\|} x . \tag{13}
\end{equation*}
$$

Using the explicit formulas for f_{t} and f_{t}^{-1} given above, we compute

$$
f_{t_{1}}\left(f_{t_{2}}^{-1}(r)\right)= \begin{cases}t_{1} t_{2}^{-1} r & \text { if } r \in\left(0, \frac{1}{4} t_{2}\right] \\ \frac{1}{2}\left(t_{1}-1\right)+\frac{2-t_{1}}{2-t_{2}}\left(r+\frac{1-t_{2}}{2}\right) & \text { if } r \in\left(\frac{1}{4} t_{2}, \frac{1}{2}\right] \\ r & \text { if } r \in\left(\frac{1}{2}, 1\right)\end{cases}
$$

From this we see that the (continuous) function $f_{t_{1}} \circ f_{t_{2}}:(0,1) \rightarrow(0,1)$ is not C^{∞}; for example at $r=\frac{1}{2}$ the function has left derivative $\frac{2-t_{1}}{2-t_{2}}$ and right derivative 1 , and these are not equal, since $t_{1} \neq t_{2}$. (Similarly the function has different left and right derivatives at $r=\frac{1}{4} t_{2}$.) From this it follows that the function $h_{t_{1}} \circ h_{t_{2}}^{-1}: B_{1}(0) \rightarrow B_{1}(0)$ is not C^{∞}. (Indeed, if $h_{t_{1}} \circ h_{t_{2}}^{-1}$ were C^{∞} then, writing e_{1} for the standard unit vector $(1,0, \ldots, 0) \in \mathbb{R}^{d}$, it would follow that the function

$$
(-1,1) \rightarrow(-1,1), \quad r \mapsto h_{t_{1}}\left(h_{t_{2}}^{-1}\left(r e_{1}\right)\right) \cdot e_{1}
$$

were C^{∞}; but it follows from (13)) that $h_{t_{1}}\left(h_{t_{2}}^{-1}\left(r e_{1}\right)\right) \cdot e_{1}=f_{t_{1}}\left(f_{t_{2}}^{-1}(r)\right)$ for $r \in(0,1)$, and so we would have a contradiction against the fact that $f_{t_{1}} \circ f_{t_{2}}$ is not C^{∞}.)
(b). Let \mathcal{A} be a fixed C^{∞} structure on M (it exists by assumption). Fix some chart $(V, y) \in \mathcal{A}$. Let y_{0} be a point in $y(V)$; then since $y(V)$ is open, there is some $r>0$ such that $B_{r}\left(y_{0}\right) \subset y(V)$. Set $U:=y^{-1}\left(B_{r}\left(y_{0}\right)\right)$; this is an open subset of V, and $\left(U, y_{\mid U}\right) \in \mathcal{A}$, since \mathcal{A} is a maximal C^{∞} atlas. Define the map

$$
x: U \rightarrow \mathbb{R}^{d}, \quad x(p):=\frac{1}{r}\left(y(p)-y_{0}\right) .
$$

Then $(U, x) \in \mathcal{A}$, since x equals $y_{\mid U}$ composed with a diffeomorphism of $B_{r}\left(y_{0}\right)$ onto $B_{1}(0)$. Note that $x(U)=B_{1}(0)$. From now on we keep this chart (U, x) fixed.

Now for any given homeomorphism h of $B_{1}(0)$ onto $B_{1}(0)$ satisfying $h(q)=q$ for all $q \in B_{1}(0) \backslash B_{1 / 2}(0)$, we define a function $\varphi_{h}: M \rightarrow M$ as follows:

$$
\varphi_{h}(p)= \begin{cases}p & \text { if } p \notin U \\ x^{-1}(h(x(p))) & \text { if } p \in U\end{cases}
$$

We claim that φ_{h} is continuous. It is immediate from the definition of φ_{h} that the restrictions of φ_{h} to U and to $M \backslash U$ are both continuous. Hence since U is open (and so $M \backslash U$ is closed) it now suffices to verify that if p_{1}, p_{2}, \ldots is any sequence of points in U such that $p_{j} \rightarrow p \in M \backslash U$ as $j \rightarrow \infty$, then $\varphi_{h}\left(p_{j}\right) \rightarrow \varphi_{h}(p)$. However the fact that $\left(p_{j}\right)$ tends to a point outside U implies that $\left(p_{j}\right)$ has only finitely many points in any fixed compact subset of U; in particular for all sufficiently large j we have $p_{j} \notin x^{-1}\left(\overline{B_{1 / 2}(0)}\right)$, and thus $h\left(x\left(p_{j}\right)\right)=x\left(p_{j}\right)$ and $\varphi_{h}\left(p_{j}\right)=p_{j}$. Also $\varphi_{h}(p)=p$ since $p \notin U$, and it follows that $\varphi_{h}\left(p_{j}\right) \rightarrow \varphi_{h}(p)$. This completes the proof that φ_{h} is continuous.

Furthermore, one verifies immediately that φ_{h} is a bijection with inverse map equal to $\varphi_{h^{-1}}: M \rightarrow M$, and the above argument applies also to $\varphi_{h^{-1}}$, showing that $\varphi_{h^{-1}}$ is continuous. Hence φ_{h} is a homeomorphism of M onto itself.

Next we prove:
Lemma 1. If \mathcal{A} is a C^{∞} structure on M, and φ is a homeomorphism of M onto itself, then also

$$
\mathcal{A}_{\varphi}:=\left\{\left(\varphi^{-1}(V), y \circ \varphi\right):(V, y) \in \mathcal{A}\right\}
$$

is a C^{∞} structure on M. Let us write (M, \mathcal{A}) for the C^{∞} manifold given by \mathcal{A}, and $\left(M, \mathcal{A}_{\varphi}\right)$ for the C^{∞} manifold given by \mathcal{A}_{φ}. Then φ is a diffeomorphism of $\left(M, \mathcal{A}_{\varphi}\right)$ onto (M, \mathcal{A}).
(Remark: The whole lemma can be seen as obvious. Namely, $\left(M, \mathcal{A}_{\varphi}\right)$ can be seen as "what one gets from (M, \mathcal{A}) after changing names on all points according to φ ". Viewed in this way, φ "is identity map"!)

Proof. Let \mathcal{T} be the family of all charts on the topological manifold M. Note that for any $(V, y) \in \mathcal{T}$ we have $\left(\varphi^{-1}(V), y \circ \varphi\right) \in \mathcal{T}$; hence we have a map

$$
\Phi: \mathcal{T} \rightarrow \mathcal{T}, \quad \Phi(V, y):=\left(\varphi^{-1}(V), y \circ \varphi\right) .
$$

In fact Φ is a bijection, with $\Phi^{-1}(V, y)=\left(\varphi(V), y \circ \varphi^{-1}\right)$. Note that

$$
\begin{equation*}
\mathcal{A}_{\varphi}=\{\Phi(V, y):(V, y) \in \mathcal{A}\} . \tag{14}
\end{equation*}
$$

Next we note that for any two charts $(V, y),(W, z) \in \mathcal{T}$, we have the equivalence

$$
\begin{align*}
& {\left[(V, y) \text { and }(W, z) \text { are } C^{\infty} \text { compatible }\right]} \\
& \quad \Leftrightarrow\left[\Phi(V, y) \text { and } \Phi(W, z) \text { are } C^{\infty} \text { compatible }\right] . \tag{15}
\end{align*}
$$

Indeed, by definition (V, y) and (W, z) are C^{∞} compatible iff the map

$$
\begin{equation*}
z \circ y^{-1}: \quad y(V \cap W) \rightarrow z(V \cap W) \tag{16}
\end{equation*}
$$

is a diffeomorphism (it is always a homeomorphism), and similarly $\Phi(V, y)$ and $\Phi(W, z)$ are C^{∞} compatible iff the map

$$
\begin{align*}
z \circ \varphi \circ(y \circ \varphi)^{-1}: \quad(y \circ \varphi)\left(\varphi^{-1}(V)\right. & \left.\cap \varphi^{-1}(W)\right) \tag{17}\\
& \rightarrow(z \circ \varphi)\left(\varphi^{-1}(V) \cap \varphi^{-1}(W)\right)
\end{align*}
$$

is a diffeomorphism. However, $\varphi^{-1}(V) \cap \varphi^{-1}(W)=\varphi^{-1}(V \cap W)$, and now by inspection one verifies that the two maps in (16) and (17) are the same. Hence the equivalence in (15) holds.

Clearly the charts in \mathcal{A}_{φ} cover M, since the charts in \mathcal{A} cover M. Note also that any two charts in \mathcal{A}_{φ} are C^{∞} compatible; this follows from (14) and (15)) and the fact that \mathcal{A} is a C^{∞} atlas. Hence \mathcal{A}_{φ} is a C^{∞} atlas. In fact (14) and (15) show that for any chart $(V, y) \in \mathcal{T}$, if (V, y) is C^{∞} compatible with \mathcal{A}_{φ} then $\Phi^{-1}(V, y)$ is C^{∞} compatible with \mathcal{A}; hence $\Phi^{-1}(V, y) \in \mathcal{A}$ since \mathcal{A} is a maximal C^{∞} atlas, and so $(V, y) \in \mathcal{A}_{\varphi}$. Hence \mathcal{A}_{φ} is a maximal C^{∞} atlas on M, i.e. \mathcal{A}_{φ} is a C^{∞} structure on M.

It remains to prove that φ is a diffeomorphism of $\left(M, \mathcal{A}_{\varphi}\right)$ onto (M, \mathcal{A}). For this, our task is to verify that for any $(V, y) \in \mathcal{A}_{\varphi}$ and any $(W, z) \in \mathcal{A}$, the map

$$
z \circ \varphi \circ y^{-1}: y\left(V \cap \varphi^{-1}(W)\right) \rightarrow z\left(V \cap \varphi^{-1}(W)\right)
$$

is a diffeomorphism. However $(V, y) \in \mathcal{A}_{\varphi}$ means that $(V, y)=\Phi(\widetilde{V}, \widetilde{y})=$ $\left(\varphi^{-1}(\widetilde{V}), \widetilde{y} \circ \varphi\right)$ for some $(\widetilde{V}, \widetilde{y}) \in \mathcal{A}$, and so

$$
z \circ \varphi \circ y^{-1}=z \circ \varphi \circ(\widetilde{y} \circ \varphi)^{-1}=z \circ \widetilde{y}^{-1}
$$

on the set

$$
y\left(V \cap \varphi^{-1}(W)\right)=\widetilde{y}\left(\varphi\left(V \cap \varphi^{-1}(W)\right)\right)=\widetilde{y}(\varphi(V) \cap W)=\widetilde{y}(\widetilde{V} \cap W)
$$

Thus, our task is to verify that $z \circ \varphi \circ y^{-1}$ is a diffeomorphism from $\widetilde{y}(\widetilde{V} \cap W)$ onto $z(\widetilde{V} \cap W)$, and this holds since (\widetilde{V}, y) and (W, z) are charts in \mathcal{A}.

Now take \mathcal{H} as in part (a), and form the family

$$
\mathcal{F}:=\left\{\mathcal{A}_{\varphi_{h}}: h \in \mathcal{H}\right\}
$$

By Lemma 1, each $\mathcal{A}_{\varphi_{h}}$ in \mathcal{F} is a C^{∞} structure on M, and all C^{∞} manifolds defined by these C^{∞} structures are diffeomorphic. Hence it now only remains to prove that $\mathcal{A}_{\varphi_{h_{1}}} \neq \mathcal{A}_{\varphi_{h_{2}}}$ for any two $h_{1} \neq h_{2} \in \mathcal{H}$. Let us write $\mathcal{A}_{1}=\mathcal{A}_{\varphi_{h_{1}}}$ and $\mathcal{A}_{2}=\mathcal{A}_{\varphi_{h_{2}}}$ for short.

Recall that $(U, x) \in \mathcal{A}$; hence $\left(\varphi_{h_{1}}^{-1}(U), x \circ \varphi_{h_{1}}\right) \in \mathcal{A}_{1}$ and $\left(\varphi_{h_{2}}^{-1}(U), x \circ\right.$ $\left.\varphi_{h_{2}}\right) \in \mathcal{A}_{2}$. Note that the map

$$
\left(x \circ \varphi_{h_{1}}\right) \circ\left(x \circ \varphi_{h_{2}}\right)^{-1}: \quad\left(x \circ \varphi_{h_{2}}\right)\left(\varphi_{h_{2}}^{-1}(U)\right) \rightarrow\left(x \circ \varphi_{h_{1}}\right)\left(\varphi_{h_{1}}^{-1}(U)\right)
$$

is the same as

$$
x \circ \varphi_{h_{1}} \circ \varphi_{h_{2}}^{-1} \circ x^{-1}: \quad B_{1}(0) \rightarrow B_{1}(0)
$$

and by the definition of φ_{h}, this is the same as

$$
h_{1} \circ h_{2}^{-1}: \quad B_{1}(0) \rightarrow B_{1}(0)
$$

which is not C^{∞}. Hence the two charts $\left(\varphi_{h_{1}}^{-1}(U), x \circ \varphi_{h_{1}}\right)$ and $\left(\varphi_{h_{2}}^{-1}(U), x \circ\right.$ $\left.\varphi_{h_{2}}\right)$ are not C^{∞} compatible, and therefore $\mathcal{A}_{1} \neq \mathcal{A}_{2}$.

Problem 6: All this is "completely obvious" once one understands the basic machinery with $\left(C^{\infty}\right)$ atlases. Let us go through the details:
(a). Here we are talking about a new type of object: "a (not necessarily connected) C^{∞} manifold". The definition should hopefully be obvious ${ }^{7}$... Namely: A "(not necessarily connected) C^{∞} manifold" is a topological space M such that every connected component of M is a C^{∞} manifold!

We now solve the given problem. Note that every connected component of U is also an open subset of M. Hence if we can prove that every connected open subset of M has a natural structure of a C^{∞} manifold, then it follows that U has a natural structure of a (not necessarily connected) C^{∞} manifold, and so we will be done.

Thus from now on assume that U is a connected open subset of M. Let the dimension of M be d. We endow U with the restricted topology; then U is a connected Hausdorff space.

Let \mathcal{A} be the C^{∞} structure of M. Thus \mathcal{A} is a maximal C^{∞} atlas on M. Set

$$
\mathcal{A}_{\mid U}:=\{(V, x):(V, x) \in \mathcal{A}, V \subset U\}
$$

We wish to prove that $\mathcal{A}_{\mid U}$ is a C^{∞} atlas on U. Clearly every $(V, x) \in \mathcal{A}_{\mid U}$ is a chart on U and these charts are pairwise C^{∞} compatible, since \mathcal{A} is a C^{∞} atlas. Hence it remains to prove that the charts in $\mathcal{A}_{\mid U}$ cover U. Take $p \in U$. Then there is a chart $(V, x) \in \mathcal{A}$ with $p \in V$. Now note that also $\left(V \cap U, x_{\mid V \cap U}\right)$ is a chart on M, and $\left(V \cap U, x_{\mid V \cap U}\right)$ is C^{∞} compatible with every chart in \mathcal{A} since (V, x) is C^{∞} compatible with every chart in \mathcal{A}. Hence, since \mathcal{A} is maximal, we have $\left(V \cap U, x_{\mid V \cap U}\right) \in \mathcal{A}$. Thus also $\left(V \cap U, x_{\mid V \cap U}\right) \in \mathcal{A}_{\mid U}$, since $V \cap U \subset U$. Also of course $p \in V \cap U$. Hence $\mathcal{A}_{\mid U}$ contains a chart which contains p. Since this is true for every $p \in U$, we conclude that the charts in $\mathcal{A}_{\mid U}$ indeed cover U. Hence $\mathcal{A}_{\mid U}$ is a C^{∞} atlas on U, and so determines a unique C^{∞} structure on U (cf. Problem 4). 8

It remains to prove that U is paracompact. This is equivalent to proving that U is second countable (cf. the notes to Lecture \#1). However this is clear from the fact that M is second countable; indeed it is easy to prove that any open subset of a second countable topological space is second countable.
(b), (c) ... we leave this to the reader ... (Note that the first part of (c) is immediate from (b), since $f_{\mid U}=f \circ i$.)

[^6]
Problem 7:

(a) Let $W=M \backslash \operatorname{supp}(f)$; this is an open subset of M, and $W \cup U=M$. We have $f_{\mid U} \in C^{\infty}(U)$ by assumption. also $f_{\mid W} \equiv 0$; hence $f_{\mid W} \in C^{\infty}(W)$. (Cf. Problem 6 regarding the fact that U and W are C^{∞} manifolds; hence the function spaces " $C^{\infty}(U)$ " and " $C^{\infty}(W)$ " are defined.) Hence every point in M has an open neighbourhood in which f is C^{∞}. Hence by Problem 6(c), $f \in C^{\infty}(M)$.
(b) Let $K=\operatorname{supp}(f)$; by assumption this is a compact subset of U. We claim that $\operatorname{supp}(\widetilde{f})=K$; if we prove this then the desired statement $\widetilde{f} \in C^{\infty}(M)$ follows from part (a). Note that K is a compact subset of M (since "compactness is an absolute property"; for example, use the fact that the inclusion map $i: U \rightarrow M$ is continuous, and the image of any compact set under a continuous map is compact). Hence K is a closed subset of M. Also note that $\{p \in M: \widetilde{f}(p) \neq 0\} \subset K$, by the definitions of \widetilde{f} and K. Hence $\operatorname{supp}(\widetilde{f})$, being the closure of $\{p \in M: \widetilde{f}(p) \neq 0\}$ in M, is contained in K. The opposite inclusion is obvious; hence $\operatorname{supp}(\widetilde{f})=K$. Done!
(c). This is a special case of part (d).
(d). Let $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ be a C^{∞} atlas on M. Let $\left(V_{\beta}\right)_{\beta \in B}$ together with $\left(\varphi_{\beta}\right)_{\beta \in B}$ be a partition of unity subordinate to $\left(U_{\alpha}\right)$, as in [12, Lemma 1.1.1]. For each $\beta \in F$ we write $K_{\beta}:=\operatorname{supp} \varphi_{\beta}$; this is a compact set contained in V_{β}.

Let us start by noticing that for each $\beta \in B$, there exists a C^{∞} function $f_{\beta}: V_{\beta} \rightarrow[0,1]$ which has compact support contained in $V_{\beta} \cap U$ and which satisfies $f_{\beta \mid K \cap K_{\beta}} \equiv 1$. Indeed, since $\left(V_{\beta}\right)_{\beta \in B}$ is a refinement of $\left(U_{\alpha}\right)$, for our given $\beta \in F$ there exists some α such that $V_{\beta} \subset U_{\alpha}$. Using now the chart $\left(U_{\alpha}, x_{\alpha}\right)$ to translate the problem into Euclidean coordinates, we are reduced to proving that for any compact set \widetilde{K} and open set \widetilde{U} with $\widetilde{K} \subset \widetilde{U} \subset \mathbb{R}^{d}$, there is a C^{∞} function $f: \mathbb{R}^{d} \rightarrow[0,1]$ with compact support contained in \widetilde{U} and which satisfies $f_{\mid \widetilde{K}} \equiv 1$. For this, cf., e.g., [10, Thm. 1.4.1] (one considers the convolution of the characteristic function of \widetilde{K} and a "bump" function with sufficiently small support).

For any $\beta \in B$ such that $K \cap V_{\beta}=\emptyset$ we may of course choose the above function f_{β} to be identically zero; from now on we require this to hold.

Next for each $\beta \in F$ we define $\widetilde{f}_{\beta}: M \rightarrow \mathbb{R}$ by $\tilde{f}_{\beta} \equiv f_{\beta}$ in V_{β} and $\widetilde{f}_{\beta}=0$ outside V_{β}; by part (a) we then have $\widetilde{f}_{\beta} \in C^{\infty}(M)$. We next set

$$
f:=\sum_{\beta \in B} \varphi_{\beta} \widetilde{f}_{\beta}
$$

Clearly $f \in C^{\infty}(M)$. Also for every $p \in M$ we have $f(p) \geq 0$ and $f(p) \leq$ $\sum_{\beta \in F} \varphi_{\beta}(p) \leq 1$.

Fix an arbitrary point $p \in K$. We have $\sum_{\beta \in B} \varphi_{\beta}(p)=1$ by the defining property ot $\left(\varphi_{\beta}\right)$. Also $\widetilde{f}_{\beta}(p)=1$ for every $\beta \in B$ with $p \in K_{\beta}$ (since we are assuming $p \in K$), and thus $\widetilde{f}_{\beta}(p)=1$ for every $\beta \in B$ with $\varphi_{\beta}(p) \neq 0$. Hence $f(p)=\sum_{\beta \in B} \varphi_{\beta}(p) \widetilde{f}_{\beta}(p)=\sum_{\beta \in B} \varphi_{\beta}(p)=1$. We have thus proved that $f_{\mid K} \equiv 1$.

In order to prove that f has compact support, we will use the requirement from above that $f_{\beta} \equiv 0$ (and so $\widetilde{f}_{\beta} \equiv 0$) whenever $K \cap V_{\beta}=\emptyset$. This means that the sum defining f may just as well be restricted to the following subset of B :

$$
F:=\left\{\beta \in B: K \cap V_{\beta} \neq \emptyset\right\} .
$$

Now since $\left(V_{\beta}\right)$ is locally finite, F is a finite set. (This is a standard fact; here is a detailed proof: Since $\left(V_{\beta}\right)$ is locally finite, for every $p \in M$ we can choose - using the axiom of choice - an open set $U_{p} \subset M$ such that $p \in U_{p}$ and $\#\left\{\beta \in B: V_{\beta} \cap U_{p} \neq \emptyset\right\}<\infty$. Since K is compact, there exists a finite subset $F^{\prime} \subset K$ such that $K \subset \cup_{p \in F^{\prime}} U_{p}$. Now for every $\beta \in F$ there is some $p \in F^{\prime}$ such that $V_{\beta} \cap U_{p} \neq \emptyset$; hence $\# F \leq \sum_{p \in F^{\prime}} \#\left\{\beta \in B: V_{\beta} \cap U_{p} \neq \emptyset\right\}<\infty$. Done!)

It follows from $f(p)=\sum_{\beta \in B} \varphi_{\beta}(p) \widetilde{f}_{\beta}(p)=\sum_{\beta \in F} \varphi_{\beta}(p) \widetilde{f}_{\beta}(p)$ that

$$
\operatorname{supp}(f) \subset \bigcup_{\beta \in F} \operatorname{supp}\left(\widetilde{f}_{\beta}\right)=\bigcup_{\beta \in F} \operatorname{supp}\left(f_{\beta}\right)
$$

(for the inclusion one uses the fact that $\cup_{\beta \in F} \operatorname{supp}\left(\tilde{f}_{\beta}\right)$ is a closed subset of M; for the equality see part (b)). The last set is a finite union of compact sets, hence itself compact. Also by construction, $\operatorname{supp}\left(f_{\beta}\right) \subset U$ for each $\beta \in F$. Hence $\operatorname{supp}(f) \subset U$, and also since $\operatorname{supp}(f)$ is closed and contained in a compact $\operatorname{set}, \operatorname{supp}(f)$ is itself compact.

Hence the function f has all the desired properties.
(e) Let $g: M \rightarrow[0,1]$ be a function as in part (d), i.e. g is C^{∞}, has compact support contained in U, and satisfies $g_{\mid K} \equiv 1$. Set

$$
f_{1}(p):= \begin{cases}g(p) f(p) & \text { if } p \in U \\ 0 & \text { if } p \notin U\end{cases}
$$

Then clearly $f_{1 \mid K} \equiv f_{\mid K}$. Also the function $p \mapsto g(p) f(p)$ is a C^{∞} function $U \rightarrow \mathbb{R}$ with compact support, and f_{1} is the same as " \widetilde{f} in part (b), but starting from the function $p \mapsto g(p) f(p)$ on $U^{\prime \prime}$. Hence f_{1} is C^{∞}, by part (b).

Problem 8.

(a). We endow $M \times N$ with the product topology (viz., a subset of $M \times N$ is open iff it can be written as a union of sets of the form $U \times V$ with $U \subset M$ and $V \subset N$). Then $M \times N$ is Hausdorff and connected. (We leave the details to the reader...) We will verify at the end that $M \times N$ is also paracompact (according to Wikipedia the product of to general paracompact topological spaces need not be paracompact; thus we need to make use of the fact that M, N have more structure).

Let the dimensions of M and N be d and d^{\prime}, respectively. Let \mathcal{A} be a C^{∞} structure on M and let \mathcal{B} be a C^{∞} structure on N. For any charts $(U, x) \in \mathcal{A}$ and $(V, y) \in \mathcal{B}, U \times V$ is an open set in $M \times N$, and we write $(x, y) 9^{9}$ for the map

$$
(x, y): U \times V \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}=\mathbb{R}^{d+d^{\prime}}, \quad(x, y)(p, q):=(x(p), y(q))
$$

This map (x, y) is in fact a homeomorphism from $U \times V$ onto $x(U) \times y(V)$ (which is an open subset of $\mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}$).
[Outline of proof: (x, y) is clearly a bijection from $U \times V$ onto $x(U) \times y(V)$. We leave it to the reader to verify - or recall from basic point set topology - that (x, y) is continuous. Similarly the inverse map, $(x, y)^{-1}=\left(x^{-1}, y^{-1}\right)$ is continuous since x^{-1} and y^{-1} are continuous.]

Hence for any charts $(U, x) \in \mathcal{A}$ and $(V, y) \in \mathcal{B}$, we have that $(U \times V,(x, y))$ is a chart on $M \times N$. Now set

$$
\mathcal{C}:=\{(U \times V,(x, y)):(U, x) \in \mathcal{A},(V, y) \in \mathcal{B}\}
$$

This is clearly an atlas on $M \times N$.
Let us now verify that $M \times N$ is paracompact. By the notes to Lecture $\# 1$, with reference to math.stackexchange.com/questions/527642, it suffices to prove that $M \times N$ is second countable, and this is a simple consequence of the fact that M and N are second countable. Indeed, let \mathcal{U}_{M} be a countable base for M and let \mathcal{U}_{N} be a countable base for N, and set

$$
\mathcal{U}=\left\{U \times V: U \in \mathcal{U}_{M}, V \in \mathcal{U}_{N}\right\}
$$

[^7]Then \mathcal{U} is countable. We claim that \mathcal{U} is a base for $M \times N$. To prove this, let W be an open set in $M \times N$, and let (p, q) be a point in W. Then, by the definition of the product topology on $M \times N$, there exist open sets $U^{\prime} \subset M$ and $V^{\prime} \subset N$ such that $(p, q) \in U^{\prime} \times V^{\prime} \subset W$. Next, since \mathcal{U}_{M} and \mathcal{U}_{N} are bases, there exists $U \in \mathcal{U}_{M}$ with $p \in U \subset U^{\prime}$ and there exists $V \in \mathcal{U}_{N}$ with $q \in V \subset V^{\prime}$. Then $U \times V \in \mathcal{U}$ and $(p, q) \in U \times V \subset W$. The fact that such a set exists in \mathcal{U} for any given W, p as above proves that \mathcal{U} is indeed a base for $M \times N$. Hence $M \times N$ is second countable.

Finally, we claim that \mathcal{C} is a C^{∞} atlas. To prove this we consider an arbitrary pair of charts in \mathcal{C}, say $(U \times V,(x, y))$ and $(W \times \Omega,(r, s))$, where $(U, x),(W, r)) \in \mathcal{A}$ and $(V, y),(\Omega, s) \in \mathcal{B}$. We have to prove that the map

$$
(r, s) \circ(x, y)^{-1}:(x, y)(U \times V) \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}=\mathbb{R}^{d+d^{\prime}}
$$

is C^{∞}. However this map equals ($r \circ x^{-1}, s \circ y^{-1}$), and this map is C^{∞} since both $r \circ x^{-1}$ and $s \circ y^{-1}$ are C^{∞}. (Indeed, recall that by definition a map f from an open subset $D \subset \mathbb{R}^{m}$ to \mathbb{R}^{n} is C^{∞} if and only if, when writing $f(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right)$ for $z \in D$, each "component" map $f_{j}: D \rightarrow \mathbb{R}$ is C^{∞}. When applying this to $f=\left(r \circ x^{-1}, s \circ y^{-1}\right)$, each component f_{j} is in fact a component of either $r \circ x^{-1}$ or $s \circ y^{-1}$, hence C^{∞}.) Hence \mathcal{C} is a C^{∞} atlas on $M \times N$, and so determines a unique C^{∞} structure on $M \times N$ (cf. Problem (4).

Hence $M \times N$ is a C^{∞} manifold.
(b). Let the C^{∞} atlases $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be as in part (a). In order to prove that pr_{1} is C^{∞} we have to prove that for any charts $(W, z) \in \mathcal{A}$ and $(U \times V,(x, y)) \in \mathcal{C}$ (with $(U, x) \in \mathcal{A}$ and $(V, y) \in \mathcal{B}$), the map

$$
z \circ \operatorname{pr}_{1} \circ(x, y)^{-1}: \quad(x, y)\left((U \times V) \cap \operatorname{pr}_{1}^{-1}(W)\right) \rightarrow z(W) \subset \mathbb{R}^{d}
$$

is C^{∞}. We may here note that $(U \times V) \cap \operatorname{pr}_{1}^{-1}(W)=(U \cap W) \times V$. But the above map equals:

$$
\begin{equation*}
z \circ \operatorname{pr}_{1} \circ(x, y)^{-1}=\left(z \circ x^{-1}\right) \circ p_{1}, \tag{18}
\end{equation*}
$$

where p_{1} is the projection map $\mathbb{R}^{d+d^{\prime}}=\mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{d}$. The map $z \circ x^{-1}$ (from $x(U \cap W)$ to $z(W)$) is C^{∞} since $(U, x),(W, z) \in \mathcal{A}$ and \mathcal{A} is a C^{∞} chart. The map p_{1} is obviously C^{∞}. Hence the composed map in (18) is C^{∞}, and we are done.

The proof that pr_{2} is C^{∞} is completely similar.
(c). Let the dimensions of M, N_{1}, N_{2} be d, d_{1}, d_{2}, respectively. Let $\mathcal{A}, \mathcal{A}_{1}, \mathcal{A}_{2}$ be C^{∞} structures on M, N_{1}, N_{2}, respectively, and set

$$
\widetilde{\mathcal{A}}:=\left\{(U \times V,(x, y)):(U, x) \in \mathcal{A}_{1},(V, y) \in \mathcal{A}_{2}\right\} .
$$

By part (a), $\widetilde{\mathcal{A}}$ is a C^{∞} atlas on $N_{1} \times N_{2}$. Our task is to prove that for any charts $(W, z) \in \mathcal{A},(U, x) \in \mathcal{A}_{1}$ and $(V, y) \in \mathcal{A}_{2}$, setting

$$
W^{\prime}:=W \cap(f, g)^{-1}(U \times V),
$$

the map

$$
\begin{equation*}
(x, y) \circ(f, g) \circ z^{-1}: \quad z\left(W^{\prime}\right) \rightarrow(x, y)(U \times V) \subset \mathbb{R}^{d_{1}+d_{2}} \tag{19}
\end{equation*}
$$

is C^{∞}. Now we compute:

$$
\begin{equation*}
(x, y) \circ(f, g) \circ z^{-1}=\left(x \circ f \circ z^{-1}, y \circ f \circ z^{-1}\right), \tag{20}
\end{equation*}
$$

or, in other words, for all $\alpha \in z\left(W^{\prime}\right) \subset \mathbb{R}^{d}$:

$$
(x, y) \circ(f, g) \circ z^{-1}(\alpha)=\left(x\left(f\left(z^{-1}(\alpha)\right)\right), y\left(f\left(z^{-1}(\alpha)\right)\right)\right)
$$

in $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}=\mathbb{R}^{d_{1}+d_{2}}$. However the two maps $x \circ f \circ z^{-1}$ and $y \circ f \circ z^{-1}$ are C^{∞} since f and g are C^{∞} and $\mathcal{A}, \mathcal{A}_{1}, \mathcal{A}_{2}$ are C^{∞} atlases; hence also the map in (19), (20) is C^{∞} (indeed, this is a basic fact about C^{∞} maps between open subsets of Euclidean spaces; cf. the argument at the end of our solution to part (a)). This completes the proof.
(d). This is immediate from parts (b) and (c) since the map in question equals

$$
\begin{equation*}
\left(f \circ \operatorname{pr}_{1}, g \circ \operatorname{pr}_{2}\right), \tag{21}
\end{equation*}
$$

where we use the " (\cdot, \cdot) " notation from part (c), and $\mathrm{pr}_{1}, \mathrm{pr}_{2}$ are the projection maps $\mathrm{pr}_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $\mathrm{pr}_{2}: M_{1} \times M_{2} \rightarrow M_{2}$.
[Detailed explanation (cf. also footnote 9 above): Write $M:=M_{1} \times M_{2}$; then $f \circ \mathrm{pr}_{1}$ is a C^{∞} map $M \rightarrow N_{1}$, by part (b) and since any composition of C^{∞} maps is C^{∞}. Similarly $g \circ \operatorname{pr}_{2}$ is a C^{∞} map $M \rightarrow N_{2}$. Hence by part (c), $\left(f \circ \operatorname{pr}_{1}, g \circ \mathrm{pr}_{2}\right)$ is a $C^{\infty} \operatorname{map} M \rightarrow N_{1} \times N_{2}$. And this is indeed the map which we are interested in, since for every $(p, q) \in M_{1} \times M_{2}=M$ we have:

$$
\left(f \circ \operatorname{pr}_{1}, g \circ \operatorname{pr}_{2}\right)(p, q)=\left(f \circ \operatorname{pr}_{1}(p, q), g \circ \operatorname{pr}_{2}(p, q)\right)=(f(p), g(q)) .
$$

Done!]

Problem 9.

(a). \sim is reflexive since $\mathrm{Id} \in \Gamma$. To see that \sim is symmetric, assume $p \sim q$; then there is $\gamma \in \Gamma$ s.t. $\gamma(p)=q$; but then $\gamma^{-1} \in \Gamma$ and $\gamma^{-1}(q)=p$; hence $q \sim p$. Finally let us prove that \sim is transitive. Assume $p \sim q$ and $q \sim r$. Then there exist $\gamma, \gamma^{\prime} \in \Gamma$ such that $\gamma(p)=q$ and $\gamma^{\prime}(q)=r$. Then $\gamma^{\prime} \gamma(p)=r$, and $\gamma^{\prime} \gamma \in \Gamma$. Hence \sim is transitive. Done!
(b). The fact that the definition gives a topology on $\Gamma \backslash M$ is immediate if we note that " π^{-1} respects intersections and unions of sets", i.e. for any family $\left\{U_{\alpha}\right\}$ of subsets $U_{\alpha} \subset \Gamma \backslash M$ we have $\pi^{-1}\left(\cup_{\alpha} U_{\alpha}\right)=\cup_{\alpha} \pi^{-1}\left(U_{\alpha}\right)$ and $\pi^{-1}\left(\cap_{\alpha} U_{\alpha}\right)=\cap_{\alpha} \pi^{-1}\left(U_{\alpha}\right)$. (This is in fact a property of the inverse of any map. Here we use it for finite intersections and arbitrary unions.) We also use the fact that $\pi^{-1}(\emptyset)=\emptyset$ and $\pi^{-1}(\Gamma \backslash M)=M$, both of which are open in $\Gamma \backslash M$.

Note also that it is immediate from the definition of the topology on $\Gamma \backslash M$ that the projection map $\pi: M \rightarrow \Gamma \backslash M$ is continuous.

We next prove that $\Gamma \backslash M$ is Hausdorff. This is considerably more difficult. Thus consider two distinct, arbitrary points in $\Gamma \backslash M$, say $[p]$ and $[q]$, where $p, q \in M$. Since M is locally Euclidean we can choose open sets $U, V \subset M$ such that $p \in U, q \in V$, and \bar{U} and \bar{V} are compact. Now since Γ acts properly discontinuously, the set

$$
F:=\{\gamma \in \Gamma: \gamma(U) \cap V \neq \emptyset\}
$$

is finite. (Indeed, F is contained in $\{\gamma \in \Gamma: \gamma(K) \cap K \neq \emptyset\}$ for $K:=\bar{U} \cup \bar{V}$, and K is compact.) Now for each $\gamma \in F$ we have $\gamma(p) \neq q$ (since $[p] \neq[q]$); hence since M is Hausdorff, there exist open sets V_{γ}, W_{γ} such that $q \in V_{\gamma}$, $\gamma(p) \in W_{\gamma}$, and $V_{\gamma} \cap W_{\gamma}=\emptyset$. Set $U_{\gamma}:=\gamma^{-1}\left(W_{\gamma}\right)$; then $p \in U_{\gamma}$, and U_{γ} is open. Set

$$
U_{1}:=U \cap\left(\bigcap_{\gamma \in F} U_{\gamma}\right) ; \quad V_{1}:=V \cap\left(\bigcap_{\gamma \in F} V_{\gamma}\right) .
$$

Then U_{1} and V_{1} are open sets in M (since F is finite), and $p \in U_{1}$ and $q \in V_{1}$. We claim that

$$
\begin{equation*}
\forall \gamma \in \Gamma: \quad \gamma\left(U_{1}\right) \cap V_{1}=\emptyset . \tag{22}
\end{equation*}
$$

To prove this, assume the opposite, i.e. $\gamma\left(U_{1}\right) \cap V_{1} \neq \emptyset$ for some $\gamma \in \Gamma$. Using $U_{1} \subset U, V_{1} \subset V$, and the definition of F, it follows that $\gamma \in F$. Using $U_{1} \subset U_{\gamma}, V_{1} \subset V_{\gamma}$ it then follows that $\gamma\left(U_{\gamma}\right) \cap V_{\gamma} \neq \emptyset$, i.e. $W_{\gamma} \cap V_{\gamma} \neq \emptyset$, contradicting our choice of V_{γ}, W_{γ}. Hence (22) is proved.

Now set

$$
\begin{equation*}
U_{2}:=\pi\left(U_{1}\right) ; \quad V_{2}:=\pi\left(V_{1}\right) \tag{23}
\end{equation*}
$$

These are open subsets of $\Gamma \backslash M$! (Proof: One verifies that $\pi^{-1}\left(U_{2}\right)=$ $\cup_{\gamma \in \Gamma} \gamma\left(U_{2}\right)$; and this is a union of open sets, hence open (in M). Therefore U_{2} is open in $\Gamma \backslash M$. Similarly U_{2} is open in $\Gamma \backslash M$.) Furthermore, (22) implies that $U_{2} \cap V_{2}=\emptyset$. Hence we have proved that $\Gamma \backslash M$ is Hausdorff.

Next we prove that $\Gamma \backslash M$ is connected; in fact we prove that $\Gamma \backslash M$ is pathconnected (this trivially implies connectedness). Consider any two points in $\Gamma \backslash M$, say $[p]$ and $[q]$ with $p, q \in M$. Since M is path-connected (cf. Problem(1), there is a curve $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=p$ and $\gamma(1)=q$. But then $\pi \circ \gamma:[0,1] \rightarrow \Gamma \backslash M$ is a curve from $\pi(p)=[p]$ to $\pi(q)=[q]$. Hence $\Gamma \backslash M$ is path-connected.

Next we will prove that $\Gamma \backslash M$ is locally Euclidean. We say that a subset $U \subset M$ is injectively embedded in $\Gamma \backslash M$ if the restriction $\pi_{\mid U}$ is injective. Let \mathcal{I} be the family of open sets in M which are injectively embedded in $\Gamma \backslash M$. Let us prove:
$\forall U \in \mathcal{I}: \quad\left[\pi(U)\right.$ is open and $\pi_{\mid U}$ is a homeomorphism from U onto $\left.\pi(U)\right]$.
Take $U \in \mathcal{I}$. Clearly $\pi_{\mid U}$ is a bijection of U onto $\pi(U)$. We have also noted that π is continuous. Furthermore π is an open map, i.e. maps any open subset of M to an open subset of $\Gamma \backslash M$; this is shown by the argument below (23). Using these facts it follows that $\pi(U)$ is open and $\pi_{\mid U}$ is a homeomorphism from U onto $\pi(U)$, i.e. (24) is proved. Next we claim:

$$
\begin{equation*}
\mathcal{I} \text { cover } M \text {; that is, } \bigcup_{U \in \mathcal{I}} U=M \tag{25}
\end{equation*}
$$

[Proof: Let $p \in M$. By a slight modification of the construction we used when proving that $\Gamma \backslash M$ is Hausdorff, we are going to construct an open neighborhood of p in M which is injectively embedded in $\Gamma \backslash M$. Choose an open set $U \subset M$ containing p such that \bar{U} is compact. Then the set

$$
F:=\{\gamma \in \Gamma: \gamma(\bar{U}) \cap \bar{U} \neq \emptyset\}
$$

is finite, since Γ acts properly discontinuously on M. Take any $\gamma \in F \backslash\{$ Id $\}$. Then $\gamma(p) \neq p$, since Γ acts freely on M. Hence there exist open sets U_{γ}, V_{γ} such that $p \in U_{\gamma}, \gamma(p) \in V_{\gamma}$, and $U_{\gamma} \cap V_{\gamma}=\emptyset$. Set

$$
U_{1}:=U \cap\left(\bigcap_{\gamma \in F \backslash\{\mathrm{Id}\}}\left(U_{\gamma} \cap \gamma^{-1}\left(V_{\gamma}\right)\right)\right) .
$$

Then U_{1} is an open set in M (since F is finite) and $p \in U_{1}$. We claim that U_{1} is injectively embedded in $\Gamma \backslash M$, i.e. $U_{1} \in \mathcal{I}$. Indeed, assume the opposite. Then there exist two points $q \neq q^{\prime} \in U_{1}$ with $[q]=\left[q^{\prime}\right]$, i.e. $\gamma(q)=q^{\prime}$ for some $\gamma \in \Gamma$. We have $\gamma \neq$ Id since $q^{\prime} \neq q$. Also $q^{\prime} \in \gamma\left(U_{1}\right) \cap U_{1}$, thus $\gamma\left(U_{1}\right) \cap U_{1} \neq \emptyset$ and so (using $\left.U_{1} \subset U\right) \gamma \in F$. But now by the definition of $U_{1}, q \in U_{1}$ implies $q \in U_{\gamma}$, and $\gamma(q)=q^{\prime} \in U_{1}$ implies $q \in V_{\gamma}$. Hence $U_{\gamma} \cap V_{\gamma}=\emptyset$, contradicting our choice of U_{γ}, V_{γ}. This proves that $U_{1} \in \mathcal{I}$.]

Now to prove that $\Gamma \backslash M$ is locally Euclidean, consider an arbitrary point in $\Gamma \backslash M$, say $[p]$ with $p \in M$. By (25) there is a set $U \in \mathcal{I}$ with $p \in U$. Also, since M is a topological manifold, there is a chart (V, x) with $p \in V$. Then also $\left(U \cap V, x_{\mid U \cap V}\right)$ is a chart on M. It follows from (24) that $\pi_{\mid U \cap V}$ is a homeomorphism from $U \cap V$ onto the open set $\pi(U \cap V) \subset \Gamma \backslash M$. Hence $x \circ\left(\pi_{\mid U \cap V}\right)^{-1}$ is a homeomorphism from $\pi(U \cap V)$ onto an open subset of \mathbb{R}^{d}. The fact that every point $[p]$ in $\Gamma \backslash M$ has such an open neighborhood which is homeomorphic to an open subset of \mathbb{R}^{d} proves that $\Gamma \backslash M$ is locally Euclidean.

It now only remains to prove that $\Gamma \backslash M$ is paracompact. Since we have proved that $\Gamma \backslash M$ is Hausdorff and locally Euclidean, it actually suffices to prove that $\Gamma \backslash M$ is second countable. (Indeed, cf. the notes to Lecture $\# 1$, with reference to math.stackexchange.com/questions/527642.) However this is quite trivial, using the fact that M is second countable, and the fact that $\pi: M \rightarrow \Gamma \backslash M$ is open and continuous. Indeed, let \mathcal{U} be a countable base of M (as a topological space). Set

$$
\mathcal{U}^{\prime}=\{\pi(U): U \in \mathcal{U}\}
$$

This is a countable family of open sets in $\Gamma \backslash M$, since π is open. We claim that \mathcal{U}^{\prime} is a base for $\Gamma \backslash M$. To prove this, take an arbitrary open set $V \subset$ $\Gamma \backslash M$. Then $\pi^{-1}(V)$ is an open set in M, and since \mathcal{U} is a base for M there is a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $\pi^{-1}(V)=\cup_{U \in \mathcal{V}} U$. Applying π to each point in this set identity we obtain $\pi\left(\pi^{-1}(V)\right)=\cup_{U \in \mathcal{V}} \pi(U)$. But $\pi\left(\pi^{-1}(V)\right)=V$ (since π is surjective). Hence $V=\cup_{U \in \mathcal{V}} \pi(U)$, and this means that V is a union of certain sets in \mathcal{U}^{\prime}. Hence we have proved that \mathcal{U}^{\prime} is a (countable) base for $\Gamma \backslash M$, and hence $\Gamma \backslash M$ is second countable.
(c). Let \mathcal{A} be the C^{∞} structure on M. Set

$$
\mathcal{A}^{\prime}:=\left\{\left(\pi(U), x \circ\left(\pi_{\mid U}\right)^{-1}\right):(U, x) \in \mathcal{A}, U \in \mathcal{I}\right\}
$$

Using (24) we see that each element in \mathcal{A}^{\prime} is a chart on $\Gamma \backslash M$. We wish to prove that \mathcal{A}^{\prime} is an atlas on $\Gamma \backslash M$, i.e. that the charts in \mathcal{A}^{\prime} cover $\Gamma \backslash M$. For this consider an arbitrary point in $\Gamma \backslash M$, say $[p]$ with $p \in M$. By (25) there is some $U_{1} \in \mathcal{I}$ with $p \in U_{1}$. Take any chart $\left(U_{2}, x\right) \in \mathcal{A}$ with $p \in U_{2}$. Then also $\left(U_{1} \cap U_{2}, x_{\mid U_{1} \cap U_{2}}\right) \in \mathcal{A}$, since \mathcal{A} is a maximal C^{∞} atlas. But $U_{1} \cap U_{2} \subset U_{1}$ and $U_{1} \in \mathcal{I}$ implies that $U_{1} \cap U_{2} \in \mathcal{I}$. Hence

$$
\left(\pi\left(U_{1} \cap U_{2}\right), x_{\mid U_{1} \cap U_{2}} \circ\left(\pi_{\mid U_{1} \cap U_{2}}\right)^{-1}\right) \in \mathcal{A}^{\prime}
$$

and we have $[p] \in \pi\left(U_{1} \cap U_{2}\right)$ since $p \in U_{1} \cap U_{2}$. This completes the proof that \mathcal{A}^{\prime} is an atlas on $\Gamma \backslash M$.

Next we prove that \mathcal{A}^{\prime} is in fact a C^{∞} atlas. Consider any two charts in \mathcal{A}^{\prime}, say

$$
\begin{equation*}
\left(\pi(U), x \circ\left(\pi_{\mid U}\right)^{-1}\right) \quad \text { and } \quad\left(\pi(V), y \circ\left(\pi_{\mid V}\right)^{-1}\right), \tag{26}
\end{equation*}
$$

for some $(U, x),(V, y) \in \mathcal{A}, U, V \in \mathcal{I}$. We have to prove that the two charts in (26) are compatible, i.e. that the map

$$
y \circ\left(\pi_{\mid V}\right)^{-1} \circ \pi_{\mid U} \circ\left(x_{\mid U \cap V}\right)^{-1}: \quad x(U \cap V) \rightarrow y(U \cap V)
$$

is C^{∞}. However this map is equal to $y \circ\left(x_{\mid U \cap V}\right)^{-1}$, which we know is C^{∞} since $(U, x),(V, y) \in \mathcal{A}$ and \mathcal{A} is a C^{∞} atlas. Hence \mathcal{A}^{\prime} is indeed a C^{∞} atlas on $\Gamma \backslash M$, and so determines a unique C^{∞} structure on $\Gamma \backslash M$ (cf. Problem (4).

Finally note that for any $(U, x) \in \mathcal{A}$ with $U \in \mathcal{I}$, the map π is represented by

$$
\left(x \circ\left(\pi_{\mid U}\right)^{-1}\right) \circ \pi \circ x^{-1}: x(U) \rightarrow x(U)
$$

with respect to the charts $(U, x) \in \mathcal{A}$ and $\left(\pi(U), x \circ\left(\pi_{\mid U}\right)^{-1}\right) \in \mathcal{A}^{\prime}$. But the above map is simply the identity map on $x(U)$, which of course is C^{∞}. This proves that the map $\pi: M \rightarrow \Gamma \backslash M$ is C^{∞}.

Problem 10:

(a) If V is open (in M) then $V \cap U_{\alpha}$ is open in U_{α} for every α by definition of the subspace topology of U_{α}.

Conversely, assume that $V \cap U_{\alpha}$ is open in U_{α} for every α. By definition of the subspace topology of U_{α}, this means that for each α there exists an open set $W \subset M$ such that $V \cap U_{\alpha}=W \cap U_{\alpha}$, and hence $V \cap U_{\alpha}$ is open as a subset of M. Now $V=\cup_{\alpha}\left(V \cap U_{\alpha}\right)$ since $M=\cup_{\alpha} U_{\alpha}$; thus V is a union of open subsets of M and therefore V is itself an open subset of M.
(b) Let \mathcal{T} be the family of all "open" sets in a given " C^{∞} fold" M. We have to prove that (i) $\emptyset \in \mathcal{T}$, (ii) $M \in \mathcal{T}$, and that \mathcal{T} is closed under (iii) arbitrary unions and under (iv) finite intersections:
(i) For every $\alpha \in A$ we have $x_{\alpha}\left(\emptyset \cap U_{\alpha}\right)=\emptyset$ and this is an open subset of \mathbb{R}^{d}. Hence $\emptyset \in \mathcal{T}$.
(ii) For every $\alpha \in A$ we have $x_{\alpha}\left(M \cap U_{\alpha}\right)=x_{\alpha}\left(U_{\alpha}\right)$, which is an open subset of \mathbb{R}^{d} by our assumptions. Hence $M \in \mathcal{T}$.
(iii) Let $\left\{V_{\beta}\right\}_{\beta \in B}$ be an arbitrary family of sets in \mathcal{T}. Then for every $\alpha \in A$,

$$
x_{\alpha}\left(\left(\cup_{\beta \in B} V_{\beta}\right) \cap U_{\alpha}\right)=x_{\alpha}\left(\cup_{\beta \in B}\left(V_{\beta} \cap U_{\alpha}\right)\right)=\cup_{\beta \in B} x_{\alpha}\left(V_{\beta} \cap U_{\alpha}\right)
$$

and here $x_{\alpha}\left(V_{\beta} \cap U_{\alpha}\right)$ is an open subset in \mathbb{R}^{d} for every $\beta \in B$, since $V_{\beta} \in \mathcal{T}$. Hence $x_{\alpha}\left(\left(\cup_{\beta \in B} V_{\beta}\right) \cap U_{\alpha}\right)$, being a union of open subsets of \mathbb{R}^{d}, is itself an open subset of \mathbb{R}^{d}. This is true for every $\alpha \in A$; hence $\cup_{\beta \in B} V_{\beta} \in \mathcal{T}$.
(iv) Let $\left\{V_{\beta}\right\}_{\beta \in B}$ be a finite family of sets in \mathcal{T}. Then for every $\alpha \in A$,

$$
x_{\alpha}\left(\left(\cap_{\beta \in B} V_{\beta}\right) \cap U_{\alpha}\right)=x_{\alpha}\left(\cap_{\beta \in B}\left(V_{\beta} \cap U_{\alpha}\right)\right)=\cap_{\beta \in B} x_{\alpha}\left(V_{\beta} \cap U_{\alpha}\right)
$$

(The last equality holds since x_{α} is injective.) Here $x_{\alpha}\left(V_{\beta} \cap U_{\alpha}\right)$ is an open subset in \mathbb{R}^{d} for every $\beta \in B$, since $V_{\beta} \in \mathcal{T}$. Hence $x_{\alpha}\left(\left(\cap_{\beta \in B} V_{\beta}\right) \cap U_{\alpha}\right)$, being a finite intersection of open subsets of \mathbb{R}^{d}, is itself an open subset of \mathbb{R}^{d}. This is true for every $\alpha \in A$; hence $\cap_{\beta \in B} V_{\beta} \in \mathcal{T}$.

This completes the proof that \mathcal{T} is a topology.
Next we give examples showing that \mathcal{T} is not always Hausdorff: Let $U^{\prime} \subsetneq U$ be non-empty open subsets of \mathbb{R}^{d} and let M be the set

$$
M:=U^{\prime} \sqcup\left(\left(U \backslash U^{\prime}\right) \times\{1,2\}\right)
$$

M can be thought of as two copies of the set U, glued together along the set U^{\prime}.

For $j=1,2$ we define the subset $U_{j} \subset M$ by

$$
U_{j}:=U^{\prime} \sqcup\left(\left(U \backslash U^{\prime}\right) \times\{j\}\right),
$$

and let $x_{j}: U_{j} \rightarrow U$ be the map defined by $x_{j}(p)=p$ for $p \in U^{\prime}$, and $x_{j}((p, j))=p$ for $p \in U \backslash U^{\prime}$. Then x_{j} is a bijection from U_{j} onto U, and $M=U_{1} \cup U_{2}$. Furthermore $x_{1}\left(U_{1} \cap U_{2}\right)=x_{2}\left(U_{1} \cap U_{2}\right)=U^{\prime}$, an open subset of U, and both the maps $x_{2} \circ x_{1}^{-1}$ and $x_{1} \circ x_{2}^{-1}$ are equal to the identity map on U^{\prime}, which is C^{∞}. Hence M with the family $\left\{\left(U_{1}, x_{1}\right),\left(U_{2}, x_{2}\right)\right\}$ is a C^{∞} fold.

Now fix any point $p \in U \backslash U^{\prime}$ not lying in the interior of $U \backslash U^{\prime}$; such a point certainly exists. (Indeed we can find such a point on any line segment between a point in U^{\prime} and a point in $U \backslash U^{\prime}$.) Then every open subset V of U containing p has nonempty intersection with U^{\prime}. Now consider the two points $(p, 1)$ and $(p, 2)$ in M. Let W_{1}, W_{2} be any two open subsets of M such that $(p, 1) \in W_{1}$ and $(p, 2) \in W_{2}$. Then for both $j=1,2$ we have that $x_{j}\left(W_{j} \cap U_{j}\right)$ is an open subset of $x_{j}\left(U_{j}\right)=U$ containing $x_{j}((p, j))=p$. Hence also $x_{1}\left(W_{1} \cap U_{1}\right) \cap x_{2}\left(W_{2} \cap U_{2}\right)$ is an open subset of U containing p, and as we noted above this implies that this set has nonempty intersection with U^{\prime}, i.e. there exists a point

$$
q \in U^{\prime} \cap x_{1}\left(W_{1} \cap U_{1}\right) \cap x_{2}\left(W_{2} \cap U_{2}\right) .
$$

By the definitions of x_{1}, x_{2} it then follows that $q \in W_{1} \cap W_{2}$. Thus we have proved that for any two open subsets W_{1}, W_{2} of M subject to $(p, 1) \in W_{1}$ and $(p, 2) \in W_{2}$, it holds that $W_{1} \cap W_{2} \neq \emptyset$. Hence M is not Hausdorff.
(Compare Boothby [1, p. 59, Exc. 5]; note that the above shows that the answer to that question is NO.)
(c) Assume that the stated criterion holds. Let p, q be two distinct points in M. By assumption there is $\alpha \in A$ such that $p, q \in U_{\alpha}$. Now $x_{\alpha}(p) \neq x_{\alpha}(q)$ since x_{α} is a bijection, and hence (since \mathbb{R}^{d} is Hausdorff) there exist two disjoint open subsets $W, W^{\prime} \subset x_{\alpha}\left(U_{\alpha}\right)$ such that $x_{\alpha}(p) \in W, x_{\alpha}(q) \in W^{\prime}$. Then $x_{\alpha}^{-1}(W)$ and $x_{\alpha}^{-1}\left(W^{\prime}\right)$ are disjoint, and $p \in x_{\alpha}^{-1}(W), q \in x_{\alpha}^{-1}\left(W^{\prime}\right)$. Hence if we can prove that $x_{\alpha}^{-1}(W)$ and $x_{\alpha}^{-1}\left(W^{\prime}\right)$ are open in M then we are done. By definition $x_{\alpha}^{-1}(W)$ is open in M iff $x_{\beta}\left(x_{\alpha}^{-1}(W) \cap U_{\beta}\right)$ is open in \mathbb{R}^{d} for every $\beta \in A$. But note that

$$
x_{\beta}\left(x_{\alpha}^{-1}(W) \cap U_{\beta}\right)=\left\{p \in x_{\beta}\left(U_{\alpha} \cap U_{\beta}\right): x_{\alpha} \circ x_{\beta}^{-1}(p) \in W\right\}=\varphi^{-1}(W),
$$

where $\varphi:=x_{\alpha} \circ x_{\beta}^{-1}: x_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \mathbb{R}^{d}$. (We have that φ is a bijection of $x_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ onto $x_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$.) By assumption φ is C^{∞}, in particular continuous; hence since W is open also $\varphi^{-1}(W)$ is open, and we have thus completed the proof that $x_{\alpha}^{-1}(W)$ is open in M. Of course the same argument shows that $x_{\alpha}^{-1}\left(W^{\prime}\right)$ is open in M. Done!
(Next we prove that the "partial converse". Thus let M be a C^{∞} manifold and let $p, q \in M$. If $p=q$ then the desired statement is trivial; hence from now on we assume $p \neq q$. Then, since M is Hausdorff, there exist open sets $U_{1}, V_{1} \subset M$ with $p \in U_{1}, q \in V_{1}$ and $U_{1} \cap V_{1}=\emptyset$. Let (U, x) and (V, y) be
C^{∞} charts on M with $p \in U$ and $q \in V$. Then also $\left(U \cap U_{1}, x_{\mid U \cap U_{1}}\right)$ and $\left(V \cap V_{1}, y_{\mid V \cap V_{1}}\right)$ are C^{∞} charts on M, and after replacing (U, x) and (V, y) with these, we have:

$$
U \cap V=\emptyset
$$

We may assume that $x(p) \neq y(q)$; indeed otherwise replace y by the map $r \mapsto v+y(r), V \rightarrow \mathbb{R}^{d}$, where v is a fixed non-zero vector in \mathbb{R}^{d}. Then we can choose open sets (e.g. open balls) U^{\prime} and V^{\prime} in \mathbb{R}^{d} such that $x(p) \in U^{\prime}$, $y(q) \in V^{\prime}$ and $U^{\prime} \cap V^{\prime}=\emptyset$. Now $\left(x^{-1}\left(U^{\prime}\right), x_{\mid x^{-1}\left(U^{\prime}\right)}\right)$ and $\left(y^{-1}\left(V^{\prime}\right), y_{\mid y^{-1}\left(V^{\prime}\right)}\right)$ are C^{∞} charts on M, and after replacing (U, x) and (V, y) with these, we have both

$$
U \cap V=\emptyset \quad \text { and } \quad x(U) \cap y(V)=\emptyset .
$$

Now define the map $z: U \cup V \rightarrow \mathbb{R}^{d}$ by:

$$
z(p):= \begin{cases}x(p) & \text { if } p \in U \\ y(p) & \text { if } p \in V .\end{cases}
$$

Using the fact that $x(U)$ and $y(V)$ are disjoint open subsets of \mathbb{R}^{d} (and the fact that $x: U \rightarrow x(U)$ and $y: V \rightarrow y(V)$ are homeomorphisms) it follows that z is a homeomorphism from $U \cup V$ onto $z(U \cup V)=x(U) \cup y(V)$. Hence $(U \cup V, z)$ is a chart on M, and one easily verifies that it is a C^{∞} chart. This C^{∞} chart has the desired property, namely $p, q \in U \cup V$!)
(d) It is immediate from the definitions that U_{α} is open in M for every $\alpha \in A$. Now the only thing that has to be verified is that for every $\alpha \in A$, the map x_{α} is a homeomorphism of U_{α} onto $x_{\alpha}\left(U_{\alpha}\right) \subset \mathbb{R}^{d}$. Recall that $x_{\alpha}\left(U_{\alpha}\right)$ is open in \mathbb{R}^{d} by assumption, and also x_{α} is a bijection from U_{α} onto $x_{\alpha}\left(U_{\alpha}\right) \subset \mathbb{R}^{d}$. First let V be an arbitrary open subset of U_{α}; then by the definition of the topology on $M, x_{\alpha}(V)=x_{\alpha}\left(V \cap U_{\alpha}\right)$ is an open subset of $x_{\alpha}\left(U_{\alpha}\right)$. This proves that x_{α} is open. In order to prove that x_{α} is continuous, let W be an arbitrary open subset of $x_{\alpha}\left(U_{\alpha}\right)$. Then we have to prove that $x_{\alpha}^{-1}(W)$ is open in M. This is done by the argument in part (c).

Problem 11.

(a). By [12, Lemma 1.1.1] there exists a locally finite refinement $\mathcal{V}=$ $\left(V_{\beta}\right)_{\beta \in B}$ of \mathcal{U} and C_{0}^{∞} functions $\psi_{\beta}: M \rightarrow[0,1]$ with $\operatorname{supp} \psi_{\beta} \in V_{\beta}(\forall \beta \in B)$ and $\sum_{\beta \in B} \psi_{\beta}(x)=1(\forall x \in M)$. Now since \mathcal{V} is a local refinement of \mathcal{U}, we can choose (using the axiom of choice, in general), for each $\beta \in B$, some $\alpha(\beta) \in A$ so that $V_{\beta} \subset U_{\alpha(\beta)}$. Having made such a choice, we define, for each $\alpha \in A$:

$$
\varphi_{\alpha}:=\sum_{\substack{\beta \in B \\(\alpha(\beta)=\alpha)}} \psi_{\beta} .
$$

(The sum is taken over all $\beta \in B$ which satisfy $\alpha(\beta)=\alpha$.) We claim that these functions φ_{α} satisfy all the requirements in the problem formulation!

To prove this, let p be an arbitrary point in M. Then there is an open neighborhood $\Omega \subset M$ of p such that the set

$$
B_{\Omega}:=\left\{\beta \in B: V_{\beta} \cap \Omega \neq \emptyset\right\}
$$

is finite. Now for $p \in \Omega$ we have

$$
\varphi_{\alpha}(p)=\sum_{\substack{\beta \in B_{\Omega} \\(\alpha(\beta)=\alpha)}} \psi_{\beta}(p) \quad(p \in \Omega)
$$

In other words:

$$
\begin{equation*}
\varphi_{\alpha \mid \Omega}=\sum_{\beta \in B_{\Omega, \alpha}} \psi_{\beta \mid \Omega} \tag{27}
\end{equation*}
$$

where $B_{\Omega, \alpha}=\left\{\beta \in B_{\Omega}: \alpha(\beta)=\alpha\right\}$. This says that, for every $\alpha \in A, \varphi_{\alpha \mid \Omega}$ is a finite sum of C^{∞} functions; hence $\varphi_{\alpha \mid \Omega}$ is itself a C^{∞} function. Since every point $p \in M$ has such a neighborhood Ω, we conclude that φ_{α} is C^{∞} $(\forall \alpha \in A)$.

Furthermore, from the definition of φ_{α}, and the fact that each ψ_{β} takes values in $[0,1]$ and $\sum_{\beta \in B} \psi_{\beta} \equiv 1$, it follows that $\varphi_{\alpha}(p) \in[0,1]$ for all $p \in M$. We also note that for every $p \in M$ we have

$$
\begin{equation*}
\sum_{\alpha \in A} \varphi_{\alpha}(p)=\sum_{\alpha \in A}\left(\sum_{\substack{\beta \in B \\(\alpha(\beta)=\alpha)}} \psi_{\beta}(p)\right)=\sum_{\beta \in B} \psi_{\beta}(p)=1 \tag{28}
\end{equation*}
$$

(The second equality follows by simply changing the order of summation; this is permitted since all the terms are nonnegative, and the total sum is convergent. In fact the sum $\sum_{\alpha \in A} \varphi_{\alpha}(p)$ has only finitely many nonvanishing terms; indeed for Ω as above we can have $\varphi_{\alpha}(p)>0$ only if α is in the finite set $\left\{\alpha(\beta): \beta \in B_{\Omega}\right\}$.)

Now it only remains to prove that $\operatorname{supp} \varphi_{\alpha} \subset U_{\alpha}, \forall \alpha \in A$. To prove this, fix $\alpha \in A$, and fix an arbitrary point $p \in M \backslash U_{\alpha}$. Take a neighborhood Ω
of p as above, i.e. so that the set B_{Ω} is finite. Recall the formula (27). For each $\beta \in B_{\Omega, \alpha}$ we have $\operatorname{supp} \psi_{\beta} \subset V_{\beta} \subset U_{\alpha(\beta)}=U_{\alpha}$. Hence also

$$
F:=\bigcup_{\beta \in B_{\Omega, \alpha}} \operatorname{supp} \psi_{\beta} \subset U_{\alpha} .
$$

Also supp ψ_{β} is a closed (even compact) subset of M for every β; hence since $B_{\Omega, \alpha}$ is finite, the set F is also a closed subset of M. Hence

$$
\Omega^{\prime}:=\Omega \backslash F
$$

is an open subset of M. Note that $p \in \Omega^{\prime}$ since $p \in \Omega, F \subset U_{\alpha}$ and $p \notin U_{\alpha}$. Also, by (27) and our definition of F, we have $\varphi_{\alpha}(q)=0$ for all $q \in \Omega^{\prime}$. Hence, since Ω^{\prime} is open, Ω^{\prime} is disjoint from $\operatorname{supp} \varphi_{\alpha}$, and in particular $p \notin \operatorname{supp} \varphi_{\alpha}$. To sum up, we have proved that every point $p \in M \backslash U_{\alpha}$ lies outside $\operatorname{supp} \varphi_{\alpha}$. Hence $\operatorname{supp} \varphi_{\alpha} \subset U_{\alpha}$, and we are done!
(b). (We take the proof from [4, Lemma 9.5.2].)

Let us start from a partition of unity $\left(\varphi_{\alpha}\right)_{\alpha \in A}$ either as in [12, Lemma 1.1.1] or as in part (a). This means in particular that each φ_{α} is a C^{∞} function $M \rightarrow[0,1]$ and that $\sum_{\alpha \in A} \varphi_{\alpha}(p)=1$ for all α. Also every point $p \in M$ has an open neighborhood Ω in M such that $\varphi_{\alpha \mid \Omega} \equiv 0$ for all except finitely many $\alpha \in A$ (in the case of [12, Lemma 1.1.1] this is clear from the statement, and in the case of part (a) it is a fact we noted in the proof; see the text below (28)). Now set

$$
\begin{equation*}
\Phi(p)=\sum_{\alpha \in A} \varphi_{\alpha}(p)^{2} \quad(p \in M) \tag{29}
\end{equation*}
$$

Note that the "local finiteness" of the sum $\sum_{\alpha \in A} \varphi_{\alpha}$ mentioned above implies a similar local finiteness for the sum in (29), and in particular $\Phi \in$ $C^{\infty}(M)$ (i.e. Φ is a C^{∞} function $M \rightarrow \mathbb{R}$). Furthermore for every $p \in M$ we have $\Phi(p)>0$, since $\sum_{\alpha \in A} \varphi_{\alpha}(p)=1$ implies that there is at least one $\alpha \in A$ with $\varphi_{\alpha}(p)>0$. Hence also $p \mapsto \Phi(p)^{-1}$ is a C^{∞} function on M, and so the functions

$$
\eta_{\alpha}:=\Phi^{-1} \cdot \varphi_{\alpha}^{2}
$$

are C^{∞}, for every $\alpha \in A$. It is also clear from the definition that each function η_{α} takes values in $\mathbb{R}_{\geq 0}$, and that $\operatorname{supp} \eta_{\alpha}=\operatorname{supp} \varphi_{\alpha}$. Furthermore, for every $p \in M$:

$$
\sum_{\alpha \in A} \eta_{\alpha}(p)=\Phi(p)^{-1} \sum_{\alpha \in A} \varphi_{\alpha}(p)^{2}=1
$$

(Hence also $\eta_{\alpha}(p) \in[0,1]$ for all $\alpha \in A$.) Hence the functions $\left(\eta_{\alpha}\right)_{\alpha \in A}$ satisfy all the requirements which were imposed on $\left(\varphi_{\alpha}\right)_{\alpha \in A}$, and furthermore $\sqrt{\eta_{\alpha}}=\Phi^{-1 / 2} \varphi_{\alpha}$ is a C^{∞} function for every $\alpha \in A$.

Problem 12.

(a) [We leave it to the reader to sort out certain details in the proof below, hidden in phrases such as "passing to local coordinates"; "translation and rotation"; etc; what we are doing there is creating a new C^{∞} chart by composing by appropriate diffeomorphism(s)...]

Passing to local coordinates we may assume $M=\mathbb{R}^{n}$. After a rotation and a scaling we may also assume $\dot{c}(s)=\boldsymbol{e}_{1}:=(1,0, \ldots, 0)$. Let us write $c(t)=\left(c_{1}(t), \ldots, c_{n}(t)\right)$; then $c_{1}^{\prime}(s)=1$ and $c_{j}^{\prime}(s)=0$ for $j \geq 2$. It follows that there is $\varepsilon>0$ such that c_{1} restricted to $(s-\varepsilon, s+\varepsilon)$ is a diffeomorphism onto an open interval $I \subset \mathbb{R}$. Let $\alpha_{1}: I \rightarrow(s-\varepsilon, s+\varepsilon)$ be the inverse diffeomorphism. Then $\alpha_{1}\left(c_{1}(t)\right)=t$ for all $t \in(s-\varepsilon, s+\varepsilon)$. Define

$$
\begin{aligned}
\alpha: & I \times \mathbb{R}^{n-1} \rightarrow(s-\varepsilon, s+\varepsilon) \times \mathbb{R}^{n-1} \\
& \alpha\left(x_{1}, \ldots, x_{n}\right):=\left(\alpha_{1}\left(x_{1}\right)-s, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

Then α is a diffeomorphism of $I \times \mathbb{R}^{n-1}$ onto $(-\varepsilon,+\varepsilon) \times \mathbb{R}^{n-1}$, and $\alpha(c(t))=$ $(t-s, *, \ldots, *)$ for all $t \in(s-\varepsilon, s+\varepsilon)$. Hence after composing our coordinate chart with α, we have $c_{1}(t)=t-s$ for all $t \in(s-\varepsilon, s+\varepsilon)$. Finally we consider the map

$$
\begin{aligned}
\beta: & (-\varepsilon, \varepsilon) \times \mathbb{R}^{n-1} \rightarrow(-\varepsilon, \varepsilon) \times \mathbb{R}^{n-1} \\
& \beta\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}-c_{2}\left(s+x_{1}\right), \ldots, x_{n}-c_{n}\left(s+x_{1}\right)\right)
\end{aligned}
$$

Note that β is a C^{∞} diffeomorphism of $(-\varepsilon, \varepsilon) \times \mathbb{R}^{n-1}$ onto $(-\varepsilon, \varepsilon) \times \mathbb{R}^{n-1}$; indeed β is C^{∞} and the inverse map is

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}+c_{2}\left(s+x_{1}\right), \ldots, x_{n}+c_{n}\left(s+x_{1}\right)\right)
$$

which is also C^{∞}. Then

$$
\beta(c(t))=(t-s, 0, \ldots, 0), \quad \forall t \in(-\varepsilon, \varepsilon)
$$

Hence by composing our coordinate chart with β, we obtain a coordinate chart with the desired property!
(b) Take $\varepsilon>0$ and a chart (U, x) as in part (a). After possibly shrinking U, we may assume that $s+x_{1}(p) \in(a, b)$ for all $p \in U$. Define

$$
h: U \rightarrow \mathbb{R}, \quad h(p):=f\left(s+x_{1}(p)\right)
$$

Then h is a C^{∞} function and $h(c(t))=f\left(s+x_{1}(c(t))\right)=f(t)$ for all $t \in$ $(s-\varepsilon, s+\varepsilon)$. Now fix any open neighborhood $U_{1} \subset U$ of $c(s)$ having compact closure \bar{U}_{1} in U. Then by Problem $7(\mathrm{~d})$, there exists a C^{∞} function $g: M \rightarrow \mathbb{R}$ which satisfies $g_{\mid U_{1}} \equiv h_{\mid U_{1}}$. By shrinking ε, we may assume that $c(t) \in U_{1}$ for all $t \in(s-\varepsilon, s+\varepsilon)$. Then $g(c(t))=h(c(t))=f(t)$ for all $t \in(s-\varepsilon, s+\varepsilon)$, and we are done.

Problem 13:

(a). Recall that for a given C^{∞} manifold M and a point $p \in M$, we consider the set
$S:=\left\{(U, x, u):(U, x)\right.$ is a chart on M with $p \in U$, and $\left.u \in T_{x(p)}(x(U))\right\}$, (where $T_{x(p)}(x(U)):=\mathbb{R}^{d}$) and define the relation \sim on S by

$$
(U, x, u) \sim(V, y, v) \quad \stackrel{\text { def }}{\Leftrightarrow} \quad u=d\left(x \circ y^{-1}\right)_{y(p)}(v) .
$$

We now prove that \sim is an equivalence relation. For any $(U, x, u) \in S$ we have that $x \circ x^{-1}$ equals the identity map on $x(U) \subset \mathbb{R}^{d}$, thus the Jacobian $d\left(x \circ x^{-1}\right)$ is the identity map on $T_{x(p)}(x(U))=\mathbb{R}^{d}$, and so $d\left(x \circ x^{-1}\right)(u)=u$. Hence \sim is reflexive.

Next to prove that \sim is symmetric, assume $(U, x, u) \sim(V, y, v)$, i.e. $u=$ $d\left(x \circ y^{-1}\right)_{y(p)}(v)$. Then

$$
\begin{aligned}
d\left(y \circ x^{-1}\right)_{x(p)}(u) & =d\left(y \circ x^{-1}\right)_{x(p)} \circ d\left(x \circ y^{-1}\right)_{y(p)}(v) \\
& =d\left(y \circ x^{-1} \circ x \circ y^{-1}\right)_{y(p)}(v) \\
& =d\left(1_{y(V)}\right)_{y(p)}(v)=v .
\end{aligned}
$$

(Explanation: For the second equality we used the chain rule, cf. p. 3 of Lecture \#2. In the last line, " $1_{y(V)}$ " is the identity map on the set $y(V)$; its differential at $y(p)$ is of course the identity map on $T_{y(p)}(y(V))=\mathbb{R}^{d}$.) Hence $(V, y, v) \sim(U, x, u)$. This proves that \sim is symmetric.

Finally we prove that \sim is transitive. Assume $(U, x, u) \sim(V, y, v)$ and $(V, y, v) \sim(W, z, w)$, i.e. $u=d\left(x \circ y^{-1}\right)_{y(p)}(v)$ and $v=d\left(y \circ z^{-1}\right)_{z(p)}(w)$. Then

$$
\begin{aligned}
u & =d\left(x \circ y^{-1}\right)_{y(p)} \circ d\left(y \circ z^{-1}\right)_{z(p)}(w) \\
& =d\left(x \circ y^{-1} \circ y \circ z^{-1}\right)_{z(p)}(w) \\
& =d\left(x \circ z^{-1}\right)_{z(p)}(w)
\end{aligned}
$$

(here we again used the chain rule), and thus $(U, x, u) \sim(W, z, w)$. This proves that \sim is transitive.

Hence \sim is an equivalence relation.
(b). Injectivity: Assume that $u, v \in \mathbb{R}^{d}$ give $[(U, x, u)]=[(U, x, v)]$. This means that $(U, x, u) \sim(U, x, v)$, i.e. $u=d\left(x \circ x^{-1}\right)_{x(p)}(v)$. But $d\left(x \circ x^{-1}\right)_{x(p)}$ is the identity map on \mathbb{R}^{d}; hence $u=v$. This proves that the given map is injective.

Surjectivity: Consider an arbitrary element in $T_{p} M$; we can always represent it as $[(V, y, v)]$ for some $(V, y, v) \in S$ (cf. (30)). Set

$$
u=d\left(x \circ y^{-1}\right)_{y(p)}(v) \in T_{x(p)}(x(U))=\mathbb{R}^{d} .
$$

Then

$$
d\left(y \circ x^{-1}\right)_{x(p)}(u)=d\left(y \circ x^{-1}\right)_{x(p)} \circ d\left(x \circ y^{-1}\right)_{y(p)}(v)=d 1_{y(p)}(v)=v,
$$

and thus $(U, x, u) \sim(V, y, v)$, i.e. $[(U, x, u)]=[(V, y, v)]$. In other words, the image of u under the given map equals $[(V, y, v)]$. This proves that the given map is surjective.
(c). Fix $p \in M$. Let T be a bijective linear map $V \rightarrow \mathbb{R}^{d}$. Then $\left(M, T_{\mid M}\right)$ is a C^{∞} chart on M. Consider the map

$$
J: V \rightarrow T_{p} M ; \quad J(v)=\left[\left(M, T_{\mid M}, T(v)\right)\right] .
$$

It follows from part (b) that J is a bijection of V onto $T_{p} M$. We claim that J is independent of the choice of T. To prove this, assume that also S is a bijective linear map $V \rightarrow \mathbb{R}^{d}$. Then we need to prove that for every $v \in V$ we have $\left[\left(M, T_{\mid M}, T(v)\right)\right]=\left[\left(M, S_{\mid M}, S(v)\right)\right]$ in $T_{p} M$. In other words (cf. Def. 3 in Lecture \#2), we need to prove

$$
\begin{equation*}
S(v)=d\left(S \circ T^{-1}\right)_{T(p)}(T(v)), \quad \forall v \in V . \tag{31}
\end{equation*}
$$

Now we note the following very basic fact: "The differential of a linear map is equal to the map itself". More precisely: For any linear map $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$, and any $x \in \mathbb{R}^{d}$, the differential $d L_{x}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ is equal to the map L itself. We leave it to the reader to verify this fact; it is of course just a matter of checking that the Jacobian matrix of L, exaluated at any point x, is equal to the matrix of L itself.

Applying the fact just mentioned, with $L=S \circ T^{-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, we conclude that

$$
d\left(S \circ T^{-1}\right)_{T(p)}(T(v))=S \circ T^{-1}(T(v))=S(v),
$$

i.e. we have proved (31)! Hence we have proved that our bijection $J: V \rightarrow$ $T_{p} M$ is independent of the choice of linear bijection $V \rightarrow \mathbb{R}^{d}$, i.e. the map J is "canonically defined". Therefore we can use this map J to identify $T_{p} M$ with V.
(d). Recall from Definition 4 (in Lecture $\# 2$) that we assume that f : $M \rightarrow N$ is a C^{∞} map between C^{∞} manifolds, and $p \in M$. (Set $d=\operatorname{dim} M$ and $d^{\prime}=\operatorname{dim} N$.) Then $d f_{p}$ is defined to be the linear map from $T_{p} M$ to $T_{f(p)} N$ which wrt any chart (U, x) on M with $p \in U$ and (V, y) on N with $f(p) \in V$ is given by

$$
d f_{p}=d\left(y \circ f \circ x^{-1}\right)_{x(p)}: T_{x(p)}(x(U)) \rightarrow T_{y(f(p))}(y(V))
$$

For this to make sense, recall that once the chart (U, x) is given, we can identify $T_{p} M$ with $T_{x(p)}(x(U))=\mathbb{R}^{d}$ via the bijection $v \mapsto[(U, x, v)]$ from $T_{x(p)}(x(U))$ onto $T_{p} M$ (cf. p. 4 in Lecture $\# 2$ and part b of this problem); similarly we can identify $T_{f(p)} N$ with $T_{y(f(p))}(y(V))=\mathbb{R}^{d^{\prime}}$. Thus the above definition of $d f_{p}$ can be reformulated as saying that

$$
d f_{p}([(U, x, v)]):=\left[\left(V, y, d\left(y \circ f \circ x^{-1}\right)_{x(p)}(v)\right)\right], \quad \forall v \in T_{x(p)}(x(U))=\mathbb{R}^{d}
$$

This certainly makes $d f_{p}(\alpha)$ defined for every vector $\alpha \in T_{p} M$ since every $\alpha \in T_{p} M$ can be expressed as $\alpha=[(U, x, v)]$ for some $v \in T_{x(p)}(x(U))$. The key issue is now to verify that $d f_{p}(\alpha)$ does not depend on the above choice of the charts (U, x) and (V, y) !

Thus assume that (\hat{U}, \hat{x}) is also a chart on M with $p \in \hat{U}$ and that (\hat{V}, \hat{y}) is a chart on N with $f(p) \in \hat{V}$. Consider a fixed vector $\alpha \in T_{p}(M)$; assume that α is represented by $v \in \mathbb{R}^{d}$ wrt (U, x), and by $d\left(\hat{x} \circ x^{-1}\right)_{x(p)}(v) \in \mathbb{R}^{d}$ wrt (\hat{U}, \hat{x}). Now the above definition says that $d f_{p}(\alpha)$ is the vector in $T_{f(p)}(N)$ which is represented by

$$
\begin{equation*}
d\left(y \circ f \circ x^{-1}\right)_{x(p)}(v) \in \mathbb{R}^{d} \tag{32}
\end{equation*}
$$

wrt the chart (V, y), but also that $d f_{p}(\alpha)$ is the vector in $T_{f(p)}(N)$ which is represented by

$$
\begin{equation*}
d\left(\hat{y} \circ f \circ \hat{x}^{-1}\right)_{\hat{x}(p)} \circ d\left(\hat{x} \circ x^{-1}\right)_{x(p)}(v) \in \mathbb{R}^{d} \tag{33}
\end{equation*}
$$

wrt the chart (\hat{V}, \hat{y}). Thus we have to prove that (32) and (33) represent the same vector in $T_{f(p)}(N)$, i.e. that

$$
\begin{aligned}
d\left(y \circ \hat{y}^{-1}\right)_{\hat{y}(f(p))} \circ d\left(\hat{y} \circ f \circ \hat{x}^{-1}\right)_{\hat{x}(p)} \circ d(& \left.\hat{x} \circ x^{-1}\right)_{x(p)}(v) \\
& =d\left(y \circ f \circ x^{-1}\right)_{x(p)}(v)
\end{aligned}
$$

However this is clear by the chain rule for the differential (for C^{∞} maps between vector spaces over \mathbb{R}), using the fact that

$$
\left(y \circ \hat{y}^{-1}\right) \circ\left(\hat{y} \circ f \circ \hat{x}^{-1}\right) \circ\left(\hat{x} \circ x^{-1}\right)=y \circ f \circ x^{-1}
$$

Done!
(e). Fix a point $p \in M_{1}$; then our task is to prove

$$
\begin{equation*}
d(g \circ f)_{p}=d g_{f(p)} \circ d f_{p}: T_{p}\left(M_{1}\right) \rightarrow T_{g(f(p))}\left(M_{3}\right) . \tag{34}
\end{equation*}
$$

Fix charts (U, x) on $M_{1},(V, y)$ on M_{2}, and (W, z) on M_{3}, satisfying $p \in U$, $f(p) \in V, g(f(p)) \in W$. With respect to these charts, $d(g \circ f)_{p}$ is represented by the map

$$
d\left(z \circ(g \circ f) \circ x^{-1}\right)_{x(p)}: T_{x(p)}(x(U)) \rightarrow T_{z(g(f(p)))}(z(W)),
$$

and $d f_{p}$ is represented by the map

$$
d\left(y \circ f \circ x^{-1}\right)_{x(p)}: T_{x(p)}(x(U)) \rightarrow T_{y(f(p))}(y(V)),
$$

and $d g_{f(p)}$ is represented by the map

$$
d\left(z \circ g \circ y^{-1}\right)_{y(f(p))}: T_{y(f(p))}(y(V)) \rightarrow T_{z(g(f(p)))}(z(W)) .
$$

Hence we will have proved (34) if we can prove

$$
d\left(z \circ(g \circ f) \circ x^{-1}\right)_{x(p)}=d\left(z \circ g \circ y^{-1}\right)_{y(f(p))} \circ d\left(y \circ f \circ x^{-1}\right)_{x(p)} .
$$

However this is clear by the chain rule (for maps on \mathbb{R}^{d}-spaces), since

$$
z \circ(g \circ f) \circ x^{-1}=\left(z \circ g \circ y^{-1}\right) \circ\left(y \circ f \circ x^{-1}\right) .
$$

(f). Fact \#1: This is proved as follows:
$v(f)=d f_{p}(v)=d\left(1_{\mathbb{R}} \circ f \circ x^{-1}\right)_{x(p)}\left(v^{j} \frac{\partial}{\partial x^{j}}\right)=\left(\frac{\partial f}{\partial x^{1}} \cdots \frac{\partial f}{\partial x^{d}}\right)\left(\begin{array}{c}v^{1} \\ \vdots \\ v^{d}\end{array}\right)=v^{j} \frac{\partial f}{\partial x^{j}}$.
(Explanation: In the first equality we use our definition of the directional derivative; " $v(f)$ ". In the second equality we use the definition of differential (Def. 4 in Lecture \#2). In the third equality we use the definition of differential for maps between \mathbb{R}^{d}-spaces (Def. 2). The last equality is just matrix multiplication. Note that in the last two expressions " f " in fact stands for the function $f \circ x^{-1}: x(U) \rightarrow \mathbb{R}$; this is in accordance with the principle that we may identify U with $x(U)$ so long as the notation cannot be misunderstood. Also in the last two expressions it is understood that the partial derivatives are evaluated at the point $x=x(p)$.)

Fact \#2: This is proved as follows:

$$
\dot{c}(t)(f)=d f_{c(t)}(\dot{c}(t))=d f_{c(t)}\left(d c_{t}(1)\right)=d(f \circ c)_{t}(1)=\frac{d}{d t}(f \circ c)(t) .
$$

(In the first equality we use the definition of directional derivative; in the second equality we use the definition of "tangent vector of a curve"; and in the third equality we use the chain rule, cf. part (e) of this problem. Finally the fourth equality could also be said to hold by the definition of "tangent vector of a curve"; however since $f \circ c$ is a function from $I \subset \mathbb{R}$ to \mathbb{R}, " $\frac{d}{d t}(f \circ c)(t)$ " has a more basic meaning as derivative of a real-valued function on \mathbb{R}, and of course these two interpretations are really the same and give the same answer - as is easily verified by using the trivial "identity map charts" on I and \mathbb{R}.)

Fact \#3: Using Fact \#1 we have

$$
\begin{aligned}
& =f(p) \cdot v(g)+g(p) \cdot v(f),
\end{aligned}
$$

proving the first formula. Next note that by the definition of directional derivative the same formula can be written:

$$
d(f g)_{p}(v)=f(p) \cdot d g_{p}(v)+g(p) \cdot d f_{p}(v) .
$$

The fact that this holds for all $v \in T_{p} M$ means that

$$
d(f g)_{p}=g(p) \cdot d f_{p}+f(p) \cdot d g_{p}
$$

(equality of linear maps $T_{p} M \rightarrow \mathbb{R}$).

Problem 14: Once one has gotten used to the machinery which we have introduced, this problem is "completely obvious". However, as a step towards reaching such familiarity, it may be useful to work out a solution in pedantic detail.

We have defined $\dot{c}(t):=d c_{t}(1)$. Furthermore, for any $t \in I$ with $c(t) \in U$, the differential $d c_{t}$ is, by definition, the map from $T_{t}(I)=\mathbb{R}$ to $T_{c(t)} M$ which with respect to the trivial chart $\left(I, 1_{I}\right)$ on I and the chart (U, x) on M, is represented by the linear map

$$
d\left(x \circ c \circ 1_{I}^{-1}\right)_{1_{I}(t)}: \mathbb{R} \rightarrow \mathbb{R}^{d} .
$$

This map equals $d(x \circ c)_{t}$, and so we get that $\dot{c}(t):=d c_{t}(1)$ is the vector in $T_{c(t)} M$ which with respect to the chart (U, x) is represented by

$$
\begin{equation*}
d(x \circ c)_{t}(1) \in \mathbb{R}^{d} . \tag{35}
\end{equation*}
$$

But by the definition in the problem formulation,

$$
x \circ c(t)=\left(c^{1}(t), \ldots, c^{d}(t)\right)
$$

for all $t \in I$ with $c(t) \in U$, and hence $d(x \circ c)_{t}$ is the linear map given by the (Jacobi) matrix

$$
\left(\begin{array}{c}
\frac{\partial c^{1}}{\partial t} \\
\vdots \\
\frac{\partial c^{d}}{\partial t}
\end{array}\right)
$$

Of course " ∂ " can just as well be written " d " since each c^{j} depends on only one variable; i.e. the entries of the above matrix are $\frac{d}{d t} c^{j}(t)=\dot{c}^{j}(t)$ for $j=1, \ldots, d$. Applying the above linear map to the vector $1 \in \mathbb{R}$ (so as to evaluate the expression in (35)) we find $\sqrt{10}$ that with respect to the chart ($U, x), \dot{c}(t)$ is represented by

$$
\begin{equation*}
\left(\dot{c}^{1}(t), \ldots, \dot{c}^{d}(t)\right) \in \mathbb{R}^{d} \tag{36}
\end{equation*}
$$

Next we turn to the right hand side of the desired formula, i.e. " $\dot{c}^{j}(t) \frac{\partial}{\partial x^{j}}$ ". Recall that by definition, at any point $p \in U, \frac{\partial}{\partial x^{j}}$ is the tangent vector in $T_{p} M$ which with respect to the chart (U, x) is represented by the standard unit vector $e_{j}=(0, \ldots, 1, \ldots, 0) \in \mathbb{R}^{d}$ (where the " 1 " is in the j th position). Hence, with respect to the chart (U, x), the tangent vector $\dot{c}^{j}(t) \frac{\partial}{\partial x^{j}} \in T_{c(t)} M$ is represented by

$$
\dot{c}^{j}(t) e_{j}(t)=\left(\dot{c}^{1}(t), 0, \ldots, 0\right)+\cdots+\left(0, \ldots, 0, \dot{c}^{d}(t)\right)=\left(\dot{c}^{1}(t), \ldots, \dot{c}^{d}(t)\right)
$$

[^8]This agrees with (36), i.e. we have proved that $\dot{c}(t)$ and $\dot{c}^{j}(t) \frac{\partial}{\partial x^{j}}$ are represented by the same vector in \mathbb{R}^{d} (wrt (U, x)); hence they are equal, i.e. we have proved the desired formula,

$$
\dot{c}(t)=\dot{c}^{j}(t) \frac{\partial}{\partial x^{j}} \in T_{p} M .
$$

Finally in order to verify that the two definitions of "tangent vector of a curve" in Lecture \#2 are consistent with each other, let us apply the above to the special case $M=$ an open subset of \mathbb{R}^{d}. In this case we have the convention that $T_{p} M$ is identified with \mathbb{R}^{d} for every $p \in \mathbb{R}^{d}$, namely through the representation of tangent vectors via the identity chart, ($M, 1_{M}$). Applying the formula which we have proved above (in the form (36)) we conclude that

$$
\dot{c}(t)=\left(\dot{c}^{1}(t), \ldots, \dot{c}^{d}(t)\right) \quad \text { in } T_{c(t)} M=\mathbb{R}^{d} .
$$

Note that we have proved this formula starting from the general definition of "tangent vector of a curve on a manifold", and we now see that the formula agrees with the concrete definition of "tangent vector of a curve in $\mathbb{R}^{d "}$ which we gave in Lecture \#2 (p. 2).

Problem 15:

(a). Cf., e.g., Boothby [1, Ch. 4.1] or Fieseler [5, Sec. 3]...
(b). Cf., e.g., Helgason, [8, Ch. 1.2.1]...

We here only give the easy part of the solution of part b: For any vector field $X \in \Gamma(T M)$ and any $f \in C^{\infty}(M)$ we define $X f \in C^{\infty}(M)$ by

$$
(X f)(p)=X(p) f, \quad \forall p \in M
$$

In other words, by definition of directional derivative:

$$
(X f)(p)=d f_{p}(X(p)) \in T_{p} \mathbb{R}=\mathbb{R}
$$

By definition of the differential $d f: T M \rightarrow T \mathbb{R}=\mathbb{R} \times \mathbb{R}$, the above formula can also be expressed:

$$
X f=\operatorname{pr}_{2} \circ d f \circ X \quad: M \rightarrow \mathbb{R} .
$$

and this shows (via Problem [17(a)) that we indeed have $X f \in C^{\infty}(M)$.
Let us note that for any $X \in \Gamma(T M)$, the map which we have now defined,

$$
f \mapsto X f, \quad C^{\infty}(M) \rightarrow C^{\infty}(M),
$$

is a derivation. (This is immediate from "Fact \#3" on p. 9 in Lecture \#2; we prove this fact in Problem 13(f), and this fact also plays a crucial role in part a of the present problem.)

Now it remains to prove that every derivation of $C^{\infty}(M)$ is obtained in this way from some $X \in \Gamma(T M)$, and that any two distinct vector fields yield distinct derivations....

Problem 16; As in the lecture, we define $T M$ as a set to be the disjoint union of all tangent spaces $T_{p} M(p \in M)$, and we let $\pi: T M \rightarrow M$ be the projection map; $\pi(w)=p$ for any $w \in T_{p} M$. Also, as a "proposed C^{∞} atlas" on $T M$ we take the set

$$
\mathcal{A}:=\left\{\left(T U, \varphi_{x}\right):(U, x) \text { any } C^{\infty} \text { chart on } M\right\}
$$

where $T U=\pi^{-1}(U)=\sqcup_{p \in U} T_{p} M$ and φ_{x} is the map

$$
\begin{aligned}
& \varphi_{x}: T U \rightarrow \mathbb{R}^{2 d}=\mathbb{R}^{d} \times \mathbb{R}^{d}, \\
& \varphi_{x}(w)=\left(x(\pi(w)), d x_{\pi(w)}(w)\right) .
\end{aligned}
$$

Clearly for any C^{∞} chart (U, x) on M, φ_{x} is a bijection from $T U$ onto $x(U) \times \mathbb{R}^{d}$, which is an open subset of $\mathbb{R}^{2 d}$; and if also (V, y) is a C^{∞} chart on M then $\varphi_{x}(T U \cap T V)=x(U \cap V) \times \mathbb{R}^{d}$, which is also an open subset of $\mathbb{R}^{2 d}$, and as we verify in the lecture the map $\varphi_{y} \circ \varphi_{x}^{-1}: x(U \cap V) \rightarrow \mathbb{R}^{2 d}$ is C^{∞}. Hence all the conditions in Problem (10) (b) are fulfilled, i.e. $T M$ with the family \mathcal{A} is a " C^{∞} fold". In particular $T M$ is now provided with a structure of a topological space, namely a subset $V \subset M$ is open iff $\varphi_{x}(V \cap T U)$ is open in $\mathbb{R}^{2 d}$ for every C^{∞} chart (U, x) on M.

Now it suffices to prove that $T M$ is Hausdorff, connected and paracompact; for then it follows from Problem 10(d) that $T M$ is a well-defined C^{∞} manifold with \mathcal{A} as a C^{∞} atlas!

In order to prove that $T M$ is Hausdorff, take two arbitrary points $v, w \in$ $T M$. Then by the "partial converse" in Problem 10(c) (applied for our C^{∞} manifold M) there exists a C^{∞} chart (U, x) on M such that $\pi(v), \pi(w) \in U$. But then $v, w \in T U$, and so $\left(T U, \varphi_{x}\right)$ is a 'chart' in \mathcal{A} with $v, w \in T U$. The fact that \mathcal{A} contains such a chart for any pair of points $v, w \in T M$ implies, by Problem 10(c), that TM is Hausdorff!

Next we prove that $T M$ is connected: Take any $v, w \in T M$. Let $p=\pi(v)$ and $q=\pi(w)$. Let $c_{1}: I \rightarrow T_{p} M(I=[0,1])$ be any curve in the vector space $T_{p} M$ starting at $v \in T_{p} M$ and ending at $0 \in T_{p} M$. Note that the inclusion map $T_{p} M \rightarrow T M$ is continuous. (We leave it as an exercise to verify this fact; note that once $T M$ has been proved to be a C^{∞} manifold, the inclusion map $T_{p} M \rightarrow T M$ can be seen to be C^{∞}.) Hence c_{1} is continuous also as a map from I to $T M$, i.e. c_{1} is a curve in $T M$. Similarly let c_{3} be any curve in $T_{q} M \subset T M$ going from $0 \in T_{q} M$ to $w \in T_{q} M$. Next, since M is path-connected (cf. Problem (1), there is a curve $\widetilde{c}_{2}: I \rightarrow M$ going from p to q. Note that the map $f: M \rightarrow T M$ taking any $p \in M$ to the vector $0 \in T_{p} M$ is continuous. (Again we leave this as an exercise.) Hence $c_{2}:=f \circ \widetilde{c}_{2}: I \rightarrow T M$ is a curve in $T M$, going from the 0 -vector in $T_{p} M$ to the 0 -vector in $T_{q} M$. Now the "product curve" of $c_{1}, c_{2}, c_{3}{ }^{11}$ is a curve

[^9]in $T M$ going from v to w. The fact that such a curve exists for any two $v, w \in T M$ implies that $T M$ is path-connected, and hence connected!

Finally we prove that $T M$ is paracompact. Note that by what we have already proved, $T M$ is locally Euclidean and Hausdorff (cf. the solution to Problem [10(d)), and the set \mathcal{A} above is an atlas on $T M$. By Problem 2 it suffices to prove that $T M$ has a countable atlas. Now fix any countable atlas \mathcal{A}^{\prime} on M (this exists by Problem 2). Then the following subset of \mathcal{A} is a countable atlas on $T M$:

$$
\left\{\left(T U, \varphi_{x}\right):(U, x) \in \mathcal{A}^{\prime}\right\}
$$

This completes the proof that $T M$ is a C^{∞} manifold with \mathcal{A} as a C^{∞} atlas.

We now turn to the last part of the problem, i.e. to prove that the map $\pi: T M \rightarrow M$ is C^{∞}. For this it suffices to prove that for any C^{∞} chart (V, y) on M and any $\left(T U, \varphi_{x}\right) \in \mathcal{A}$ (thus: (U, x) is a C^{∞} chart on M), the map

$$
\begin{equation*}
y \circ \pi \circ \varphi_{x}^{-1}: \quad \varphi_{x}(T(U \cap V)) \rightarrow \mathbb{R}^{d} \tag{37}
\end{equation*}
$$

is C^{∞}. However, the definition of φ_{x} says that, for any $p \in U$ and $w \in$ $T_{p} U \subset T U:$

$$
\varphi_{x}(w)=\left(x(p), d x_{p}(w)\right)
$$

and thus

$$
\pi \circ \varphi_{x}^{-1}\left(x(p), d x_{p}(w)\right)=\pi(w)=p
$$

Hence

$$
\pi \circ \varphi_{x}^{-1}(z, v)=x^{-1}(z), \quad \forall(z, v) \in \varphi_{x}(T U)=x(U) \times \mathbb{R}^{d}
$$

or, equivalently,

$$
\pi \circ \varphi_{x}^{-1}=x^{-1} \circ \operatorname{pr}: \quad x(U) \times \mathbb{R}^{d} \rightarrow M
$$

where pr is the projection $\mathrm{pr}: x(U) \times \mathbb{R}^{d} \rightarrow x(U)$. Hence the map in (37) equals $y \circ x^{-1} \circ \mathrm{pr}$, and here $y \circ x^{-1}: x(U \cap V) \rightarrow \mathbb{R}^{d}$ is C^{∞} since (U, x) and (V, y) are C^{∞} charts on M, and pr is obviously C^{∞}. Hence the map in (37) is C^{∞}, and we are done.
(Remark: Problem 36 gives a more general result.)

Problem 17:

(a). (When showing that $d f$ is C^{∞} the key step is to verify that if $U \subset \mathbb{R}^{d}$ is open and $g: U \rightarrow \mathbb{R}^{d^{\prime}}$ is a C^{∞} map, then the map $(x, y) \mapsto\left(g(x), d g_{x}(y)\right)$, from $U \times \mathbb{R}^{d}$ to $\mathbb{R}^{d^{\prime}} \times \mathbb{R}^{d^{\prime}}$, is C^{∞}.)
(b). Let $p=\pi(X) \in M$ so that $X \in T_{p} M$; then $d f(X) \in T_{f(p)} N$. By our definition of directional derivative,

$$
d f(X)(\varphi)=d \varphi(d f(X)) \quad \text { in } \quad T_{\varphi(f(p))}(\mathbb{R})=\mathbb{R}
$$

Also by the same definition,

$$
X(\varphi \circ f)=d(\varphi \circ f)(X) \quad \text { in } T_{\varphi(f(p))}(\mathbb{R})=\mathbb{R}
$$

But $d(\varphi \circ f)=d \varphi \circ d f$ by the chain rule, and so the two expressions are equal.
(c). This is immediate from Problem 13(e). (Indeed, take $v \in T M_{1}$. Set $p:=\pi(v) ;$ then $v \in T_{p} M_{1}$ and now

$$
d(g \circ f)(v)=d(g \circ f)_{p}(v)=d g_{f(p)} \circ d f_{p}(v)=d g_{f(p)}(d f(v))=d g(d f(v))
$$

where we used the formula from Problem 13(e) in the second equality.)

Problem 18:

(a). Using the fact that (in the right hand side) $\langle\cdot, \cdot\rangle$ is a scalar product (viz., a positive definite symmetric bilinear form) on $T_{f(p)} N$, and $d f_{p}$ is a linear map from $T_{p} M$ to $T_{f(p)} N$, it follows that $\langle\cdot, \cdot\rangle$ is a symmetric bilinear form on $T_{p} M$ which is positive semidefinite (viz., $\langle v, v\rangle \geq 0$ for all $v \in T_{p} M$). But using also the assumption that f is an immersion, i.e. $d f_{p}$ is injective for each p, it follows that $\langle\cdot, \cdot\rangle$ is in fact positive definite, i.e. a scalar product on $T_{p} M$.

It remains to prove that $\langle\cdot, \cdot\rangle$ depends smoothly on M. We leave the details of this to the reader.
(b). By definition

$$
\begin{equation*}
L(f \circ \gamma)=\int_{a}^{b}\left\|(f \circ \gamma)^{\prime}(t)\right\| d t \tag{38}
\end{equation*}
$$

(with the understanding that the integral has to be "splitted at each point where γ is not $\left.C^{\infty}\right)$. But here $(f \circ \gamma)^{\prime}(t)=d(f \circ \gamma)_{t}(1)=d f_{\gamma(t)} \circ d \gamma_{t}(1)$ (where we used the def of directional derivative of a curve, and then the
chain rule), and so

$$
\begin{align*}
\left\|(f \circ \gamma)^{\prime}(t)\right\| & =\sqrt{\left\langle d f_{\gamma(t)} \circ d \gamma_{t}(1), d f_{\gamma(t)} \circ d \gamma_{t}(1)\right\rangle} \\
& =\sqrt{\left\langle d \gamma_{t}(1), d \gamma_{t}(1)\right\rangle} \tag{39}\\
& =\left\|\gamma^{\prime}(t)\right\|,
\end{align*}
$$

where the second equality holds by our definition of $\langle\cdot, \cdot\rangle$ on $T_{\gamma(t)} M$. Combining (38) and (39) we obtain $L(f \circ \gamma)=L(\gamma)$. The proof of $E(f \circ \gamma)=E(\gamma)$ is completely similar.
(c). [Remark: In the inequality which we are going to prove,

$$
d(p, q) \geq d(f(p), f(q))
$$

of course " d " in the left hand side denotes the metric on M induced by the Riemannian structure on M, and " d " in the right hand side denotes the metric on N induced by the Riemannian structure on N. In the special case when f is an inclusion map, so that M is as a set is a subset of N, one should give different names to these two metrics, e.g. " d_{M} " and " d_{N} ", otherwise " $d(p, q)$ " for $p, q \in M$ is ambiguous!]

Let $p, q \in M$. By definition,

$$
d(p, q)=\inf \left\{L(\gamma): \quad \gamma:[a, b] \rightarrow M \text { is a piecewise } C^{\infty}\right. \text { curve with }
$$

$$
\begin{equation*}
\gamma(a)=p, \gamma(b)=q\} . \tag{40}
\end{equation*}
$$

and

$$
d(f(p), f(q))=\inf \left\{L(c): \quad c:[a, b] \rightarrow N \text { is a piecewise } C^{\infty}\right. \text { curve with }
$$

$$
\begin{equation*}
c(a)=f(p), c(b)=f(q)\} . \tag{41}
\end{equation*}
$$

However for any curve γ satisfying the conditions in the right hand side of (40), $c:=f \circ \gamma$ is a piecewise C^{∞} curve with $c(a)=f(\gamma(a))=f(p)$ and $c(b)=f(\gamma(b))=f(q)$; thus c satisfies the conditions in the right hand side of (41). Also $L(c)=L(\gamma)$, by part (b). Hence every number $L(\gamma)$ appearing in the set in the right hand side of (40) also appears in the set in the right hand side of (41); therefore the infinimum in (40) is \geq the infinimum in (41), i.e. $d(p, q) \geq d(f(p), f(q))$, qed.

Example with strict inequality: Note that this is the usual situation! For example take $M=S^{d-1}$, $N=\mathbb{R}^{d}$ and let f be the inclusion map. Then $d_{M}(p, q)>d_{N}(f(p), f(q))$ for any points $p \neq q \in M$.

Problem 19:

(a). Let $p, q \in M$ be given. By Problem 1 there exists a (continuous) curve $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=p$ and $\gamma(1)=q$. Let \mathcal{F} be the family of open subintervals $I \subset[0,1] 12$ such that $c(I)$ is contained in some C^{∞} chart on M. Note that \mathcal{F} covers I. Hence since I is compact, there is a finite subfamily $\mathcal{F}_{1} \subset \mathcal{F}$ which covers I. In particular some $I \in \mathcal{F}_{1}$ must contain 0 ; among all such intervals $I \in \mathcal{F}_{1}$ we pick the one which has the largest right end-point; it is either $[0,1]$ or $\left[0, t_{1}\right)$ for some $t_{1} \in(0,1)$. In the latter case, the point t_{1} must be contained in some interval in \mathcal{F}_{1} not yet considered; among all intervals in \mathcal{F}_{1} containing t_{1} we pick the one which has the largest right end-point; this interval is either of the form $\left(t_{1}^{\prime}, 1\right]$ or $\left(t_{1}^{\prime}, t_{2}\right)$, for some $t_{1}^{\prime} \in\left(0, t_{1}\right)$ and $t_{2} \in\left(t_{1}, 1\right)$. If it is of the form $\left(t_{1}^{\prime}, t_{2}\right)$ then we consider all intervals in \mathcal{F}_{1} which contain t_{2}, etc. This process must eventually finish, since \mathcal{F}_{1} is finite, and this means that we have found a set of $n \geq 1$ intervals

$$
\left[0, t_{1}\right),\left(t_{1}^{\prime}, t_{2}\right),\left(t_{2}^{\prime}, t_{3}\right), \ldots,\left(t_{n-1}^{\prime}, 1\right] \text { in } \mathcal{F}_{1},
$$

where $0<t_{1}<t_{2}<\ldots<t_{n-1}$ and $0<t_{j}^{\prime}<t_{j}$ for each $j \in\{1, \ldots, n-1\}$. (If $n=1$ then $[0,1]$ is in \mathcal{F}_{1} and our set consists of this single interval.) By the construction of \mathcal{F}_{1}, there exist C^{∞} charts $\left(U_{j}, x_{j}\right)$ on M such that

$$
\gamma\left(\left[0, t_{1}\right)\right) \subset U_{1}, \gamma\left(\left(t_{1}^{\prime}, t_{2}\right)\right) \subset U_{2}, \ldots, \gamma\left(\left(t_{n-1}^{\prime}, 1\right]\right) \subset U_{n}
$$

Now for $\varepsilon>0$ sufficiently small, if we set $\widetilde{t}_{0}=0, \widetilde{t}_{j}=t_{j}-\varepsilon$ for $j \in$ $\{1, \ldots, n-1\}$, and $\widetilde{t}_{n}=1$, then

$$
0=\widetilde{t}_{0}<\widetilde{t}_{1}<\cdots<\widetilde{t}_{n-1}<\widetilde{t}_{n}=1
$$

and $t_{j}^{\prime}<\widetilde{t}_{j}<t_{j}$ for $j \in\{1, \ldots, n-1\}$, so that

$$
\gamma\left(\left[\tilde{t}_{j-1}, \widetilde{t}_{j}\right]\right) \subset U_{j} \quad \text { for } j \in\{1, \ldots, n\}
$$

Now we can define $c:[0,1] \rightarrow M$ by letting, for each $j \in\{1, \ldots, n\}, c_{\mid\left[\widetilde{t}_{j-1}, \widetilde{t}_{j}\right]}$ be the curve from $\gamma\left(\widetilde{t}_{j-1}\right)$ to $\gamma\left(\widetilde{t}_{j}\right)$ which in the chart $\left(U_{j}, x_{j}\right)$ is represented by a straight line segment from $x_{j}\left(\gamma\left(\widetilde{t}_{j-1}\right)\right)$ to $x_{j}\left(\gamma\left(\widetilde{t}_{j}\right)\right)$ (parametrized by a constant times arc length, say). Then c is a continuous curve, and each restriction $c_{\mid\left[\tilde{t}_{j-1}, \widetilde{t}_{j}\right]}$ is C^{∞}; thus c is a piecewise continuous curve, and it has $c(0)=p$ and $c(1)=q$. Done!

[^10](b). Outline: With $\widetilde{t}_{0}, \ldots, \widetilde{t}_{n}$ and charts $\left(U_{j}, x_{j}\right)$ as above, we can construct $c:[0,1] \rightarrow M$ by letting $c_{\mid\left[\tilde{t}_{0}, \tilde{t}_{1}\right]}$ be an arbitrary C^{∞} curve from $\gamma\left(\widetilde{t}_{0}\right)$ to $\gamma\left(\widetilde{t}_{1}\right)$ (e.g., the line segment used in (a)). Using "Borel's Lemma" (cf. wikipedia) and working in the chart (U_{2}, x_{2}), one can then construct a C^{∞} curve $c_{\mid\left[\widetilde{t}_{1}, \tilde{t}_{2}\right]}$ from $\gamma\left(\widetilde{t_{1}}\right)$ to $\gamma\left(\widetilde{t_{2}}\right)$ which has the properties that "all derivatives at \widetilde{t}_{1} match up; i.e. c is in fact C^{∞} on all $\left[\widetilde{t}_{0}, \widetilde{t}_{2}\right]$. Then just repeat.

Problem 20;

(a). Note that we can cover the whole of H^{n} with one natural C^{∞} chart $\left(H^{n}, y\right)$, namely by letting $y(x):=\left(x^{1}, \ldots, x^{n}\right)$ for $x=\left(x^{0}, x^{1}, \ldots, x^{n}\right) \in$ H^{n}. Then $y\left(H^{n}\right)=\mathbb{R}^{n}$ and the inverse map is

$$
\begin{aligned}
y^{-1}\left(x^{1}, \ldots, x^{n}\right)=\left(\sqrt{1+\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}},\right. & \left.x^{1}, \ldots, x^{n}\right) \\
& \forall x=\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n} .
\end{aligned}
$$

Note that this map y^{-1} gives the embedding map $i: H^{n} \rightarrow \mathbb{R}^{n+1}$, expressed wrt our selected chart on H^{n} and the standard chart on \mathbb{R}^{n+1}. Hence wrt these charts, for each $p=\left(x^{0}, x^{1}, \ldots, x^{n}\right) \in H^{n}, d i_{p}: T_{p} H^{n} \rightarrow T_{p} \mathbb{R}^{n+1}$ is the linear map with matrix

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\frac{\partial}{\partial x^{1}} \sqrt{1+\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}} & \cdots & \frac{\partial}{\partial x^{n}} \sqrt{1+\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}} \\
\frac{\partial}{\partial x^{1}} x^{1} & \cdots & \frac{\partial}{\partial x^{n}} x^{1} \\
\vdots & & \\
\vdots \\
\frac{\partial}{\partial x^{1}} x^{n} & & \cdots \\
\vdots \\
=\left(\begin{array}{cccc}
x^{1} / x^{0} & x^{2} / x^{0} & \cdots & x^{n} / x^{0} \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \vdots & \\
0 & 0 & \cdots & 1
\end{array}\right)
\end{array}\right) .
\end{aligned}
$$

This map takes an arbitrary vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ in \mathbb{R}^{n} to $\left(\sum_{j=1}^{n} \frac{x^{j}}{x^{0}} \xi_{j}, \xi_{1}, \ldots, \xi_{n}\right)$ in \mathbb{R}^{n+1}. (In other words, $d i_{p}$ maps $\sum_{j=1}^{n} \xi_{j} \frac{\partial}{\partial x^{j}}$ in $T_{p} H^{n}$ to the vector $\left(\sum_{j=1}^{n} \frac{x^{j}}{x^{0}} \xi_{j}\right) \frac{\partial}{\partial x^{0}}+\sum_{j=1}^{n} \xi_{j} \frac{\partial}{\partial x^{j}}$ in $T_{p} \mathbb{R}^{n+1}$.) Hence our first task is to prove that for any $\xi \in \mathbb{R}^{n},\left(\frac{x^{j}}{x^{0}} \xi_{j}, \xi_{1}, \ldots, \xi_{n}\right)$ is orthogonal to p wrt the form $\langle\cdot, \cdot\rangle$, i.e. that

$$
-\sum_{j=1}^{n} \frac{x^{j}}{x^{0}} \xi_{j} \cdot x^{0}+\xi_{1} \cdot x^{1}+\cdots+\xi_{n} \cdot x^{n}=0
$$

This is clear by inspection!
The next task is to prove that the restriction of the form I (from [12, p. $228($ top $)]$) to $T_{p} H^{n}$ (or perhaps more accurately; to $d i_{p}\left(T_{p} H^{n}\right)$) is positive definite. (At present I do not understand Jost's claim that this follows from Sylvester's theorem. Exactly which theorem is this?) Thus we have to prove that the following expression is positive, for any $p=\left(x^{0}, x^{1}, \ldots, x^{n}\right) \in H^{n}$
and $\xi \in \mathbb{R}^{n} \backslash\{0\}$:

$$
\begin{align*}
& I\left(\left(\sum_{j=1}^{n} \frac{x^{j}}{x^{0}} \xi_{j}\right) \frac{\partial}{\partial x^{0}}+\sum_{j=1}^{n} \xi_{j} \frac{\partial}{\partial x^{j}},\left(\sum_{j=1}^{n} \frac{x^{j}}{x^{0}} \xi_{j}\right) \frac{\partial}{\partial x^{0}}+\sum_{j=1}^{n} \xi_{j} \frac{\partial}{\partial x^{j}}\right) \\
& =-\left(\sum_{j=1}^{n} \frac{x^{j}}{x^{0}} \xi_{j}\right)^{2}+\sum_{j=1}^{n} \xi_{j}^{2} . \tag{42}
\end{align*}
$$

However by Cauchy-Schwarz we have

$$
\left(\sum_{j=1}^{n} \frac{x^{j}}{x^{0}} \xi_{j}\right)^{2} \leq \sum_{j=1}^{n}\left(\frac{x^{j}}{x^{0}}\right)^{2} \sum_{j=1}^{n} \xi_{j}^{2}=\frac{\left(x^{0}\right)^{2}-1}{\left(x^{0}\right)^{2}} \sum_{j=1}^{n} \xi_{j}^{2}<\sum_{j=1}^{n} \xi_{j}^{2}
$$

where we used the fact that $p=\left(x^{0}, x^{1}, \ldots, x^{n}\right) \in H^{n}$, and then used $\xi \neq 0$. This shows that the expression in (42) is positive!
(b) By definition, $O(1, n)$ is the set of linear maps $R: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ which leave $\langle\cdot, \cdot\rangle$ invariant, i.e. which satisfy

$$
\begin{equation*}
\langle R x, R y\rangle=\langle x, y\rangle, \quad \forall x, y \in \mathbb{R}^{n+1} \tag{43}
\end{equation*}
$$

In particular if $R \in O(1, n)$ and $R x=0$ for some $x \in \mathbb{R}^{n+1}$ then $\langle x, y\rangle=0$ for all $y \in \mathbb{R}^{n+1}$ and this implies $x=0$. Hence every $R \in O(1, n)$ is invertible. Setting now $x=R^{-1} x^{\prime}$ and $y=R^{-1} y^{\prime}$ (with arbitrary $x^{\prime}, y^{\prime} \in \mathbb{R}^{n+1}$) in the relation (43) we get $\left\langle x^{\prime}, y^{\prime}\right\rangle=\left\langle R^{-1} x^{\prime}, R^{-1} y^{\prime}\right\rangle$; hence $R^{-1} \in O(1, n)$. Hence $O(1, n)$ is closed under taking inverse. The rest of the verification that $O(1, n)$ is a group is immediate.

Let us put

$$
\widetilde{H}^{n}:=\left\{x \in \mathbb{R}^{n+1}:\langle x, x\rangle=-1, x^{0}<0\right\}
$$

so that the set

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{n+1}:\langle x, x\rangle=-1\right\} \tag{44}
\end{equation*}
$$

equals the disjoint union of H^{n} and \widetilde{H}^{n}. It follows directly from that definition of $O(1, n)$ that every $R \in O(1, n)$ maps the set (44) onto itself; hence since R is linear and invertible, R must map every connected component of the set (44) onto the same or another connected component, in such a way that the connected components are permuted. In other words: Every $R \in O(1, n)$ satisfies either

$$
"(+) ": \quad\left[R\left(H^{n}\right)=H^{n} \text { and } R\left(\tilde{H}^{n}\right)=\tilde{H}^{n}\right]
$$

or

$$
"(-) ": \quad\left[R\left(H^{n}\right)=\widetilde{H}^{n} \text { and } R\left(\widetilde{H}^{n}\right)=H^{n}\right]
$$

Let $O^{+}(1, n)$ be the set of those $R \in O(1, n)$ satisfying "(+)". One verifies immediately that $O^{+}(1, n)$ is closed under multiplication and inverses; thus $O^{+}(1, n)$ is a subgroup of $O(1, n)$. Next note that there exists $R \in O(1, n)$
which satisfies " $(-)$ "; for example $R=R_{0}:=$ the diagonal matrix with diagonal entries $-1,1,1, \ldots, 1$. We now see that $O(1, n)$ is the disjoint union of the two cosets $O^{+}(1, n)$ and $R_{0} \cdot O^{+}(1, n)$ (where the latter coset consists exactly of all $R \in O(1, n)$ satisfying " $(-)$ "). Hence $O^{+}(1, n)$ is a subgroup of $O(1, n)$ of index 2 (and hence normal).

It now only remains to prove that each $R \in O^{+}(1, n)$ acts by an isometry on H^{n}. Thus fix $R \in O^{+}(1, n)$. Since H^{n} is an embedded submanifold of \mathbb{R}^{n+1}, and R is a linear (hence C^{∞}) map $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ preserving H^{n}, it follows that $R_{\mid H^{n}}$ is a C^{∞} map $H^{n} \rightarrow H^{n}$. Considering also $R^{-1} \in O^{+}(1, n)$ we see that $R_{\mid H^{n}}$ is in fact a C^{∞} diffeomorphism of H^{n} onto H^{n}, with inverse $=\left(R^{-1}\right)_{\mid H^{n}}$. Note that for any $x \in \mathbb{R}^{n+1}$, if we identify $T_{x} \mathbb{R}^{n+1}$ with \mathbb{R}^{n+1} in the standard way, then the bilinear form I on $T_{x} \mathbb{R}^{n+1}$ equals the form $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n+1}. Now since R preserves the latter form, and $d R=R$ (since R is linear), it follows that $d R$ preserves I, i.e.

$$
I\left((d R)_{x}(v),(d R)_{x}(w)\right)=I(v, w), \quad \forall x \in \mathbb{R}^{n+1}, v, w \in T_{x} \mathbb{R}^{n+1}
$$

In particular this holds for all $x \in H^{n}$ and $v, w \in T_{x} H^{n} \subset T_{x} \mathbb{R}^{n+1}$; and this shows that $R_{\mid H^{n}}$ preserves the Riemannian metric on H^{n}. Hence R is indeed an isometry of H^{n} onto itself!
(c). Take $p \in H^{n}$ and $v \in T_{p} H^{n}, v \neq 0$. (Here we view $T_{p} H^{n}$ as a linear subspace of \mathbb{R}^{n+1}; cf. part (a).) As we proved in part (a), we then have

$$
\begin{equation*}
\langle p, v\rangle=0 \tag{45}
\end{equation*}
$$

In fact p, v are linearly independent. [Proof: $p \neq 0$ since $p \in H^{n}$; hence we only need to prove that we cannot have $v=t p$ for some $t \in \mathbb{R}$. But $\langle p, p\rangle=-1$; hence $v=t p$ would imply $\langle p, v\rangle=-t$, and so $t=0$ by (45), contradicting $v \neq 0$.]

Let $\Pi \subset \mathbb{R}^{n+1}$ be the 2 -dimensional plane spanned by p, v. Because of (45), if $\langle\cdot, \cdot\rangle$ were a scalar product on \mathbb{R}^{n+1}, then

$$
\begin{equation*}
P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}, \quad P(x):=\frac{\langle x, p\rangle}{\langle p, p\rangle} p+\frac{\langle x, v\rangle}{\langle v, v\rangle} v \tag{46}
\end{equation*}
$$

would be the orthogonal projection from \mathbb{R}^{n+1} onto Π, and

$$
\begin{equation*}
R: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}, \quad R(x):=2 P(x)-x \tag{47}
\end{equation*}
$$

would be orthogonal reflection across Π. Now $\langle\cdot, \cdot\rangle$ is NOT a scalar product on \mathbb{R}^{n+1} (since it is not positive definite); however we still see that P and R, as defined in (46) and (47), are well-defined linear maps on \mathbb{R}^{n+1} (indeed recall that $\langle p, p\rangle=-1$ and $\langle v, v\rangle>0$ by part (a)). Furthermore $P(x) \in \Pi$ for all $x \in \mathbb{R}^{n+1}$ and $P(x)=x$ for every $x \in \Pi$ (for the last claim it suffices to verify $P(p)=p$ and $P(v)=v)$. Hence also $R(x)=x$ for all $x \in \Pi$, while $R(x) \neq x$ for $x \notin \Pi$ (indeed $R(x)=x \Rightarrow x=P(x) \in \Pi$). In other words, the set of fixed points of R equals Π.

It remains to prove $R \in O^{+}(1, n)$. Let us first note that for any $x \in \mathbb{R}^{n+1}$, using (46) and (45) we have

$$
\langle P(x)-x, p\rangle=\frac{\langle x, p\rangle}{\langle p, p\rangle}\langle p, p\rangle+0-\langle x, p\rangle=0
$$

and similarly $\langle P(x)-x, v\rangle$; hence $P(x)-x$ is orthogonal to p and v and hence to all $\Pi=\operatorname{Span}_{\mathbb{R}}\{p, v\}$. In particular $\langle P(x)-x, P(x)\rangle=0$, since $P(x) \in \Pi$. Therefore,

$$
\begin{aligned}
\langle R x, R x\rangle & =\langle P(x)+(P(x)-x), P(x)+(P(x)-x)\rangle \\
& =\langle P(x), P(x)\rangle+\langle P(x)-x, P(x)-x\rangle \\
& =\langle P(x)-(P(x)-x), P(x)-(P(x)-x)\rangle \\
& =\langle x, x\rangle
\end{aligned}
$$

This holds for all $x \in \mathbb{R}^{n+1}$; hence $R \in O(1, n)$. Finally note that $R(p)=p$, since $p \in \Pi$, and $p \in H^{n}$; hence in the notation of part (c) R cannot satisfy " $(-)$ " and so it must satisfy " $(+)$ ", i.e. $R \in O^{+}(1, n)$.
(d). Consider arbitrary p, v as in (c), but now also assume $\|v\|=1$ (i.e. $\langle v, v\rangle=1$). Let $c: \mathbb{R} \rightarrow H^{n}$ be the geodesic with $c(0)=p, \dot{c}(0)=v$. (The fact that c is defined on all \mathbb{R} follows from the Theorem of Hopf-Rinow, since H^{n} is complete.) Take $R \in O^{+}(1, n)$ as in part (c); this is an isometry of H^{n} onto H^{n} by part (b); hence also $R \circ c: \mathbb{R} \rightarrow H^{n}$ is a geodesic on H^{n}. But R preserves p and v; hence $R(c(0))=p$ and $\frac{d}{d t} R(c(t))_{\mid t=0}=v$, and so by [12, Thm. 1.4.2], $R(c(t))=c(t)$ for all $t \in \mathbb{R}$. Also the set of fixed points of R is Π; hence

$$
c(t) \in \Pi, \quad \forall t \in \mathbb{R}
$$

Hence there are (uniquely determined) C^{∞} functions $x: \mathbb{R} \rightarrow \mathbb{R}$ and y : $\mathbb{R} \rightarrow \mathbb{R}$ such that

$$
c(t)=x(t) p+y(t) v, \quad \forall t \in \mathbb{R}
$$

It follows from $c(0)=p$ and $\dot{c}(0)=v$ that

$$
x(0)=1, \dot{x}(0)=0 ; \quad y(0)=0, \dot{y}(0)=1
$$

We also have $c(t) \in H^{n}$ and thus $\langle c(t), c(t)\rangle=-1$, for all $t \in \mathbb{R}$. Using $\langle p, p\rangle=-1,\langle p, v\rangle=0$ and $\langle v, v\rangle=1$, this translates into:

$$
\begin{equation*}
-x(t)^{2}+y(t)^{2}=-1, \quad \forall t \in \mathbb{R} \tag{48}
\end{equation*}
$$

We also have $\|\dot{c}(t)\|=1$, i.e. $\langle\dot{c}(t), \dot{c}(t)\rangle=1$ for all $t \in \mathbb{R}$, by [12, Lemma 1.4.5]; and this similarly translates into:

$$
\begin{equation*}
-\dot{x}(t)^{2}+\dot{y}(t)^{2}=1, \quad \forall t \in \mathbb{R} \tag{49}
\end{equation*}
$$

Equation (48) implies $|x(t)| \geq 1$, and since $x(0)=1$ and x is continuous, it follows that $x(t) \geq 1$ and $x(t)=\sqrt{y(t)^{2}+1}$ for all $t \in \mathbb{R}$. Hence
$\dot{x}(t)=\frac{y(t) \dot{y}(t)}{\sqrt{y(t)^{2}+1}}$, and inserting this in (49) and simplifying we get

$$
\dot{y}(t)=\sqrt{1+y(t)^{2}} \quad \forall t \in \mathbb{R} .
$$

Separating variables etc, this implies $y(t)=\sinh (C+t), \forall t \in \mathbb{R}$, where C is a fixed real constant, and in fact $C=0$ since $y(0)=0$. Hence $y(t)=\sinh t$ and so $x(t)=\sqrt{y(t)^{2}+1}=\cosh t$, i.e.

$$
c(t)=(\cosh t) p+(\sinh t) v, \quad \forall t \in \mathbb{R} .
$$

Problem 21;

Remark: The results which we prove here are special cases of corresponding results on (maximal) integral curves of a vector field; cf. [1, Thm. IV.4.5]. Indeed, the geodesics are simply projections of the integral curves of a certain vector field on $T M$; cf. [1, Thm. 7.1] as well as [12, Thm. 2.2.3 and Def. 2.2.3].
(a). Let $p \in M$ and $v \in T_{p} M$ be given. Let $I, J \subset \mathbb{R}$ be any two open intervals containing 0 and let $f: I \rightarrow M$ and $g: J \rightarrow M$ be two geodesics both satisfying $f(0)=p, \dot{f}(0)=v, g(0)=p, \dot{g}(0)=v$. Let

$$
I^{*}=\{t \in I \cap J: f(t)=g(t) \text { and } \dot{f}(t)=\dot{g}(t)\}
$$

We claim that $I^{*}=I \cap J$. Note that this implies that f and g together define a geodesic on the interval $I \cup J$!
[Proof of $I^{*}=I \cap J$: Take any $s \in I^{*}$. Using $I^{*} \subset I \cap J$ and the fact that $I \cap J$ is open, it follows that there exists some $\delta>0$ such that $(s-\delta, s+\delta) \subset I \cap J$, and so we have two well-defined geodesics

$$
f_{1}, g_{1}: I_{\delta} \rightarrow M ; \quad f_{1}(t):=f(s+t), \quad g_{1}(t):=g(s+t)
$$

(Here $I_{\delta}:=(-\delta, \delta)$.) These satisfy $f_{1}(0)=f(s)=g(s)=g_{1}(0)$ and $\dot{f}_{1}(0)=$ $\dot{f}(s)=\dot{g}(s)=\dot{g}_{1}(0)$. Hence by the local uniqueness theorem for geodesics (Theorem 1' on p. 2 in Lecture $\# 4$), there is some $\delta^{\prime} \in(0, \delta]$ such that $f_{1}(t)=g_{1}(t)$ for all $t \in I_{\delta^{\prime}}$, and so $f(t)=g(t)$ and $\dot{f}(t)=\dot{g}(t)$ for all $t \in\left(s-\delta^{\prime}, s+\delta^{\prime}\right)$, i.e. $\left(s-\delta^{\prime}, s+\delta^{\prime}\right) \subset I^{*}$. The fact that I^{*} contains such a neighborhood around every point $s \in I^{*}$ implies that I^{*} is open. But also I^{*} is a closed subset of $I \cap J$; this follows from the definition of I^{*} and the fact that f, \dot{f}, g, \dot{g} are continuous. Hence I^{*} is either empty or a connected component of $I \cap J$, i.e. $I^{*}=\emptyset$ or $I^{*}=I \cap J$. However $0 \in I^{*}$, i.e. I^{*} is non-empty. Therefore $\left.I^{*}=I \cap J.\right]$

Using the property just proved, it follows that if we let I be the union of the domains of all geodesic curves such as f and g above, then there is a well-defined geodesic $c_{v}: I \rightarrow M$ with $c_{v}(0)=p, \dot{c}_{v}(0)=v$, and it has the desired property!
(b). Let $v \in T M$ and $s \in I_{v}$. First note that

$$
\begin{equation*}
\theta(0, v)=\dot{c}_{v}(0)=v . \tag{50}
\end{equation*}
$$

Set

$$
w:=\theta(s, v) \in T M .
$$

Since $c_{v}: I_{v} \rightarrow M$ is a geodesic with $\dot{c}_{v}(s)=\dot{c}_{w}(0)$, it follows that the curve $\gamma: I_{v}-s \rightarrow M, \gamma(t):=c_{v}(s+t)$ is a geodesic with $\dot{\gamma}(0)=\dot{c}_{w}(0)$; hence by the defining property of the maximal geodesic c_{w} we have $I_{v}-s \subset I_{w}$ and $\gamma(t)=c_{w}(t)$ for all $t \in I_{v}-s$. In other words:

$$
\begin{equation*}
c_{v}(s+t)=c_{w}(t), \quad \forall t \in I_{v}-s \tag{51}
\end{equation*}
$$

Hence also

$$
\begin{equation*}
\dot{c}_{v}(s+t)=\dot{c}_{w}(t), \quad \forall t \in I_{v}-s, \tag{52}
\end{equation*}
$$

and applying this for $t=-s$ we get $\dot{c}_{v}(0)=\dot{c}_{w}(-s)$. Hence the curve $\eta: I_{w}+s \rightarrow M, \eta(t):=c_{w}(s-t)$ is a geodesic with $\dot{\eta}(0)=\dot{c}_{v}(0)$; and so by the defining property of the maximal geodesic c_{v} we have $I_{w}+s \subset I_{v}$ (and $\left.\eta(t)=c_{v}(t), \forall t \in I_{w}+s\right)$. Now $I_{w}+s \subset I_{v}$ and $I_{v}-s \subset I_{w}$ together imply $I_{w}=I_{v}-s$. Hence we have proved all desired relations; indeed cf. (50) and (52), and note that (52) can be expressed as $\theta(s+t, v)=\theta(w, t)$, $\forall t \in I_{v}-s=I_{w}$.
(c). For any $v \in T M$, let $c_{v}: I_{v} \rightarrow M$ be the unique maximal geodesic starting at v. Now define \mathcal{D} as follows:

$$
\mathcal{D}:=\left\{v \in T M: 1 \in I_{v}\right\} .
$$

Then define the map exp : $\mathcal{D} \rightarrow M$ by

$$
\exp (v):=c_{v}(1)
$$

Note that $\exp (v)$ is well-defined, since $v \in \mathcal{D}$ implies $1 \in I_{v}$.
In order to prove that \mathcal{D} and \exp have the desired properties, let us first note a basic scaling property. As we noted in the lecture, if $t \mapsto c(t)$ is any geodesic then so is $t \mapsto c(\lambda t)$ for any constant $\lambda \in \mathbb{R}$, and $\frac{d}{d t} c(\lambda t)=\lambda \dot{c}(\lambda t)$ everywhere. Using this fact one easily derives the following scaling formula for the maximal geodesics: For any $v \in T M$ and $\lambda \in \mathbb{R}$,

$$
\begin{equation*}
I_{\lambda v}=\lambda^{-1} I_{v} \quad \text { and } \quad c_{\lambda v}(t)=c_{v}(\lambda t), \forall t \in I_{\lambda v} . \tag{53}
\end{equation*}
$$

(Explanation of notation: " $\lambda^{-1} I_{v}$ denotes the open interval $\left\{\lambda^{-1} t: t \in I_{v}\right\}$; in the special case $\lambda=0$ the formula should of course be interpreted to say $I_{0 v}=\mathbb{R}$.)

Now for any $v \in T M$ and $t \in \mathbb{R}$, note that $t \in I_{v}$ holds iff $1 \in t^{-1} I_{v}$, and by (53) this holds iff $1 \in I_{t v}$, i.e. iff $t v \in \mathcal{D}$ (note that with the appropriate interpretation this discussion is correct also when $t=0$; in particular note
that \mathcal{D} contains the zero vector from every tangent space $\left.T_{p} M\right)$. We have thus proved that for every $v \in T M$,

$$
\begin{equation*}
I_{v}=\{t \in \mathbb{R}: t v \in \mathcal{D}\} \tag{54}
\end{equation*}
$$

Also by (53),

$$
c_{v}(t)=c_{t v}(1)=\exp (t v), \quad \forall t \in I_{v} .
$$

Hence it "only" remains to prove that \mathcal{D} is open and that our map \exp is C^{∞}.

A crucial ingredient for the remaining part of the proof is to translate the formula " $\theta(\theta(s, v), t)=\theta(t+s, v)$ " from part (b) into a composition formula for exp. Thus take any $v \in T M$ and $s \in I_{v}$, and write $q=c_{v}(s)=\exp (s v)$ and $w:=\theta(s, v)=\dot{c}_{v}(s) \in T_{q}(v)$. By (54), the formula $I_{w}=I_{v}-s$ proved in part (b) can be equivalently expressed as

$$
\begin{equation*}
\forall v \in T M: \forall s \in I_{v}: \forall t \in \mathbb{R}: \quad\left[t \cdot \dot{c}_{v}(s) \in \mathcal{D} \Leftrightarrow(t+s) v \in \mathcal{D}\right] \tag{55}
\end{equation*}
$$

For any s, t satisfying the condition in (55), by part (b) we have $\theta(w, t)=$ $\theta(t+s, v)$, i.e. $\dot{c}_{w}(t)=\dot{c}_{v}(t+s)$. Applying the projection $T M \rightarrow M$ this implies $c_{w}(t)=c_{v}(t+s)$, i.e. $\exp (t w)=\exp ((t+s) v)$. Hence:

$$
\begin{equation*}
\forall v \in T M: \forall s \in I_{v}: \forall t \in I_{v}-s: \quad \exp \left(t \cdot \dot{c}_{v}(s)\right)=\exp ((t+s) v) \tag{56}
\end{equation*}
$$

Let \mathcal{D}^{\prime} be the set of all $v \in T M$ with the property that v has an open neighborhood $\Omega \subset \mathcal{D}$ and \exp is C^{∞} on Ω. Clearly \mathcal{D}^{\prime} is an open subset of the interior of \mathcal{D}, and $\exp _{\mathcal{D}^{\prime}}$ is C^{∞}. Our task is to prove that $\mathcal{D}^{\prime}=\mathcal{D}$! The local existence theorem for geodesics (Theorem 1 in Lecture \#4) implies that \mathcal{D}^{\prime} contains the zero section in $T M$, i.e. \mathcal{D}^{\prime} contains the zero vector from every tangent space $T_{p} M(p \in M)$.

Next we claim that, as a consequence of (56), \mathcal{D}^{\prime} has the following property:

$$
\begin{align*}
\forall v \in T M: \forall s & \in I_{v}: \forall t \in I_{v}-s: \\
& {\left[\text { If } s v \in \mathcal{D}^{\prime} \text { and } t \cdot \dot{c}_{v}(s) \in \mathcal{D}^{\prime} \text { then }(t+s) v \in \mathcal{D}^{\prime}\right] . } \tag{57}
\end{align*}
$$

[Proof: Fix $s \in I_{v}, t \in I_{v}-s$ and assume $s v \in \mathcal{D}^{\prime}$ and $t \cdot \dot{c}_{v}(s) \in \mathcal{D}^{\prime}$. Since \exp is C^{∞} on \mathcal{D}^{\prime}, the function

$$
u \mapsto \dot{c}_{u}(s)=\left(\frac{d}{d t} \exp (t u)\right)_{\mid t=s}
$$

is C^{∞} on the set $\mathcal{U}:=\left\{u \in T M: s u \in \mathcal{D}^{\prime}\right\}$ (verify this claim as an exercise!), and \mathcal{U} is an open subset of $T M$; also $v \in \mathcal{U}$. In particular $u \mapsto t \cdot \dot{c}_{u}(s)$ is continuous on \mathcal{U}, and so

$$
\mathcal{U}^{\prime}:=\left\{u \in \mathcal{U}: \dot{c}_{u}(s) \in \mathcal{D}^{\prime}\right\}=\left\{u \in T M: s u \in \mathcal{D}^{\prime} \text { and } t \cdot \dot{c}_{u}(s) \in \mathcal{D}^{\prime}\right\}
$$

is also an open subset of $T M$. Note that $v \in \mathcal{U}^{\prime}$ by our assumptions. Now for any $u \in \mathcal{U}^{\prime}$ we have $s u \in \mathcal{D}^{\prime} \subset \mathcal{D}$, thus $s \in I_{u}$ (cf. (54)) and also
$t \cdot \dot{c}_{u}(s) \in \mathcal{D}^{\prime} \subset \mathcal{D}$, which by (55) implies $(t+s) u \in \mathcal{D}$, i.e. $t \in I_{u}-s$; hence by (56) we conclude:

$$
\forall u \in \mathcal{U}^{\prime}: \quad \exp ((t+s) u)=\exp \left(t \cdot \dot{c}_{u}(s)\right) .
$$

Here the right hand side is the composition of the function $u \mapsto t \cdot \dot{c}_{u}(s)$ and \exp, and both these functions are C^{∞} when $u \in \mathcal{U}^{\prime}$ (by the discussion above regarding $u \mapsto \dot{c}_{u}(s)$, and since $t \cdot \dot{c}_{u}(s) \in \mathcal{D}^{\prime}$, and by the definition of \mathcal{D}^{\prime}). Hence $u \mapsto \exp ((t+s) u)$ is C^{∞} on \mathcal{U}^{\prime}, and since \mathcal{U}^{\prime} is an open set containing v, this proves that $(t+s) v \in \mathcal{D}^{\prime}$.]

Assume now that there is some $v \in \mathcal{D} \backslash \mathcal{D}^{\prime}$ (we will prove that this leads to a contradiction). Let $p=\pi(v)$, so that $v \in T_{p} M$. Then $\left\{t \in[0,1]: t v \notin \mathcal{D}^{\prime}\right\}$ is a closed subset of $[0,1]$ which contains 1 but not 0 ; this implies that there is a minimal $t_{1} \in(0,1]$ with $t_{1} v \notin \mathcal{D}^{\prime}$. Note that $t_{1} \in I_{v}$, since $1 \in I_{v}$. Set $q=\exp \left(t_{1} v\right)$, and let 0_{q} be the zero vector in $T_{q} M$. Then $0_{q} \in \mathcal{D}^{\prime}$, since \mathcal{D}^{\prime} contains the zero section; also \mathcal{D}^{\prime} is open and $\varepsilon \cdot \dot{c}_{v}\left(t_{1}-\varepsilon\right)$ tends to 0_{q} in $T M$ as $\varepsilon \rightarrow 0$; hence there is some $\varepsilon \in\left(0, t_{1}\right)$ such that

$$
\varepsilon \cdot \dot{c}_{v}\left(t_{1}-\varepsilon\right) \in \mathcal{D}^{\prime} .
$$

Now set $s=t_{1}-\varepsilon \in\left(0, t_{1}\right)$. Note that $s v \in \mathcal{D}^{\prime}$, by our choice of t_{1}. Hence (57) applies with our s and $t=\varepsilon$, and implies that $t_{1} v \in \mathcal{D}^{\prime}$. This is a contradiction, since we constructed t_{1} so that $t_{1} v \notin \mathcal{D}^{\prime}!$ The conclusion is that the does not exist any $v \in \mathcal{D} \backslash \mathcal{D}^{\prime}$; in other words $\mathcal{D}^{\prime}=\mathcal{D}$, and we are done!
(d). (This is now more or less straightforward; cf., e.g., [1, Thm. 3.12].)

Problem 22;

Fix a chart (U, x) on M containing p; then $(T U, d x)$ is a C^{∞} chart on $T U$ (cf. Problem 16 and the end of Lecture $\# 2$); $d x$ maps $T U$ onto $x(U) \times \mathbb{R}^{d}$. Set $\mathcal{D}_{U}:=T U \cap \mathcal{D}$ and $V=d x\left(\mathcal{D}_{U}\right)$; this is an open subset of $x(U) \times \mathbb{R}^{d}$. Of course, $(U \times U,(x, x))$ is a chart on $M \times M$; cf. Problem 8 .

Let us write $x_{0}:=x(p)$; then 0_{p} is represented by $\left(x_{0}, 0\right) \in V \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$ in our chart $(T U, d x)$.

In the local coordinates described above, the function

$$
G:=(\pi, \exp): \mathcal{D}_{U} \rightarrow M \times M
$$

takes the form

$$
\begin{equation*}
V \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d} ; \quad(x, v) \mapsto(x, F(x, v)) \tag{58}
\end{equation*}
$$

where $F: V \rightarrow \mathbb{R}^{d}$ is the function \exp composed with the appropriate chart maps. Let us write $F(x, v)=\left(F^{1}(x, v), \ldots, F^{d}(x, v)\right)$. Then the Jacobian matrix of the map in (58) is given by

$$
\left(\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
\frac{\partial F^{1}}{\partial x^{1}} & \frac{\partial F^{1}}{\partial x^{2}} & \cdots & \frac{\partial F^{1}}{\partial x^{d}} & \frac{\partial F^{1}}{\partial v^{1}} & \cdots & \frac{\partial F^{1}}{\partial v^{d}} \\
\vdots & \vdots & & \vdots & \vdots & & \vdots \\
\frac{\partial F^{d}}{\partial x^{1}} & \frac{\partial F^{d}}{\partial x^{2}} & \cdots & \frac{\partial F^{d}}{\partial x^{d}} & \frac{\partial F^{d}}{\partial v^{1}} & \cdots & \frac{\partial F^{d}}{\partial v^{d}}
\end{array}\right) .
$$

Note that this matrix has the structure of a 2×2 block matrix where each block is a $d \times d$ matrix. It follows from the basic formula $\left(d \exp _{p}\right)_{0}=1_{T_{p}(M)}$ (cf. the proof of Theorem 3 in Lecture $\# 4=$ Jost [12, Thm. 1.4.3]) that at $\left(x_{0}, 0\right)$, the lower bottom block is the $d \times d$ identity matrix. Hence at $\left(x_{0}, 0\right)$ the above $2 d \times 2 d$ matrix is non-singular (in fact the determinant equals 1).

Hence we have proved that the differential $d G_{0_{p}}: T_{0_{p}}(T M) \rightarrow T_{p} M \times T_{p} M$ is non-singular. Therefore, by the Inverse Function Theorem, there is a open neigborhood $\Omega \subset \mathcal{D}$ of 0_{p} such that G restricted to Ω is a diffeomorphism onto an open subset $G(\Omega)$ of $M \times M$. After shrinking Ω if necessary, we may assume that Ω has the following form, for some $r>0$ and some open neighborhood \mathcal{U} of p in M :

$$
\begin{equation*}
\Omega=\sqcup_{q \in \mathcal{U}} B_{r}\left(0_{q}\right)=\{v \in T M: \pi(v) \in \mathcal{U} \text { and }\|v\|<r\} . \tag{59}
\end{equation*}
$$

(Here we used the facts that any set of the form (59) is open in $T M$, and these sets form a neighborhood basis of 0_{p}; we leave the verification of these as an exercise.)

Now G^{-1} is a C^{∞} map from $G(\Omega)$ onto Ω. For each $q \in \mathcal{U}$, set

$$
W_{q}:=\{u \in M:(q, u) \in G(\Omega)\} ;
$$

this is an open subset of M. Also for each $q \in \mathcal{U}$ define the map

$$
H_{q}: W_{q} \rightarrow T M, \quad H_{q}(u)=G^{-1}(q, u) .
$$

Then H_{q} is a C^{∞} map, and using $G \circ G^{-1}=1$ and $G=(\pi, \exp)$ we have $\pi\left(H_{q}(u)\right)=q$ and $\exp \left(H_{q}(u)\right)=u$ for all $u \in W_{q}$, i.e. H_{q} in fact maps W_{q} onto $T_{q} M \cap \Omega=B_{r}\left(0_{q}\right)$, and

$$
\exp \circ H_{q}=1_{W_{q}} \quad \text { and } \quad H_{q} \circ \exp _{\mid B_{r}\left(0_{q}\right)}=1_{B_{r}\left(0_{q}\right)} .
$$

Hence for every $q \in \mathcal{U}, \exp _{\mid B_{r}\left(0_{q}\right)}$ is a diffeomorphism onto an open set (namely W_{q}) in M, i.e. we have proved Theorem 3' in Lecture \#4!
(b). Set

$$
U^{\prime}:=\bigsqcup_{p \in U} B_{r}\left(0_{p}\right) \subset T M ;
$$

this is an open subset of $T M$ (as is easy to verify from the definition of the topology of $T M$; cf. Problem (16), and by assumption we have $U^{\prime} \subset \mathcal{D}$. As in part (a) let us consider the $C^{\infty} \operatorname{map} G:=(\pi, \exp)$, but this time with U^{\prime} as domain of definition:

$$
G:=(\pi, \exp): U^{\prime} \rightarrow M \times M .
$$

Note that $G\left(U^{\prime}\right)=V$ and it follows from our assumptions that G is a bijection from U^{\prime} to V and $G^{-1}: V \rightarrow U^{\prime}$ is exactly the map $(p, q) \mapsto$ $\exp _{p}^{-1}(q)$ which we are interested in. Hence if we can prove that G is a diffeomorphism onto an open subset of $M \times M$ then we are done; and in fact it suffices to prove that every point in U^{\prime} has an open neighbourhood in U^{\prime} on which G restricts to a diffeomorphism onto an open subset of $M \times M$. By the Inverse Function Theorem, this will be ensured if we can prove that $d G$ is non-singular at every point in U^{\prime}.

Thus consider an arbitrary point $v \in U^{\prime}$; set $q:=\pi(v) \in U$ so that $v \in B_{r}\left(0_{q}\right) \subset T_{q} M$. Working with local coordinates of the same type as in part (a) ${ }^{13}, d G_{v}$ is expressed by a $2 d \times 2 d$ matrix which again is naturally viewed as a 2×2 block matrix where each block is a $d \times d$ matrix: The upper left block is the $d \times d$ identity matrix and the upper right block is the $d \times d$ zero matrix; also the lower right block is a non-singular $d \times d$ matrix, since $\left(d \exp _{q}\right)_{v}: T_{v} T_{q} M=T_{q} M \rightarrow T_{\exp (v)} M$ is non-singular (this holds since $v \in B_{r}\left(0_{q}\right)$ and $\exp _{q \mid B_{r}\left(0_{q}\right)}$ is a diffeomorphism by assumption). This implies that $d G_{v}$ is non-singular, and we are done.

[^11]Problem [23: By definition of the exponential map, for any vector $v \in$ $T_{p} M$ the curve

$$
\begin{equation*}
x(t)=t v \quad\left(\text { for }|t|<\frac{r}{\|v\|}\right) \tag{60}
\end{equation*}
$$

represents a geodesic in M wrt the chart (U, x). Assuming now $\|v\|=1$ and $v \in V$, the ($t>0$ part of the) curve (60) takes the following form in the chart $\left(U^{\prime}, y \circ x\right)$:

$$
\begin{equation*}
y(t)=(t, \varphi(v)) \quad(0<t<r) . \tag{61}
\end{equation*}
$$

Now, wrt the chart $\left(U^{\prime}, y \circ x\right)$, let $\Gamma_{j k}^{i}(y)$ be the Christoffel symbols and $\left(h_{i j}(y)\right)$ be the matrix representing the Riemannian metric; then by [11, Lemma 1.4.4] we have

$$
\begin{equation*}
\ddot{y}^{i}(t)+\Gamma_{j k}^{i}(y(t)) \dot{y}^{j}(t) \dot{y}^{k}(t)=0, \quad \forall t \in(0, r), i \in\{1, \ldots, d\}, \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{j k}^{i}(y)=\frac{1}{2} h^{i \ell}(y)\left(h_{j \ell, k}(y)+h_{k \ell, j}(y)-h_{j k, \ell}(y)\right) \tag{63}
\end{equation*}
$$

for all y in the coordinate range. We now follow the discussion in [11, p. 22 (mid) -23 (top)]. Inserting (61) in (62) gives

$$
0+\Gamma_{j k}^{i}(y(t)) \delta_{j, 1} \delta_{k, 1}=0,
$$

i.e.

$$
\Gamma_{11}^{i}(y(t))=0, \quad \forall t \in(0, r), i \in\{1, \ldots, d\} .
$$

Let us write Ω for the coordinate range for y, i.e. $\Omega=(0, r) \times \varphi(V) \subset \mathbb{R}^{d}$. Note that the previous argument applies to any fixed $v \in V$; this means that $y(t)=(t, \varphi(v))$ can take any value in Ω. Hence

$$
\Gamma_{11}^{i}(y)=0, \quad \forall y \in \Omega, i \in\{1, \ldots, d\} .
$$

By (63), this means that

$$
h^{i \ell}(y)\left(2 h_{1 \ell, 1}(y)-h_{11, \ell}(y)\right)=0, \quad \forall y \in \Omega, i \in\{1, \ldots, d\} .
$$

Multiplying this by $h_{k i}(y)$ and adding over $i\left(\right.$ using $\left.\sum_{i=1}^{d} h_{k i}(y) h^{i \ell}(y)=\delta_{k \ell}\right)$, we get:

$$
\begin{equation*}
2 h_{1 k, 1}(y)-h_{11, k}(y)=0, \quad \forall y \in \Omega, k \in\{1, \ldots, d\} . \tag{64}
\end{equation*}
$$

In particular for $k=1$ this implies $h_{11,1}(y) \equiv 0$, i.e.

$$
\begin{equation*}
\frac{\partial}{\partial y^{1}} h_{11}(y)=0, \quad \forall y \in \Omega \tag{65}
\end{equation*}
$$

However, by the transformation rule for the Riemannian metric expressed wrt the two charts $\left(U^{\prime}, y \circ x\right)$ and (U, x), we have

$$
\begin{equation*}
h_{11}(y)=\frac{\partial x^{k}}{\partial y^{1}} \frac{\partial x^{\ell}}{\partial y^{1}} g_{k \ell}(x) \quad(\forall y \in \Omega), \tag{66}
\end{equation*}
$$

and recalling

$$
\begin{equation*}
\left(y^{1}, \ldots, y^{d}\right)=\left(\|x\|, \varphi\left(\frac{x}{\|x\|}\right)\right) ; \quad \text { thus } \quad x=y^{1} \cdot \varphi^{-1}\left(y^{2}, \ldots, y^{d}\right) \tag{67}
\end{equation*}
$$

and writing

$$
z=\varphi^{-1}\left(y^{2}, \ldots, y^{d}\right) \in S^{1} \subset \mathbb{R}^{d}
$$

we get:

$$
\begin{equation*}
h_{11}(y)=z^{k} z^{\ell} g_{k \ell}(x) \quad(\forall y \in \Omega) \tag{68}
\end{equation*}
$$

Now for any fixed $\left(y^{2}, \ldots, y^{d}\right) \in \varphi(V)$, if we let $y^{1} \rightarrow 0^{+}$then $x \rightarrow 0$ in \mathbb{R}^{d} and thus $g_{k \ell}(x) \rightarrow \delta_{k \ell}$ by part (a) of this problem; meanwhile $z=$ $\varphi^{-1}\left(y^{2}, \ldots, y^{d}\right)$ is fixed; hence from (68) we get

$$
\begin{equation*}
\lim _{y^{1} \rightarrow 0^{+}} h_{11}(y)=z^{k} z^{\ell} \lim _{x \rightarrow 0} g_{k \ell}(x)=\sum_{k=1}^{d}\left(z^{k}\right)^{2}=1 . \tag{69}
\end{equation*}
$$

But (65) implies that $h_{11}(y)$ equals a constant as y^{1} varies in $(0, r)$ while $\left(y^{2}, \ldots, y^{d}\right)$ is kept fixed; now (69) says that this constant must be 1 , and so we have proved

$$
\begin{equation*}
h_{11}(y)=1, \quad \forall y \in \Omega \tag{70}
\end{equation*}
$$

Inserting this in (64), for $k=j \geq 2$, we get

$$
\begin{equation*}
\frac{\partial}{\partial y^{1}} h_{1 j}(y)=0, \quad \forall y \in \Omega, j \in\{2, \ldots, d\} \tag{71}
\end{equation*}
$$

Next, using (67) and the analogue of (66) for $h_{1 j}(y)(j \geq 2)$, we have

$$
h_{1 j}(y)=z^{k} y^{1} w^{\ell} \cdot g_{k \ell}(x), \quad \text { with } w=\frac{\partial}{\partial y^{j}} \varphi^{-1}\left(y^{2}, \ldots, y^{d}\right) \in \mathbb{R}^{d} .
$$

If we fix $\left(y^{2}, \ldots, y^{d}\right) \in \varphi(V)$ and let $y^{1} \rightarrow 0^{+}$then z, w are fixed while $g_{k \ell}(x) \rightarrow \delta_{k \ell}$; hence

$$
\lim _{y^{1} \rightarrow 0^{+}} h_{1 j}(y)=0, \quad \forall\left(y^{2}, \ldots, y^{d}\right) \in \varphi(V) \text { (fixed) }, j \in\{2, \ldots, d\} .
$$

Combining this with (71) gives

$$
\begin{equation*}
h_{1 j}(y)=0, \quad \forall y \in \Omega, j \in\{2, \ldots, d\} . \tag{72}
\end{equation*}
$$

From (70), (72) and the symmetry $h_{k \ell} \equiv h_{\ell k}$, we see that

$$
\left(h_{i j}(y)\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & h_{22}(y) & \cdots & h_{2 d}(y) \\
\vdots & \vdots & & \vdots \\
0 & h_{d 2}(y) & \cdots & h_{d d}(y)
\end{array}\right), \quad \forall y \in \Omega
$$

Note also that since we know that $\left(h_{i j}(y)\right)$ is positive definite for every $y \in \Omega$, it follows that the $(d-1) \times(d-1)$ matrix

$$
\left(\begin{array}{ccc}
h_{22}(y) & \cdots & h_{2 d}(y) \\
\vdots & & \vdots \\
h_{d 2}(y) & \cdots & h_{d d}(y)
\end{array}\right)
$$

is positive definite for every $y \in \Omega$.

Problem 24; Assume that γ is not a geodesic. Then there is some $t_{0} \in(a, b)$ such that either $\gamma(t)$ is not C^{∞} at $t=t_{0}$ or γ does not satisfy the geodesic ODE at $t=t_{0}$. Then for any $t_{1} \in\left[a, t_{0}\right)$ and $t_{2} \in\left(t_{0}, b\right]$ the restricted curve $\gamma_{\left[t_{1}, t_{2}\right]}$ fails to be a geodesic. Set

$$
p=\gamma\left(t_{0}\right)
$$

By Theorem 4:3' (viz., Theorem 3' in Lecture \#4; cf. Problem 22(a)) there exists $r>0$ such that for every $q \in B_{r}(p)$ we have $B_{r}\left(0_{q}\right) \subset \mathcal{D}_{q}$ and $\exp _{q \mid B_{r}\left(0_{q}\right)}$ is a diffeomorphism onto an open set in M. Then by Theorem 4:4 we have, for every $q \in B_{r}(p)$:

$$
\begin{equation*}
\exp _{q}\left(B_{r}\left(0_{q}\right)\right)=B_{q}(r) \tag{73}
\end{equation*}
$$

and for every $v \in B_{r}\left(0_{q}\right)$, any pw C^{∞} curve in M from q to $\exp _{q}(v)$ which is not a reparametrization of the curve $c(t)=\exp (t v), t \in[0,1]$, has length strictly larger than $\|v\|=d\left(q, \exp _{q}(v)\right)$.

Now choose $t_{1} \in\left[a, t_{0}\right)$ and $t_{2} \in\left(t_{0}, b\right]$ so that $\left|t_{1}-t_{0}\right|<r / 2$ and $\left|t_{2}-t_{0}\right|<$ $r / 2$. Then $d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right) \leq L\left(\gamma_{\left[t_{1}, t_{2}\right]}\right)=t_{2}-t_{1}<r$, since γ is parametrized by arc length. Similarly $d\left(\gamma\left(t_{1}\right), p\right)<r / 2$, so that $\gamma\left(t_{1}\right) \in B_{r}(p)$. Set $q=\gamma\left(t_{1}\right)$; we have just noted that $d\left(q, \gamma\left(t_{2}\right)\right)<r$; hence by (73) there is a (unique) $v \in B_{r}\left(0_{q}\right)$ such that $\gamma\left(t_{2}\right)=\exp _{q}(v)$. Also note that $\gamma_{\left[t_{1}, t_{2}\right]}$ cannot be a reparametrization of the geodesic $c(t)=\exp _{q}(t v), t \in[0,1]$, since we have from above that $\gamma_{\left[t_{1}, t_{2}\right]}$ is not a geodesic (also γ is parametrized by arc length). Hence by the property mentioned just below (73), $L\left(\gamma_{\left[t_{1}, t_{2}\right]}\right)>$ $d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)$, and so we get a shorter curve from $\gamma(a)$ to $\gamma(b)$ by forming the product path of $\gamma_{\left[a, t_{1}\right]}$ and c and $\gamma_{\left[t_{2}, b\right]}$. This contradicts $L(\gamma)=d(\gamma(a), \gamma(b))$.

Hence γ is a geodesic.

Problem [25: The standard Riemannian metric on \mathbb{R}^{d} is an example of a complete metric.

In order to give a non-complete metric, consider e.g. any non-surjective embedding of \mathbb{R}^{d} in \mathbb{R}^{d}, that is, an injective $\left(C^{\infty}\right)$ immersion $i: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which is not surjective. (Such immersions certainly exist; one example is $i(x)=\left(1+\|x\|^{2}\right)^{-1 / 2} x$.) Let $U=i\left(\mathbb{R}^{d}\right)$; the Inverse Function Theorem implies that U is an open subset of \mathbb{R}^{d}. We provide U with its C^{∞} manifold structure as an open submanifold of \mathbb{R}^{d}; also equip U with the Riemannian metric induced by the standard Riemannian metric on \mathbb{R}^{d}; we denote this by $\langle\cdot, \cdot\rangle$ as usual. The Inverse Function Theorem also implies that i is a C^{∞} diffeomorphism of \mathbb{R}^{d} onto U. Now equip \mathbb{R}^{d} with the Riemannian metric which makes i an isometry; let us denote this metric by $[\cdot, \cdot]$. Thus for any $p \in \mathbb{R}^{d}$ and $v, w \in \mathbb{R}^{d}$,

$$
[v, w]:=\left\langle d i_{p}(v), d i_{p}(w)\right\rangle .
$$

(In other words, $[\cdot, \cdot]$ is the Riemannian metric on \mathbb{R}^{d} coming from identifying \mathbb{R}^{d} with the (open) submanifold U of \mathbb{R}^{d}, cf. Problem 18, here the latter " $\mathbb{R}^{d "}$ is equipped with the standard Riemannian metric $\langle\cdot, \cdot\rangle$.) We know that U with the Riemannian metric $\langle\cdot, \cdot\rangle$ is not complete; hence since i is a surjective isometry, \mathbb{R}^{d} with the Riemannian metric $[\cdot, \cdot]$ is not complete. Done!

Alternative (for the non-complete example): Equip \mathbb{R}^{d} with any explicit, sufficiently rapidly decaying Riemannian metric, for example $\left(g_{i j}(x)\right)$ with

$$
\begin{equation*}
g_{i j}(x)=\delta_{i j} e^{-2\|x\|^{2}} \quad\left(\text { with }\|x\|^{2}=\left(x^{1}\right)^{2}+\cdots+\left(x^{d}\right)^{2}\right) . \tag{74}
\end{equation*}
$$

Note that each matrix entry $g_{i j}(x)$ is a C^{∞} function of $x \in \mathbb{R}^{d}$ and also the matrix $\left(g_{i j}(x)\right)$ is positive definite for every $x \in \mathbb{R}^{d}$ (since it is a positive multiple of the identity matrix); hence the formula indeed gives a Riemannian metric on \mathbb{R}^{d}. To prove that this metric is not complete, consider the sequence of points p_{1}, p_{2}, \ldots with $p_{j}:=(j, 0, \cdots, 0)$. For any integers $1 \leq j \leq k$ we have

$$
\begin{equation*}
d\left(p_{j}, p_{k}\right) \leq e^{-j} \tag{75}
\end{equation*}
$$

Indeed, consider the C^{∞} curve $c:[j, k] \rightarrow M, c(t):=(t, 0, \ldots, 0)$. This is a curve from p_{j} to p_{k} and its length with respect to the Riemannian metric (74) is
$L(c)=\int_{j}^{k} \sqrt{\langle\dot{c}(t), \dot{c}(t)\rangle} d t=\int_{j}^{k} \sqrt{e^{-2 t^{2}}} d t=\int_{j}^{k} e^{-t^{2}} d t<\int_{j}^{\infty} e^{-t} d t=e^{-j}$.
(Here we used the fact that $t^{2}>t$ for all $t>j \geq 1$.) This proves that (75) holds, and (75) in turn implies that p_{1}, p_{2}, \ldots is a Cauchy sequence in \mathbb{R}^{d} equipped with the Riemannian metric in (74). On the other hand the sequence p_{1}, p_{2}, \ldots does not converge to any point in \mathbb{R}^{d}. (Recall here that "convergence" is a topological notion, i.e. it depends only on the topology of \mathbb{R}^{d} and not on the metric metrizing it; cf. here also Lemma 2 in Lecture \#3.) Hence \mathbb{R}^{d} equipped with the Riemannian metric in (74) is not complete.

Problem 26:

(a). Let us first note that this is not an immediate consequence of the following fact from basic point set topology: "Every closed subset of a complete metric space is itself a complete metric space". Namely, in that statement it is understood that the subset is endowed with the metric which is simply the restriction of the metric on the larger space. This is not the case in our situation; we typically have $d_{M}(p, q) \neq d_{N}(p, q)$ for $p, q \in M$; cf. Problem 18(c)!

However, as we'll see, the completeness of M is still easy to prove...
Let p_{1}, p_{2}, \ldots be a Cauchy sequence in $\left(M, d_{M}\right)$. By Problem 18(c) we have $d_{N}\left(p_{j}, p_{k}\right) \leq d_{M}\left(p_{j}, p_{k}\right)$ for any j, k; hence p_{1}, p_{2}, \ldots is also a Cauchy sequence in $\left(N, d_{N}\right)$. Therefore, since N is complete there exists a (unique) limit point $p:=\lim _{j \rightarrow \infty} p_{j}$ in N. Recall that the last limit relation by definition means that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} d_{N}\left(p_{j}, p\right)=0 \tag{76}
\end{equation*}
$$

Since M is closed in N we have $p \in M$. But since M is an embedded submanifold of N, the topology of M equals the subspace topology of M as a subset of N; therefore $\lim _{j \rightarrow \infty} d_{N}\left(p_{j}, p\right)=0$ implies $\lim _{j \rightarrow \infty} d_{M}\left(p_{j}, p\right)=0$, 14 i.e. $p=\lim _{j \rightarrow \infty} p_{j}$ in M.

This proves that M is complete.
(b). ((E.g. there is an appropriate "isometric immersion" of $(0, \infty)$ into \mathbb{R}^{2} with closed image; easy to draw a picture...))

[^12]
Problem 27:

(a). This continuity is clear from

$$
\begin{equation*}
\left|d(p, q)-d\left(p^{\prime}, q^{\prime}\right)\right| \leq d\left(p, p^{\prime}\right)+d\left(q, q^{\prime}\right), \quad \forall p, p^{\prime}, q, q^{\prime} \in X \tag{77}
\end{equation*}
$$

[Proof of (77): By the triangle inequality we have

$$
\left|d(p, q)-d\left(p^{\prime}, q\right)\right| \leq d\left(p, p^{\prime}\right) \quad \text { and } \quad\left|d\left(p^{\prime}, q\right)-d\left(p^{\prime}, q^{\prime}\right)\right| \leq d\left(q, q^{\prime}\right)
$$

Hence
$\left|d(p, q)-d\left(p^{\prime}, q^{\prime}\right)\right| \leq\left|d(p, q)-d\left(p^{\prime}, q\right)\right|+\left|d\left(p^{\prime}, q\right)-d\left(p^{\prime}, q^{\prime}\right)\right| \leq d\left(p, p^{\prime}\right)+d\left(q, q^{\prime}\right)$.
Done!]
(b). Take any $q \in X$. If $d(p, q)<r$ then setting $s=r-d(p, q)>0$ we have $B_{s}(q) \subset B_{r}(p)$ (by the triangle inequality) and so $q \notin \partial B_{r}(p)$. If $d(p, q)>r$ then setting $s=d(p, q)-r>0$ we have $B_{s}(q) \cap B_{r}(p)=\emptyset$ (again by the triangle inequality) and so $q \notin \partial B_{r}(p)$. This proves the stated inclusion. The set $\partial B_{r}(p)$ is closed since the boundary of any set (in any topological space) is closed. The fact that the set $\{q \in X: d(p, q)=r\}$ is closed is an immediate consequence of the fact that the metric d is continuous.

Next assume that (X, d) is a Riemannian manifold. Take any $q \in X$ with $d(p, q)=r$. By the definition of " d ", there exists a sequence of pw C^{∞} curves $\gamma_{1}, \gamma_{2}, \ldots$ on X such that each γ_{j} starts at p and ends at q, and $\ell_{j}:=L\left(\gamma_{j}\right)<r+j^{-1}$; also $\ell_{j} \geq r$. We may assume that each γ_{j} is parametrized by arc length, and has domain $\left[0, \ell_{j}\right]$ where $\ell_{j}=L\left(\gamma_{j}\right)$. Take $J \in \mathbb{Z}^{+}$so large that $J^{-1}<r$, and for each $j \geq J$ set

$$
q_{j}:=\gamma_{j}\left(r-j^{-1}\right)
$$

Note that $\gamma_{j \mid\left[0, r-j^{-1}\right]}$ is a curve of length $r-j^{-1}$ from p to q_{j}; hence $d\left(p, q_{j}\right) \leq$ $r-j^{-1}$ and $q_{j} \in B_{r}(p)$. On the other hand $\gamma_{j\left[r-j^{-1}, \ell_{j}\right]}$ is a curve of length

$$
\leq \ell_{j}-\left(r-j^{-1}\right)<\left(r+j^{-1}\right)-\left(r-j^{-1}\right)=2 j^{-1}
$$

from q_{j} to q; hence $d\left(q_{j}, q\right)<2 j^{-1}$. Hence $q_{j} \rightarrow q$ as $j \rightarrow \infty$. This shows that q is in the closure of the set $B_{r}(p)$. Also $q \notin B_{r}(p)$ since $d(p, q)=r$. Hence $q \in \partial B_{r}(p)$. We have thus proved that $\{q \in X: d(p, q)=r\} \subset B_{r}(p)$, and we are done.
(Remark: If r is so small that there exists some $r^{\prime}>r$ such that $B_{r^{\prime}}\left(0_{p}\right) \subset$ \mathcal{D}_{p} and $\exp _{\mid B_{r^{\prime}}\left(0_{p}\right)}$ is a diffeomorphism onto an open set, then the identity $\partial B_{r}(p)=\{q \in X: d(p, q)=r\}$ is a trivial consequence of Theorem 4 in Lecture \#4. This is the only situation which occurs in the proof of the Hopf-Rinow Theorem.)
(c). (The same argument appears on [12, p. 36].) We have

$$
d(p, q) \leq d\left(p, p_{0}\right)+d\left(p_{0}, q\right)
$$

by the triangle inequality; hence it now suffices to prove the opposite inequality. Let $\gamma:[a, b] \rightarrow X$ be any pw C^{∞} curve with $\gamma(a)=p$ and $\gamma(b)=q$. Since $t \rightarrow d(p, \gamma(t))$ is a continuous function of t, and $d(p, \gamma(a))=$ $0, d(p, \gamma(b))=d(p, q)>r$, there must exist some $t_{0} \in(a, b)$ such that $d\left(p, \gamma\left(t_{0}\right)\right)=r$. By part (b) we then have $\gamma\left(t_{0}\right) \in \partial B_{r}(p)$, and hence because of the way p_{0} was chosen,

$$
d\left(\gamma\left(t_{0}\right), q\right) \geq d\left(p_{0}, q\right)
$$

Therefore,

$$
L(\gamma)=L\left(\gamma_{\left[a, t_{0}\right]}\right)+L\left(\gamma_{\left[t_{0}, b\right]}\right) \geq d\left(p, \gamma\left(t_{0}\right)\right)+d\left(\gamma\left(t_{0}\right), q\right) \geq r+d\left(p_{0}, q\right) .
$$

Since this is true for every pw C^{∞} curve from p to q, we have

$$
d(p, q) \geq r+d\left(p_{0}, q\right)=d\left(p, p_{0}\right)+d\left(p_{0}, q\right),
$$

and the proof is complete.

Problem [28: The fact that every distance $d(p, q)<R$ is realized by a geodesic is proved by more or less exactly the same proof as the "key fact" in the proof of the Hopf-Rinow Theorem; cf. Lecture \#5, pp. 9-11. Indeed, assume $q \in M$ and $r:=d(p, q)<R$. Now the proof in Lecture \#5, pp. 9-11 applies to our situation, word by word. The only difference is that now the geodesic

$$
c(t):=\exp _{p}(t V)
$$

(introduced in the last line of p.9) is not guaranteed to be defined for all $t \in \mathbb{R}$, but it is certainly defined for all t with $|t|<R$, since $B_{R}(p) \subset \mathcal{D}_{p}$; in particular $c(t)$ is defined for all $t \in[0, r]$, and these are the only t-values which are ever considered in the proof.

Finally, $B_{R}(p)=\exp _{p}\left(B_{R}\left(0_{p}\right)\right)$ is indeed an immediate consequence of the above fact. Indeed, the above fact implies $B_{R}(p) \subset \exp _{p}\left(B_{R}\left(0_{p}\right)\right)$. On the other hand for every $v \in B_{R}\left(0_{p}\right)$, the geodesic $t \mapsto \exp (t v), t \in[0,1]$, is a curve of length $\|v\|$ from p to $\exp _{p}(v)$, so that $d\left(p, \exp _{p}(v)\right) \leq\|v\|<R$, i.e. $\exp _{p}(v) \in B_{R}(p)$. Hence also the opposite inclusion, $\exp _{p}\left(B_{R}\left(0_{p}\right)\right) \subset B_{R}(p)$, holds. Done!

Problem 29:

(Note that Jost mentions this generalization in the beginning of his proof of [12, Thm. 5.8.1].)

The proof in the two cases (fixed endpoints versus closed curves) is very similar, and we treat here only the first case. Thus let $c: I \rightarrow M$ be a curve. Set $p=c(0)$ and $q=c(1)$, and let \mathcal{F} be the family of all pw C^{∞} curves homotopic to c. Then pick a minimizing sequence $\left(\gamma_{n}\right)$ for arc length in \mathcal{F} Thus each γ_{n} is a pw C^{∞} curve, and

$$
\lim _{n \rightarrow \infty} L\left(\gamma_{n}\right)=L_{0}:=\inf _{c_{0} \in \mathcal{F}} L\left(c_{0}\right)
$$

Wlog, assume also

$$
L\left(\gamma_{n}\right) \geq L_{0}+1, \quad \forall n
$$

Set $R:=L_{0}+2$ and

$$
K:=\overline{B_{R}(p)}
$$

Note that by construction, all the curves $\gamma_{1}, \gamma_{2}, \ldots$ are contained in K. By the Hopf-Rinow Theorem (Theorem $5: 3,(1) \Rightarrow(2)), K$ is compact. Hence the proof of Cor. 4.1 (an immediate application of Thm. 4.3') extends to show that there exists some $r_{0}>0$ such that for every point $p^{\prime} \in K, \exp _{p^{\prime} \mid B_{r_{0}}\left(0_{p^{\prime}}\right)}$ is a diffeomorphism onto an open set in M. By shrinking r_{0} if necessary, we may assume $r_{0}<1$.

We have already remarked that all curves $\gamma_{1}, \underline{\gamma_{2}}, \ldots$ are contained in K; in fact they are even contained in the smaller ball $\overline{B_{L_{0}+1}(p)}$, and hence since $r_{0}<1$ and $R=L_{0}+2$, it follows that the whole neighborhood $B_{r_{0}}\left(p^{\prime}\right)$ is contained in K, for all $p^{\prime} \in \gamma_{n}$, any n. Hence all points ever considered in the proof of Theorem 1 in Lecture $\# 5$ lie in K, and so the proof carries over to our situation!

Problem 30:

(a). Consider the C^{∞} map

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(x, y, z)=y^{2}+z^{2}-e^{2 x}
$$

One verifies immediately that $S=f^{-1}(0)$. Furthermore

$$
d f_{(x, y, z)}=\left(\begin{array}{lll}
-2 e^{2 x} & 2 y & 2 z
\end{array}\right)
$$

which has rank 1 for all $(x, y, z) \in \mathbb{R}^{3}$. Hence by [12, Lemma 1.3.2] (with the slightly more precise formulation in the notes to Lecture $\# 2$; note that this is what Jost's proof actually gives), every connected component of S in \mathbb{R}^{3} is a closed differentiable submanifold of \mathbb{R}^{3}. Hence if we prove that S is connected then it follows that S itself is a differentiable submanifold of \mathbb{R}^{3}. However the connectedness is clear from the parametrization of S given in the statement of the problem. Indeed, set

$$
g(x, \alpha):=\left(x, e^{x} \cos \alpha, e^{x} \sin \alpha\right)
$$

Then g is a continuous (even C^{∞}) function from \mathbb{R}^{2} to S. 15 Consider two arbitrary points in S; these can be expressed as $g(x, \alpha)$ and $g\left(x^{\prime}, \beta\right)$ for some $x, x^{\prime}, \alpha, \beta \in \mathbb{R}$. Then

$$
c:[0,1] \rightarrow S, \quad c(t)=g\left((1-t) x+t x^{\prime},(1-t) \alpha+t \beta\right)
$$

is a curve in S from $g(x, \alpha)$ to $g\left(x^{\prime}, \beta\right)$. This proves that S is path-connected, and thus connected. This completes the proof that S is a differentiable submanifold of \mathbb{R}^{3}.

Note also that S is closed; for example this follows from $S=f^{-1}(0)$ and the fact that f is continuous.

[^13](b). Set $p_{1}:=\left(x_{0},-e^{x_{0}}, 0\right) \in S$, and let γ be the following C^{∞} curve (half circle) on S :
$$
\gamma:[0, \pi] \rightarrow S, \quad \gamma(t)=\left(x_{0}, e^{x_{0}} \cos t, e^{x_{0}} \sin t\right) .
$$

This is a curve from p_{0} to p_{1}, and $L(\gamma)=\pi e^{x_{0}}$ (by Problem 18(b)). Hence $d\left(p_{0}, p_{1}\right) \leq \pi e^{x_{0}}$. By the Hopf-Rinow Theorem there exists a geodesic c from p_{0} to p_{1} with

$$
L(c)=d\left(p_{0}, p_{1}\right) \leq \pi e^{x_{0}} .
$$

We can take c to be parametrized by arc length; thus $\|\dot{c}\| \equiv 1$ and the domain of c is the interval $[0, L(c)]$. Now let R be the reflection map $(x, y, z) \mapsto$ $(x, y,-z)$. This is an isometry of \mathbb{R}^{3} onto itself, and $R(S)=S$; hence R is also an isometry of S onto itself. Therefore R maps any geodesic in S to a geodesic in S, and in particular the curve

$$
\widetilde{c}:=R \circ c:[0, L(c)] \rightarrow S
$$

is a geodesic in S, with $\|\dot{\bar{c}}\| \equiv 1$ and $L(\widetilde{c})=L(c)$. We have $R\left(p_{0}\right)=p_{0}$ and $R\left(p_{1}\right)=p_{1}$; hence \widetilde{c} is a geodesic from p_{0} to p_{1}, just like c. Take $v, \widetilde{v} \in T_{p_{0}} S$ so that $c(t)=\exp _{p_{0}}(t v)$ and $\widetilde{c}(t)=\exp _{p_{0}}(t \widetilde{v})$ for $t \in[0, L(c)]$. Note that

$$
\|v\|=\|\widetilde{v}\|=1
$$

since $\|c\| \equiv\|\dot{\tilde{c}}\| \equiv 1$. Furthermore,

$$
v \neq \widetilde{v},
$$

since $c \not \equiv \widetilde{c}$. [Proof of $c \not \equiv \widetilde{c}$: The second coordinate of $c(t)$ is a continuous function of t starting at $e^{x_{0}}$ and ending at $e^{-x_{0}}$; hence for some $t \in(0, L(c))$ this coordinate must equal 0 . For this t we have $c(t)=(x, 0, z) \in S$ for some $x, z \in \mathbb{R}$, and from the definition of S it follows that $z \neq 0$ and so $R(c(t)) \neq c(t)$, i.e. $\widetilde{c}(t) \neq c(t)$ for this t.] Now

$$
\exp _{p_{0}}(L(c) v)=c(L(c))=p_{1}=\widetilde{c}(L(c))=\exp _{p_{0}}(L(c) \widetilde{v}),
$$

and $L(c) v \neq L(c) \widetilde{v},\|L(c) v\|=\|L(c) \widetilde{v}\|=L(c) \leq \pi e^{x_{0}}$. This proves that for every $r>\pi e^{x_{0}}$, the function $\exp _{p_{0}}$ is non-injective on the open ball $B_{r}\left(0_{p}\right) \subset T_{p}(S)$. Hence $i\left(p_{0}\right) \leq \pi e^{x_{0}}$.
(See also alternative solution on the next page!)

Alternative: Set $p_{1}:=\left(x_{0},-e^{x_{0}}, 0\right) \in S$. Let γ_{1}, γ_{2} be the following two curves (half circles) on S :

$$
\begin{aligned}
\gamma_{1}, \gamma_{2}:[0, \pi] \rightarrow S, & \gamma_{1}(t)=\left(x_{0}, e^{x_{0}} \cos t, e^{x_{0}} \sin t\right) ; \\
& \gamma_{2}(t)=\left(x_{0}, e^{x_{0}} \cos t,-e^{x_{0}} \sin t\right) .
\end{aligned}
$$

Both these are curves from p_{0} to p_{1}, and

$$
L\left(\gamma_{1}\right)=L\left(\gamma_{2}\right)=\pi e^{x_{0}}
$$

(by Problem 18(b)). (Hence $d\left(p_{0}, p_{1}\right) \leq \pi e^{x_{0}}$.)
Now by Theorem 1 in Lecture \#5, generalized to complete manifolds (cf. Problem (29), there exist geodesics c_{1} and c_{2} homotopic to γ_{1} and to γ_{2}, respectively, and from the proof of that theorem we see that we can take $L\left(c_{j}\right)$ to be smaller than or equal to the length of any pw C^{∞} curve in the homotopy class of γ_{j}; in particular

$$
L\left(c_{j}\right) \leq L\left(\gamma_{j}\right)=\pi e^{x_{0}} \quad(j=1,2)
$$

We can take c_{1}, c_{2} to be parametrized by arc length; then there exist two unit vectors $v_{1}, v_{2} \in T_{p_{0}} S$ such that

$$
c_{j}(t)=\exp _{p_{0}}\left(t v_{j}\right), \quad t \in\left[0, L\left(c_{j}\right)\right] .
$$

In particular

$$
\exp _{p_{0}}\left(L\left(c_{j}\right) v_{j}\right)=p_{1} \quad \text { for } j=1,2
$$

It follows that if we can only prove that $v_{1} \neq v_{2}$, then

$$
i\left(p_{0}\right) \leq \max \left(L\left(c_{1}\right), L\left(c_{2}\right)\right) \leq \pi e^{x_{0}}
$$

and the proof will be complete.
In order to prove $v_{1} \neq v_{2}$, let us assume the opposite, $v_{1}=v_{2}$. This means that $c_{1} \equiv c_{2}$, and so γ_{1} and γ_{2} are homotopic. However this is "obviously" not the case! (Details: $\gamma_{1} \simeq \gamma_{2}$ would imply $\gamma_{1} \cdot \bar{\gamma}_{2} \simeq \gamma_{2} \cdot \bar{\gamma}_{2} \simeq p_{0}$, the constant curve at p_{0}. Now note that the map

$$
F: S \rightarrow S^{1}, \quad\left(x, e^{x} \cos \alpha, e^{x} \sin \alpha\right) \mapsto(\cos \alpha, \sin \alpha)
$$

is well-defined and continuous, and it maps the loop $\gamma_{1} \cdot \bar{\gamma}_{2}$ to the loop $t \mapsto(\cos t, \sin t),[0,2 \pi] \rightarrow S^{1}$. Hence, composing any homotopy showing $\gamma_{1} \cdot \bar{\gamma}_{2} \simeq p_{0}$ with F, we obtain that the loop $t \mapsto(\cos t, \sin t)$ in S^{1} represents the identity element in $\pi_{1}\left(S^{1}\right)$. However this is not the case, as we discussed in Lecture \#6, and as is carefully proved in Hatcher, [7, Thm. 1.7].)

Problem 31;

The following solution is sketchy and leaves out several details.
By [7, Prop. 1.5] we are free to choose the basepoint x_{0}. Let us choose x_{0} so that it does not lie on any line between two points in $\left\{p_{1}, \ldots, p_{n}\right\}$. Let \widetilde{r}_{j} be the ray starting at x_{0} and going through p_{j}; it follows from our choice of x_{0} that the n rays $\widetilde{r}_{1}, \ldots, \widetilde{r}_{n}$ are distinct. After renaming the points p_{1}, \ldots, p_{n} we may assume that the rays $\widetilde{r}_{1}, \ldots, \widetilde{r}_{n}$ are ordered in positive direction. Now choose rays r_{1}, \ldots, r_{n} with startpoint x_{0} such that r_{1} lies between \widetilde{r}_{n} and \widetilde{r}_{1}, and r_{j} for $j \in\{2, \ldots, n\}$ lies between \widetilde{r}_{j-1} and \widetilde{r}_{j}. Let \widetilde{A}_{n} be the infinite open wedge between r_{n} and r_{1} coontaining $\widetilde{r}_{n} \backslash\left\{x_{0}\right\}$; similarly for $j \in\{1, \ldots, n-1\}$ let \widetilde{A}_{j} be the infinite open wedge between r_{j} and r_{j+1} containing \widetilde{r}_{j}. Take $\varepsilon>0$ small. (Specifically, ε should be smaller than the distance between x_{0} and r_{j} for each j.) Let A_{j} be the open ε-neighborhood of \widetilde{A}_{j} (viz., the set of points in \mathbb{R}^{2} which have distance $<\varepsilon$ to some point in $\left.A_{j}\right)$, but with the point p_{j} removed. The reader is adviced to draw a picture of the situation!

Now A_{1}, \ldots, A_{n} are open and path-connected subsets of

$$
X:=\mathbb{R}^{2} \backslash\left\{p_{1}, \ldots, p_{n}\right\}
$$

with $X=\cup_{j=1}^{n} A_{j}$, and $A_{j} \cap A_{k}$ is path-connected for all $j, k \in\{1, \ldots, n\}$; hence van Kampen's theorem can be applied with A_{1}, \ldots, A_{n}; in particular the natural homomorphism

$$
\Phi: \pi_{1}\left(A_{1}, x_{0}\right) * \cdots * \pi_{1}\left(A_{n}, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective. Note also that for any $j \neq k \in\{1, \ldots, n\}$, the set $A_{j} \cap A_{k}$ is simply connected (proof?) i.e. $\pi_{1}\left(A_{j} \cap A_{k}\right)=\{e\}$. Hence van Kampen's theorem implies that Φ is an isomorphism. Finally each A_{j} is homotopy equivalent with S^{1} (proof?); hence $\pi_{1}\left(A_{j}\right) \cong \mathbb{Z}$, and so we conclude that

$$
\pi_{1}\left(X, x_{0}\right) \text { is a free group with } n \text { generators. }
$$

Generators: $\left[\gamma_{1}\right], \ldots,\left[\gamma_{n}\right]$, where γ_{j} is a loop that is contained in A_{j} and goes one time around p_{j}.

Problem 32;

(a). Let us first prove that \widetilde{M} is Hausdorff. Let p and q be two distinct points in \widetilde{M}. Then $\pi(p), \pi(q) \in M$. If $\pi(p) \neq \pi(q)$, then since M is Hausdorff, there exist disjoint open sets $U, V \subset M$ with $\pi(p) \in U$ and $\pi(q) \in V$. Then $\pi^{-1}(U)$ and $\pi^{-1}(V)$ are disjoint open sets in \widetilde{M}, and $p \in \pi^{-1}(U)$ and $q \in \pi^{-1}(V)$. On the other hand if $\pi(p)=\pi(q)$, then by the definition of "covering space" there is an open neighborhood U of $\pi(p)=\pi(q)$ in M such that $\pi^{-1}(U)$ can be written as a union $\pi^{-1}(U)=\sqcup_{j \in J} U_{j}$, where for each $j \in J, U_{j}$ is an open set in \widetilde{M} and $\pi_{\mid U_{j}}$ is a homeomorphism of U_{j} onto U, and the sets $U_{j}(j \in J)$ are pairwise disjoint. Now $p, q \in \pi^{-1}(U)$ and hence there are unique $i, j \in J$ such that $p \in U_{i}$ and $q \in U_{j}$. If $i=j$ then $\pi(p)=\pi(q)$ and the fact that $\pi_{\mid U_{i}}$ is injective imply $p \neq q$, contrary to our assumption. Therefore $i \neq j$, and now U_{i} and U_{j} are two disjoint open sets in \widetilde{M} with $p \in U_{i}$ and $q \in U_{j}$. This proves that \widetilde{M} is Hausdorff.

Next we prove that \widetilde{M} is locally Euclidean (of dimension d). Let p be an arbitrary point in \widetilde{M}. Then $\pi(p) \in M$, and since $\pi: \widetilde{M} \rightarrow M$ is a covering space, $\pi(p)$ has an open neighborhood U in M such that $\pi^{-1}(U)$ is a union of disjoint open sets in \widetilde{M}, each of which is mapped homeomorphically onto U by π. Exactly one of these open sets in \widetilde{M} contains p; call this open set $\widetilde{U} \subset \widetilde{M}$. Thus $\pi_{\mid \widetilde{U}}$ is a homeomorphism of \widetilde{U} onto U. Furthermore, since M is a d-dimensional topological manifold, $\pi(p)$ has an open neighborhood V in M which is homeomorphic to an open subset of \mathbb{R}^{d}. It follows that also $W:=U \cap V$ is homeomorphic to an open subset of \mathbb{R}^{d}; let $\varphi: W \rightarrow \mathbb{R}^{d}$ be one such homeomorphism. Now $\widetilde{W}:=\left(\pi_{\mid \widetilde{U}}\right)^{-1}(W)$ is an open subset of \widetilde{U} containing p, and $\pi_{\mid \widetilde{W}}$ is a homeomorphism of \widetilde{W} onto W. It follows that $\varphi \circ \pi_{\mid \widetilde{W}}$ is a homeomorphism of \widetilde{W} onto an open subset of \mathbb{R}^{d}. The fact that every point $p \in \widetilde{M}$ has such an open neighborhood \widetilde{W} in \widetilde{M} proves that \widetilde{M} is locally Euclidean.
\widetilde{M} is connected and second countable by assumption; hence also paracompact (cf. the notes to Lecture \#1).

Hence \widetilde{M} is a topological manifold of dimension d.

Remark: In fact the assumption that \widetilde{M} is second countable is redundant; any connected covering space \widetilde{M} of a topological manifold is automatically second countable. This is a consequence of the fact that the fundamental group $\pi_{1}(M)$ of any topological manifold M is countable; cf., e.g., Lee, 15, Prop. 1.16]. (Once we know that $\pi_{1}(M)$ is countable, the fact that \widetilde{M} is second countable is proved by fairly simple arguments using the theory developed in [7, Ch. 1.3]; cf. also Problem 2(a) above.)
(In this connection, here's an issue which for a moment had me confused: One might think that the "obvious" map π from the Long Line L (cf. wikipedia) to the circle $S^{1} \simeq \mathbb{R} / \mathbb{Z}$ makes L a covering space of S^{1}; but L is not second countable! The resolution to this seeming paradox is that the map $\pi: L \rightarrow S^{1}$ is in fact not continuous, and hence not a covering map; this is discussed here.)
(b). By part (a), \widetilde{M} is a topological manifold and $\operatorname{dim} \widetilde{M}=\operatorname{dim} M=d$, say. Let \mathcal{A} be the C^{∞} structure on M, and set

$$
\begin{aligned}
\widetilde{\mathcal{A}}:=\{(\widetilde{U}, x \circ \pi):(U, x) \in & \mathcal{A} \text { and } \widetilde{U} \text { is an open subset of } \widetilde{M} \text { which is } \\
& \text { mapped homeomorphically onto } U \text { by } \pi\}
\end{aligned}
$$

Note that for every $(\widetilde{U}, x \circ \pi) \in \widetilde{\mathcal{A}}, x \circ \pi$ is a homeomorphism of \widetilde{U} onto an open subset of \mathbb{R}^{d}. Furthermore for every $p \in \widetilde{M}$ there is some $(\widetilde{U}, x \circ \pi) \in \widetilde{\mathcal{A}}$ such that $p \in \widetilde{U}$ (this is proved by the same argument which we used to prove that \widetilde{M} is locally Euclidean in part (a)). Hence $\widetilde{\mathcal{A}}$ is a topological atlas on M. We claim that $\widetilde{\mathcal{A}}$ is in fact a C^{∞} atlas on \widetilde{M}. To show this it remains to prove C^{∞} compatibility between the charts in $\widetilde{\mathcal{A}}$. Thus let $(\widetilde{U}, x \circ \pi)$ and $(\widetilde{V}, y \circ \pi)$ be two arbitrary elements in $\widetilde{\mathcal{A}}$; set $U:=\pi(\widetilde{U})$ and $V:=\pi(\widetilde{V})$ so that $(U, x),(V, y) \in \mathcal{A}$. We have to prove that the map

$$
(y \circ \pi) \circ(x \circ \pi)^{-1}: x \circ \pi(\widetilde{U} \cap \widetilde{V}) \rightarrow y \circ \pi(\widetilde{U} \cap \widetilde{V})
$$

is C^{∞}. But note that $\pi(\widetilde{U} \cap \tilde{V})=U \cap V$ and the above map equals

$$
y \circ x^{-1}: x(U \cap V) \rightarrow y(U \cap V),
$$

which is C^{∞} since $(U, x),(V, y) \in \mathcal{A}$. Hence we have proved that $\widetilde{\mathcal{A}}$ is a C^{∞} atlas on \widetilde{M}.

By Problem 4, $\widetilde{\mathcal{A}}$ determines a (unique) C^{∞} structure on \widetilde{M}. Let us prove that \widetilde{M} equipped with this C^{∞} structure has the desired properties. First we prove that π is C^{∞}. Given $p \in \widetilde{M}$, take $(\widetilde{U}, x \circ \pi) \in \widetilde{\mathcal{A}}$ with $p \in \widetilde{U}$; also set $U:=\pi(U)$, so that $(U, x) \in \mathcal{A}$. Then wrt the charts $(\widetilde{U}, x \circ \pi)$ and (U, x), the map π is represented by

$$
x \circ \pi \circ(x \circ \pi)^{-1}: x \circ \pi(\widetilde{U}) \rightarrow x(U) .
$$

But $\pi(\widetilde{U})=U$, and we see that the last map is simply the identity map on $x(U) \subset \mathbb{R}^{d}$, which of course is a C^{∞} map. Hence π is C^{∞} locally near p, and since this is true for all $p \in \widetilde{M}$, the map π is C^{∞}.

Next we prove that every point $p \in M$ has an open neighborhood with the stated property. Let $p \in M$ be given. We know that p has an open neighborhood U in M such that $\pi^{-1}(U)$ is a union of disjoint open sets in \widetilde{M}, each of which is mapped homeomorphically onto U by π. We will prove that any such U is in fact ok for us. Thus let \widetilde{U} be any one of the open sets in \widetilde{M} with the property that $\pi_{\mid \widetilde{U}}$ is a homeomorphism of \widetilde{U} onto U. We claim that $\pi_{\mid \tilde{U}}$ is in fact a diffeomorphism of \tilde{U} onto U. We proved above that π is C^{∞}; hence $\pi_{\mid \widetilde{U}}$ is C^{∞}, and it remains to prove that $\left(\pi_{\mid \widetilde{U}}\right)^{-1}: U \rightarrow \widetilde{U}$ is C^{∞}. Take any point $q \in U$ and set $\widetilde{q}:=\left(\pi_{\mid \widetilde{U}}\right)^{-1}(q) \in \widetilde{U}$. Take $(\widetilde{V}, y \circ \pi) \in \widetilde{\mathcal{A}}$ with $\widetilde{q} \in \widetilde{V}$, and set $V:=\pi(\widetilde{V})$ so that $(V, y) \in \mathcal{A}$. Set $W:=U \cap V$; then
$\left(W, y_{\mid W}\right) \in \mathcal{A}\left(\right.$ since \mathcal{A} is a maximal C^{∞} atlas on $\left.M\right)$; also $\widetilde{W}:=\left(\pi_{\mid \widetilde{U}}\right)^{-1}(W)$ is mapped homeomorphically onto W by π and so $\left(\widetilde{W}, y_{\mid W} \circ \pi\right) \in \widetilde{\mathcal{A}}$. Now wrt the charts $\left(W, y_{\mid W}\right)$ and $\left(\widetilde{W}, y_{\mid W} \circ \pi\right)$, the map $\left(\pi_{\mid \widetilde{U}}\right)^{-1}$ is represented by

$$
(y \circ \pi) \circ\left(\pi_{\mid \widetilde{U}}\right)^{-1} \circ\left(y_{\mid W}\right)^{-1}: y(W) \rightarrow y \circ \pi(\widetilde{W}) .
$$

One verifies that this is simply the identity map on $y(W) \subset \mathbb{R}^{d}$, which of course is a C^{∞} map. Note also that $q \in W$. The fact that every point $q \in U$ has such an open neighborhood W in which $\left(\pi_{\mid \widetilde{U}}\right)^{-1}$ is C^{∞}, implies that $\left(\pi_{\mid \widetilde{U}}\right)^{-1}$ is C^{∞}. This completes the proof that our C^{∞} structure on \widetilde{M} has all the desired properties.

Finally we prove that the above C^{∞} structure on \widetilde{M} is uniquely determined by the stated requirements. (This is more or less obvious, but it becomes somewhat technical to write out the details - at least in the way I've done it. I think it is the least important part of this problem...) Thus let \mathcal{B} be any C^{∞} structure on the topological manifold \widetilde{M} which satisfies the stated requirements; our task is then to prove that \mathcal{B} is compatible with the C^{∞} atlas \widetilde{M}. Let (\widetilde{U}, φ) be any chart in \mathcal{B} and let $(\widetilde{V}, y \circ \pi)$ be any chart in $\widetilde{\mathcal{A}}$; then our task is to prove that the map

$$
(y \circ \pi) \circ \varphi^{-1}: \varphi(\tilde{U} \cap \tilde{V}) \rightarrow y \circ \pi(\widetilde{U} \cap \tilde{V})
$$

is a diffeomorphism,
Set $V:=\pi(\widetilde{V})$ so that $(V, y) \in \mathcal{A}$ and $\pi_{\mid \tilde{V}}$ is a homeomorphism of \tilde{V} onto V. Set $\widetilde{W}=\widetilde{U} \cap \widetilde{V}$ and $W=\pi(\widetilde{W})$; then \widetilde{W} is an open subset of \widetilde{V}, W is an open subset of V, and $\pi_{\mid \widetilde{W}}$ is a homeomorphism of \widetilde{W} onto W. (For nontriviality, assume $W \neq \emptyset$.) Also $\left(\widetilde{W}, \varphi_{\mid \widetilde{W}}\right) \in \mathcal{B}$ and $\left(W, y_{\mid W}\right) \in \mathcal{A}$ (since \mathcal{B} and \mathcal{A} are maximal); hence also $\left(\widetilde{W}, \pi \circ y_{\mid W}\right) \in \widetilde{\mathcal{A}}$. Our task is to prove that the map

$$
\begin{equation*}
(y \circ \pi) \circ \varphi^{-1}: \varphi(\widetilde{W}) \rightarrow y(W) \tag{78}
\end{equation*}
$$

is a diffeomorphism, i.e. that both the map (78) and its inverse,

$$
\begin{equation*}
\varphi \circ(y \circ \pi)^{-1}: y(W) \rightarrow \varphi(\widetilde{W}), \tag{79}
\end{equation*}
$$

are C^{∞}.
Let $p \in W$ and set $\widetilde{p}:=\left(\pi_{\mid \widetilde{W}}\right)^{-1}(p)$. By the requirement which we have imposed on \mathcal{B}, there is an open neighborhood Ω^{\prime} of p in M such that $\pi^{-1}\left(\Omega^{\prime}\right)$ is a union of disjoint open sets in \widetilde{M}, each of which is mapped diffeomorphically (wrt \mathcal{B}) onto Ω^{\prime} by π. Among these open sets in \widetilde{M}, let $\widetilde{\Omega}^{\prime}$ be the one which contains \widetilde{p}. Then set $\widetilde{\Omega}:=\widetilde{\Omega^{\prime}} \cap \widetilde{W}$; it follows that $\widetilde{\Omega}$ is an open subset of \widetilde{W} which contains \widetilde{p} and which is mapped diffeomorphically (wrt \mathcal{B}) by π onto $\Omega:=\pi\left(\widetilde{\Omega^{\prime}} \cap \widetilde{W}\right)$ which is an open subset of W containing p. The last statement (together with $\left(\widetilde{W}, \varphi_{\mid \widetilde{W}}\right) \in \mathcal{B}$ and $\left.\left(W, y_{\mid W}\right) \in \mathcal{A}\right)$ implies that both the maps $y \circ \pi \circ \varphi^{-1}: \varphi(\widetilde{\Omega}) \rightarrow y(\Omega)$ and $\varphi \circ \pi^{-1} \circ y^{-1}: y(\Omega) \rightarrow \varphi(\widetilde{\Omega})$ are C^{∞}. Those maps are restrictions of the maps (78) and (79), and the fact that any point p has such a neighborhood Ω in W now implies that the two maps (78) and (79) are C^{∞}, and we are done.
(c). By part (b), \widetilde{M} has a C^{∞} manifold structure which is uniquely determined by the stated requirements (since any isometry is a diffeomorphism). Note that $\pi: \widetilde{M} \rightarrow M$ is an immersion (since locally it is a diffeomorphism); hence by Problem 18 (a) there is a unique Riemannian structure on \widetilde{M} such that $\langle v, w\rangle=\langle d \pi(v), d \pi(w)\rangle$ for any $p \in \widetilde{M}$ and $v, w \in T_{p} \widetilde{M}$. It is clear from part (b) that this Riemannian structure has the desired properties.
(d). This is easily deduced by inspecting the solution to Problem 9 (b). Indeed, there we saw that $\Gamma \backslash M$ is a topological manifold and $\pi: M \rightarrow \Gamma \backslash M$ is a continuous map. Now consider an arbitrary point in $\Gamma \backslash M$, say $[p]$ with $p \in M$. By (25) there is some $U \in \mathcal{I}$ (viz., an open set in M which is injectively embedded in $\Gamma \backslash M)$ with $p \in U$. By (24), $\pi(U)$ is an open set in $\Gamma \backslash M$ and $\pi_{\mid U}$ is a homeomorphism from U onto $\pi(U)$. Now for every point $q \in M$, the equivalence class $[q]=\pi^{-1}(\pi(q))$ consists exactly of the points $\gamma(q)(\gamma \in \Gamma)$, and these are pairwise distinct (since Γ acts freely on M). Hence $\pi^{-1}(\pi(U))$ is a disjoint union of the sets $\gamma(U)(\gamma \in \Gamma)$:

$$
\begin{equation*}
\pi^{-1}(\pi(U))=\bigsqcup_{\gamma \in \Gamma} \gamma(U) \tag{80}
\end{equation*}
$$

Here for each $\gamma \in \Gamma, \gamma(U)$ is open in M, since γ is a homeomorphism; furthermore $\pi_{\mid \gamma(U)}$ is a homeomorphism of $\gamma(U)$ onto $\pi(U)$, since $\pi_{\mid \gamma(U)}=$ $\pi_{\mid U} \circ\left(\gamma_{\mid U}\right)^{-1}$, i.e. a composition of two homeomorphisms. Hence (80) expresses $\pi^{-1}(\pi(U))$ as a union of disjoint open sets in M, each of which is mapped homeomorphically onto $\pi(U)$ by π. The fact that each point $[p]$ in $\Gamma \backslash M$ has such an open neighborhood $\pi(U)$ proves that $\pi: M \rightarrow \Gamma \backslash M$ is a covering space of $\Gamma \backslash M$.

Comments to part (d): Hatcher in [7, Prop. 1.40] proves a stronger result under a weaker assumption. Indeed, note that our assumption that Γ acts freely and properly discontinuously on M implies that the action is a "covering space action" in the terminology of [7, p. 72]; this implication is seen in the solution to Problem $9(b)$; indeed it is equivalent to (25). (This is also the content of [7, p. 81, Problem 23].) It is worth pointing out that the condition that $\Gamma<\operatorname{Homeo}(M)$ acts by a "covering space action" on M does not guarantee $\Gamma \backslash M$ to be Hausdorff; cf. [7, p. 81, Problem 25].

Problem 33:

WLOG we assume $U=M$. (To see that this is really no loss of generality, note that if we prove (a) $\Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$ in the special case $U=M$, then the general case follows by applying that statement to the vector bundle $\left(E_{\mid U}, \pi, U\right)$.)

Thus our task is to prove that the following statements are equivalent:
(a) E is trivial;
(b) there is some φ such that (M, φ) is a bundle chart for E;
(c) there is a basis of sections in ΓE, i.e. sections $s_{1}, \ldots, s_{n} \in \Gamma E$ such that $s_{1}(p), \ldots, s_{n}(p)$ is a basis of E_{p} for every $p \in M$.

Here (a) $\Leftrightarrow(\mathrm{b})$ is immediate by inspecting the definitions. Indeed, by definition E is trivial iff there is a bundle isomorphism $\varphi: E \rightarrow M \times \mathbb{R}^{n}$, i.e. a C^{∞} diffeomorphism $\varphi: E \rightarrow M \times \mathbb{R}^{n}$ with $\operatorname{pr}_{1} \circ \varphi=\pi$ such that $\varphi_{x}=\varphi_{\mid E_{x}}$ is a vector space isomorphism $E_{x} \rightarrow\{x\} \times \mathbb{R}^{n}$ for each $x \in M$. But this is the same as saying that (M, φ) is a bundle chart for E.
(b) \Rightarrow (c): Let φ be such that (M, φ) is a bundle chart for E. Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{R}^{n}. For each $j \in\{1, \ldots, n\}$ we define the function $s_{j}: M \rightarrow E$ by $s_{j}(x)=\varphi^{-1}\left(x, e_{j}\right)$; then s_{j} is C^{∞} and $\pi \circ s_{j}=1_{M}$; hence $s_{j} \in \Gamma(E)$. Now for each $x \in M$, since e_{1}, \ldots, e_{n} is a basis for \mathbb{R}^{n} and φ_{x}^{-1} is a vector space isomorphism $\{x\} \times \mathbb{R}^{n} \rightarrow E_{x}$, it follows that $s_{1}(x), \ldots, s_{n}(x)$ is a basis of E_{x}. Hence s_{1}, \ldots, s_{n} form a basis of sections of E.
(c) \Rightarrow (b): Assume that s_{1}, \ldots, s_{n} is a basis of sections of E. Let us define the map $\psi: M \times \mathbb{R}^{n} \rightarrow E$ by

$$
\psi\left(x,\left(c_{1}, \ldots, c_{n}\right)\right):=\sum_{j=1}^{n} c_{j} \cdot s_{j}(x) \in E_{x} .
$$

Clearly ψ is C^{∞} and $\pi \circ \psi=1_{M}$. Furthermore $\psi(x, \cdot)$ is a vector space isomorphism $\mathbb{R}^{n} \rightarrow E_{x}$ for each $x \in M$, since $s_{1}(x), \ldots, s_{n}(x)$ is a basis of E_{x}. It follows that ψ is a bijection of $M \times \mathbb{R}^{n}$ onto E. Let

$$
\varphi=\psi^{-1}: E \rightarrow M \times \mathbb{R}^{n}
$$

It follows that $\varphi_{x}:=\varphi_{\mid E_{x}}$ is a vector space isomorphism $E_{x} \rightarrow\{x\} \times \mathbb{R}^{n}$ for each $x \in M$. It remains to prove that φ is a diffeomorphism. We already know that $\varphi^{-1}=\psi$ is C^{∞}, so it suffices to prove that φ is C^{∞}, and for this it suffices to prove that every point in E has an open neighborhood in E in which φ is C^{∞}.

Thus let $p_{0} \in E$ be given. Set $x_{0}=\pi\left(p_{0}\right)$. Choose a bundle chart $(U, \widetilde{\varphi})$ for E with $x_{0} \in U$ and also a chart (V, α) for M with $x_{0} \in V$. In fact we may assume $V=U$, since otherwise we may replace $(U, \widetilde{\varphi})$ with $\left(U \cap V, \widetilde{\varphi}_{\mid U \cap V}\right)$
and replace (V, α) with $\left(U \cap V, \alpha_{\mid U \cap V}\right)$. Thus from now on $(U, \widetilde{\varphi})$ is a bundle chart for $E,(U, \alpha)$ is a chart for M, and $x_{0} \in U$.

Let us write " 1 " for the identity map on \mathbb{R}^{n}; then $\left(U \times \mathbb{R}^{n},(\alpha, 1)\right)$ is a chart on $M \times \mathbb{R}^{n} 16$ and $\left(\pi^{-1}(U),(\alpha, 1) \circ \widetilde{\varphi}\right)$ is a chart on E. With respect to these two charts, the map ψ is represented by the map

$$
(\alpha, 1) \circ \widetilde{\varphi} \circ \psi \circ(\alpha, 1)^{-1}: \alpha(U) \times \mathbb{R}^{n} \rightarrow \alpha(U) \times \mathbb{R}^{n}
$$

and we compute that this map equals

$$
\begin{equation*}
\left(y,\left(c_{1}, \ldots, c_{n}\right)\right) \mapsto\left(y, \sum_{j=1}^{n} c_{j} \cdot \operatorname{pr}_{2}\left(\widetilde{\varphi}\left(s_{j}\left(\alpha^{-1}(y)\right)\right)\right)\right) \tag{81}
\end{equation*}
$$

where pr_{2} is the projection map $U \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Now for each $y \in \alpha(U)$, the vectors

$$
\begin{equation*}
\operatorname{pr}_{2}\left(\widetilde{\varphi}\left(s_{1}\left(\alpha^{-1}(y)\right)\right)\right), \ldots, \operatorname{pr}_{2}\left(\widetilde{\varphi}\left(s_{n}\left(\alpha^{-1}(y)\right)\right)\right) \tag{82}
\end{equation*}
$$

form a basis of \mathbb{R}^{n}, since $s_{1}\left(\alpha^{-1}(y)\right), \ldots, s_{n}\left(\alpha^{-1}(y)\right)$ form a basis of $E_{\alpha^{-1}(y)}$. Let $T(y)$ be the real $n \times n$ matrix formed by the columns of the vectors in (82). It follows that this matrix is invertible for every $y \in \alpha(U)$, and that the map in (81) is given by

$$
\begin{equation*}
(y, c) \mapsto(y, T(y) \cdot c) \tag{83}
\end{equation*}
$$

(Remember that we represent vectors in \mathbb{R}^{n} as column matrices.) It follows that φ, which is the inverse of ψ, with respect to the two charts above is represented by the inverse of (83), i.e. by the map

$$
\alpha(U) \times \mathbb{R}^{n} \rightarrow \alpha(U) \times \mathbb{R}^{n}, \quad(y, c) \mapsto\left(y, T(y)^{-1} \cdot c\right)
$$

Our task is to prove that this map is C^{∞} (it is a map from an open subset of $\mathbb{R}^{d} \times \mathbb{R}^{n}=\mathbb{R}^{d+n}$ to $\left.\mathbb{R}^{d+n}\right)$. However this is clear from the formula of the inverse matrix $T(y)^{-1}$ in terms of the adjunct of $T(y)$; cf. here. (Indeed, every entry of $T(y)$ is a C^{∞} function of y since it is a composition of C^{∞} functions, and using the formula for $T(y)^{-1}$ we see that each of the n coordinates of

$$
T(y)^{-1} \cdot c
$$

equals a certain polynomial in the entries of $T(y)$ and the coordinates of c, divided by $\operatorname{det}(T(y))$, and $\operatorname{det}(T(y))$ is a nowhere vanishing, C^{∞} function of $y \in \alpha(U)$.)

This completes the proof that (U, φ) is a bundle chart for E, and thus of the implication $(\mathrm{c}) \Rightarrow(\mathrm{b})$.

[^14]
Problem 34:

The fact that there exist unique functions $\alpha^{1}, \ldots, \alpha^{n} \in C^{\infty}(U)$ satisfying $s=\alpha^{j} s_{j}$ is clear from the fact that $s_{1}(p), \ldots, s_{n}(p)$ is a basis of E_{p} for every $p \in U$. The fact that each function α^{j} is C^{∞} is clear from the proof of "(c) $\Rightarrow(\mathrm{b}) "$ in Problem 33 .

Problem 35:

(a) In fact we can achieve this for any open set $V \subset U$ whose closure in U is compact. (This clearly suffices for us, since every point $p \in U$ is contained in such a set V.) Indeed, take any such set V. Let K be the closure of V in U; thus K is compact by our assumption. Now by Problem $7(\mathrm{~d})$, there exists a C^{∞} function $f: M \rightarrow[0,1]$ which has compact support contained in U, and which satisfies $f_{\mid K} \equiv 1$. Let us define the function $s^{\prime}: M \rightarrow E$ by

$$
s^{\prime}(p)= \begin{cases}f(p) s(p)\left(\in E_{p}\right) & \text { if } p \in U \\ 0\left(\in E_{p}\right) & \text { if } p \notin U\end{cases}
$$

Then $\pi \circ s^{\prime}=1_{M}$ by construction. Also s^{\prime} is C^{∞}. [Proof: Let C be the support of f; this is a compact set contained in U. Let $U^{\prime}=M \backslash C$; this is an open set. Now $s_{\mid U}^{\prime}=f_{\mid U} \cdot s$ is C^{∞}, and $s_{\mid U^{\prime}}^{\prime}$ is C^{∞}, since it is identically zero. Also $U \cup U^{\prime}=M$. Hence every point $p \in M$ has an open neighbourhood in which s^{\prime} is C^{∞}; this implies that s^{\prime} is C^{∞} throughout M.] Hence $s^{\prime} \in \Gamma(E)$. Also for every $p \in V$ we have $s^{\prime}(p)=f(p) s(p)=s(p)$; hence $s_{\mid V}^{\prime}=s_{\mid V}$. Done!
(b) Let $p \in M$ be given. Let (U, φ) be a bundle chart with $p \in U$, and let $\widetilde{b}_{1}, \ldots, \widetilde{b}_{n}$ be the corresponding basis of sections of $E_{\mid U}$ (cf. Problem 33, thus $\left.\widetilde{b}_{j}(y)=\varphi^{-1}\left(y, e_{j}\right), \forall y \in U\right)$. Now by part (a) there exist an open subset $V \subset U$ with $p \in V$ and global sections $b_{1}, \ldots, b_{n} \in \Gamma(E)$ such that $b_{j \mid V}=\widetilde{b}_{j \mid V}$ for $j=1, \ldots, n$. In other words $b_{j}(y)=\widetilde{b}_{j}(y)$ for all $y \in V$, $j=1, \ldots, n$, and thus $b_{1}(y), \ldots, b_{n}(y)$ is a basis of E_{y} for each $y \in V$. Hence $b_{1 \mid V}, \ldots, b_{n \mid V}$ form a basis of sections of $E_{\mid V}$.
(c) Given p, we choose V, b_{1}, \ldots, b_{n} as in part (b). Now also let $v \in E_{p}$ be given. Since $b_{1}(p), \ldots, b_{n}(p)$ is a basis of E_{p}, there exist (unique) $c^{1}, \ldots, c^{n} \in$ \mathbb{R} such that $v=c^{j} \cdot b_{j}(p)$. Set $s=c^{j} b_{j} \in \Gamma E$. Then $s(p)=v$.

Problem 36:

Cf., e.g., Lee, [15, Lemma 10.6].
If (V, x) is any chart for M and $\alpha \in A$ is such that $U_{\alpha} \cap V \neq \emptyset$, then we let $\sigma_{x, \alpha}$ be the map

$$
\begin{aligned}
& \sigma_{x, \alpha}: \pi^{-1}\left(U_{\alpha} \cap V\right) \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{n}, \\
& \sigma_{x, \alpha}(v)
\end{aligned}=\left(x_{\alpha} \circ \operatorname{pr}_{1} \circ \varphi_{\alpha}(v), \operatorname{pr}_{2} \circ \varphi_{\alpha}(v)\right) .
$$

This is a bijection from $\pi^{-1}\left(U_{\alpha} \cap V\right)$ onto $x\left(U_{\alpha} \cap V\right) \times \mathbb{R}^{n}$, which is an open subset of $\mathbb{R}^{d} \times \mathbb{R}^{n}$. Clearly E can be covered by sets of the form $\pi^{-1}\left(U_{\alpha} \cap V\right)$ as above. Hence we see from Problem 10 (parts b and d) that the family of all ($\left.\pi^{-1}\left(U_{\alpha} \cap V\right), \sigma_{x, \alpha}\right)$ as above generate a (unique!) C^{∞} manifold structure on $E,{ }^{17}$ provided that we can only prove (1) C^{∞} compatibility and (2) that the topology generated by the family of all $\left(\pi^{-1}\left(U_{\alpha} \cap V\right), \sigma_{x, \alpha}\right)$ is Hausdorff, connected and paracompact.

We first prove C^{∞} compatibility. Specifically, we have to prove that for any charts (V, x) and (W, y) for M and any $\alpha, \beta \in A$ subject to $U_{\alpha} \cap U_{\beta} \cap$ $V \cap W \neq \emptyset$,

$$
\begin{equation*}
\sigma_{x, \alpha}\left(\pi^{-1}\left(U_{\alpha} \cap U_{\beta} \cap V \cap W\right)\right) \tag{84}
\end{equation*}
$$

is an open subset of $\mathbb{R}^{d} \times \mathbb{R}^{n}$, and the map $\sigma_{y, \beta} \circ \sigma_{x, \alpha}^{-1}$ from the set (84) to $\mathbb{R}^{d} \times \mathbb{R}^{n}$ is C^{∞}. However by parsing the definitions we see that the set in (84) equals

$$
x_{\alpha}\left(U_{\alpha} \cap U_{\beta} \cap V \cap W\right) \times \mathbb{R}^{n},
$$

which is indeed an open subset of $\mathbb{R}^{d} \times \mathbb{R}^{n}$. Also the map $\sigma_{x, \alpha}^{-1}$ on this set is given by

$$
\sigma_{x, \alpha}^{-1}(z, w)=\varphi_{\alpha}^{-1}\left(x_{\alpha}^{-1}(z), w\right),
$$

and hence

$$
\begin{aligned}
\sigma_{y, \beta} \circ \sigma_{x, \alpha}^{-1}(z, w) & =\left(x_{\beta} \circ \operatorname{pr}_{1} \circ \varphi_{\beta} \circ \varphi_{\alpha}^{-1}\left(x_{\alpha}^{-1}(z), w\right), \operatorname{pr}_{2} \circ \varphi_{\beta} \circ \varphi_{\alpha}^{-1}\left(x_{\alpha}^{-1}(z), w\right)\right) \\
& =\left(x_{\beta} \circ x_{\alpha}^{-1}(z), \operatorname{pr}_{2} \circ \varphi_{\beta} \circ \varphi_{\alpha}^{-1}\left(x_{\alpha}^{-1}(z), w\right)\right),
\end{aligned}
$$

which is C^{∞} by inspection (in particular using our assumption that $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is C^{∞}).

Now it is easy to prove that the induced topology on E is Hausdorff. (See Problem 10(b) for the definition of the topology on E.) Indeed, let $p, q \in E$, $p \neq q$. Note that $\pi^{-1}(U)$ is open in E for every open set $U \subset M$; hence if $\pi(p) \neq \pi(q)$ then we can use the fact that M is Hausdorff to find disjoint

[^15]open sets $U_{1}, U_{2} \subset M$ with $p \in U_{1}, q \in U_{2}$; then $\pi^{-1}\left(U_{1}\right)$ and $\pi^{-1}\left(U_{2}\right)$ are disjoint open sets in E, containing p resp. q, and we are done. It remains to treat the case $\pi(p)=\pi(q)$. Then choose a chart (V, x) for M and $\alpha \in A$ such that $\pi(p)=\pi(q) \in U_{\alpha} \cap V$. Now $\sigma_{x, \alpha}(p) \neq \sigma_{x, \alpha}(q)$ and hence there are disjoint open subsets $U_{1}, U_{2} \subset x\left(U_{\alpha} \cap V\right) \times \mathbb{R}^{n}$ which contain $\sigma_{x, \alpha}(p)$ resp. $\sigma_{x, \alpha}(q)$. By the argument in the solution to Problem 10(c), $\sigma_{x, \alpha}^{-1}\left(U_{1}\right)$ and $\sigma_{x, \alpha}^{-1}\left(U_{2}\right)$ are open subsets of E; they are clearly disjoint and contain p resp. q. Done!

Next we verify that E is connected. Let A be any subset of E which is both open and closed. This means that for any chart (V, x) for M and any $\alpha \in A, \sigma_{x, \alpha}\left(A \cap \pi^{-1}\left(U_{\alpha} \cap V\right)\right)$ is both open and closed in $x_{\alpha}\left(U_{\alpha} \cap V\right) \times \mathbb{R}^{n}$. This implies that for every $p \in U_{\alpha} \cap V$, the set

$$
\begin{equation*}
\left\{w \in \mathbb{R}^{n}:\left(x_{\alpha}(p), w\right) \in \sigma_{x, \alpha}\left(A \cap \pi^{-1}\left(U_{\alpha} \cap V\right)\right)\right\} \tag{85}
\end{equation*}
$$

is both open and closed in \mathbb{R}^{n}, and since \mathbb{R}^{n} is connected, the set in (85) equals either \emptyset or \mathbb{R}^{n}. In view of the definition of $\sigma_{x, \alpha}$ and the fact that $\left(\varphi_{\alpha}\right)_{\mid E_{p}}$ is a bijection from E_{p} onto $\{p\} \times \mathbb{R}^{n}$, this implies that

$$
\begin{equation*}
A \cap E_{p}=\emptyset \text { or } E_{p} \subset A \tag{86}
\end{equation*}
$$

Since every point $p \in M$ is contained in some set of the form $U_{\alpha} \cap V$, the dichotomy (86) holds for every $p \in M$. Set

$$
A_{M}:=\left\{p \in M: E_{p} \subset A\right\}=\left\{p \in M: 0_{p} \in A\right\}
$$

Here 0_{p} denotes the zero vector in E_{p}, and the last equality holds because of (86). Note that for any (V, x) and α as above, the fact that $\sigma_{x, \alpha}(A \cap$ $\left.\pi^{-1}\left(U_{\alpha} \cap V\right)\right)$ is both open and closed in $x_{\alpha}\left(U_{\alpha} \cap V\right) \times \mathbb{R}^{n}$ implies that the set

$$
\left\{z \in x_{\alpha}\left(U_{\alpha} \cap V\right):(z, 0) \in \sigma_{x, \alpha}\left(A \cap \pi^{-1}\left(U_{\alpha} \cap V\right)\right)\right\}
$$

is both open and closed in $x_{\alpha}\left(U_{\alpha} \cap V\right)$. Using here the fact that x_{α} is a homeomorphism, and the definition of $\sigma_{x, \alpha}$ and the fact that $\varphi_{\alpha}\left(0_{p}\right)=(p, 0)$ $\forall p \in U_{\alpha} \cap V$ (and φ_{α} is a bijection), it follows that the set

$$
\left\{p \in U_{\alpha} \cap V: 0_{p} \in A\right\}
$$

is both open and closed in $U_{\alpha} \cap V$. But that set equals $A_{M} \cap U_{\alpha} \cap V$, and the fact that this set is both open and closed in $U_{\alpha} \cap V$, for any (V, x) and α as above, implies that A_{M} is both open and closed in M. But M is connected, hence $A_{M}=\emptyset$ or $A_{M}=M$. In view of (86) this implies that either $A=M$ or $A=\emptyset$. Hence we have proved that E is connected.

Next we verify that E is paracompact. Note that by what we have already verified, E is connected, Hausdorff, and locally Euclidean, and hence by Problem 2(b) it suffices to prove that E a countable (topological) atlas. Let \mathcal{U} be a countable base for the topology of M. Let \mathcal{U}^{\prime} be the subset of those $\Omega \in \mathcal{U}$ for which there exists a chart (V, x) for M and some $\alpha \in A$ such that $\Omega \subset U_{\alpha} \cap V$. Then \mathcal{U}^{\prime} covers M (by the same argument as in the second
half of the solution to Problem 2(a)). Now for each $\Omega \in \mathcal{U}^{\prime}$ we choose one chart (V, x) for M and one $\alpha \in A$ such that $\Omega \subset U_{\alpha} \cap V$, and then set $\psi_{\Omega}:=\left(\sigma_{x, \alpha}\right)_{\mid \pi^{-1}(\Omega)}$. It follows from what we have proved above, and (the solution to) Problem 10, that $\sigma_{x, \alpha}$ is a homeomorphism of $\pi^{-1}\left(U_{\alpha} \cap V\right)$ onto $x(U \cap V) \times \mathbb{R}^{n}$, and hence also ψ_{Ω} is a homeomorphism of $\pi^{-1}(\Omega)$ onto an open subset of $\mathbb{R}^{d} \times \mathbb{R}^{n}$. Hence

$$
\left\{\left(\pi^{-1}(\Omega), \psi_{\Omega}\right): \Omega \in \mathcal{U}^{\prime}\right\}
$$

is a (topological) atlas for E. This atlas is countable, since $\mathcal{U}^{\prime} \subset \mathcal{U}$ and \mathcal{U} is countable. Hence we have proved that E is paracompact!

Now we have verified all conditions necessary for Problem 10 (parts b and d) to apply. Hence we have now provided E with a structure of a C^{∞} manifold.

Now the map $\pi: E \rightarrow M$ is immediately verified to be C^{∞}. Indeed, for any (V, x) and α as above, using the chart $\left(\pi^{-1}\left(U_{\alpha} \cap V\right), \sigma_{x, \alpha}\right)$ for E and the chart (V, x) for M, the map π is represented by the identity map on $x_{\alpha}\left(U_{\alpha} \cap V\right)$.

Now it only remains to verify that for every $\alpha \in A$, the bijection φ_{α} from $\pi^{-1}\left(U_{\alpha}\right)$ onto $U_{\alpha} \times \mathbb{R}^{n}$ is in fact a diffeomorphism. For this, it suffices to verify that for every chart (V, x) for M (with $U_{\alpha} \cap V \neq \emptyset$), the restriction of φ_{α} to $\pi^{-1}\left(U_{\alpha} \cap V\right)$ is a diffeomorphism onto $\left(U_{\alpha} \cap V\right) \times \mathbb{R}^{n}$. However this is clear since $\varphi_{\alpha \mid \pi^{-1}\left(U_{\alpha} \cap V\right)}$ equals the composition of $\sigma_{x, \alpha}$ with the diffeomorphism $(z, v) \mapsto\left(x^{-1}(z), v\right)$ from $x\left(U_{\alpha} \cap V\right) \times \mathbb{R}^{n}$ onto $\left(U_{\alpha} \cap V\right) \times \mathbb{R}^{n}$, and $\sigma_{x, \alpha}$ is a diffeomorphism since $\left(\pi^{-1}\left(U_{\alpha} \cap V\right), \sigma_{x, \alpha}\right)$ is a chart in our C^{∞} atlas for E (by Problem 10(d)). Done!

Problem 37:

(a). Let E be the Möbius bundle over S^{1}, defined as in Lecture $\# 7$, p. 2. Assume that E is trivial, i.e. there is a bundle chart (E, φ). (This will lead to a contradiction.) Then by Problem 33 there is a global basis of sections $s \in \Gamma E$, in other words a section $s \in \Gamma E$ which is everywhere non-zero. Let us identify S^{1} with $[0,1] / \approx$ (where \approx stands for identifying the points 0 and 1 in $[0,1])$ in the standard way, i.e. by mapping $x \in[0,1] / \approx$ to $(\cos (2 \pi x), \sin (2 \pi x))$. By definition s is a C^{∞} function from $[0,1] / \approx$ to $E=[0,1] \times \mathbb{R} / \sim$ such that $\operatorname{pr}_{1}(s(x))=x$ for all $x \in[0,1] / \approx$. In particular there is some $y \in \mathbb{R}$ such that

$$
s(0)=(0, y)=(1,-y) \quad \text { in } E
$$

Note that $y \neq 0$, since s is everywhere non-zero. Now $x \mapsto \operatorname{pr}_{2}(s(x))$ is a C^{∞} function from $(0,1)$ to \mathbb{R} satisfying $\lim _{x \rightarrow 0^{+}} \operatorname{pr}_{2}(s(x))=y$ and $\lim _{x \rightarrow 1^{-}} \operatorname{pr}_{2}(s(x))=-y$; hence by the intermediate value theorem there is some $x \in(0,1)$ for which $\operatorname{pr}_{2}(s(x))=0$, contradicting the fact that s is everywhere non-zero.

Hence E is not trivial.
(b). Let us write $E_{n}=S^{1} \times \mathbb{R}^{n}$, the trivial vector bundle over S^{1} of rank n. Also let $\widetilde{E}_{1}:=\widetilde{E}$ be the Möbius bundle over S^{1}, and set for $n \geq 2$: $\widetilde{E}_{n}:=\widetilde{E} \oplus E_{n-1}$. We claim that the desired classification is as follows: The vector bundles

$$
\begin{equation*}
E_{1}, \widetilde{E}_{1}, E_{2}, \widetilde{E}_{2}, E_{3}, \widetilde{E}_{3}, \ldots \tag{87}
\end{equation*}
$$

are pairwise non-isomorphic, and every vector bundle over S^{1} is isomorphic to one of these!

We start by proving that the vector bundles in (87) are pairwise nonisomorphic. Since isomorphisms of vector bundles preserve the rank, we only need to prove that for each n the two vector bundles E_{n} and \widetilde{E}_{n} are non-isomorphic, or equivalently that \widetilde{E}_{n} is not trivial. We have already proved this for $n=1$ in part (a); hence we may here assume $n \geq 2$. Thus assume that \widetilde{E}_{n} is trivial. (This will lead to a contradiction.)

It seems convenient to use a slightly different model for the Möbius bundle \widetilde{E}_{1} than that used in part (a): We view \widetilde{E}_{1} as \mathbb{R}^{2} / \sim, where \sim is the equivalence relation

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \stackrel{\text { def }}{\Longleftrightarrow}\left[x^{\prime}-x \in \mathbb{Z} \text { and } y^{\prime}=(-1)^{x^{\prime}-x} y\right]
$$

(For a precise description of the C^{∞} manifold structure, see Problem 9(c), and note that this quotient \mathbb{R}^{2} / \sim is the same as $\Gamma \backslash \mathbb{R}^{2}$, where Γ is the group of diffeomorphisms of \mathbb{R}^{2} of the form $(x, y) \mapsto\left(x+n,(-1)^{n} y\right)$, for $n \in \mathbb{Z}$.) We also view S^{1} as \mathbb{R} / \sim where $x \sim x^{\prime} \stackrel{\text { def }}{\Longleftrightarrow} x^{\prime}-x \in \mathbb{Z}$; then the projection
map $\pi: \widetilde{E} \rightarrow S^{1}$ is given simply by projection onto the first coordinate; $[(x, y)] \mapsto[x]$. In a similar vein we also represent \widetilde{E}_{n} as the quotient space $\left(\mathbb{R} \times \mathbb{R}^{n}\right) / \sim$ where

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \Longleftrightarrow \text { def }\left[x^{\prime}-x \in \mathbb{Z} \text { and } y^{\prime}=\left(J_{n}\right)^{x^{\prime}-x} \cdot y\right],
$$

where

$$
J_{n}:=\left(\begin{array}{ccccc}
-1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & & 0 \\
0 & 0 & 1 & & 0 \\
& \vdots & & \ddots & \vdots \\
0 & 0 & 0 & & 1
\end{array}\right) \in \mathrm{GL}_{n}(\mathbb{R})
$$

(Note that $\left(J_{n}\right)^{m}=I$ for all even m and $\left(J_{n}\right)^{m}=J_{n}$ for all odd m.) The projection $\pi: \widetilde{E}_{n} \rightarrow S^{1}$ is again given by $[(x, y)] \mapsto[x]$.

Recall that we are assuming that \widetilde{E}_{n} is trivial. Then by Problem 33 there is a global basis of sections $s_{1}, \ldots, s_{n} \in \Gamma E$. Each s_{j} is a C^{∞} map from $S^{1}=\mathbb{R} / \sim$ to $\widetilde{E}_{n}=\left(\mathbb{R} \times \mathbb{R}^{n}\right) / \sim$; composing s_{j} with the projection $\mathbb{R} \rightarrow \mathbb{R} / \sim$ we obtain a $C^{\infty} \operatorname{map} \widetilde{s}_{j}: \mathbb{R} \rightarrow\left(\mathbb{R} \times \mathbb{R}^{n}\right) / \sim$ such that for every $x \in \mathbb{R}$ we have $\widetilde{s}_{j}(x)=\left[\left(x, f_{j}(x)\right)\right]$ for some (unique) $f_{j}(x) \in \mathbb{R}^{n}$. One verifies that f_{j} is a C^{∞} map $\mathbb{R} \rightarrow \mathbb{R}^{n}$; furthermore for each $x \in \mathbb{R}$ we have $[x]=[x+1]$ in S^{1}; hence $\widetilde{s}_{j}(x)=\widetilde{s}_{j+1}(x)$, i.e.

$$
\begin{equation*}
f_{j}(x+1)=J_{n} \cdot f_{j}(x), \quad \forall x \in \mathbb{R} \tag{88}
\end{equation*}
$$

Let $F(x)$ be the real $n \times n$ matrix whose columns equal $f_{1}(x), \ldots, f_{n}(x)$, in this order. Then $F(x) \in \mathrm{GL}_{n}(\mathbb{R})$ for each $x \in \mathbb{R}$, since $s_{1}([x]), \ldots, s_{n}([x])$ is a basis of the fiber $\widetilde{E}_{n,[x]}$. Hence F is a $C^{\infty} \operatorname{map} \mathbb{R} \rightarrow M_{n}(\mathbb{R})$. Furthermore (88) implies

$$
F(x+1)=J_{n} \cdot F(x), \quad \forall x \in \mathbb{R} .
$$

However $\operatorname{det} J_{n}=-1$; hence the above implies $\operatorname{det} F(x+1)=-\operatorname{det} F(x)$. By continuity this implies that for any fixed $x \in \mathbb{R}$ there is some $x^{\prime} \in[x, x+1]$ such that $\operatorname{det} F\left(x^{\prime}\right)=0$, contradicting the fact that $F\left(x^{\prime}\right) \in \mathrm{GL}_{n}(\mathbb{R})$.

We have seen that the assumption that \widetilde{E}_{n} is trivial leads to a contradiction. Hence \widetilde{E}_{n} is not trivial.

It remains to prove that every vector bundle over S^{1} is isomorphic to one of the vector bundles in (87). Thus let E be an arbitrary vector bundle over S^{1}. Set $n=\operatorname{rank} E$. By definition of vector bundle, every point in S^{1} is contained in some bundle chart (U, φ) for E, and by shrinking U if necessary we can assume U to be an open arc on S^{1}. Hence since S^{1} is compact, there is a finite family of bundle charts $\left(U_{j}, \varphi_{j}\right)$ for $E, j=1, \ldots, k$, such that $S^{1}=U_{1} \cup \cdots \cup U_{k}$ and each U_{j} is an open arc.

Now we have:

Lemma 2. If (U, φ) and (V, ψ) are bundle charts for E such that U and V are open arcs on S^{1} and also $U \cup V$ is an open arc, then there exists a bundle chart for E of the form $(U \cup V, \eta)$.

Proof. After a rotation we may assume $U=(0, u)$ for some $0<u \leq 1$. 18 If $V \subset U$ or $U \subset V$ then there is nothing to prove; hence let us assume that $V \not \subset U$ and $U \not \subset V$. Then the assumptions imply that V contains either [0] or $[u]$; after a reflection we may assume that V contains $[u]$, and then we must have $V=\left(v_{1}, v_{2}\right)$ for some $0<v_{1}<u<v_{2} \leq 1$. Then $U \cap V=\left(v_{1}, u\right)$. Let $T:\left(v_{1}, u\right) \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ be the transition map between (U, φ) and (V, ψ) (cf. [12, p. 42]), so that

$$
\begin{equation*}
\varphi \circ \psi^{-1}(p, x)=(p, T(p) \cdot x), \quad \forall p \in\left(v_{1}, u\right), x \in \mathbb{R}^{n} \tag{89}
\end{equation*}
$$

Note that T is a C^{∞} curve on the manifold $\mathrm{GL}_{n}(\mathbb{R})$. Fix any real number $u^{\prime} \in\left(v_{1}, u\right)$; thus we now have

$$
0<v_{1}<u^{\prime}<u<v_{2} \leq 1 .
$$

Using the same technique as in Problem 19(b), one shows that there exists a C^{∞} curve $\widetilde{T}:\left(v_{1}, v_{2}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ such that

$$
\begin{equation*}
\widetilde{T}(p)=T(p), \quad \forall p \in\left(v_{1}, u^{\prime}\right) \tag{90}
\end{equation*}
$$

Note that

$$
U \cup V=\left(0, v_{2}\right) .
$$

Let us now define the map

$$
\eta: \pi^{-1}(U \cup V) \rightarrow(U \cup V) \times \mathbb{R}^{n}
$$

as follows:

$$
\eta(w):= \begin{cases}\varphi(w) & \text { if } \pi(w) \in\left(0, u^{\prime}\right) \\ \left(\pi(w), \widetilde{T}(\pi(w)) \cdot \operatorname{pr}_{2}(\psi(w))\right) & \text { if } \pi(w) \in\left(v_{1}, v_{2}\right)\end{cases}
$$

Note that this map is "over-defined", since both options apply whenever $\pi(w) \in\left(v_{1}, u^{\prime}\right)$; however using (89) and (90) one verifies that in this case both options give the same value for $\eta(w)$. It follows from this that η is C^{∞}, since φ is C^{∞} on $\pi^{-1}\left(\left(0, u^{\prime}\right)\right)$ and $w \mapsto\left(\pi(w), \widetilde{T}(\pi(w)) \cdot \operatorname{pr}_{2}(\psi(w))\right)$ is C^{∞} on $\pi^{-1}\left(\left(v_{1}, v_{2}\right)\right)$. Also, by inspection, $\operatorname{pr}_{1} \circ \eta=\pi$, and for every $p \in\left(0, v_{2}\right)$, $\eta_{p}:=\mathrm{pr}_{2} \circ \eta_{\mid E_{p}}$ is a linear bijection from E_{p} onto \mathbb{R}^{n}. Furthermore one verifies that η is a bijection from $\pi^{-1}(U \cup V)$ onto $(U \cup V) \times \mathbb{R}^{n}$, with inverse given by:

$$
\eta^{-1}(p, x)= \begin{cases}\varphi^{-1}(p, x) & \text { if } p \in\left(0, u^{\prime}\right) \\ \psi^{-1}\left(p, \widetilde{T}(p)^{-1} \cdot x\right) & \text { if } p \in\left(v_{1}, v_{2}\right)\end{cases}
$$

[^16]As above one verifies that this map is well-defined although it is "overdefined", and that it is C^{∞}. Hence η is a C^{∞} diffeomorphism from $\pi^{-1}(U \cup$ $V)$ onto $(U \cup V) \times \mathbb{R}^{n}$, and therefore $(U \cup V, \eta)$ is a bundle chart for E.

Applying the above lemma a finite number of times to our family of arcs $U_{1}, \ldots, U_{k},{ }^{19}$ we reduce to the case $k=2$! Let us then write $(U, \varphi):=$ $\left(U_{1}, \varphi_{1}\right)$ and $(V, \psi):=\left(U_{2}, \varphi_{2}\right)$. Thus now U, V are open arcs which cover S^{1}, and (U, φ) and (V, ψ) are bundle charts for E. With notation as in the proof of Lemma 2, we may now assume $U=(0, u)$ and $V=\left(v_{1}, v_{2}\right)$ where

$$
0<v_{2}-1<v_{1}<u<1<v_{2}<v_{1}+1 .
$$

Thus $U \cap V$ is the union of the two disjoint open arcs $\left(v_{1}, u\right)$ and $\left(1, v_{2}\right)$. As in the proof of Lemma 2, let $T: U \cap V \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ be the transition map between (U, φ) and (V, ψ), so that

$$
\begin{equation*}
\varphi \circ \psi^{-1}(p, x)=(p, T(p) \cdot x), \quad \forall p \in U \cap V=\left(v_{1}, u\right) \cup\left(1, v_{2}\right), x \in \mathbb{R}^{n} . \tag{91}
\end{equation*}
$$

Note that both $T_{\mid\left(v_{1}, u\right)}$ and $T_{\mid\left(1, v_{2}\right)}$ are C^{∞} curves on the manifold $\mathrm{GL}_{n}(\mathbb{R})$. Note that $\mathrm{GL}_{n}(\mathbb{R})$ has two connected components, namely

$$
\mathrm{GL}_{n}^{+}(\mathbb{R}):=\left\{B \in \mathrm{GL}_{n}(\mathbb{R}): \operatorname{det} B>0\right\}
$$

and

$$
\mathrm{GL}_{n}^{-}(\mathbb{R}):=\left\{B \in \mathrm{GL}_{n}(\mathbb{R}): \operatorname{det} B<0\right\}
$$

Of course each of $T_{\mid\left(v_{1}, u\right)}$ and $T_{\mid\left(1, v_{2}\right)}$ is contained in a single connected component.

Case I: $T_{\mid\left(v_{1}, u\right)}$ and $T_{\mid\left(1, v_{2}\right)}$ lie in the same connected component. Then using the same technique as in Problem 19(b), one shows that, given any $\varepsilon>0$ so small that

$$
0<\varepsilon<v_{2}-1<v_{1}<u-\varepsilon<u<1<1+\varepsilon<v_{2}<v_{1}+1,
$$

there exists a C^{∞} curve $\widetilde{T}:\left(v_{1}, v_{2}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ such that

$$
\widetilde{T}(p)=T(p), \quad \forall p \in\left(v_{1}, u-\varepsilon\right) \cup\left(1+\varepsilon, v_{2}\right) .
$$

We can then define a map

$$
\eta: E \rightarrow S^{1} \times \mathbb{R}^{n}
$$

through:

$$
\eta(w):= \begin{cases}\varphi(w) & \text { if } \pi(w) \in(\varepsilon, u-\varepsilon) \\ \left(\pi(w), \widetilde{T}(\pi(w)) \cdot \operatorname{pr}_{2}(\psi(w))\right) & \text { if } \pi(w) \in\left(v_{1}, v_{2}\right) .\end{cases}
$$

[^17]As in the proof of Lemma 2 one verifies that this map is well-defined, and is an isomorphism of vector bundles over S^{1}. Hence we conclude that E is isomorphic to the trivial vector bundle $E_{n}=S^{1} \times \mathbb{R}^{n}$!

Case II: $T_{\mid\left(v_{1}, u\right)}$ and $T_{\left(1, v_{2}\right)}$ lie in the different connected component. Then the curve $p \mapsto J_{n} \cdot T(p)$ for $p \in\left(1, v_{2}\right)$ lies in the same connected component as $T_{\mid\left(v_{1}, u\right)}$, and hence, using the same technique as in Problem 19(b), one shows that, given any $\varepsilon>0$ so small that

$$
0<\varepsilon<v_{2}-1<v_{1}<u-\varepsilon<u<1<1+\varepsilon<v_{2}<v_{1}+1,
$$

there exists a C^{∞} curve $\widetilde{T}:\left(v_{1}, v_{2}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ such that

$$
\widetilde{T}(p)= \begin{cases}T(p) & \forall p \in\left(v_{1}, u-\varepsilon\right) \\ J_{n} \cdot T(p) & \forall p \in\left(1+\varepsilon, v_{2}\right) .\end{cases}
$$

Then \widetilde{T} can be used to define an isomorphism of vector bundles $E \xrightarrow{\sim} \widetilde{E}_{n}$. We leave out the details.

Problem 38：See Conlon，［3，Thm．7．5．16］．

Problem 39：

（a）Recall that as a set，we defined $E_{1} \otimes E_{2}$ to be

$$
E_{1} \otimes E_{2}=\bigsqcup_{p \in M}\left(E_{1, p} \otimes E_{2, p}\right)
$$

with projection map $\pi: E_{1} \otimes E_{2} \rightarrow M$ defined by $\pi(v)=p$ if $v \in E_{1, p} \otimes E_{2, p}$ （for any $p \in M$ ）．Also，if $\left(U, \varphi_{1}\right)$ is a bundle chart for E_{1} and $\left(U, \varphi_{2}\right)$ is a bundle chart for $E_{2}{ }^{20}$ then we postulated that if we define

$$
\begin{align*}
& \tau: \pi^{-1}(U) \rightarrow U \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right) \\
& \quad \tau(v):=\left(p,\left(\varphi_{1, p} \otimes \varphi_{2, p}\right)(v)\right), \quad \forall p \in U, v \in E_{1, p} \otimes E_{2, p}, \tag{92}
\end{align*}
$$

then (U, τ) is a bundle chart for $E_{1} \otimes E_{2}$ ．In other words，$\tau_{p}=\varphi_{1, p} \otimes \varphi_{2, p}$ for each $p \in M$ ．

In order to verify that the above indeed gives a vector bundle

$$
\left(E_{1} \otimes E_{2}, \pi, M\right)
$$

we apply Problem［36，with the family of proposed bundle charts taken to be the family of all (U, τ) constructed as above，as $\left\langle\left(U, \varphi_{1}\right),\left(U, \varphi_{2}\right)\right\rangle$ varies through all pairs of bundle charts for E_{1}, E_{2} with＂same U＂．Most of the conditions in Problem 36 are immediately verified to hold．For example， $\tau_{p}=\varphi_{1, p} \otimes \varphi_{2, p}$ is a linear isomorphism of $\left(E_{1} \otimes E_{2}\right)_{p}=E_{1, p} \otimes E_{2, p}$ onto $\{p\} \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)$－which we identify with $\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}$ ，since $\varphi_{j, p}$ is a linear isomorphism for $E_{j, p}$ onto $\mathbb{R}^{n_{j}}$ for $j=1,2$ ．Furthermore the sets U cover M ；cf．footnote 20．The only condition which is not（completely）immediate is the C^{∞} compatibility of the proposed bundle charts．

Thus we need to verify that if both $\left(U, \varphi_{j}\right)(j=1,2)$ and $\left(V, \psi_{j}\right)(j=1,2)$ ， are bundle charts for E_{1} and E_{2} respectively，and if τ is defined as in（92） and $\widetilde{\tau}: \pi^{-1}(V) \rightarrow V \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)$ is similarly defined using $\left(V, \psi_{1}\right)$ and $\left(V, \psi_{2}\right)$（that is，$\widetilde{\tau}(v):=\left(p,\left(\psi_{1, p} \otimes \psi_{2, p}\right)(v)\right)$ for all $p \in V$ and $\left.v \in E_{1, p} \otimes E_{2, p}\right)$ ， then（if also $U \cap V \neq \emptyset$ ）the map $\widetilde{\tau} \circ \tau^{-1}$ from $(U \cap V) \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)$ to itself is C^{∞} ．Now for any $(p, v) \in(U \cap V) \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)$ we have

$$
\widetilde{\tau} \circ \tau^{-1}(p, v)=\left(p, \widetilde{\tau}_{p}\left(\tau_{p}^{-1}(v)\right)\right) ;
$$

hence（using Problem $⿴ 囗 十(c)$ ）it suffices to verify that the map

$$
(p, v) \mapsto \widetilde{\tau}_{p}\left(\tau_{p}^{-1}(v)\right), \quad(U \cap V) \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right) \rightarrow \mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}
$$

[^18]is C^{∞}. But
\[

$$
\begin{equation*}
\widetilde{\tau}_{p} \circ \tau_{p}^{-1}=\left(\psi_{1, p} \otimes \psi_{2, p}\right) \circ\left(\varphi_{1, p} \otimes \varphi_{2, p}\right)^{-1}=\left(\psi_{1, p} \circ \varphi_{1, p}^{-1}\right) \otimes\left(\psi_{2, p} \circ \varphi_{2, p}^{-1}\right), \tag{93}
\end{equation*}
$$

\]

where the last equality holds since \otimes is a bifunctor which is covariant in both arguments (cf. Sec. 7.2 of the lecture notes). Furthermore we know that the two maps

$$
(p, v) \mapsto \psi_{1, p} \circ \varphi_{1, p}^{-1}(v), \quad(U \cap V) \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

and

$$
(p, v) \mapsto \psi_{2, p} \circ \varphi_{2, p}^{-1}(v), \quad(U \cap V) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

are C^{∞}. By using charts on $U \cap V$ we see that we will be done if we can prove the following: Given any open set $\Omega \subset \mathbb{R}^{d}$ and maps $\alpha: \Omega \rightarrow M_{m}(\mathbb{R})$ and $\beta: \Omega \rightarrow M_{n}(\mathbb{R}){ }^{21}$ such that the two maps

$$
(x, v) \mapsto \alpha(x) \cdot v, \quad \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

and

$$
(x, v) \mapsto \beta(x) \cdot v, \quad \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

are C^{∞}, then also the map

$$
\begin{equation*}
(x, v) \mapsto(\alpha(x) \otimes \beta(x)) \cdot v, \quad \Omega \times\left(\mathbb{R}^{m} \otimes \mathbb{R}^{n}\right) \rightarrow\left(\mathbb{R}^{m} \otimes \mathbb{R}^{n}\right) \tag{94}
\end{equation*}
$$

is C^{∞}. However the assumption about α and β is easily seen to be equivalent to the statement that each matrix entry of $\alpha(x)$ is a C^{∞} function of $x \in \Omega$, and similarly for β. Now in (94), by a (hopefully) obvious abuse of notation, $\alpha(x) \otimes \beta(x)$ stands for the matrix of the linear map from $\mathbb{R}^{m} \otimes \mathbb{R}^{n}=\mathbb{R}^{m n}$ to itself which is the "tensor product" of the two linear maps $v \mapsto \alpha(x) \cdot v$ and $v \mapsto \beta(x) \cdot v$. This matrix is the Kronecker product of the matrices $\alpha(x)$ and $\beta(x)$; cf. wikipedia, and from the explicit formula for the Kronecker product we immediately see that each of the $(n m)^{2}$ matrix entries of $\alpha(x) \otimes \beta(x)$ is a C^{∞} function of $x \in \Omega$; hence it follows that the map in (94) is C^{∞}, and we are done!
(b) This is very similar to part (a) and we here only describe the set-up: We define

$$
\operatorname{Hom}\left(E_{1}, E_{2}\right):=\sqcup_{p \in M} \operatorname{Hom}\left(E_{1, p} \otimes E_{2, p}\right),
$$

and if $\left(U, \varphi_{1}\right)$ is a bundle chart for E_{1} and $\left(U, \varphi_{2}\right)$ is a bundle chart for E_{2} then we postulate a corresponding bundle chart for $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ to be (U, τ), where τ is given by (analogue of (92)):
$\tau: \pi^{-1}(U) \rightarrow U \times \operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$

$$
\begin{equation*}
\tau(v):=\left(p, \operatorname{Hom}\left(\varphi_{1, p}^{-1}, \varphi_{2, p}\right)(v)\right), \quad \forall p \in U, v \in \operatorname{Hom}\left(E_{1, p}, E_{2, p}\right), \tag{95}
\end{equation*}
$$

[^19]Cf. (96) below regarding the def of " $\operatorname{Hom}\left(\varphi_{1, p}^{-1}, \varphi_{2, p}\right)$ "; thus for each $p \in M$ we get $\tau_{p}=\operatorname{Hom}\left(\varphi_{1, p}^{-1}, \varphi_{2, p}\right)$; this is an \mathbb{R}-linear map from $\operatorname{Hom}\left(E_{1}, E_{2}\right)_{p}=$ $\operatorname{Hom}\left(E_{1, p}, E_{2, p}\right)$ to $\operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. The reason that we have to use " $\varphi_{1, p}^{-1 "}$ is that Hom is contravariant in its first argument; cf. the discussion below, especially footnote 23 .

Instead of giving further details, we discuss the problem from a more general point of view. The key property that is used in parts (a), (b), (c) is that both " \otimes " and "Hom" and "dual" are smooth $\left(=C^{\infty}\right)$ functors on the category \mathcal{C} of finite dimensional vector spaces over \mathbb{R}. More specifically, \otimes is a bifunctor covariant in both arguments (cf. Sec. 7.2 of the lecture notes); Hom is a bifunctor which is contravariant in the first argument and covariant in the second argument, and "dual" is a contravariant functor of one variable. It is a general fact that given any smooth functor \mathcal{F} of k variables on $\mathcal{C} 22$ then for any vector bundles E_{1}, \ldots, E_{k} over M one can define in a natural way a vector bundle " $\mathcal{F}\left(E_{1}, \ldots, E_{k}\right)$ " over M. Cf. [16, $1.34-1.39]$. Each of $(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ is a special case of this fact.

Let us explain in some detail what it means to say that Hom is a "smooth bifunctor on \mathcal{C} ". Recall that \mathcal{C} is the category of finite dimensional vector spaces over \mathbb{R}; thus " $A \in \mathrm{ob}(\mathcal{C})$ " means that A is a finite dimensional vector space over \mathbb{R}. For any two $A, B \in \operatorname{ob}(\mathcal{C}), \operatorname{Hom}(A, B) \in \operatorname{ob}(\mathcal{C})$ is the vector space of \mathbb{R}-linear maps $A \rightarrow B$. Furthermore given any $A, A^{\prime}, B, B^{\prime} \in \mathrm{ob}(\mathcal{C})$ and \mathbb{R}-linear maps $h: A^{\prime} \rightarrow A$ and $f: B \rightarrow B^{\prime}$ we define an \mathbb{R}-linear map "Hom (h, f) ":

$$
\begin{equation*}
\operatorname{Hom}(h, f): \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}\left(A^{\prime}, B^{\prime}\right) ; \quad[\operatorname{Hom}(h, f)](g):=f \circ g \circ h \tag{96}
\end{equation*}
$$

One immediately verifies that $\operatorname{Hom}\left(1_{A}, 1_{B}\right)=1_{\operatorname{Hom}(A, B)}$ for all $A, B \in \operatorname{ob}(\mathcal{C})$, and that for any $A, A^{\prime}, A^{\prime \prime}, B, B^{\prime}, B^{\prime \prime} \in \mathrm{ob}(\mathcal{C})$ and any \mathbb{R}-linear maps

$$
A^{\prime \prime} \xrightarrow{h^{\prime}} A^{\prime} \xrightarrow{h} A \quad \text { and } \quad B \xrightarrow{f} B^{\prime} \xrightarrow{f^{\prime}} B^{\prime \prime}
$$

we have:

$$
\begin{equation*}
\operatorname{Hom}\left(h^{\prime}, f^{\prime}\right) \circ \operatorname{Hom}(h, f)=\operatorname{Hom}\left(h \circ h^{\prime}, f^{\prime} \circ f\right) \tag{97}
\end{equation*}
$$

The relations which we have here pointed out, mean exactly that Hom is a bifunctor $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, contravariant in the first argumen ${ }^{23}$ and covariant in the second argument.

Next, the smoothness of the bifunctor Hom consists in the following: Note that for any $A, A^{\prime}, B, B^{\prime} \in \mathrm{ob}(\mathcal{C})$, the operation of taking any pair of linear maps $h: A^{\prime} \rightarrow A$ and $f: B \rightarrow B^{\prime}$ to the linear map $\operatorname{Hom}(f, g)$:

[^20]$\operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}\left(A^{\prime}, B^{\prime}\right)$, is itself a map
\[

$$
\begin{align*}
\operatorname{Hom}\left(A^{\prime}, A\right) \times \operatorname{Hom}\left(B, B^{\prime}\right) & \rightarrow \operatorname{Hom}\left(\operatorname{Hom}(A, B), \operatorname{Hom}\left(A^{\prime}, B^{\prime}\right)\right) ; \tag{98}\\
(h, f) & \mapsto \operatorname{Hom}(h, f) .
\end{align*}
$$
\]

Here both $\operatorname{Hom}\left(A^{\prime}, A\right) \times \operatorname{Hom}\left(B, B^{\prime}\right)$ and $\operatorname{Hom}\left(\operatorname{Hom}(A, B), \operatorname{Hom}\left(A^{\prime}, B^{\prime}\right)\right)$ are C^{∞} manifolds (since each "Hom" space is a finite dimensional vector space over \mathbb{R}), and hence it makes sense to claim that the map in (98) is C^{∞}. This is exactly what we mean by saying that the bifunctor Hom is smooth. (Exercise: Prove this smoothness!)
(The corresponding smoothness of the bifunctor \otimes is the statement that for any $A, A^{\prime}, B, B^{\prime} \in \mathrm{ob}(\mathcal{C})$, the map

$$
\begin{aligned}
\operatorname{Hom}\left(A, A^{\prime}\right) \times \operatorname{Hom}\left(B, B^{\prime}\right) & \rightarrow \operatorname{Hom}\left(A \otimes B, A^{\prime}, \otimes B^{\prime}\right) \\
(f, g) & \mapsto f \otimes g
\end{aligned}
$$

is C^{∞}. This is proved by choosing bases for $A, A^{\prime}, B, B^{\prime} ;$ then $\operatorname{Hom}\left(A, A^{\prime}\right)$ and $\operatorname{Hom}\left(B, B^{\prime}\right)$ and $\operatorname{Hom}\left(A \otimes B, A^{\prime}, \otimes B^{\prime}\right)$ become spaces of (real) matrices, and $f \otimes g$ is given by the Kronecker product of the matrices f and g, and the smoothness is clear by inspection in the explicit formula for the Kronecker product. Cf. the discussion at the end of the solution of part (a).)
(c) This is also covered by the general discussion above; viz., it is a special case of [16, 1.38].
(In fact (c) can be obtained as a special case of (b); namely we have $E_{1}^{*}=\operatorname{Hom}\left(E_{1}, E_{2}\right)$ when E_{2} is the trivial vector bundle $E_{2}=M \times \mathbb{R}$. But alternatively one could also deduce (b) as a consequence of (a) and (c), namley for any vector bundles E_{1} and E_{2} we can identify $\operatorname{Hom}\left(E_{1}, E_{2}\right)=$ $E_{1}^{*} \otimes E_{2}$.)

Problem 40; Let us write $n_{j}=\operatorname{rank} E_{j}(j=1,2)$ and let π be the projection map $\pi: \operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow M$.

Let $s \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$. Then for each $p \in M, s(p) \in \operatorname{Hom}\left(E_{1}, E_{2}\right)_{p}=$ $\operatorname{Hom}\left(E_{1, p}, E_{2, p}\right)$, and so s gives rise to a map

$$
f: E_{1} \rightarrow E_{2}, \quad f(x):=s\left(\pi_{1}(x)\right)(x) \quad\left(x \in E_{1}\right)
$$

By construction this map f satisfies $\pi_{2} \circ f=\pi_{1}$, and furthermore for each $p \in M$,

$$
f_{p}:=f_{\mid E_{1, p}}=s(p) \in \operatorname{Hom}\left(E_{1, p}, E_{2, p}\right) .
$$

Hence if we can only prove that f is C^{∞} then f is a bundle homomorphism $E_{1} \rightarrow E_{2}$.

To prove that f is C^{∞} is a local problem: Thus we may pass to bundle charts for E_{1}, E_{2} and a chart for M (suitably adapted), after which the problem becomes ${ }^{(*)}$: Given any open set $\Omega \subset \mathbb{R}^{d}$ and any C^{∞} function

$$
\begin{equation*}
T: \Omega \rightarrow \operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right) \tag{99}
\end{equation*}
$$

show that the map

$$
\begin{equation*}
\Omega \times \mathbb{R}^{n_{1}} \rightarrow \Omega \times \mathbb{R}^{n_{2}}, \quad(x, v) \mapsto(x, T(x)(v)) \tag{100}
\end{equation*}
$$

is C^{∞}. This, however, is trivial: Recall that $\operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ can be identified with the space of real $n_{2} \times n_{1}$ matrices, and to say that T is C^{∞} means that each matrix entry of $T(x)$ is a smooth function of $x \in \Omega$; then the smoothness of the map (100) is clear from the explicit formula for the matrix product $T(x) \cdot v$. This completes the proof that f is C^{∞}, and hence that f is a bundle homomorphism $E_{1} \rightarrow E_{2}$.
$[(*)$ Let us give a few more details on the reduction to the Euclidean version of the problem stated in (99), (100). It is remarkable how much more complicated this is to actually spell out than it is to just "think it through in ones head" 24

Given $x \in E_{1}$ it suffices to prove that there exists some open set $V \subset E_{1}$ containing x such that $f_{\mid V}$ is C^{∞}. Let us choose $V=\pi_{1}^{-1}(U)$ where U is an open set in M with $\pi_{1}(x) \in U$ for which there exist φ_{1}, φ_{2} such that $\left(U, \varphi_{1}\right)$ is a bundle chart for E_{1} and $\left(U, \varphi_{2}\right)$ is a bundle chart for E_{2}; thus our task is to prove that $f_{\mid \pi_{1}^{-1}(U)}$ is C^{∞}. Recall from Problem 39(b) that $\left(U, \varphi_{1}\right)$ and $\left(U, \varphi_{2}\right)$ give rise to a bundle chart (U, τ) for $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ such that

$$
\tau_{p}=\operatorname{Hom}\left(\varphi_{1, p}^{-1}, \varphi_{2, p}\right): \operatorname{Hom}\left(E_{1, p}, E_{2, p}\right) \rightarrow \operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)
$$

for all $p \in U$, and that, by the definition of the bifunctor "Hom", this means that

$$
\tau_{p}(\alpha)=\varphi_{2, p} \circ \alpha \circ \varphi_{1, p}^{-1} \in \operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right), \quad \forall \alpha \in \operatorname{Hom}\left(E_{1, p}, E_{2, p}\right)
$$

[^21]Of course, τ itself is the map

$$
\begin{aligned}
& \tau: \operatorname{Hom}\left(E_{1}, E_{2}\right)_{\mid U} \rightarrow U \times \operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right) ; \\
& \tau(\alpha)=\left(p, \tau_{p}(\alpha)\right), \quad \forall p \in U, \alpha \in \operatorname{Hom}\left(E_{1, p}, E_{2, p}\right) .
\end{aligned}
$$

We have $f\left(\pi_{1}^{-1}(U)\right) \subset \pi_{2}^{-1}(U)$ (since $\pi_{2} \circ f=\pi_{1}$) and hence, since φ_{1} and φ_{2} are diffeomorphisms, in order to prove that $f_{\mid \pi_{1}^{-1}(U)}$ is C^{∞} it suffices to prove that the map $\varphi_{2} \circ f \circ \varphi_{1}^{-1}: U \times \mathbb{R}^{n_{1}} \rightarrow U \times \mathbb{R}^{n_{2}}$ is C^{∞}. However at each $p \in U$ we have

$$
\left(\operatorname{pr}_{2} \circ \varphi_{2} \circ f \circ \varphi_{1}^{-1}\right)_{\mid\{p\} \times \mathbb{R}^{n_{1}}}=\varphi_{2, p} \circ f_{p} \circ \varphi_{1, p}^{-1}=\tau_{p}\left(f_{p}\right)=\operatorname{pr}_{2}(\tau(s(p)))
$$

and hence for all $(p, v) \in U \times \mathbb{R}^{n_{1}}$:

$$
\left(\varphi_{2} \circ f \circ \varphi_{1}^{-1}\right)(p, v)=\left(p,\left[\operatorname{pr}_{2}(\tau(s(p)))\right](v)\right)
$$

Here $\mathrm{pr}_{2} \circ \tau \circ s$ is a C^{∞} map from M to $\operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. Therefore, after passing to C^{∞} charts on $U,{ }^{25}$ we are reduced to the task stated in (99), (100)!]

We now continue with the solution. Let \mathcal{H} be the set of bundle homomorphisms $E_{1} \rightarrow E_{2}$. Then above we have constructed a map

$$
\begin{equation*}
\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow \mathcal{H}, \quad " s \mapsto f " \tag{101}
\end{equation*}
$$

We next construct the inverse map. Thus let f be a bundle homomorphism $E_{1} \rightarrow E_{2}$. Then by definition, for each $p \in M, f_{p}=f_{\mid E_{1, p}}$ is an \mathbb{R}-linear map from $E_{1, p}$ to $E_{2, p}$, i.e. $f_{p} \in \operatorname{Hom}\left(E_{1, p}, E_{2, p}\right)=\operatorname{Hom}\left(E_{1}, E_{2}\right)_{p} \subset \operatorname{Hom}\left(E_{1}, E_{2}\right)$. Let us define the map $s: M \rightarrow \operatorname{Hom}\left(E_{1}, E_{2}\right)$ by $s(p):=f_{p}$. Clearly $\pi \circ s=$ 1_{M}, and one verifies that s is C^{∞} using bundle charts in a manner very similar to what we did above. Hence $s \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$, and so we have constructed a map

$$
\begin{equation*}
\mathcal{H} \rightarrow \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right), \quad " f \mapsto s " \tag{102}
\end{equation*}
$$

It is immediate from our definitions (in particular using " $s(p)=f_{p}$ ") that the two maps (101) and (102) are inverses to each other. Hence we the two maps are in fact bijections.

[^22]
Problem 41:

(a) If (U, φ) is any bundle chart for E such that $\varphi\left(\pi^{-1}(U) \cap E^{\prime}\right)=U \times \mathbb{R}^{m}$, then $E_{p} \cap E^{\prime}$ is an m-dimensional subspace of E_{p} for every $p \in U$. [Proof: for any $p \in U$ the restriction of φ to $E_{p}=\pi^{-1}(\{p\})$ is a linear isomorphism from E_{p} onto $\{p\} \times \mathbb{R}^{n}$, and $\varphi\left(\pi^{-1}(U) \cap E^{\prime}\right)=U \times \mathbb{R}^{m}$ implies that $\varphi\left(E_{p} \cap E^{\prime}\right)=$ $\{p\} \times \mathbb{R}^{m}$; hence $E_{p} \cap E^{\prime}$ is indeed an m-dimensional subspace of E_{p}.]

By assumption the bundle charts for E with the special property above cover M; hence for every $p \in M$ the intersection $E_{p} \cap E^{\prime}$ is a linear subspace of E_{p}. Set $\mu(p):=\operatorname{dim}\left(E_{p} \cap E^{\prime}\right)$; then μ is a function from M to $\{0,1, \ldots, n\}$. It is clear from the previous discussion that μ is locally constant. (Indeed, given $p \in M$, let (U, φ) be a bundle chart for E such that $p \in U$ and $\varphi\left(\pi^{-1}(U) \cap E^{\prime}\right)=U \times \mathbb{R}^{m}$ for some $m \leq n$; then we saw in the previous discussion that $\mu(q)=m$ for all $q \in U$.) Hence $\mu^{-1}(\{m\})$ is an open subset of M for each $m \in\{0,1, \ldots, n\}$. But the sets $\mu^{-1}(\{0\}), \ldots, \mu^{-1}(\{n\})$ form a partition of M; furthermore M is connected (since M is a manifold), and thus M cannot be represented as a union of two or more disjoint nonempty open subsets. It follows that all except one of the sets $\mu^{-1}(\{0\}), \ldots, \mu^{-1}(\{n\})$ are empty. In other words there is $m \in\{0, \ldots, n\}$ such that $\mu^{-1}(\{m\})=M$, i.e. $\operatorname{dim}\left(E_{p} \cap E^{\prime}\right)=m$ for all $p \in M$. Done!
(b) Let \mathcal{F} be the family of all bundle charts for E satisfying (11), i.e. $\varphi\left(E^{\prime} \cap \pi^{-1}(U)\right)=U \times \mathbb{R}^{m}$. (By part (a) we know that m is a fixed integer, $0 \leq m \leq n$, independent of $(U, \varphi) \in \mathcal{F}$.) For each $(U, \varphi) \in \mathcal{F}$ we set

$$
\widetilde{\varphi}:=\varphi_{\mid E^{\prime} \cap \pi^{-1}(U)}
$$

We wish to prove that $\left(E^{\prime}, \pi_{\mid E^{\prime}}, M\right)$ together with the family

$$
\{(U, \widetilde{\varphi}):(U, \varphi) \in \mathcal{F}\}
$$

satisfy all the conditions required in Problem 36. For each $p \in M$ we set $E_{p}^{\prime}=E^{\prime} \cap E_{p}$; we noted in part (a) that E_{p}^{\prime} is an m-dimensional subspace of E_{p}. Also for each $(U, \varphi) \in \mathcal{F}$, it holds by our assumptions that $\widetilde{\varphi}$ is a bijection from $E^{\prime} \cap \pi^{-1}(U)$ onto $U \times \mathbb{R}^{m}$, and for each $p \in U$ we have $\widetilde{\varphi}_{\mid E_{p}^{\prime}}=\varphi_{\mid E_{p}^{\prime}}$ and this is a linear isomorphism of E_{p}^{\prime} onto $\{p\} \times \mathbb{R}^{m}$. Also the sets U cover M as (U, φ) runs through \mathcal{F}, by assumption. Hence it only remains to prove that if both $(U, \varphi),(V, \psi) \in \mathcal{F}$, then the map $\widetilde{\psi} \circ \widetilde{\varphi}^{-1}$ from $(U \cap V) \times \mathbb{R}^{m}$ onto itself is C^{∞}. However that map is equal to the restriction of the map

$$
\psi \circ \varphi^{-1}:(U \cap V) \times \mathbb{R}^{n} \rightarrow(U \cap V) \times \mathbb{R}^{n}
$$

to the set $(U \cap V) \times \mathbb{R}^{m}$, and from this the desired smoothness is clear.
[Let us discuss the very last step in some detail: By Problem 8(c) it suffices to prove that both the maps $\operatorname{pr}_{1} \circ \widetilde{\psi} \circ \widetilde{\varphi}^{-1}$ and $\operatorname{pr}_{2} \circ \widetilde{\psi} \circ \widetilde{\varphi}^{-1}$; however the first of these equals $\mathrm{pr}_{1}:(U \cap V) \times \mathbb{R}^{m} \rightarrow U \cap V$ which we know is C^{∞};
hence it suffices to prove that the map

$$
\operatorname{pr}_{2} \circ \tilde{\psi} \circ \widetilde{\varphi}^{-1}:(U \cap V) \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

is C^{∞}. That map is the restriction of the map

$$
\operatorname{pr}_{2} \circ \psi \circ \varphi^{-1}:(U \cap V) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

to $(U \cap V) \times \mathbb{R}^{m}$. Hence after passing to charts on $(U \cap V) \times \mathbb{R}^{m}$, we see that it suffices to prove the following general fact: Given an open set $\Omega \subset \mathbb{R}^{k}$ (some $k \in \mathbb{Z}^{+}$) and a C^{∞} map $f: \Omega \rightarrow \mathbb{R}^{n}$, if it happens that $f(x) \in \mathbb{R}^{m}$ for all $x \in \Omega$ then f is C^{∞} also as a map $\Omega \rightarrow \mathbb{R}^{m}$. This is of course completely trivial from the definition of what it means for a map between \mathbb{R}^{d}-spaces to be $C^{\infty}{ }^{26}$

We have proved above that all the conditions of Problem 36 are fulfilled and so by that problem, $\left(E^{\prime}, \pi_{\mid E^{\prime}}, M\right)$ is a vector bundle of rank m, and $(U, \widetilde{\varphi})$ is a bundle chart for E^{\prime} for every $(U, \varphi) \in \mathcal{F}$.
(c) This is more or less immediate from our assumptions about existence of bundle charts satisfying (11), together with the following criterion for being a differentiable submanifold which we pointed out in the notes to lecture \#2 (here formulated with notation adapted to our setting): If E is any $d+n$ dimensional C^{∞} manifold and E^{\prime} is an arbitrary subset of E, then E^{\prime} has a (uniquely determined) structure of a differentiable submanifold of E of dimension $d+m$ if and only if for every $x \in E^{\prime}$ there is a $C^{\infty} \operatorname{chart}(V, \psi)$ of E such that $x \in V, \psi(x)=0, \psi(V)$ is an open cube $(-\varepsilon, \varepsilon)^{d+n}$, and

$$
\begin{equation*}
\psi\left(V \cap E^{\prime}\right)=(-\varepsilon, \varepsilon)^{d+m} \times\{0\}^{n-m} . \tag{103}
\end{equation*}
$$

(Cf., e.g., [1, Sec. III.5, esp. Lemma 5.2].)
Details: Let $x \in E^{\prime}$ be given. Set $p=\pi(x) \in M$. Then by assumption there is a bundle chart (U, φ) for E such that $p \in U$ and (1) holds, i.e. $\varphi\left(E^{\prime} \cap \pi^{-1}(U)\right)=U \times \mathbb{R}^{m}$. Now choose also any $C^{\infty} \operatorname{chart}(W, \tau)$ for M with $p \in W$. Of course we may assume $W \subset U$ (otherwise just replace W by $W \cap U$) and $\tau(p)=0$ (otherwise just compose τ with a translation of \mathbb{R}^{d}). Then $\tau(W)$ is an open set in \mathbb{R}^{d} containing 0 ; hence there is some $\varepsilon>0$ such that $(-\varepsilon, \varepsilon)^{d} \subset \tau(W)$. Now we may replace W by the smaller open set $\tau^{-1}\left((-\varepsilon, \varepsilon)^{d}\right)$; after doing this we have $\tau(W)=(-\varepsilon, \varepsilon)^{d}$. Now the map

$$
\psi:=\left(\tau, 1_{\mathbb{R}^{n}}\right) \circ \varphi_{\mid \pi^{-1}(W)}
$$

[^23]is a diffeomorphism of $\pi^{-1}(W)$ onto $(-\varepsilon, \varepsilon)^{d} \times \mathbb{R}^{n} \subset \mathbb{R}^{d+n}$ (since it is a composition of a diffeomorphism of $\pi^{-1}(W)$ onto $W \times \mathbb{R}^{n}$ and a diffeomorphism of $W \times \mathbb{R}^{n}$ onto $\left.(-\varepsilon, \varepsilon)^{d} \times \mathbb{R}^{n}\right)$, and so
$$
\left(\pi^{-1}(W), \psi\right)
$$
is a C^{∞} chart for E^{\prime}. It follows from $\varphi\left(E^{\prime} \cap \pi^{-1}(U)\right)=U \times \mathbb{R}^{m}$ (where " \mathbb{R}^{m} " really stands for $\left.\mathbb{R}^{m} \times\{0\}^{n-m}\right)$ that we have
$$
\psi\left(E^{\prime} \cap \pi^{-1}(W)\right)=(-\varepsilon, \varepsilon)^{d} \times \mathbb{R}^{m} \times\{0\}^{n-m}
$$

Hence if we set $V:=\psi^{-1}\left((-\varepsilon, \varepsilon)^{d+n}\right)$ (an open subset of $\psi^{-1}(W)$) then also

$$
\left(V, \psi_{\mid V}\right)
$$

is a C^{∞} chart for E^{\prime}, and this chart satisfies $x \in V, \psi(x)=0, \psi(V)=$ $(-\varepsilon, \varepsilon)^{d+n}$, and

$$
\psi\left(E^{\prime} \cap V\right)=(-\varepsilon, \varepsilon)^{d+m} \times\{0\}^{n-m},
$$

i.e. the condition (103). Done!

Problem 42;

(a). Recall that as a set, $f^{*} E$ is defined to be

$$
\begin{equation*}
f^{*} E:=\left\{(p, v): p \in M, v \in E_{f(p)}\right\} \subset M \times E \tag{104}
\end{equation*}
$$

and we define the projection map $\widetilde{\pi}: f^{*} E \rightarrow M$ to be simply $\widetilde{\pi}:=\operatorname{pr}_{1}$, i.e. $\widetilde{\pi}(p, v):=p$ for all $(p, v) \in f^{*} E$. Also for any bundle chart (U, φ) for (E, π, N) we have specified that if $\widetilde{\varphi}$ is the map

$$
\begin{align*}
\widetilde{\varphi}: & \widetilde{\pi}^{-1}\left(f^{-1}(U)\right) \rightarrow f^{-1}(U) \times \mathbb{R}^{n} \quad(n:=\operatorname{rank} E) \tag{105}\\
& \widetilde{\varphi}(p, v):=\left(p, \operatorname{pr}_{2}(\varphi(v))\right)
\end{align*}
$$

then $\left(f^{-1}(U), \widetilde{\varphi}\right)$ is a bundle chart for $f^{*} E$.
In order to prove that $\left(f^{*} E, \widetilde{\pi}, M\right)$ is a vector bundle, we now verify that $\widetilde{\pi}: f^{*} E \rightarrow M$ with the above proposed bundle charts satisfy all the conditions required in Problem 36. Firstly, $\widetilde{\pi}$ is obviously surjective, and for every $p \in M$, the set $\left(f^{*} E\right)_{p}:=\widetilde{\pi}^{-1}(p)$ is seen to be

$$
\left(f^{*} E\right)_{p}:=\widetilde{\pi}^{-1}(p)=\{p\} \times E_{f(p)} "=E_{f(p)} "
$$

(the last equality is our usual identification), and this set carries the structure of an n-dimensional real vector space since (E, π, N) is a vector bundle. Next let (U, φ) be any bundle chart for (E, π, N). Then $f^{-1}(U)$ of course is an open subset of M. Also

$$
\tilde{\pi}^{-1}\left(f^{-1}(U)\right)=\left\{(p, v): p \in f^{-1}(U), v \in E_{f(p)}\right\}
$$

and for any fixed $p \in f^{-1}(U)$, we know that $\operatorname{pr}_{2} \circ \varphi_{\mid E_{f(p)}}$ is a linear isomorphism of $E_{f(p)}$ onto \mathbb{R}^{n}; hence from the definition of $\widetilde{\varphi}$, (105), it follows that the restriction of $\widetilde{\varphi}$ to the set $\left(f^{*} E\right)_{p}=\{p\} \times E_{f(p)}$ is a linear isomorphism onto $\{p\} \times \mathbb{R}^{n}$. In particular $\widetilde{\varphi}$ restricts to a bijection of $\{p\} \times E_{f(p)}$ onto $\{p\} \times \mathbb{R}^{n}$, and using this fact for every $p \in f^{-1}(U)$ it follows that $\widetilde{\varphi}$ is a bijection of $\widetilde{\pi}^{-1}\left(f^{-1}(U)\right)$ onto $f^{-1}(U) \times \mathbb{R}^{n}$. Furthermore, $M=\bigcup f^{-1}(U)$ when the union is taken over all bundle charts (U, φ) for (E, π, N), since the family of such sets U cover N.

Now the only condition from Problem 36 which remains to be verified is that if (U, φ) and (V, ψ) are any two bundle charts for (E, π, N), then $\widetilde{\psi} \circ \widetilde{\varphi}^{-1}$ is a C^{∞} map from $\left(f^{-1}(U) \cap f^{-1}(V)\right) \times \mathbb{R}^{n}$ to itself. To prove this, first note that $f^{-1}(U) \cap f^{-1}(V)=f^{-1}(U \cap V)$. Next, by parsing the maps one finds that

$$
\begin{align*}
& \tilde{\psi} \circ \widetilde{\varphi}^{-1}(p, w)=\left(p, \operatorname{pr}_{2}\left(\psi\left(\varphi^{-1}(f(p), w)\right)\right)\right) \tag{106}\\
& \forall(p, w) \in f^{-1}(U \cap V) \times \mathbb{R}^{n}
\end{align*}
$$

[Details: Let $(p, w) \in f^{-1}(U \cap V) \times \mathbb{R}^{n}$. Then $f(p) \in U \cap V$ and so $\varphi^{-1}(f(p), w)$ is defined and lies in $E_{f(p)} \subset \pi^{-1}(U \cap V)$. Hence $\left(p, \varphi^{-1}(f(p), w)\right) \in$
$\left(f^{*} E\right)_{p}$, and using (105) we have $\widetilde{\varphi}\left(p, \varphi^{-1}(f(p), w)\right)=(p, w)$; hence

$$
\left(p, \varphi^{-1}(f(p), w)\right)=\widetilde{\varphi}^{-1}(p, w) ;
$$

and applying $\tilde{\psi}$ to this relation and again using (105), we obtain (106)!]
Clearly (106) implies that $\tilde{\psi} \circ \widetilde{\varphi}^{-1}$ is a C^{∞} map from $f^{-1}(U \cap V) \times \mathbb{R}^{n}$ to itself (using the fact that the maps ψ, φ^{-1}, f are C^{∞}, and also using Problem [8(b),(c)).

Hence all the conditions from Problem [36] are satisfied, and so Problem 36 implies that $\left(f^{*} E, \widetilde{\pi}, M\right)$ is a vector bundle, and that for any bundle chart (U, φ) for $(E, \pi, N),\left(f^{-1}(U), \widetilde{\varphi}\right)$ is a bundle chart for $f^{*} E$.
(b) Passing to local coordinates (viz., choosing appropriate charts and bundle charts) one reduces to the case when M is an open subset of \mathbb{R}^{d}, N is an open subset of $\mathbb{R}^{d^{\prime}}$, and $E=N \times \mathbb{R}^{n}$. ${ }^{27}$ Then the definition of f^{*}, (104), becomes:

$$
f^{*} E=\left\{(p, f(p), v): p \in M, v \in \mathbb{R}^{n}\right\} \subset M \times E=M \times N \times \mathbb{R}^{n} .
$$

Now note that the map

$$
\begin{aligned}
& \varphi: M \times N \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \times \mathbb{R}^{n}, \\
& \varphi(p, q, v)=(p, q-f(p), v)
\end{aligned}
$$

is a diffeomorphism of $M \times N \times \mathbb{R}^{n}$ onto

$$
\Omega=\left\{\left(p, q^{\prime}, v\right) \in M \times \mathbb{R}^{d^{\prime}} \times \mathbb{R}^{n}: q^{\prime}+f(p) \in N\right\}
$$

which is an open subset of $\mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \times \mathbb{R}^{n}$ (inverse map: $\varphi^{-1}\left(p, q^{\prime}, v\right)=$ $\left.\left(p, q^{\prime}+f(p), v\right)\right)$. Hence $\left(M \times N \times \mathbb{R}^{n}, \varphi\right)$ is a C^{∞} chart on $M \times N \times \mathbb{R}^{n}$, and we note that

$$
\varphi\left(f^{*} E\right)=M \times\{0\} \times \mathbb{R}^{n} \subset \Omega
$$

The existence of such a chart immediately implies that for every $p \in f^{*} E$ there is a $C^{\infty} \operatorname{chart}(V, \psi)$ on $M \times N \times \mathbb{R}^{n}$ such that $p \in V, \psi(p)=0$, $\psi(V)=(-\varepsilon, \varepsilon)^{d+d^{\prime}+n}$ and $\psi\left(V \cap f^{*} E\right)=(-\varepsilon, \varepsilon)^{d+n} \times\{0\}^{d^{\prime}}$. (Indeed, simply compose φ with a translation and a suitable permutation of the coordinates; then restrict the domain appropriately - cf. the solution to Problem 41(c)). Hence (by a result stated in the notes to Lecture \#2; cf., e.g., [1, Sec. III.5]), $f^{*} E$ is a differentiable submanifold of $M \times E=M \times N \times \mathbb{R}^{n}$.
(One should also verify that the C^{∞} manifold structure of $f^{*} E$ as a differentiable submanifold of $M \times E=M \times N \times \mathbb{R}^{n}$ agrees with the C^{∞} manifold structure on $f^{*} E$ defined in part (a) via Problem 36. This is "immediate"

[^24]by comparing the C^{∞} charts provided in each case. - but would take some effort to write out.)

Problem 43:

(a). This is very direct: We map any $\left(s_{1}, s_{2}\right) \in \Gamma\left(E_{1}\right) \oplus \Gamma\left(E_{2}\right)$ to the section $s \in \Gamma\left(E_{1} \oplus E_{2}\right)$ defined by

$$
s(p):=\left(s_{1, p}, s_{2, p}\right) \in E_{1, p} \oplus E_{2, p}=\left(E_{1} \oplus E_{2}\right)_{p}
$$

One verifies that this map $\left(s_{1}, s_{2}\right) \mapsto s$ is an isomorphism of $C^{\infty} M$-modules. We leave out the details...
(b). This is a special case of (c). (Namely, take $E_{2}=M \times \mathbb{R}$ in (c); then $\operatorname{Hom}\left(E_{1}, E_{2}\right)=E_{1}^{*}$ and $\Gamma\left(E_{2}\right)=C^{\infty}(M)$, so that (c) gives the result that we want.)
(Cf. also [3, Prop. 6.2.11 and Prop. 7.5.4].)
(c). (Cf., e.g., [16, Prop. 1.53].)

Given $h \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$ and $s \in \Gamma E_{1}$, let us define the map

$$
\begin{equation*}
\Phi_{h, s}: M \rightarrow E_{2}, \quad \Phi_{h, s}(p):=h(p)(s(p)) \tag{107}
\end{equation*}
$$

Clearly $\pi_{2} \circ \Phi_{h, s}=1_{M_{2}} ;$ also $\Phi_{h, s}$ is a C^{∞} map since h and s are C^{∞} maps (passing to local coordinates this reduces to the basic fact pointed out around (99), (100)). Hence $\Phi_{h, s} \in \Gamma E_{2}$.

Next, given $h \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$, we consider the map $s \mapsto \Phi_{h, s}$. Actually let us change notation by setting

$$
\Phi_{h}(s):=\Phi_{h, s} \quad\left(s \in \Gamma E_{1}\right)
$$

Our previous paragraph shows that Φ_{h} is a map

$$
\Phi_{h}: \Gamma E_{1} \rightarrow \Gamma E_{2}
$$

It is immediate from (107) that Φ_{h} is $C^{\infty}(M)$-linear. Hence

$$
\Phi_{h} \in \operatorname{Hom}\left(\Gamma E_{1}, \Gamma E_{2}\right)
$$

We have thus defined a map

$$
\begin{equation*}
\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow \operatorname{Hom}\left(\Gamma E_{1}, \Gamma E_{2}\right), \quad h \mapsto \Phi_{h} \tag{108}
\end{equation*}
$$

It is again immediate from (107) that this map is $C^{\infty}(M)$-linear, i.e. a homomorphism of $C^{\infty}(M)$-modules. We are going to prove that the map (108) is a bijection. This will imply that it is an isomorphism of $C^{\infty}(M)$ modules, as desired!

The proof of injectivity is easy: It suffices to prove that the kernel of the map (108) is $\{0\}$. Thus let $h \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$ be given and assume
$\Phi_{h}=0$. Then $\Phi_{h, s}=0$ for all $s \in \Gamma E_{1}$, and so $h(p)(s(p))=0$ for all $s \in \Gamma E_{1}$ and $p \in M$. Hence by Problem 35(c), for every $p \in M$ we have $h(p)(v)=0$, $\forall v \in E_{1, p}$, i.e. $h(p)=0$ in $\operatorname{Hom}\left(E_{1, p}, E_{2, p}\right)=\operatorname{Hom}\left(E_{1}, E_{2}\right)_{p}$. Since this is true for every $p \in M$, we conclude that $h=0$, as desired. This completes the proof that the map in (108) is injective.

It remains to prove surjectivity. Thus take an arbitrary element $\Phi \in$ $\operatorname{Hom}\left(\Gamma E_{1}, \Gamma E_{2}\right)$, i.e. a $C^{\infty}(M)$-linear map $\Phi: \Gamma E_{1} \rightarrow \Gamma E_{2}$. Let us start by proving that Φ is "local" in the following sense:

Lemma 3. For any open set $U \subset M$ and any $s_{1}, s_{2} \in \Gamma E_{1}$, if $s_{1 \mid U}=s_{2 \mid U}$ then $\Phi\left(s_{1}\right)_{\mid U}=\Phi\left(s_{2}\right)_{\mid U}$.

Proof. Assume $s_{1 \mid U}=s_{2 \mid U}$. Now our task is to prove that $\Phi\left(s_{1}\right)(p)=$ $\Phi\left(s_{2}\right)(p)$ for every $p \in U$. Thus fix a point $p \in U$. By Problem 7(c) there is a function $f \in C^{\infty}(M)$ which has compact support contained in U and which satisfy $f(p)=1$. Using $s_{1 \mid U}=s_{2 \mid U}$ and $f(p)=0$ for all $p \in M \backslash U$ it follows that $f s_{1}=f s_{2}$ in ΓE_{1}; thus $\Phi\left(f s_{1}\right)=\Phi\left(f s_{2}\right)$. But Φ is $C^{\infty}(M)$-linear and thus $f \Phi\left(s_{1}\right)=f \Phi\left(s_{2}\right)$, and in particular $f(p) \Phi\left(s_{1}\right)(p)=f(p) \Phi\left(s_{2}\right)(p)$, and since $f(p) \neq 0$ this implies $\Phi\left(s_{1}\right)(p)=\Phi\left(s_{2}\right)(p)$. Done!

Let \mathcal{V} be the family of open sets $V \subset M$ such that there exist sections $b_{1}, \ldots, b_{n} \in \Gamma E_{1}$ and $c_{1}, \ldots, c_{m} \in \Gamma E_{2}$, such that $b_{1 \mid V}, \ldots, b_{n \mid V}$ form a basis of sections of $E_{1 \mid V}$ and $c_{1 \mid V}, \ldots, c_{m \mid V}$ form a basis of sections of $E_{2 \mid V}$. By Problem 35(b), \mathcal{V} covers M. Now take any $V \in \mathcal{V}$, and choose sections $b_{1}, \ldots, b_{n} \in \Gamma E_{1}$ and $c_{1}, \ldots, c_{m} \in \Gamma E_{2}$ with the property just mentioned. For each $j \in\{1, \ldots, n\}, \Phi\left(b_{j}\right)_{\mid V} \in \Gamma\left(E_{2 \mid V}\right)$; hence (by Problem 34) there are unique $g_{j}^{k} \in C^{\infty}(V)(k=1, \ldots, m)$ such that

$$
\begin{equation*}
\Phi\left(b_{j}\right)_{\mid V}=g_{j}^{k} c_{k \mid V} \tag{109}
\end{equation*}
$$

For each $q \in V$, let $h(q)$ be the linear map $E_{1, q} \rightarrow E_{2, q}$ which has matrix $\left(g_{j}^{k}(q)\right)$ with respect to the bases $b_{1}(q), \ldots, b_{n}(q)$ and $c_{1}(q), \ldots, c_{m}(q)$; that is,

$$
\begin{equation*}
h(q)\left(\alpha^{j} b_{j}(q)\right)=\alpha^{j} g_{j}^{k}(q) c_{k}(q), \quad \forall \alpha=\left(\alpha^{j}\right)_{j=1, \ldots, n} \in \mathbb{R}^{n} . \tag{110}
\end{equation*}
$$

Note that $h(q) \in \operatorname{Hom}\left(E_{1}, E_{2}\right)_{q}$, and since all $g_{j}^{k} \in C^{\infty}(V)$, we have

$$
\begin{equation*}
h \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)_{\mid V}\right) . \tag{111}
\end{equation*}
$$

Lemma 4. For every $s \in \Gamma E_{1}$ and every $q \in V, \Phi(s)(q)=h(q)(s(q))$.
Proof. Let $s \in \Gamma E_{1}$ and $q \in V$ be given, and take $f^{1}, \ldots, f^{n} \in C^{\infty}(V)$ so that $s_{\mid V}=f^{j} b_{j \mid V}$. By Problem $7(\mathrm{e})$ there exist an open set $U \subset V$ with $q \in U$ and functions $\widetilde{f}^{1}, \ldots, \widetilde{f}^{n} \in C^{\infty}(M)$ such that $\widetilde{f}_{\mid U}^{j} \equiv f_{\mid U}^{j}$. Hence
$s_{\mid U}=\left(\widetilde{f}^{j} b_{j}\right)_{\mid U}$, and so by Lemma 3, $\Phi(s)_{\mid U}=\Phi\left(\widetilde{f}^{j} b_{j}\right)_{\mid U}$, and in particular

$$
\Phi(s)(q)=\Phi\left(\widetilde{f}^{j} b_{j}\right)(q)=\widetilde{f}^{j}(q) \Phi\left(b_{j}\right)(q)=f^{j}(q) g_{j}^{k}(q) c_{k}(q)=h(q)\left(f^{j}(q) b_{j}(q)\right)
$$

$$
=h(q)(s(q)) .
$$

(In the second equality we used the assumption that Φ is $C^{\infty}(M)$-linear; in the third equality we used (109); in the fourth equality we used (110), and in the last equality we used $s_{\mid V}=f^{j} b_{j \mid V}$.)
Lemma 5. $h(q)$ depends only on Φ and q, and not on V or b_{1}, \ldots, b_{n} or c_{1}, \ldots, c_{m}.

Proof. This is clear from Lemma 4 and Problem 35(c).
It follows from Lemma 5 that $h(q) \in \operatorname{Hom}\left(E_{1}, E_{2}\right)_{q}$ can be unambiguously defined for any point $q \in M$ which lies in some $V \in \mathcal{V}$. But as we have pointed out, \mathcal{V} covers M; hence we have in fact defined a map

$$
h: M \rightarrow \operatorname{Hom}\left(E_{1}, E_{2}\right)
$$

which satisfies $\pi \circ h=1_{M}$ and

$$
\begin{equation*}
\Phi(s)(q)=h(q)(s(q)) \tag{112}
\end{equation*}
$$

for all $s \in \Gamma E_{1}$ and $q \in M$ (cf. Lemma (4). But we also have $h_{\mid V} \in$ $\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)_{\mid V}\right)$ for every $V \in \mathcal{V}$; hence h is C^{∞}, and so $h \in \Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$. Now by (112), $\Phi=\Phi_{h}$. This completes the proof that $h \mapsto \Phi_{h}$ is surjective.
(d). (Cf. [3, Thm. 7.5.5] and stackexchange.)

Incomplete solution: Given any $f \in \Gamma\left(E_{1}\right)$ and $g \in \Gamma\left(E_{2}\right)$, let us write $f \otimes g$ for the map

$$
\begin{align*}
& f \otimes g: M \rightarrow E_{1} \otimes E_{2} \tag{113}\\
& (f \otimes g)(p):=f(p) \otimes g(p) \in E_{1, p} \otimes E_{2, p} \quad(p \in M) .
\end{align*}
$$

Then clearly $\pi \circ(f \otimes g)=1_{M}$, where π is the projection map $E_{1} \times E_{2} \rightarrow M$. Let us verify that the map $f \otimes g$ is C^{∞}. Assume that $\left(U, \varphi_{j}\right)$ is a bundle chart for E_{j}, for $j=1,2$. Then by the definition of $E_{1} \otimes E_{2}-$ cf. Problem 39- if we define $\tau: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{m n}$ by $\tau(p, v)=\left(p, \tau_{p}(v)\right)$ where $\tau_{p}=\varphi_{1, p} \otimes \varphi_{2, p}$ (and we have fixed an identification $\mathbb{R}^{m} \otimes \mathbb{R}^{n}=\mathbb{R}^{m n}$), then (U, τ) is a bundle chart for $E_{1} \otimes E_{2}$, i.e. τ is a diffeomorphism from $\pi^{-1}(U)$ onto $U \times \mathbb{R}^{m n}$. Hence it suffices to verify that the map $\tau \circ(f \otimes g): U \rightarrow U \times \mathbb{R}^{m n}$ is \mathbb{C}^{∞}, for any $\left(U, \varphi_{j}\right)(j=1,2)$ as above. As usual it suffices to verify that $\operatorname{pr}_{1} \circ \tau \circ(f \otimes g)$ and $\operatorname{pr}_{2} \circ \tau \circ(f \otimes g)$ are C^{∞}; the first of these is the identity map on U which is trivially C^{∞}; and the second map is seen to equal

$$
\begin{equation*}
p \mapsto \varphi_{1, p}(f(p)) \otimes \varphi_{2, p}(g(p)): U \rightarrow \mathbb{R}^{m n} \tag{114}
\end{equation*}
$$

Here we know that the maps $p \mapsto \varphi_{1, p}(f(p))$ and $p \mapsto \varphi_{2, p}(g(p))$ are C^{∞}. But also the map $\langle v, w\rangle \mapsto v \otimes w: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m n}$ is C^{∞}; hence the map (114) is C^{∞}, as desired. Hence we have proved:

$$
f \otimes g \in \Gamma\left(E_{1} \otimes E_{2}\right)
$$

We have thus constructed a map

$$
\Gamma\left(E_{1}\right) \times \Gamma\left(E_{2}\right) \rightarrow \Gamma\left(E_{1} \otimes E_{2}\right), \quad(f, g) \mapsto f \otimes g
$$

Note that this map is $C^{\infty}(M)$-bilinear; hence there is a unique $C^{\infty}(M)$ linear map

$$
J: \Gamma\left(E_{1}\right) \otimes \Gamma\left(E_{2}\right) \rightarrow \Gamma\left(E_{1} \otimes E_{2}\right)
$$

such that

$$
J(f \otimes g)=f \otimes g, \quad \forall f \in \Gamma\left(E_{1}\right), g \in \Gamma\left(E_{2}\right)
$$

We claim that J is an isomorphism of $C^{\infty}(M)$-modules.
Proof that J is surjective: By Problem $38{ }^{28}$ there exists a finite open cover U_{1}, \ldots, U_{r} of M such that $E_{1 \mid U_{\ell}}$ and $E_{2 \mid U_{\ell}}$ are trivial for $\ell=1, \ldots, r$. Then for each fixed $\ell \in\{1, \ldots, r\}$ there is a basis of sections $b_{1}, \ldots, b_{m} \in \Gamma E_{1 \mid U_{\ell}}$ and a basis of sections $b_{1}^{\prime}, \ldots, b_{n}^{\prime} \in \Gamma E_{2 \mid U_{\ell}}$ (here we are writing $m=\operatorname{rank} E_{1}$ and $\left.n=\operatorname{rank} E_{2}\right)$. Now for each $p \in U_{\ell}$, the vectors $b_{j}(p) \otimes b_{k}^{\prime}(p)(j \in$

[^25]$\{1, \ldots, m\}, k \in\{1, \ldots, n\}\})$, form a basis of the \mathbb{R}-linear space $E_{1, p} \otimes E_{2, p}$. Hence
$$
\left\{b_{j} \otimes b_{k}^{\prime}: j \in\{1, \ldots, m\}, k \in\{1, \ldots, n\}\right\}
$$
is a basis of sections in $\Gamma\left(E_{1} \otimes E_{2}\right)_{\mid U_{\ell}}$. (Here the notation " $b_{j} \otimes b_{k}^{\prime}$ " is the one introduced above in (113), but applied for the vector bundles $E_{1 \mid U_{\ell}}$ and $\left.E_{2 \mid U_{\ell}}.\right)$ This means that for every section $s \in \Gamma\left(E_{1} \otimes E_{2}\right)_{\mid U_{\ell}}$ there exists a unique choice of functions $g^{j k} \in C^{\infty}\left(U_{\ell}\right)$ such that
$$
s=\sum_{j=1}^{m} \sum_{k=1}^{n} g^{j k} \cdot b_{j} \otimes b_{k}^{\prime}=\sum_{j=1}^{m} \sum_{k=1}^{n}\left(g^{j k} b_{j}\right) \otimes b_{k}^{\prime}
$$

Now let a global section $s \in \Gamma\left(E_{1} \otimes E_{2}\right)$ be given. From the above discussion (and passing to a slightly different notation) we conclude that for each $\ell \in\{1, \ldots, r\}$ there exist sections $\sigma_{j}^{(\ell)} \in \Gamma E_{1 \mid U_{\ell}}, \tau_{j}^{(\ell)} \in \Gamma E_{2 \mid U_{\ell}}$, $j=1, \ldots, m n$, such that

$$
s_{\mid U_{\ell}}=\sum_{j=1}^{m n} \sigma_{j}^{(\ell)} \otimes \tau_{j}^{(\ell)} .
$$

By Problem[11(a),(b) (partition of unity), there exist C^{∞} functions $\varphi_{1}, \ldots, \varphi_{r}$: $M \rightarrow[0,1]$ satisfying $\operatorname{supp} \varphi_{\ell} \subset U_{\ell}$ for each ℓ and

$$
\sum_{\ell=1}^{r} \varphi_{\ell}(p)^{2}=1, \quad \forall p \in M
$$

Define the function $\widetilde{\sigma}_{j}^{(\ell)}: M \rightarrow E_{1}$ by $\widetilde{\sigma}_{j}^{(\ell)}(p)=\varphi_{\ell}(p) \sigma_{j}^{(\ell)}(p)$ for $p \in U_{\ell}$ and $\tilde{\sigma}_{j}^{(\ell)}=0 \in E_{1, p}$ for $p \in M \backslash U_{\ell}$. Then $\widetilde{\sigma}_{j}^{(\ell)}$ is C^{∞} by the argument in the solution to Problem 7(a) (indeed the restriction of $\widetilde{\sigma}_{j}^{(\ell)}$ to the two open sets U_{ℓ} and $M \backslash \operatorname{supp}\left(\varphi_{\ell}\right)$ is C^{∞}, and these two open sets cover $\left.M\right)$. Also $\pi_{1} \circ \tilde{\sigma}_{j}^{(\ell)}=1_{M}$. Hence

$$
\tilde{\sigma}_{j}^{(\ell)} \in \Gamma E_{1} .
$$

Similarly define

$$
\widetilde{\tau}_{j}^{(\ell)} \in \Gamma E_{2}
$$

by $\widetilde{\tau}_{j}^{(\ell)}(p)=\varphi_{\ell}(p) \tau_{j}^{(\ell)}(p)$ for $p \in U_{\ell}$ and zero elsewhere. Now

$$
\sum_{j=1}^{m n} \sum_{\ell=1}^{r} \tilde{\sigma}_{j}^{(\ell)} \otimes \widetilde{\tau}_{j}^{(\ell)} \in \Gamma E_{1} \otimes \Gamma E_{2}
$$

and for every $p \in M$ we have

$$
\begin{aligned}
J\left(\sum_{j=1}^{m n} \sum_{\ell=1}^{r} \widetilde{\sigma}_{j}^{(\ell)} \otimes \widetilde{\tau}_{j}^{(\ell)}\right)(p) & =\sum_{j=1}^{m n} \sum_{\ell=1}^{r} \widetilde{\sigma}_{j}^{(\ell)}(p) \otimes \widetilde{\tau}_{j}^{(\ell)}(p) \\
& =\sum_{j=1}^{m n} \sum_{\substack{\ell=1 \\
\left(p \in U_{\ell}\right)}}^{r}\left(\varphi_{\ell}(p) \sigma_{j}^{(\ell)}(p)\right) \otimes\left(\varphi_{\ell}(p) \tau_{j}^{(\ell)}(p)\right) \\
& =\sum_{\substack{\ell=1 \\
\left(p \in U_{\ell}\right)}}^{r} \varphi_{\ell}(p)^{2} \sum_{j=1}^{m n} \sigma_{j}^{(\ell)}(p) \otimes \tau_{j}^{(\ell)}(p) \\
& =\sum_{\substack{\ell=1 \\
\left(p \in U_{\ell}\right)}}^{r} \varphi_{\ell}(p)^{2} s(p) \\
& =s(p) .
\end{aligned}
$$

Hence

$$
J\left(\sum_{j=1}^{m n} \sum_{\ell=1}^{r} \tilde{\sigma}_{j}^{(\ell)} \otimes \widetilde{\tau}_{j}^{(\ell)}\right)=s
$$

and we have proved that J is surjective.
Proof that J is injective: This seems somewhat more complicated to carry out in the direct approach fashion used above, and we skip it for now... However see [3, Thm. 7.5.5] for an elegant (but slightly less direct) proof.

Problem 44:

(a). (Cf. Poor, [16, Prop. 1.60].)

We start by proving that there is a natural bijection between $\Gamma f^{*} E$ and $\Gamma_{f} E$. Remeber from Problem 42 that $f^{*} E$ is a differentiable submanifold of $M \times E$, and we know from Problem 8 that $\mathrm{pr}_{2}: M \times E \rightarrow E$ is a C^{∞} map. Now if $s \in \Gamma f^{*} E$ then $\operatorname{pr}_{2} \circ s$ is a $C^{\infty} \operatorname{map}$ from M to E. Also $\pi \circ \operatorname{pr}_{2} \circ s=f$, since $\operatorname{pr}_{2}(s(p)) \in E_{f(p)}$ for all $p \in M$. Hence $\operatorname{pr}_{2} \circ s \in \Gamma_{f} E$. Thus we have constructed a map

$$
\begin{equation*}
\Gamma f^{*} E \rightarrow \Gamma_{f} E ; \quad s \mapsto \mathrm{pr}_{2} \circ s \tag{115}
\end{equation*}
$$

We next construct the inverse map. Given $\sigma \in \Gamma_{f} E$, we define the map

$$
\widehat{\sigma}: M \rightarrow f^{*} E ; \quad \widehat{\sigma}(p):=(p, \sigma(p))
$$

Note that for any $p \in M$ we have $\sigma(p) \in E_{f(p)}$ and hence

$$
\widehat{\sigma}(p) \in\{p\} \times E_{f(p)}=\left(f^{*} E\right)_{p}
$$

This relation implies in particular $\widehat{\sigma}(p) \in f^{*} E$, i.e. $\widehat{\sigma}$ is indeed a well-defined map from M to $f^{*} E$, and it also implies that $\widetilde{\pi}(\widehat{\sigma}(p))=p$; thus $\widetilde{\pi} \circ \widehat{\sigma}=1_{M}$. In order to prove that $\widehat{\sigma}$ is C^{∞}, it suffices to prove that $\widetilde{\varphi} \circ \widehat{\sigma}_{\mid f^{-1}(U)}$ is C^{∞} for every bundle chart (U, φ) for (E, π, N). 29 Now for every $p \in f^{-1}(U)$,

$$
\widetilde{\varphi}(\widehat{\sigma}(p))=\widetilde{\varphi}(p, \sigma(p))=\left(p, \operatorname{pr}_{2}(\varphi(\sigma(p)))\right)
$$

and the last expression is clearly a C^{∞} function of $p \in f^{-1}(U)$ (using Problem 8 (d) and the fact that any composition of C^{∞} maps is a $C^{\infty} \operatorname{map}$). Hence $\widehat{\sigma} \in \Gamma f^{*} E$. Thus we have constructed a map

$$
\begin{equation*}
\Gamma_{f} E \rightarrow \Gamma f^{*} E ; \quad \sigma \mapsto \widehat{\sigma} \tag{116}
\end{equation*}
$$

Next we prove that the two maps (115) and (116) are inverses to each other. For every $\sigma \in \Gamma_{f} E$ we have, for every $p \in M$,

$$
\operatorname{pr}_{2} \circ \widehat{\sigma}(p)=\operatorname{pr}_{2}(p, \sigma(p))=\sigma(p)
$$

Hence $\operatorname{pr}_{2} \circ \widehat{\sigma}=\sigma$. Next, for every $s \in \Gamma f^{*} E$ we have, for every $p \in M$,

$$
\begin{array}{r}
\widehat{\operatorname{pr}_{2} \circ s}(p)=\left(p, \operatorname{pr}_{2}(s(p))\right)=\left(\widetilde{\pi}(s(p)), \operatorname{pr}_{2}(s(p))\right)=\left(\operatorname{pr}_{1}(s(p)), \operatorname{pr}_{2}(s(p))\right) \\
=s(p)
\end{array}
$$

Hence $\widehat{\mathrm{pr}_{2} \circ S}=s$. Done!
Hence we have proved that the map (115) is a bijection of $\Gamma f^{*} E$ onto $\Gamma_{f} E$, with inverse given by (116). Hence there is a unique $C^{\infty} M$-module structure on $\Gamma_{f} E$ which such that (115) is an isomorphism of $C^{\infty} M$-modules!

[^26]It should here also be pointed out that the $C^{\infty} M$-module operations in $\Gamma_{f} E$ are completely natural, namely they are just pointwise addition and pointwise multiplication by scalar(s). Indeed, let $\alpha \in C^{\infty} M$ and $\sigma_{1}, \sigma_{2} \in$ $\Gamma_{f} E$. Then $\sigma_{1}+\sigma_{2} \in \Gamma_{f} E$ is just the pointwise sum, i.e.

$$
\left(\sigma_{1}+\sigma_{2}\right)(p)=\sigma_{1}(p)+\sigma_{2}(p) \in E_{f(p)}, \quad \forall p \in M ;
$$

and $\alpha \sigma_{1} \in \Gamma_{f} E$ is the pointwise product, i.e.

$$
\left(\alpha \sigma_{1}\right)(p)=\alpha(p) \sigma_{1}(p) \in E_{f(p)}, \quad \forall p \in M
$$

To prove the formula for $\sigma_{1}+\sigma_{2}$, note that since we require that (116) is a $C^{\infty} M$-module isomorphism, we should have $\widehat{\sigma_{1}+\sigma_{2}}=\widehat{\sigma}_{1}+\widehat{\sigma}_{2}$ in $\Gamma f^{*} E$, and by definition of the $C^{\infty} M$-module structure of $\Gamma f^{*} E, \widehat{\sigma}_{1}+\widehat{\sigma}_{2}$ is just pointwise sum, i.e. $\left(\widehat{\sigma}_{1}+\widehat{\sigma}_{2}\right)(p)=\widehat{\sigma}_{1}(p)+\widehat{\sigma}_{2}(p)$ for all $p \in M$. Hence

$$
\begin{aligned}
\left(p,\left(\sigma_{1}+\sigma_{2}\right)(p)\right)=\widehat{\sigma_{1}+\sigma_{2}}(p)=\widehat{\sigma}_{1}(p)+\widehat{\sigma}_{2}(p)= & \left(p, \sigma_{1}(p)\right)+\left(p, \sigma_{2}(p)\right) \\
& =\left(p, \sigma_{1}(p)+\sigma_{2}(p)\right),
\end{aligned}
$$

and therefore $\left(\sigma_{1}+\sigma_{2}\right)(p)=\sigma_{1}(p)+\sigma_{2}(p)$. Done! The proof of the formula for $\alpha \sigma_{1}$ is completely similar.
(b) (Recall that "basis of sections" is defined in Problem 33(c).)

Our task is to prove that for every $p \in U$,

$$
\begin{equation*}
s_{1}(f(p)), \ldots, s_{n}(f(p)) \text { form a basis for }\left(f^{*} E\right)_{p} \tag{117}
\end{equation*}
$$

However $\left(f^{*} E\right)_{p}=E_{f(p)}$ and $f(p) \in V$, and therefore (117) follows from our assumption that s_{1}, \ldots, s_{n} is a basis of sections in $\Gamma E_{\mid V}$.
(c) By Problem 38 there is a finite open cover $\left\{U_{1}, \ldots, U_{r}\right\}$ of N such that $E_{\mid U_{j}}$ is trivial for each j. For each $j \in\{1, \ldots, r\}$, let $s_{j, 1}, \ldots, s_{j, n}$ be a basis of sections in $\Gamma E_{\mid U_{j}}$ (here $n=\operatorname{rank} E$). Also let $\varphi_{1}, \ldots, \varphi_{r}$ be a subordinate partition of unity as in Problem 11(a), i.e. each φ_{j} is a C^{∞} function $N \rightarrow[0,1]$ with $\operatorname{supp} \varphi_{j} \subset U_{j}\left(\operatorname{but} \operatorname{supp} \varphi_{j}\right.$ is not necessarily compact) and $\sum_{j=1}^{r} \varphi_{j}(y)=1$ for all $y \in N$. By Problem 11(b), we may furthermore assume that each function $\rho_{j}:=\sqrt{\varphi_{j}}$ is C^{∞}. Note that these functions satisfy $\operatorname{supp} \rho_{j}=\operatorname{supp} \varphi_{j} \subset U_{j}$ and

$$
\sum_{j=1}^{r} \rho_{j}(y)^{2}=1, \quad \forall y \in N
$$

For each $j \in\{1, \ldots, r\}$ and $k \in\{1, \ldots, n\}$ we define a function $\widetilde{s}_{j, k}: N \rightarrow$ E by

$$
\widetilde{s}_{j, k}(y)= \begin{cases}\rho_{j}(y) s_{j, k}(y) & \text { if } y \in U_{j} \\ 0\left(\text { in } E_{y}\right) & \text { if } y \notin U_{j} .\end{cases}
$$

Then $\operatorname{supp}\left(\widetilde{s}_{j, k}\right) \subset \operatorname{supp}\left(\rho_{j}\right) \subset U_{j}$ and hence by mimicking the solution to Problem[7(a) one shows that $\widetilde{s}_{j, k}$ is C^{∞}. Also $\pi \circ \widetilde{s}_{j, k}=1_{N}$; hence $\widetilde{s}_{j, k} \in \Gamma E$.

Now let $s \in \Gamma_{f} E$ be given. We then define $\alpha_{j, k}: M \rightarrow \mathbb{R}$ for $j \in\{1, \ldots, r\}$ and $k \in\{1, \ldots, n\}$ by the requirement

$$
\begin{cases}s(x)=\sum_{k=1}^{n} \alpha_{j, k}(x) \cdot s_{j, k}(f(x)) & \text { if } x \in f^{-1}\left(U_{j}\right) ; \tag{118}\\ \alpha_{j, 1}(x)=\cdots=\alpha_{j, n}(x)=0 & \text { if } x \notin f^{-1}\left(U_{j}\right) .\end{cases}
$$

By part (b) together with Problem 34, this makes the functions $\alpha_{j, k}$ uniquely determined, and $\alpha_{j, k \mid f^{-1}\left(U_{j}\right)} \in C^{\infty}\left(f^{-1}\left(U_{j}\right)\right)$ for all j, k. Next define the function $\widetilde{\alpha}_{j, k}: M \rightarrow \mathbb{R}$ by

$$
\widetilde{\alpha}_{j, k}(x):=\rho_{j}(f(x)) \cdot \alpha_{j, k}(x) .
$$

Then $\widetilde{\alpha}_{j, k \mid f^{-1}\left(U_{j}\right)} \in C^{\infty}\left(f^{-1}\left(U_{j}\right)\right)$, and also $\operatorname{supp}\left(\widetilde{\alpha}_{j, k}\right) \subset \operatorname{supp}\left(\rho_{j} \circ f\right) \subset$ $f^{-1}\left(\operatorname{supp}\left(\rho_{j}\right)\right) \subset f^{-1}\left(U_{j}\right),{ }^{30}$ and hence by Problem $7(\mathrm{a}), \widetilde{\alpha}_{j, k} \in C^{\infty}(M)$.

Now for each $x \in M$,

$$
\begin{array}{r}
\sum_{j=1}^{r} \sum_{k=1}^{n} \widetilde{\alpha}_{j, k}(x) \widetilde{s}_{j, k}(f(x))=\sum_{\substack{j=1 \\
\left(f(x) \in U_{j}\right)}}^{r} \sum_{k=1}^{n} \rho_{j}(f(x))^{2} \alpha_{j, k}(x) s_{j, k}(f(x)) \\
\{\text { use (118) }\} \quad=\sum_{\substack{j=1 \\
\left(f(x) \in U_{j}\right)}}^{r} \rho_{j}(f(x))^{2} s(x)=s(x) .
\end{array}
$$

(The sum over j is taken over all $j \in\{1, \ldots, r\}$ for which $f(x) \in U_{j}$.) The last equality holds since $\sum_{j=1}^{r} \rho_{j}(f(x))^{2}=1$ and $\rho_{j}(f(x))=0$ for all j with $f(x) \notin U_{j}$. Hence we have expressed s as a finite sum of the desired form.

[^27]
Problem 45:

(a). The solution to Problem 40 is generalized to the present situation without any new difficulties arising (apart from a little extra amount of book-keeping):

Let us write $n_{j}=\operatorname{rank} E_{j}(j=1,2)$ and let π be the projection map $\pi: \operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right) \rightarrow M$.

Let $s \in \Gamma\left(\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)\right)$. Then for each $p \in M$,

$$
s(p) \in \operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)_{p}=\operatorname{Hom}\left(E_{1, p}, E_{2, f(p)}\right),
$$

and so s gives rise to a map

$$
h: E_{1} \rightarrow E_{2}, \quad h(x):=s\left(\pi_{1}(x)\right)(x) \quad\left(x \in E_{1}\right) .
$$

By construction this map h satisfies $\pi_{2} \circ h=f \circ \pi_{1}$, and furthermore for each $p \in M$,

$$
h_{p}:=h_{\mid E_{1, p}}=s(p) \in \operatorname{Hom}\left(E_{1, p}, E_{2, f(p)}\right),
$$

i.e. h_{p} is a linear map from $E_{1, p}$ to $E_{2, f(p)}$. Hence if we can only prove that h is C^{∞} then h is a bundle homomorphism $E_{1} \rightarrow E_{2}$ along f.

To prove that h is C^{∞} is a local problem, and by passing to appropriate charts and bundle charts it is seen to follow from the basic fact pointed out around (99), (100) in the solution of Problem 40, (We leave out the details...)

Hence, writing \mathcal{H} for the set of bundle homomorphisms $E_{1} \rightarrow E_{2}$ along f, then above we have constructed a map

$$
\begin{equation*}
\Gamma\left(\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)\right) \rightarrow \mathcal{H}, \quad " s \mapsto h " \tag{119}
\end{equation*}
$$

We next construct the inverse map. Thus let h be a bundle homomorphism $E_{1} \rightarrow E_{2}$ along f. Then by definition, for each $p \in M, h_{p}=h_{\mid E_{1, p}}$ is an \mathbb{R}-linear map from $E_{1, p}$ to $E_{2, f(p)}$, i.e.

$$
h_{p} \in \operatorname{Hom}\left(E_{1, p}, E_{2, f(p)}\right)=\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)_{p} .
$$

Let us define the map $s: M \rightarrow \operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)$ by $s(p):=h_{p}$. Clearly $\pi \circ s=1_{M}$, and one verifies that s is C^{∞} by passing to local coordinates (we again leave out the details). Hence $s \in \Gamma\left(\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)\right.$), and so we have constructed a map

$$
\begin{equation*}
\mathcal{H} \rightarrow \Gamma\left(\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)\right), \quad " h \mapsto s " . \tag{120}
\end{equation*}
$$

It is immediate from our definitions (in particular using " $s(p)=h_{p}$ ") that the two maps (119) and (120) are inverses to each other. Hence we the two maps are in fact bijections.
(b). Consider the special case $N=M$ and $f=1_{M}$. Then $h: E_{1} \rightarrow E_{2}$ is a "bundle homomorphism along f " iff h is a bundle homomorphism. Also $f^{*} E_{2}=E_{2}$. Hence in this special case, part (a) of the present problem says the same as Problem 40 (and one verifies that the bijection is really the same as there).

Next consider the special case where E_{1} is the trivial vector bundle of rank 1 over M, i.e. $E_{1}=M \times \mathbb{R}$ (but $f: M \rightarrow N$ is again a general C^{∞} map between C^{∞} manifolds; also (E_{2}, π_{2}, N) is an arbitrary vector bundle). Then there is an "obvious" bijection between the family of bundle homomorphism $h: E_{1} \rightarrow E_{2}$ along f and the family $\Gamma_{f} E_{2}$ of sections s of E_{2} along f : This bijection is given by $s(p):=h(p, 1)(\forall p \in M)$; inverse: $h(p, r)=r \cdot s(p)$ $\left(\forall(p, r) \in E_{1}=M \times \mathbb{R}\right)$. Furthermore we have an "obvious" identification $\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)=f^{*} E_{2}$, via the identifications
$\operatorname{Hom}\left(E_{1}, f^{*} E_{2}\right)_{p}=\operatorname{Hom}\left(E_{1, p},\left(f^{*} E_{2}\right)_{p}\right)=\operatorname{Hom}\left(\mathbb{R},\left(f^{*} E_{2}\right)_{p}\right)=\left(f^{*} E_{2}\right)_{p}$
$(\forall p \in M)$. In the light of these identifications, part (a) of the present problem now says that there is a natural bijection between $\Gamma f^{*} E_{2}$ and the set $\Gamma_{f} E_{2}$. This is exactly the statement of Problem 44(a) (and one verifies that the bijection is really the same as there).

Problem 46:

Let (U, φ) be a bundle chart for E with $c\left(t_{0}\right) \in U$. Take $\varepsilon>0$ so small that $c(t) \in U$ for all $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$. Then via (U, φ), the section $s_{\mid\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)}$ is identified with a C^{∞} map from $\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ to \mathbb{R}^{n}, where $n:=\operatorname{rank} E$. Let s^{j} be the j :th coordinate of this function; thus s^{j} is a C^{∞} map from $\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ to \mathbb{R}, for $j=1, \ldots, n$. By Problem 12(b), for each j there exists some $\varepsilon_{j} \in(0, \varepsilon)$ and a C^{∞} function $g^{j}: U \rightarrow \mathbb{R}$ such that $g^{j}(c(t))=s^{j}(t)$ for all $t \in\left(t_{0}-\varepsilon_{j}, t_{0}+\varepsilon_{j}\right)$. Let $g: U \rightarrow \mathbb{R}^{n}$ be the function whose j th coordinate is g^{j}; this is a C^{∞} function from U to \mathbb{R}^{n}, and via our bundle chart $(U, \varphi), g$ defines a section $\widetilde{s} \in \Gamma E_{\mid U}$ satisfying $\widetilde{s}(c(t))=s(t)$ for all $t \in\left(t_{0}-\varepsilon^{\prime}, t_{0}+\varepsilon^{\prime}\right)$, where $\varepsilon^{\prime}:=\min \left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Now by Problem 35(a), there exists some $s_{1} \in \Gamma E$ and an open set $V \subset U$ containing $c\left(t_{0}\right)$ satisfying $s_{1 \mid V}=\widetilde{s}_{\mid V}$. Now take $\varepsilon^{\prime \prime} \in\left(0, \varepsilon^{\prime}\right]$ so that $c(t) \in V$ for all $t \in\left(t_{0}-\varepsilon^{\prime \prime}, t_{0}+\varepsilon^{\prime \prime}\right)$. Then we have $s_{1}(c(t))=s(t)$ for all $t \in\left(t_{0}-\varepsilon^{\prime \prime}, t_{0}+\varepsilon^{\prime \prime}\right)$. Done!
[Some pedantic details: In more precise notation, we have in the previous discussion:

$$
s^{j}:=\widetilde{\operatorname{pr}}_{j} \circ \operatorname{pr}_{2} \circ \varphi \circ s:\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \rightarrow \mathbb{R},
$$

where pr_{2} is the projection from $U \times \mathbb{R}^{n}$ onto the second factor \mathbb{R}^{n}, and $\operatorname{pr}_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is projection onto the j th coordinate. Also \widetilde{s} is defined by

$$
\widetilde{s}(p):=\varphi^{-1}(p, g(p)), \quad \forall p \in U,
$$

which by inspection is indeed a C^{∞} map from U to E with $\pi \circ \widetilde{s}=1_{U}$; thus $\widetilde{s} \in \Gamma E_{\mid U}$. Our choice of g, g^{1}, \ldots, g^{n} and ε^{\prime} implies that for every $t \in\left(t_{0}-\varepsilon^{\prime}, t_{0}+\varepsilon^{\prime}\right)$ we have

$$
g^{j}(c(t))=s^{j}(t)=\widetilde{\operatorname{pr}}_{j} \circ \operatorname{pr}_{2} \circ \varphi \circ s(t) ;
$$

hence

$$
g(c(t))=\operatorname{pr}_{2} \circ \varphi \circ s(t),
$$

and since also $\operatorname{pr}_{1} \circ \varphi \circ s(t)=\pi \circ s(t)=c(t)$, it follows that:

$$
\varphi(s(t))=(c(t), g(c(t))),
$$

and thus

$$
s(t)=\varphi^{-1}(c(t), g(c(t)))=\widetilde{s}(c(t)), \quad \forall t \in\left(t_{0}-\varepsilon^{\prime}, t_{0}+\varepsilon^{\prime}\right),
$$

just as we claimed in the above discussion.]

Problem 47:

(a). The map

$$
\begin{equation*}
f \mapsto X(Y(f))-Y(X(f)), \quad C^{\infty}(M) \rightarrow C^{\infty}(M) \tag{121}
\end{equation*}
$$

is clearly \mathbb{R}-linear, since X and Y are (or give) \mathbb{R}-linear maps on $C^{\infty}(M)$ (cf. Problem 15(b)). Furthermore for any $f, g \in C^{\infty}(M)$, using the fact that X and Y are derivations we have

$$
\begin{aligned}
X(Y(f g)) & =X((Y f) \cdot g+f \cdot(Y g)) \\
& =(X(Y f)) \cdot g+(Y f) \cdot(X g)+(X f) \cdot(Y g)+f \cdot(X(Y g)) .
\end{aligned}
$$

Similarly,

$$
Y(X(f g))=(Y(X f)) \cdot g+(X f) \cdot(Y g)+(Y f) \cdot(X g)+f \cdot(Y(X g))
$$

and subtracting the two we get
$X(Y(f g))-Y(X(f g))=(X(Y(f))-Y(X(f))) \cdot g+f \cdot(X(Y(g))-Y(X(g)))$.
Hence the map in (121) is a derivation of $C^{\infty}(M)$. Hence by Problem 15(b) there is a unique vector field Z on M such that

$$
Z(f)=X(Y(f))-Y(X(f)), \quad \forall f \in C^{\infty}(M) .
$$

Done.
(b). ...
(c). For any $f \in C^{\infty}(M)$ we have, by definition of the Lie product,

$$
\begin{aligned}
{[[X, Y], Z](f) } & =[X, Y](Z f)-Z([X, Y] f) \\
& =X(Y(Z(f)))-Y(X(Z(f)))-Z(X(Y(f)))+Z(Y(X(f))) .
\end{aligned}
$$

Adding this to the corresponding formulas for $[[Y, Z], X](f)$ and $[[Z, X], Y](f)$ we obtain

$$
([[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y])(f)=0 .
$$

This is true for all $f \in C^{\infty}(M)$; hence we obtain (via Problem 15(b)):

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0 .
$$

(d). ...

Problem 48:

(a). The task is to prove that if (V, y) is any other C^{∞} chart on M, with respect to which

$$
\omega_{\mid V}=\sum_{I} \widetilde{\omega}_{I} d y^{I}
$$

(with $\widetilde{\omega}_{I} \in C^{\infty}(U)$), then we have

$$
\begin{equation*}
\sum_{I} d \omega_{I} \wedge d x^{I}=\sum_{I} d \widetilde{\omega}_{I} \wedge d y^{I} \quad \text { in } U \cap V \tag{122}
\end{equation*}
$$

We start by noticing that the fact that

$$
\begin{equation*}
\sum_{I} \widetilde{\omega}_{I} d y^{I}=\sum_{I} \omega_{I} d x^{I} \quad \text { in } U \cap V \tag{123}
\end{equation*}
$$

(since both these are $=\omega_{\mid U \cap V}$ in $U \cap V$) means that

$$
\begin{equation*}
\sum_{I} \widetilde{\omega}_{I} d y^{I}=f^{*}\left(\sum_{I} \omega_{I} d x^{I}\right) \quad \text { in } y(U \cap V) \subset \mathbb{R}^{d} . \tag{124}
\end{equation*}
$$

where f is the coordinate transformation

$$
f=x \circ y^{-1}: y(U \cap V) \rightarrow x(U \cap V) .
$$

[Pedantic explanation: In (124) we are stating an equality between two r-forms living on an open subset of \mathbb{R}^{d}, and so we are no longer viewing $d x^{I}$ or $d y^{I}$ as r-forms on $U \cap V$, but rather as r-forms on $x(U) \subset \mathbb{R}^{d}$ and on $y(V) \subset \mathbb{R}^{d}$, respectively. This is the reason why we can both have (123) and (124) although on first look they seem to contradict each other! Namely, in (123) we are viewing $d x^{I}$ and $d y^{I}$ as r-forms on (subsets of) M, but in (124) we are viewing them more concretely as r-forms on (subsets of) \mathbb{R}^{d}. Note that also ω_{I} and $\widetilde{\omega}_{I}$ stand for different things in (124) versus (123): in (123) ω_{I} and $\widetilde{\omega}_{I}$ are functions on U and V respectively, whereas in (124) they are functions on $x(U)$ and $y(V)$, respectively (and a more pedantically correct notation for these would be $\omega_{I} \circ x^{-1}$ and $\left.\widetilde{\omega}_{I} \circ y^{-1}\right)$. The situation is exactly the same regarding the relationship between (122) and the computation below. Note that we saw a similar example of such 31 abuse of notation already when we introduced tangent spaces: We have $\frac{\partial}{\partial x^{j}}=\frac{\partial y^{k}}{\partial x^{j}} \frac{\partial}{\partial y^{k}}$ in $T_{p} M$ for any $p \in U \cap V$, but the corresponding relation certainly does not hold (in general) when we view $\frac{\partial}{\partial x^{j}}$ as vectors in $T_{x(p)} \mathbb{R}^{d}=\mathbb{R}^{d}$ and $\frac{\partial}{\partial y^{k}}$ as vectors in $T_{y(p)} \mathbb{R}^{d}=\mathbb{R}^{d}$.]

[^28]Now in $y(U \cap V)$ we have:

$$
\begin{aligned}
\sum_{I} d \widetilde{\omega}_{I} \wedge d y^{I} & =d\left(\sum_{I} \widetilde{\omega}_{I} d y^{I}\right) \\
& =d\left(f^{*}\left(\sum_{I} \omega_{I} d x^{I}\right)\right) \\
& =f^{*}\left(d\left(\sum_{I} \omega_{I} d x^{I}\right)\right) \\
& =f^{*}\left(\sum_{I} d \omega_{I} \wedge d x^{I}\right) .
\end{aligned}
$$

[Details: The first equality holds by the definition of d; the second by (124); the third by Jost, [12, Lemma 2.1.3]; and finally the fourth equality again holds by the definition of d.]

The equality proved in the above computation says exactly that (122) holds! This completes the proof that the map $d: \Omega^{r}(M) \rightarrow \Omega^{r+1}(M)$ is well-defined. It is now immediate to verify that this map is \mathbb{R}-linear.
(b). Strictly speaking, we need to prove this formula first in the special case when M and N are open subsets of \mathbb{R}^{d} and $\mathbb{R}^{d^{\prime}}$, since we make use of this fact in the proof that the general exterior derivative $d: \Omega^{r}(M) \rightarrow \Omega^{r+1}(M)$ is well-defined; cf. part (a) above!

Thus assume that M is an open subset of \mathbb{R}^{d} and N is an open subset of $\mathbb{R}^{d^{\prime}}$ (and $f: M \rightarrow N$ is a C^{∞} map). Let us write $x=\left(x^{1}, \ldots, x^{d^{\prime}}\right)$ for a variable point in N and $y=\left(y^{1}, \ldots, y^{d}\right)$ for a variable point in M. Let $\omega \in \Omega^{r}(N)$, and take functions $\omega_{I} \in C^{\infty}(N)$ so that $\omega=\sum_{I} \omega_{I} d x^{I}$. Then $f^{*}(\omega) \in \Omega^{r}(M)$ is given by (recall that $I=\left(i_{1}, \ldots, i_{r}\right)$ runs through all r-tuples with $\left.1 \leq i_{1}<\cdots<i_{r} \leq d^{\prime}\right)$:

$$
\begin{aligned}
f^{*}(\omega) & =\sum_{I} f^{*}\left(\omega_{I}\right) f^{*}\left(d x^{i_{1}} \wedge \cdots \wedge d x^{i_{r}}\right) \\
& =\sum_{I}\left(\omega_{I} \circ f\right) f^{*}\left(d x^{i_{1}}\right) \wedge \cdots \wedge f^{*}\left(d x^{i_{r}}\right) \\
& =\sum_{I}\left(\omega_{I} \circ f\right) d\left(x^{i_{1}} \circ f\right) \wedge \cdots \wedge d\left(x^{i_{r}} \circ f\right) \\
& =\sum_{I}\left(\omega_{I} \circ f\right) d f^{i_{1}} \wedge \cdots \wedge d f^{i_{r}} .
\end{aligned}
$$

(In this computation we used some basic properties of f^{*} which we pointed out in Lecture \#8.) Hence (making use of [12, Lemma 2.1.2] for r-forms on \mathbb{R}^{d}):

$$
\begin{align*}
& d\left(f^{*}(\omega)\right)=\sum_{I} d\left(\left(\omega_{I} \circ f\right) d f^{i_{1}} \wedge \cdots \wedge d f^{i_{r}}\right) \\
&=\sum_{I}(d\left(\omega_{I} \circ f\right) \wedge d f^{i_{1}} \wedge \cdots \wedge d f^{i_{r}} \\
&+\left(\omega_{I} \circ f\right)\left(d\left(d f^{i_{1}}\right)\right) \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{r}} \\
&-\left(\omega_{I} \circ f\right)\left(d f^{i_{1}}\right) \wedge\left(d\left(d f^{i_{2}}\right)\right) \wedge d f^{i_{3}} \wedge \cdots \wedge d f^{i_{r}} \tag{125}\\
&25)\left.+\cdots-(-1)^{r}\left(\omega_{I} \circ f\right)\left(d f^{i_{1}}\right) \wedge\left(d f^{i_{2}}\right) \wedge \cdots \wedge d\left(d f^{i_{r}}\right)\right) .
\end{align*}
$$

But note that for any $g \in C^{\infty}(M)$ we have

$$
\begin{equation*}
d(d g)=d\left(\frac{\partial g}{\partial y^{j}} d y^{j}\right)=d\left(\frac{\partial g}{\partial y^{j}}\right) \wedge d y^{j}=\frac{\partial^{2} g}{\partial y^{k} \partial y^{j}} d y^{k} \wedge d y^{j}=0 . \tag{126}
\end{equation*}
$$

(The last equality holds since we are adding over $k, j \in\{1, \ldots, d\}$, and since $d y^{k} \wedge d y^{j}=-d y^{j} \wedge d y^{k}$.) Hence all inner terms in (125) except the first vanish, i.e. we obtain:

$$
\begin{equation*}
d\left(f^{*}(\omega)\right)=\sum_{I} d\left(\omega_{I} \circ f\right) \wedge d f^{i_{1}} \wedge \cdots \wedge d f^{i_{r}} . \tag{127}
\end{equation*}
$$

(Of course, (126) is a special case of the general relation $d \circ d=0$ 12, Theorem 2.1.5], and once we know this the proof of (127) is much shorter.)

On the other hand,

$$
\begin{align*}
f^{*}(d \omega)=f^{*}\left(\sum_{I} d \omega_{I} \wedge d x^{I}\right) & =\sum_{I} f^{*}\left(d \omega_{I}\right) \wedge f^{*}\left(d x^{I}\right) \\
& =\sum_{I} d\left(\omega_{I} \circ f\right) \wedge d f^{i_{1}} \wedge \cdots \wedge d f^{i_{r}} \tag{128}
\end{align*}
$$

Comparing with (127), we conclude that indeed $d\left(f^{*}(\omega)\right)=f^{*}(d \omega)$.
Later, when we have defined the exterior derivative for general manifolds M (cf. part (a) of this problem), the above proof carries over, with very small changes, to the case of a C^{∞} map $f: M \rightarrow N$ between C^{∞} manifolds. Indeed, one fixes a chart (U, x) on N and assumes $\omega_{\mid U}=\sum_{I} \omega_{I} d x^{I}$ with $\omega_{I} \in C^{\infty}(U)$. Then the computation up to and including (125) is still valid, in the open subset $f^{-1}(U)$ of M. (Note that each f^{j} is a C^{∞} function $f^{-1}(U) \rightarrow \mathbb{R}$, defined by $f^{j}:=x^{j} \circ f$.) Also for any open set $W \subset M$ and any $g \in C^{\infty}(W)$, the computation in (126) shows that $d(d g)=0$; namely if we work locally wrt any chart (V, y) on W. Hence we obtain (127), as an equality of $(r+1)$-forms restricted to the set $f^{-1}(U)$. Similarly the computation (128) is valid in $f^{-1}(U)$, and so we conclude that

$$
d\left(f^{*}(\omega)\right)_{\mid f^{-1}(U)}=f^{*}(d \omega)_{\left.\right|^{-1}(U)}
$$

But this is true for (U, x) being an arbitrary C^{∞} chart on N; hence we actually have $d\left(f^{*}(\omega)\right)=f^{*}(d \omega)$ on all M.
(c). Let (U, x) be a C^{∞} chart on M. We first prove the stated formula on U, and in the special case when

$$
\begin{equation*}
X_{j}:=\frac{\partial}{\partial x^{\ell_{j}}} \in \Gamma(T U), \quad(j=0, \ldots, r) \tag{129}
\end{equation*}
$$

for some $\ell_{0}, \ldots, \ell_{r} \in\{1, \ldots, d\}(d=\operatorname{dim} M)$. In this case $\left[X_{j}, X_{k}\right]=0$ for all $j, k \in\{0, \ldots, r\}$, and hence the formula that we wish to prove states that for any $\omega \in \Omega^{r}(U)$,

$$
\begin{equation*}
[d \omega]\left(X_{0}, \ldots, X_{r}\right)=\sum_{j=0}^{r}(-1)^{j} X_{j}\left(\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) . \tag{130}
\end{equation*}
$$

Let us first note that both sides of (130) are alternating in X_{0}, \ldots, X_{r}, i.e. if we replace X_{0}, \ldots, X_{r} by $X_{\sigma(0)}, \ldots, X_{\sigma(r)}$ for some $\sigma \in \mathfrak{S}_{r+1}$ (the group of permutations of $\{0,1, \ldots, r\}$) then the effect is that the expressions on both sides of (130) get multiplied by $\operatorname{sgn} \sigma$. [Detailed proof: For the left hand side this holds since $d \omega$ is alternating by definition. Now consider the right hand side. It suffices to study what happens when X_{i} and X_{i+1} are switched for some $i \in\{0,1, \ldots, r-1\}$, since \mathfrak{S}_{r+1} is generated by such transpositions. Then for each $j \notin\{i, i+1\}$ the corresponding term in the sum is negated, since $\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)$ gets negated by the transposition. Furthermore the contribution from $j \in\{i, i+1\}$ to the sum after the transposition is

$$
(-1)^{i} X_{i+1}\left(\omega\left(X_{0}, \ldots, \hat{X}_{i+1}, \ldots, X_{r}\right)\right)+(-1)^{i+1} X_{i}\left(\omega\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{r}\right)\right),
$$

and this is again equal to -1 times the contribution from $j \in\{i, i+1\}$ in the original sum. Hence we conclude that the whole expression in the right hand side of (130) gets negated when switching $X_{i} \leftrightarrow X_{i+1}$, and this completes the proof of the claim.]

It follows that it suffices to prove (130) in the special case

$$
\begin{equation*}
\ell_{0}<\ell_{1}<\cdots<\ell_{r} . \tag{131}
\end{equation*}
$$

(Note in particular that if any two of the ℓ_{j} 's are equal then the alternating property proved above implies that both sides of (130) equal zero and so the equality holds.)

Now take $\omega_{I} \in C^{\infty}(U)$ so that $\omega=\sum_{I} \omega_{I} d x^{I}$ (notation as before). Then $d \omega=\sum_{I} d \omega_{I} \wedge d x^{I}$, and recalling $I=\left(i_{1}, \ldots, i_{r}\right)$ and the definition of wedge product, we get:

$$
\begin{align*}
{[d \omega]\left(X_{0}, \ldots, X_{r}\right) } & =\sum_{I}\left(d \omega_{I} \wedge d x^{I}\right)\left(X_{0}, \ldots, X_{r}\right) \\
& =\sum_{I} \sum_{\sigma \in \mathfrak{G}_{r+1}}(\operatorname{sgn} \sigma) \cdot d \omega_{I}\left(X_{\sigma(0)}\right) \cdot \prod_{j=1}^{r} d x^{i_{j}}\left(X_{\sigma(j)}\right) . \tag{132}
\end{align*}
$$

Recalling (129), we see that the last product equals one if $I=\left(i_{1}, \ldots, i_{r}\right)=$ $\left(\ell_{\sigma(1)}, \ldots, \ell_{\sigma(r)}\right)$, otherwise zero. Recalling now (131) and the fact that I runs through all r-tuples with $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq d$, it follows
that $\sigma \in \mathfrak{S}_{r+1}$ contributes to the last sum iff $\sigma(1)<\sigma(2)<\cdots<\sigma(r)$. There exist exactly $r+1$ such permutations σ, namely one for each choice of $a:=\sigma(0) \in\{0,1, \ldots, r+1\}$; explicitly the unique admissible permutation $\sigma=\sigma_{a}$ with $\sigma_{a}(0)=a$ is given by $\sigma_{a}(j)=j-1$ for $1 \leq j \leq a$ and $\sigma_{a}(j)=j$ for $a<j \leq r$. Note also that this permutation σ can be obtained as a product of a transpositions $i \leftrightarrow i+1$; hence $\operatorname{sgn}\left(\sigma_{a}\right)=(-1)^{a}$. Given $\sigma=\sigma_{a}$, we get contribution from $I=\left(\ell_{\sigma_{a}(1)}, \ldots, \ell_{\sigma_{a}(r)}\right)$ and no other I, and using $\omega=\sum_{I} \omega_{I} d x^{I}$ we get for $I=\left(\ell_{\sigma(1)}, \ldots, \ell_{\sigma(r)}\right)$:

$$
\omega_{I}=\omega\left(X_{\sigma_{a}(1)}, \ldots, X_{\sigma_{a}(r)}\right)=\omega\left(X_{0}, \ldots, \hat{X}_{a}, \ldots, X_{r}\right) \in C^{\infty}(U)
$$

and thus

$$
d \omega_{I}\left(X_{\sigma_{a}(0)}\right)=X_{a}\left(\omega\left(X_{0}, \ldots, \hat{X}_{a}, \ldots, X_{r}\right)\right)
$$

Using these facts in (132) we get:

$$
[d \omega]\left(X_{0}, \ldots, X_{r}\right)=\sum_{a=0}^{r}(-1)^{a} X_{a}\left(\omega\left(X_{0}, \ldots, \hat{X}_{a}, \ldots, X_{r}\right)\right),
$$

i.e. (130) is proved! Recall that this was under the assumption that $X_{j}=$ $\frac{\partial}{\partial x^{\varepsilon_{j}}}$ for $j=0, \ldots, r$; cf. (129).

Next, let us call the right hand side of the general formula which we wish to prove " $F\left(X_{0}, \ldots, X_{r}\right)$ ". That is:

$$
\begin{align*}
F\left(X_{0}, \ldots, X_{r}\right): & :=\sum_{j=0}^{r}(-1)^{j} X_{j}\left(\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
& +\sum_{0 \leq j<k \leq r}(-1)^{j+k} \omega\left(\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) . \tag{133}
\end{align*}
$$

Thus F is a map $F: \Gamma(T M) \times \cdots \times \Gamma(T M) \rightarrow C^{\infty}(M)$. Let us prove that F is $C^{\infty}(M)$-multilinear! It is clear by inspection that F is \mathbb{R}-multilinear. Let us also note that F is alternating. (Proof: The argument we gave just below (130) applies to show that the first sum is alternating. For the second sum a similar argument works; we leave out the details.) Hence to show the $C^{\infty}(M)$-multilinearity, it now suffices to prove that for any $f \in C^{\infty}(M)$,

$$
F\left(f X_{0}, X_{1}, \ldots, X_{r}\right)=f \cdot F\left(X_{0}, X_{1}, \ldots, X_{r}\right) .
$$

But when we replace X_{0} by $f X_{0}$, the $j=0$ term in the first sum of (133) clearly gets multiplied by f, whereas each $j>0$ term becomes $(-1)^{j}$ times

$$
\begin{aligned}
& X_{j}\left(\omega\left(f X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right)=X_{j}\left(f \cdot \omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
& \quad=\left(X_{j} f\right) \cdot \omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)+f \cdot X_{j}\left(\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) .
\end{aligned}
$$

In the second sum, each term with $0<j<k \leq r$ gets multiplied by f, whereas each term with $0=j<k \leq r$ becomes $(-1)^{0+k}$ times

$$
\begin{aligned}
& \omega\left(\left[f X_{0}, X_{k}\right], X_{1}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) \\
& =\omega\left(f\left[X_{0}, X_{k}\right]-\left(X_{k} f\right) X_{0}, X_{1}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) \\
& =f \cdot \omega\left(\left[X_{0}, X_{k}\right], X_{1}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right)-\left(X_{k} f\right) \cdot \omega\left(X_{0}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) .
\end{aligned}
$$

(Cf. Problem 47(d).) Hence in total we get:

$$
\begin{aligned}
F\left(f X_{0}, X_{1}, \ldots, X_{r}\right)= & f \cdot F\left(X_{0}, X_{1}, \ldots, X_{r}\right) \\
& +\sum_{j=1}^{r}(-1)^{j}\left(X_{j} f\right) \cdot \omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \\
& +\sum_{k=1}^{r}(-1)^{k}\left(-\left(X_{k} f\right)\right) \cdot \omega\left(X_{0}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) \\
& =f \cdot F\left(X_{0}, X_{1}, \ldots, X_{r}\right) .
\end{aligned}
$$

Hence the $C^{\infty}(M)$-multilinearity is proved.
Now the proof of the formula in the general case is easily completed: Again let (U, x) be an arbitrary C^{∞} chart on M; it suffices to prove that the desired formula holds in U. Hence from now on we may just as well assume $M=U$. We keep the notation " F " from (133) (but now with $M=U$). We have proved above that F is $C^{\infty}(U)$-multilinear, and also that

$$
\begin{equation*}
[d \omega]\left(X_{0}, \ldots, X_{r}\right)=F\left(X_{0}, \ldots, X_{r}\right) \tag{134}
\end{equation*}
$$

when each X_{j} is of the form $X_{j}=\frac{\partial}{\partial x^{\ell_{j}}}$ (indeed, cf. (130) and again recall that for such X_{0}, \ldots, X_{r}, all Lie brackets $\left[X_{j}, X_{k}\right]$ vanish). But every $X \in \Gamma(T U)$ can be expressed as $X=f_{\ell} \frac{\partial}{\partial x^{\ell}}$ for some (unique) $f_{1}, \ldots, f_{d} \in C^{\infty}(U)$; hence it follows that (134) holds for arbitrary $X_{1}, \ldots, X_{r} \in \Gamma(T U)$. This is the desired formula!

Problem 49:

(a). By the definition of tensor product (of $C^{\infty}(M)$-modules), every element in $\Gamma\left(E_{1}\right) \otimes \Gamma\left(\bigwedge^{r} M\right)$ can be written as a finite sum of pure tensors $\mu_{1} \otimes \omega_{1}$ (where $\mu_{1} \in \Gamma E_{1}, \omega_{1} \in \Gamma\left(\bigwedge^{r} M\right)=\Omega^{r}(M)$). Hence by Problem 43(d), the same is true for any section in $\Gamma\left(E_{1} \otimes \bigwedge^{r} M\right)=\Omega^{r}\left(E_{1}\right)$. The analogous fact of course also holds for $\Gamma\left(E_{2} \otimes \bigwedge^{s} M\right)=\Omega^{s}\left(E_{2}\right)$. Hence the stated formula,

$$
\begin{align*}
& \left(\mu_{1} \otimes \omega_{1}\right) \wedge\left(\mu_{2} \otimes \omega_{2}\right)=\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right) \tag{135}\\
& \quad \forall \mu_{1} \in \Gamma\left(E_{1}\right), \omega_{1} \in \Omega^{r}(M), \mu_{2} \in \Gamma\left(E_{2}\right), \omega_{2} \in \Omega^{s}(M)
\end{align*}
$$

together with the requirement that \wedge should be a $C^{\infty}(M)$-bilinear map $\Omega^{r}\left(E_{1}\right) \times \Omega^{s}\left(E_{2}\right) \rightarrow \Omega^{r+s}\left(E_{1} \otimes E_{2}\right)$, certainly makes $s_{1} \wedge s_{2}$ uniquely determined for any $s_{1} \in \Omega^{r}\left(E_{1}\right), s_{2} \in \Omega^{s}\left(E_{2}\right)$. Hence it remains to prove that such a $C^{\infty}(M)$-bilinear map exists.

For the existence proof, we start by considering the map

$$
\begin{array}{r}
F: \Gamma\left(E_{1}\right) \times \Omega^{r}(M) \times \Gamma\left(E_{2}\right) \times \Omega^{s}(M) \rightarrow \Omega^{r+s}\left(E_{1} \otimes E_{2}\right) \\
F\left(\mu_{1}, \omega_{1}, \mu_{2}, \omega_{2}\right)=\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right)
\end{array}
$$

This map is immediately verified to be $C^{\infty}(M)$-multilinear. Hence by the definition of tensor product, there exists a unique $C^{\infty}(M)$-linear map

$$
\widetilde{F}: \Gamma\left(E_{1}\right) \otimes \Omega^{r}(M) \otimes \Gamma\left(E_{2}\right) \otimes \Omega^{s}(M) \rightarrow \Omega^{r+s}\left(E_{1} \otimes E_{2}\right)
$$

satisfying

$$
\widetilde{F}\left(\mu_{1} \otimes \omega_{1} \otimes \mu_{2} \otimes \omega_{2}\right)=\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right)
$$

$$
\begin{equation*}
\forall \mu_{1} \in \Gamma\left(E_{1}\right), \omega_{1} \in \Omega^{r}(M), \mu_{2} \in \Gamma\left(E_{2}\right), \omega_{2} \in \Omega^{s}(M) \tag{136}
\end{equation*}
$$

Using Problem 43(d) and $\Omega^{r}(M)=\Gamma\left(\bigwedge^{r} M\right), \widetilde{F}$ becomes identified with a $C^{\infty}(M)$-linear map

$$
\tilde{F}: \Omega^{r}\left(E_{1}\right) \otimes \Omega^{s}\left(E_{2}\right) \rightarrow \Omega^{r+s}\left(E_{1} \otimes E_{2}\right)
$$

Composing \widetilde{F} with the canonical map $\left(s_{1}, s_{2}\right) \mapsto s_{1} \otimes s_{2}$ from $\Omega^{r}\left(E_{1}\right) \times \Omega^{s}\left(E_{2}\right)$ to $\Omega^{r}\left(E_{1}\right) \otimes \Omega^{s}\left(E_{2}\right)$ (which is $C^{\infty}(M)$-bilinear by the definition of tensor product), we obtain a $C^{\infty}(M)$-bilinear map

$$
\Omega^{r}\left(E_{1}\right) \times \Omega^{s}\left(E_{2}\right) \rightarrow \Omega^{r+s}\left(E_{1} \otimes E_{2}\right)
$$

which maps $\left(\mu_{1} \otimes \omega_{1}, \mu_{2} \otimes \omega_{2}\right)$ to $\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right)$ for all $\mu_{1}, \omega_{1}, \mu_{2}, \omega_{2}$ as in (136). This map satisfies all requirements imposed on " \wedge ", i.e. we have proved the (unique) existence of such a map " \wedge "!

As an addendum, let us note that the wedge product $s_{1} \wedge s_{2} \in \Omega^{r+s}\left(E_{1} \otimes\right.$ E_{2}) of any two sections $s_{1} \in \Omega^{r}\left(E_{1}\right)$ and $s_{2} \in \Omega^{s}\left(E_{2}\right)$ can be computed "fiber by fiber":

$$
\left(s_{1} \wedge s_{2}\right)(p)=s_{1}(p) \wedge s_{2}(p), \quad \forall p \in M
$$

where in the right hand side, the " \wedge " ${ }^{32}$ denotes the unique \mathbb{R}-bilinear map $\left(E_{1, p} \otimes \bigwedge^{r}\left(T_{p}^{*}(M)\right)\right) \times\left(E_{2, p} \otimes \bigwedge^{s}\left(T_{p}^{*}(M)\right)\right) \rightarrow\left(E_{1, p} \otimes E_{2, p}\right) \otimes \bigwedge^{r+s}\left(T_{p}^{*}(M)\right)$ satisfying

$$
\begin{align*}
& \left(v_{1} \otimes \varphi_{1}\right) \wedge\left(v_{2} \otimes \varphi_{2}\right)=\left(v_{1} \otimes v_{2}\right) \otimes\left(\varphi_{1} \wedge \varphi_{2}\right), \\
& , \forall v_{1} \in E_{1, p}, \varphi_{1} \in \bigwedge^{r}\left(T_{p}^{*}(M)\right), v_{2} \in E_{2, p}, \varphi_{2} \in \bigwedge^{s}\left(T_{p}^{*}(M)\right) . \tag{137}
\end{align*}
$$

Indeed, this is clear by parsing through the identifications in the above proof (in particular see equation (113) in the solution to Problem43(d)). Note also that the fact that there indeed exists a unique \mathbb{R}-bilinear map " \wedge " satisfying (137) is proved by an argument completely similar to what we did above.
(b). This is quite immediate from the corresponding formulas for the "standard" wedge product on $\Omega(M)$. Indeed, for the associativity relation, by $C^{\infty}(M)$-multilinearity and the argument at the beginning of our solution to part (a), it suffices to prove the identity s_{1}, s_{2}, s_{3} of the form $s_{j}=\mu_{j} \otimes \omega_{j}$ $(j=1,2,3)$, where $\mu_{j} \in \Gamma\left(E_{j}\right)$ and $\omega_{1} \in \Omega^{r}(M), \omega_{2} \in \Omega^{s}(M), \omega_{3} \in \Omega^{t}(M)$. But in that case we have

$$
\begin{aligned}
s_{1} \wedge\left(s_{2} \wedge s_{3}\right) & =\left(\mu_{1} \otimes \omega_{1}\right) \wedge\left(\left(\mu_{2} \otimes \omega_{2}\right) \wedge\left(\mu_{3} \otimes \omega_{3}\right)\right) \\
& =\left(\mu_{1} \otimes \omega_{1}\right) \wedge\left(\left(\mu_{2} \otimes \mu_{3}\right) \otimes\left(\omega_{2} \wedge \omega_{3}\right)\right) \\
& =\left(\mu_{1} \otimes \mu_{2} \otimes \mu_{3}\right) \otimes\left(\omega_{1} \wedge\left(\omega_{2} \wedge \omega_{3}\right)\right) \\
& =\left(\mu_{1} \otimes \mu_{2} \otimes \mu_{3}\right) \otimes\left(\left(\omega_{1} \wedge \omega_{2}\right) \wedge \omega_{3}\right) \\
& =\cdots \\
& =\left(s_{1} \wedge s_{2}\right) \wedge s_{3} .
\end{aligned}
$$

In the fourth equality we used the fact that the wedge product on $\Omega(M)$ is associative.

Similarly for any s_{1}, s_{2} as above we have

$$
\begin{aligned}
(-1)^{r s} \cdot J\left(s_{2} \wedge s_{1}\right) & =(-1)^{r s} \cdot J\left(\left(\mu_{2} \otimes \mu_{1}\right) \otimes\left(\omega_{2} \wedge \omega_{1}\right)\right) \\
& =(-1)^{r s} \cdot\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{2} \wedge \omega_{1}\right) \\
& =\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right) \\
& =s_{1} \wedge s_{2}
\end{aligned}
$$

In the third equality we used the fact that $\omega_{1} \wedge \omega_{2}=(-1)^{r s} \omega_{2} \wedge \omega_{1}$.
(c). This is immediate from the second relation in part (b); indeed note that $m^{\prime}=m \circ J: \Omega^{r+s}\left(E_{2} \otimes E_{1}\right) \rightarrow \Omega^{r+s}(\widetilde{E})$.

[^29](d). Similarly, this is fairly immediate from the first relation in part (b); we leave out a detailed discussion. (One has to change order between certain operations and this becomes somewhat tedious to spell out.) Instead we give a direct proof by mimicking the proof of the first relation in part (b): For any s_{1}, s_{2}, s_{3} of the form $s_{j}=\mu_{j} \otimes \omega_{j}(j=1,2,3)$, where $\mu_{j} \in \Gamma\left(E_{j}\right)$ and $\omega_{1} \in \Omega^{r}(M), \omega_{2} \in \Omega^{s}(M), \omega_{3} \in \Omega^{t}(M)$, we have (note carefully that now certain " \wedge " have a different meaning than in part (b)...):
\[

$$
\begin{aligned}
s_{1} \wedge\left(s_{2} \wedge s_{3}\right) & =\left(\mu_{1} \otimes \omega_{1}\right) \wedge\left(\left(\mu_{2} \otimes \omega_{2}\right) \wedge\left(\mu_{3} \otimes \omega_{3}\right)\right) \\
& =\left(\mu_{1} \otimes \omega_{1}\right) \wedge\left(\left(\mu_{2} \cdot \mu_{3}\right) \otimes\left(\omega_{2} \wedge \omega_{3}\right)\right) \\
& =\left(\mu_{1} \cdot\left(\mu_{2} \cdot \mu_{3}\right)\right) \otimes\left(\omega_{1} \wedge\left(\omega_{2} \wedge \omega_{3}\right)\right) \\
& =\left(\left(\mu_{1} \cdot \mu_{2}\right) \cdot \mu_{3}\right) \otimes\left(\left(\omega_{1} \wedge \omega_{2}\right) \wedge \omega_{3}\right) \\
& =\cdots \\
& =\left(s_{1} \wedge s_{2}\right) \wedge s_{3} .
\end{aligned}
$$
\]

Done!

Problem 50; We have

$$
(\mu \circ \eta)_{\mid U}=\left(\beta^{j *} \otimes \gamma_{k} \otimes \mu_{j}^{k}\right) \circ\left(\alpha^{i *} \otimes \beta_{\ell} \otimes \eta_{i}^{\ell}\right)
$$

and by the definitions in Problem 49(a),(c), this is

$$
=\left(\left(\beta^{j *} \otimes \gamma_{k}\right) \circ\left(\alpha^{i *} \otimes \beta_{\ell}\right)\right) \otimes\left(\mu_{j}^{k} \wedge \eta_{i}^{\ell}\right) .
$$

But using the definitions of composition of homomorphisms and of the identifications $\operatorname{Hom}\left(E_{2}, E_{3}\right)=E_{2}^{*} \otimes E_{3}$ and $\operatorname{Hom}\left(E_{1}, E_{2}\right)=E_{1}^{*} \otimes E_{2}$, we find that

$$
\left(\beta^{j *} \otimes \gamma_{k}\right) \circ\left(\alpha^{i *} \otimes \beta_{\ell}\right)=\delta_{j, \ell} \chi^{i *} \otimes \gamma_{k}
$$

(Here $\delta_{j, \ell}$ is the standard Kronecker symbol; $\delta_{j, \ell}=1$ if $j=\ell$ otherwise $=0$. Note that in terms of matrices the last formula is simply a formula for the product of a matrix with " 1 " in position k, j and all other entries zero, and a matrix with " 1 " in position ℓ, i and all other entries zero.) Using the last formula in the previous one, we obtain:

$$
\begin{aligned}
(\mu \circ \eta)_{\mid U} & =\left(\delta_{j, \ell} \alpha^{i *} \otimes \gamma_{k}\right) \otimes\left(\mu_{j}^{k} \wedge \eta_{i}^{\ell}\right) \\
& =\left(\alpha^{i *} \otimes \gamma_{k}\right) \otimes\left(\mu_{j}^{k} \wedge \eta_{i}^{j}\right),
\end{aligned}
$$

qed.

Problem 51:

(a). To start, by the definition of tensor product, there is a natural bijection between the $C^{\infty}(M)$-multilinear maps $\Gamma(T M)^{(r)} \rightarrow \Gamma E$ and the $C^{\infty}(M)$-linear maps from

$$
\underbrace{\Gamma(T M) \otimes \cdots \otimes \Gamma(T M)}_{r \text { times }}=\Gamma(\underbrace{T M \otimes \cdots \otimes T M}_{r \text { times }})=\Gamma\left(T_{0}^{r} M\right)
$$

to ΓE (here we used Problem 43(d)). But the space of such maps is

$$
\operatorname{Hom}\left(\Gamma\left(T_{0}^{r} M\right), \Gamma E\right)=\Gamma \operatorname{Hom}\left(T_{0}^{r} M, E\right)=\Gamma\left(E \otimes\left(T_{0}^{r} M\right)^{*}\right)=\Gamma\left(E \otimes T_{r}^{0} M\right)
$$

(For the first equality see Problem 43(c); for the next equality cf. p. 9 in Lecture \#7.) Working through the identifications used above, we see that viewing a given $s \in \Gamma\left(E \otimes T_{r}^{0} M\right)$ as a $C^{\infty}(M)$-multilinear map $\Gamma(T M)^{(r)} \rightarrow$ ΓE, means that for any vector fields $X_{1}, \ldots, X_{r} \in \Gamma(T M)$, the section

$$
s\left(X_{1}, \ldots, X_{r}\right) \in \Gamma E
$$

is explicitly given by

$$
\begin{equation*}
\left(s\left(X_{1}, \ldots, X_{r}\right)\right)(p)=C_{p}\left(s(p) \otimes\left(X_{1}(p) \otimes \cdots \otimes X_{r}(p)\right)\right) \quad(\forall p \in M) \tag{138}
\end{equation*}
$$

where C_{p} is the unique \mathbb{R}-linear map ("contraction at p ")

$$
C_{p}:\left(E_{p} \otimes T_{r}^{0}(M)_{p}\right) \otimes T_{0}^{r}(M)_{p} \rightarrow E_{p}
$$

which maps

$$
\begin{equation*}
C_{p}(w \otimes \eta \otimes \alpha)=\eta(\alpha) \cdot w, \quad \forall w \in E_{p}, \eta \in T_{r}^{0}(M)_{p}, \alpha \in T_{0}^{r}(M)_{p} \tag{139}
\end{equation*}
$$

Next, note that $\bigwedge^{r} M$ by definition is a subset of $T_{r}^{0}(M)$, and one verifies immediately that it is in fact a subbundle of $T_{r}^{0}(M)$. 33 Hence $E \otimes \bigwedge^{r} M$ is a subbundle of $E \otimes T_{r}^{0}(M)$. 34

In order to complete the solution, we have to prove that for any $s \in$ $\Gamma\left(E \otimes T_{r}^{0}(M)\right)$, we have $s \in \Gamma\left(E \otimes \bigwedge^{r} M\right)$ iff s as a $C^{\infty}(M)$-multilinear map $\Gamma(T M)^{(r)} \rightarrow \Gamma E$ is alternating. Now $s \in \Gamma\left(E \otimes \bigwedge^{r} M\right)$ is equivalent with $s(p) \in E_{p} \otimes \bigwedge^{r}\left(T_{p}^{*} M\right), \forall p \in M$, and on the other hand $s: \Gamma(T M)^{(r)} \rightarrow \Gamma E$ is alternating iff

$$
\begin{aligned}
s\left(X_{\sigma(1)}, \ldots, X_{\sigma(r)}\right)(p)=(\operatorname{sgn} \sigma) & \cdot s\left(X_{1}, \ldots, X_{r}\right)(p) \\
& \forall \sigma \in \mathfrak{S}_{r}, X_{1}, \ldots, X_{r} \in \Gamma(T M), p \in M
\end{aligned}
$$

[^30]Hence, by also using (138) and Problem 35(c) (applied to the vector bundle $T M)$ we see that it suffices to prove the following: For every $p \in M$ and every $z \in E_{p} \otimes T_{r}^{0}(M)_{p}$, we have $z \in E_{p} \otimes \bigwedge^{r}\left(T_{p}^{*} M\right)$ iff

$$
C_{p}\left(z \otimes\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(r)}\right)\right)=(\operatorname{sgn} \sigma) \cdot C_{p}\left(z \otimes\left(v_{1} \otimes \cdots \otimes v_{r}\right)\right)
$$

$$
\begin{equation*}
\forall \sigma \in \mathfrak{S}_{r}, v_{1}, \ldots, v_{r} \in T_{p} M \tag{140}
\end{equation*}
$$

Proof of the last claim: Let b_{1}, \ldots, b_{n} be a basis of E_{p}. Then every $z \in$ $E_{p} \otimes T_{r}^{0}(M)_{p}$ can be expressed as $z=\sum_{j=1}^{n} b_{j} \otimes \eta_{j}$ with uniquely determined $\eta_{1}, \ldots, \eta_{n} \in T_{r}^{0}(M)_{p}$, and we have $z \in E_{p} \otimes \bigwedge^{r}\left(T_{p}^{*} M\right)$ iff $\eta_{j} \in \bigwedge^{r}\left(T_{p}^{*} M\right)$ for all j. It now follows from the definition of C_{p}, (139), that

$$
C_{p}(z \otimes \alpha)=\sum_{j=1}^{n} \eta_{j}(\alpha) \cdot b_{j}, \quad \forall \alpha \in T_{0}^{r}(M)_{p}
$$

Hence since b_{1}, \ldots, b_{n} is a basis of E_{p}, we see that (140) holds iff

$$
\begin{aligned}
\eta_{j}\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(r)}\right)= & \eta_{j}\left(v_{1} \otimes \cdots \otimes v_{r}\right) \\
& \forall j \in\{1, \ldots, n\}, \sigma \in \mathfrak{S}_{r}, v_{1}, \ldots, v_{r} \in T_{p} M
\end{aligned}
$$

In other words, (140) is equivalent with $\eta_{j} \in \bigwedge^{r}\left(T_{p}^{*} M\right)$ for all j, and as we have already pointed out this is equivalent with $z \in E_{p} \otimes \bigwedge^{r}\left(T_{p}^{*} M\right)$. Done!

Addendum: Note that for any $s \in \Omega^{r}(E)$ of the form $s=\mu \otimes \omega$ with $\mu \in \Gamma(E)$ and $\omega \in \Omega^{r}(M)$ (and more generally for any $s \in \Gamma\left(E \otimes T_{r}^{0} M\right)$ of the form $s=\mu \otimes \omega$ with $\mu \in \Gamma(E)$ and $\omega \in \Gamma\left(T_{r}^{0} M\right)$), the corresponding multilinear map satisfies

$$
\begin{align*}
(\mu \otimes \omega)\left(X_{1}, \ldots, X_{r}\right)=\omega\left(X_{1}, \ldots, X_{r}\right) \cdot \mu \quad(\text { in } \Gamma E) \tag{141}\\
\forall X_{1}, \ldots, X_{r} \in \Gamma(T M)
\end{align*}
$$

Indeed, this is clear from (138) and (139).
(b). The expressions on both sides in the given formula clearly depends $C^{\infty}(M)$-linearly on s_{1} and $C^{\infty}(M)$-linearly on s_{2}. Hence, by the argument at the beginning of the solution to Problem 49(a), it suffices to prove the stated formula when $s_{j}=\mu_{j} \otimes \omega_{j}(j=1,2)$, with $\mu_{j} \in \Gamma\left(E_{j}\right)$ and $\omega_{1} \in$ $\Omega^{r}(M), \omega_{2} \in \Omega^{s}(M)$. In this case we get by (141):

$$
\begin{aligned}
& \frac{1}{r!s!} \sum_{\sigma \in \mathfrak{G}_{r+s}} \operatorname{sgn}(\sigma) s_{1}\left(X_{\sigma(1)}, \ldots, X_{\sigma(r)}\right) \otimes s_{2}\left(X_{\sigma(r+1)}, \ldots, X_{\sigma(r+s)}\right) \\
& =\frac{1}{r!s!} \sum_{\sigma \in \mathfrak{G}_{r+s}} \operatorname{sgn}(\sigma)\left(\omega_{1}\left(X_{\sigma(1)}, \ldots, X_{\sigma(r)}\right) \cdot \mu_{1}\right) \otimes\left(\omega_{2}\left(X_{\sigma(r+1)}, \ldots, X_{\sigma(r+s)}\right) \cdot \mu_{2}\right), \\
& =\frac{1}{r!s!}\left(\sum_{\sigma \in \mathfrak{G}_{r+s}} \operatorname{sgn}(\sigma) \omega_{1}\left(X_{\sigma(1)}, \ldots, X_{\sigma(r)}\right) \cdot \omega_{2}\left(X_{\sigma(r+1)}, \ldots, X_{\sigma(r+s)}\right)\right) \cdot \mu_{1} \otimes \mu_{2} .
\end{aligned}
$$

By the definition of exterior product on $\Omega(M)$, this is

$$
=\left(\omega_{1} \wedge \omega_{2}\right)\left(X_{1}, \ldots, X_{r+s}\right) \cdot\left(\mu_{1} \otimes \mu_{2}\right) .
$$

But we have $s_{1} \wedge s_{2}=\left(\mu_{1} \otimes \mu_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right)$, and so by one more application of (141), the above is

$$
=\left(s_{1} \wedge s_{2}\right)\left(X_{1}, \ldots, X_{r+s}\right) .
$$

Done!
Finally, the analogous formula for $s_{1} \cdot s_{2}$ is:

$$
\begin{aligned}
& \left(s_{1} \cdot s_{2}\right)\left(X_{1}, \ldots, X_{r+s}\right) \\
& =\frac{1}{r!s!} \sum_{\sigma \in \mathfrak{G}_{r+s}} \operatorname{sgn}(\sigma) s_{1}\left(X_{\sigma(1)}, \ldots, X_{\sigma(r)}\right) \cdot s_{2}\left(X_{\sigma(r+1)}, \ldots, X_{\sigma(r+s)}\right), \\
& \forall X_{1}, \ldots, X_{r+s} \in \Gamma(T M),
\end{aligned}
$$

Problem 52;

(a). This was proved in the lecture.
(b). We first prove that the connection $D_{\mid U}$, if it exists, is unique. Let $s \in \Gamma\left(E_{U}\right)$ be given. We claim that if V is any open subset of U and $s^{\prime} \in \Gamma(E)$ is such that $s_{\mid V}^{\prime}=s_{\mid V}$, then

$$
\begin{equation*}
\left(D_{\mid U} s\right)_{\mid V}=\left(D s^{\prime}\right)_{\mid V} \tag{142}
\end{equation*}
$$

By Problem 355(a), U can be covered by open sets V for which such a section $s^{\prime} \in \Gamma(E)$ exists; hence (142) implies that the whole section $D_{\mid U} s$ is uniquely determined.
[Proof of (142): It follows from the requirement on $D_{\mid U}$ that

$$
\begin{equation*}
D_{\mid U}\left(s_{\mid U}^{\prime}\right)=\left(D s^{\prime}\right)_{\mid U} \tag{143}
\end{equation*}
$$

Furthermore, applying part (a) to $D_{\mid U}$, and using $\left(s_{\mid U}^{\prime}\right)_{\mid V}=s_{\mid V}^{\prime}=s_{\mid V}$, we have

$$
\begin{equation*}
\left(D_{\mid U}\left(s_{\mid U}^{\prime}\right)\right)_{\mid V}=\left(D_{\mid U} s\right)_{\mid V} \tag{144}
\end{equation*}
$$

Combining (143) and (144) we get (142).]
Next let us verify that there indeed exists a well-defined section " $D_{\mid U} s$ " in $\Gamma\left(E_{\mid U} \otimes T^{*} U\right)$ such that (142) holds whenever V is open in U and $s^{\prime} \in \Gamma(E)$ is such that $s_{\mid V}^{\prime}=s_{\mid V}$. For this, it suffices to verify that for any two open subset $V_{1}, V_{2} \subset U$ and any $s_{1}^{\prime}, s_{2}^{\prime} \in \Gamma(E)$, if $s_{j \mid V_{j}}^{\prime}=s_{\mid V_{j}}$ for $j=1,2$ then $\left(D s_{1}^{\prime}\right)_{\mid V_{1} \cap V_{2}}=\left(D s_{2}^{\prime}\right)_{\mid V_{1} \cap V_{2}}$. However this is clear from $\left(s_{1}^{\prime}\right)_{\mid V_{1} \cap V_{2}}=s_{\mid V_{1} \cap V_{2}}=$ $\left(s_{2}^{\prime}\right)_{\mid V_{1} \cap V_{2}}$, and part (a) of the lemma (i.e. the fact that D is local).

Hence we have shown that our requirements on $D_{\mid U}$ imply that $D_{\mid U}$ is a uniquely defined map from $\Gamma\left(E_{\mid U}\right)$ to $\Gamma\left(E_{\mid U} \otimes T^{*} U\right)$. Note that it is immediate from our construction that this map has the desired property, i.e. that $(D s)_{\mid U}=D_{\mid U}\left(s_{\mid U}\right)$ for all $s \in \Gamma(E)$. (Indeed, let $s \in \Gamma(E)$ be given. Then for the section $s_{\mid U} \in \Gamma\left(E_{\mid U}\right)$, (142) applies with $s^{\prime}=s$ and $V=U$, and then says that $\left(D_{\mid U}\left(s_{\mid U}\right)\right)_{\mid U}=(D s)_{\mid U}$, as desired.)

It remains to prove that $D_{\mid U}$ is a connection on $E_{\mid U}$. Clearly $D_{\mid U}$ is \mathbb{R}-linear, and so it remains to prove that

$$
\begin{equation*}
D_{\mid U}(f s)=s \otimes d f+f D_{\mid U} s, \quad \forall f \in C^{\infty}(U), s \in \Gamma\left(E_{\mid U}\right) . \tag{145}
\end{equation*}
$$

For this let $f \in C^{\infty}(U)$ and $s \in \Gamma\left(E_{\mid U}\right)$ be given. It suffices to prove that for any given point $p \in U$, there is an open subset $V \subset U$ with $p \in V$ such that

$$
\left(D_{\mid U}(f s)\right)_{\mid V}=\left(s \otimes d f+f D_{\mid U} s\right)_{\mid V}
$$

However, given $p \in U$, we know by Problem [35(a) (applied to the two vector bundles E and $M \times \mathbb{R}$) that there exist $f^{\prime} \in C^{\infty}(M)$ and $s^{\prime} \in \Gamma(E)$ such
that $f_{\mid V}^{\prime}=f_{\mid V}$ and $s_{\mid V}^{\prime}=s_{\mid V}$ for some open set $V \subset U$ containing p. Then also $\left(f^{\prime} s^{\prime}\right)_{\mid V}=(f s)_{\mid V}$, and now

$$
\begin{array}{r}
\left(D_{\mid U}(f s)\right)_{\mid V}=\left(D\left(f^{\prime} s^{\prime}\right)\right)_{\mid V}=\left(s^{\prime} \otimes d f^{\prime}+f^{\prime} D s^{\prime}\right)_{\mid V}=s_{\mid V}^{\prime} \otimes d\left(f_{\mid V}^{\prime}\right)+f_{\mid V}^{\prime}\left(D s^{\prime}\right)_{\mid V} \\
=s_{\mid V} \otimes d\left(f_{\mid V}\right)+f_{\mid V}\left(D_{\mid U} s\right)_{\mid V}=\left(s \otimes d f+f D_{\mid U} s\right)_{\mid V}
\end{array}
$$

as desired! Hence we have proved (145), and so $D_{\mid U}$ is a connection on $E_{\mid U}$.
(c) The requirement on D is that

$$
\begin{equation*}
(D s)_{\mid U_{\alpha}}=D_{\alpha}\left(s_{\mid U_{\alpha}}\right), \quad \forall s \in \Gamma(E), \alpha \in A . \tag{146}
\end{equation*}
$$

Let $s \in \Gamma(E)$ be given. Since $\cup_{\alpha \in A} U_{\alpha}=M$, the condition (146) determines $D s$ uniquely (if it exists at all). To prove that there really exists a section $D s \in \Gamma\left(E \otimes T^{*} M\right)$ which satisfies (146), it suffices to verify that for any two $\alpha, \beta \in A$ with $V:=U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have $\left(D_{\alpha}\left(s_{\mid U_{\alpha}}\right)\right)_{V}=\left(D_{\beta}\left(s_{\mid U_{\beta}}\right)\right)_{V}$. However this is immediate from our assumption that $\left(D_{\alpha}\right)_{\mid V}=\left(D_{\beta}\right)_{\mid V}$.

Hence we have shown that our requirement on D implies that D is a uniquely defined map from $\Gamma(E)$ to $\Gamma\left(E \otimes T^{*} M\right)$. Clearly this map is \mathbb{R} linear. In order to prove that D is a connection, it remains to verify that $D(f s)=s \otimes d f+f D s$ for all $f \in C^{\infty}(M), s \in \Gamma(E)$. Thus let $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$ be given. Since $\cup_{\alpha \in A} U_{\alpha}=M$, it suffices to prove that $(D(f s))_{\mid U_{\alpha}}=(s \otimes d f+f D s)_{\mid U_{\alpha}}$ for every $\alpha \in A$. Thus let $\alpha \in A$ be given. Then

$$
\begin{aligned}
(D(f s))_{\mid U_{\alpha}}=D_{\alpha}\left((f s)_{\mid U_{\alpha}}\right)=s_{\mid U_{\alpha}} \otimes d f_{\mid U_{\alpha}} & +f_{\mid U_{\alpha}} D_{\alpha}\left(s_{\mid U_{\alpha}}\right) \\
& =(s \otimes d f+f D s)_{\mid U_{\alpha}}
\end{aligned}
$$

as desired!
Remark 1. The following (apriori) stronger version of part (b) is actually technically slightly more direct to prove:

Let $\left(U_{\alpha}\right)_{\alpha \in A}$ be an open covering of M, and for each $\alpha \in A$ let D_{α} be a connection on $E_{\mid U_{\alpha}}$. Assume that $\left(D_{\alpha}\left(s_{\mid U_{\alpha}}\right)\right)_{\mid U_{\alpha} \cap U_{\beta}}=\left(D_{\beta}\left(s_{\mid U_{\beta}}\right)\right)_{\mid U_{\alpha} \cap U_{\beta}}$ for all $s \in \Gamma E$ and all $\alpha, \beta \in A$. Then there exists a unique connection D on E such that $(D s)_{\mid U_{\alpha}}=D_{\alpha}\left(s_{\mid U_{\alpha}}\right)$ for all $s \in \Gamma E$ and $\alpha \in A$.

Proof. Given any $s \in \Gamma E$, the section $D s \in \Gamma\left(T^{*} M \otimes E\right)$ is clearly uniquely determined (if it exists) by the given requirement, since $M=\cup_{\alpha \in A} U_{\alpha}$. On the other hand the given compatibility assumption easily implies that $D s$ is indeed as well-defined ($C^{\infty}!$) section of $T^{*} M \otimes E$! Hence we obtain a well-defined map from $\Gamma(E)$ to $\Gamma\left(T^{*} M \otimes E\right)$. The rest is as above!

Problem 53: Let $p \in M$ be the base point of v, so that $v \in T_{p} M$. Take an open neighborhood $U \subset M$ of p such that both $T M_{\mid U}=T U$ and $E_{\mid U}$ are trivial, and choose bases of sections $X_{1}, \ldots, X_{d} \in \Gamma(T U)$ and $\sigma_{1}, \ldots, \sigma_{n} \in \Gamma\left(E_{\mid U}\right)$. Let $\Gamma_{i j}^{k} \in C^{\infty}(U)$ be the corresponding Christoffel symbols, so that $D_{X_{i}} \sigma_{j}=\Gamma_{i j}^{k} \sigma_{k}$ for all $i \in\{1, \ldots, d\}$ and $j \in\{1, \ldots, n\}$. Take $a^{1}, \ldots, a^{n} \in C^{\infty}(U)$ and $b^{1}, \ldots, b^{n} \in C^{\infty}(U)$ so that

$$
s_{1 \mid U}=a^{j} \sigma_{j} \quad \text { and } \quad s_{2 \mid U}=b^{j} \sigma_{j}
$$

(cf. Problem 34). Also take $\gamma^{1}, \ldots, \gamma^{n} \in \mathbb{R}$ so that

$$
v=\gamma^{i} \cdot X_{i}(p) \in T_{p} M
$$

Then as shown in Lecture $\# 9$, we have

$$
\begin{equation*}
D_{v}\left(s_{1}\right)=v\left(a^{k}\right) \cdot \sigma_{k}(p)+\gamma^{j} \cdot a^{k}(p) \cdot \Gamma_{j k}^{\ell}(p) \cdot \sigma_{\ell}(p) \tag{147}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{v}\left(s_{2}\right)=v\left(b^{k}\right) \cdot \sigma_{k}(p)+\gamma^{j} \cdot b^{k}(p) \cdot \Gamma_{j k}^{\ell}(p) \cdot \sigma_{\ell}(p) \tag{148}
\end{equation*}
$$

[Details: In Lecture $\# 9$ we noted a formula saying that if $X=\gamma^{i} X_{i} \in \Gamma(T U)$ then $D_{X}\left(s_{1}\right)=X\left(a^{k}\right) \cdot \sigma_{k}+\gamma^{j} a^{k} \Gamma_{j k}^{\ell} \sigma_{\ell}$ in $\Gamma\left(E_{\mid U}\right)$, and evaluating this section at p we get (147). But of course we don't need to refer to Lecture $\# 9$; the proof of (147) is immediate using Leibniz' rule: We have

$$
D_{v}\left(s_{1}\right)=D_{v}\left(a^{k} \sigma_{k}\right)=v\left(a^{k}\right) \cdot \sigma_{k}(p)+a^{k}(p) \cdot D_{v}\left(\sigma_{k}\right)
$$

and here $D_{v}\left(\sigma_{k}\right)=\gamma^{i} D_{X_{i}(p)}\left(\sigma_{k}\right)=\gamma^{i}\left(D_{X_{i}}\left(\sigma_{k}\right)\right)(p)=\gamma^{i} \Gamma_{i k}^{\ell}(p) \sigma_{\ell}(p)$, and combining these two we get (147). The proof of (148) is the same.]

Now we are assuming $v=\dot{c}(0)$; hence (by "fact" on p. 9 in Lecture $\# 2$; cf. Problem 13(f)):

$$
v\left(a^{j}\right)=\left(a^{j} \circ c\right)^{\prime}(0) \quad \text { and } \quad v\left(b^{j}\right)=\left(b^{j} \circ c\right)^{\prime}(0)
$$

We are also assuming that for every $t \in(-\varepsilon, \varepsilon)$ we have $s_{1}(c(t))=s_{2}(c(t))$, i.e.

$$
a^{j}(c(t)) \cdot \sigma_{j}(c(t))=b^{j}(c(t)) \cdot \sigma_{j}(c(t)) \quad \text { in } E_{c(t)}
$$

and thus

$$
a^{j}(c(t))=b^{j}(c(t)), \quad \forall j \in\{1, \ldots, n\}, t \in(-\varepsilon, \varepsilon)
$$

Combining the above facts, we conclude that

$$
v\left(a^{j}\right)=v\left(b^{j}\right), \quad \forall j \in\{1, \ldots, n\}
$$

Also of course $a^{j}(p)=a^{j}(c(0))=b^{j}(c(0))=b^{j}(p)$. Hence we see by inspection in (147) and (148) that $D_{v}\left(s_{1}\right)=D_{v}\left(s_{2}\right)$.

Problem [54] The map d is clearly \mathbb{R}-linear. Furthermore, for any $f \in$ $C^{\infty} U$,

$$
\begin{aligned}
d\left(f a^{k} s_{k}\right)=s_{k} \otimes d\left(f a^{k}\right) & =s_{k} \otimes\left(a^{k} \cdot d f+f \cdot d a^{k}\right) \\
& =\left(a^{k} s_{k}\right) \otimes d f+f \cdot s_{k} \otimes d a^{k} \\
& =\left(a^{k} s_{k}\right) \otimes d f+f \cdot d\left(a^{k} s_{k}\right) .
\end{aligned}
$$

Hence d is indeed a connection.

Problem 55: The first statement is an immediate verification; indeed the restricted map is, by assumption, a map $D: \Gamma E^{\prime} \rightarrow \Gamma\left(E^{\prime} \otimes T^{*} M\right)$, and it satisfies $D(f s)=f \cdot D s+s \otimes d f$ for all $f \in C^{\infty}(M), s \in \Gamma E^{\prime}$, since this holds more generally when $s \in \Gamma E$.

Here's a simple example showing that the condition is not always satisfied: Let E be the trivial vector bundle $E=M \times \mathbb{R}^{2}$ over $M=\mathbb{R}$, equipped with the corresponding 'trivial' connection D (i.e. the connection which Jost would call " d " with respect to the bundle chart $\varphi=1_{E}: E \rightarrow M \times \mathbb{R}^{2}$). Set

$$
E^{\prime}=\{(x, v) \in E: v \in \mathbb{R}(\cos x, \sin x)\} .
$$

This is easily verified to be a vector subbundle of E. Now consider the section $s \in \Gamma E^{\prime}, s(x):=(\cos x, \sin x)$. Then $D s(x)=(-\sin x, \cos x)$ in $\Gamma\left(E \otimes T^{*} M\right)=\Gamma E$. (Note: For our $M=\mathbb{R}$ we have $T^{*} M=M \times \mathbb{R}$ and thus $E \otimes T^{*} M=E$ under obvious identifications.) Hence $D s$ is not in $\Gamma\left(E^{\prime} \otimes T^{*} M\right)=\Gamma\left(E^{\prime}\right)$; indeed $D s(x) \notin E^{\prime}$ for every $x \in M$.

Problem 577, The requirement on $f^{*} D$ is:

$$
\begin{equation*}
\left(f^{*} D\right)(s \circ f)=D_{d f(\cdot)}(s) \in \Gamma\left(\operatorname{Hom}\left(T M, f^{*} E\right)\right), \quad \forall s \in \Gamma E \tag{149}
\end{equation*}
$$

Let us first verify that this formula makes sense! For any $s \in \Gamma E$ we have $s \circ f \in \Gamma_{f} E=\Gamma f^{*} E$ (cf. Problem 444); hence if $f^{*} D$ is a connection on $f^{*} E$ then we should indeed have

$$
\left(f^{*} D\right)(s \circ f) \in \Gamma\left(f^{*} E \otimes T^{*} M\right)=\Gamma\left(\operatorname{Hom}\left(T M, f^{*} E\right)\right) .
$$

Next let us prove that $D_{d f(\cdot)}(s)$, i.e. the map $v \mapsto D_{d f(v)}(s)$, is indeed a bundle homomorphism $T M \rightarrow E$ along f, so that it can be viewed as an element of $\Gamma\left(\operatorname{Hom}\left(T M, f^{*} E\right)\right)$ by Problem 45]. First of all, $d f$ is a C^{∞} function $T M \rightarrow T N($ cf. Problem 17(a)); also $D(s) \in \Gamma(\operatorname{Hom}(T N, E))$ and so $D(s)$ can be viewed as a bundle homomorphism $T N \rightarrow E$ (cf. Problem 40). Now $D_{d f(\cdot)}(s)$ is the composition of these two C^{∞} maps, hence itself C^{∞}. Also $D_{d f(\cdot)}(s)$ clearly restricts to an \mathbb{R}-linear map $T_{p} M \rightarrow E_{f(p)}$ for all $p \in M$. Hence $D_{d f(\cdot)}(s)$ is indeed a bundle homomorphism $T M \rightarrow E$ along f. Done!

By Problem 44(c), every section in $\Gamma f^{*} E$ be written as a finite $C^{\infty}(M)$ linear combination of sections of the form $s \circ f$ with $s \in \Gamma E$. Hence the
connection $f^{*} D$, if it exists at all, is uniquely determined by the relation (149).

It remains to prove that there exists such a connection $f^{*} D$. Let us first prove the existence of $f^{*} D$ in the special case when (E, π, N) is a trivial vector bundle. Then fix a basis of sections $s_{1}, \ldots, s_{n} \in \Gamma E$ (cf. Problem 33). Then for any $\sigma \in \Gamma f^{*} E$ there exist unique 'coefficient functions' $\alpha_{1}, \ldots, \alpha_{n} \in$ $C^{\infty}(M)$ such that

$$
\sigma=\sum_{j=1}^{n} \alpha_{j} \cdot\left(s_{j} \circ f\right)
$$

(cf. Problem 44(b) and Problem 34), and we now define the map

$$
\widetilde{D}: \Gamma f^{*} E \rightarrow \Gamma\left(f^{*} E \otimes T^{*} M\right)
$$

by setting

$$
\begin{equation*}
\widetilde{D}(\sigma):=\sum_{j=1}^{n}\left(\alpha_{j} \cdot D_{d f(\cdot)}\left(s_{j}\right)+\left(s_{j} \circ f\right) \otimes d \alpha_{j}\right) . \tag{150}
\end{equation*}
$$

$\left(\right.$ Here $D_{d f(\cdot)}\left(s_{j}\right) \in \Gamma\left(\operatorname{Hom}\left(T M, f^{*} E\right)\right)=\Gamma\left(f^{*} E \otimes T^{*} M\right)$ as in (149).) This map \widetilde{D} is clearly well-defined and \mathbb{R}-linear. Furthermore, for any $g \in$ $C^{\infty}(M)$ and $\sigma=\sum_{j=1}^{n} \alpha_{j} \cdot\left(s_{j} \circ f\right)$ as above, we have

$$
g \cdot \sigma=\sum_{j=1}^{n}\left(g \cdot \alpha_{j}\right) \cdot\left(s_{j} \circ f\right),
$$

and hence by definition:

$$
\begin{aligned}
\widetilde{D}(g \cdot \sigma) & =\sum_{j=1}^{n}\left(g \alpha_{j} \cdot D_{d f(\cdot)}\left(s_{j}\right)+\left(s_{j} \circ f\right) \otimes d\left(g \alpha_{j}\right)\right) \\
& \left\{\text { Use } d\left(g \alpha_{j}\right)=g \cdot d \alpha_{j}+\alpha_{j} \cdot d g \cdot\right\} \\
& =g \cdot \sum_{j=1}^{n}\left(\alpha_{j} \cdot D_{d f(\cdot)}\left(s_{j}\right)+\left(s_{j} \circ f\right) \otimes d \alpha_{j}\right)+\sum_{j=1}^{n} \alpha_{j}\left(s_{j} \circ f\right) \otimes d g \\
& =g \cdot \widetilde{D}(\sigma)+\sigma \otimes d g,
\end{aligned}
$$

This proves that \widetilde{D} is a connection! Finally we prove that \widetilde{D} satisfies (149). Thus let $s \in \Gamma E$ be given. Then there exist unique $\beta_{1}, \ldots, \beta_{n} \in C^{\infty}(N)$ such that $s=\sum_{j=1}^{n} \beta_{j} s_{j}$ (cf. Problem [34); hence $s \circ f=\sum_{j=1}^{n}\left(\beta_{j} \circ f\right) \cdot\left(s_{j} \circ f\right)$; and so by our definition of \widetilde{D},

$$
\begin{equation*}
\widetilde{D}(s \circ f)=\sum_{j=1}^{n}\left(\left(\beta_{j} \circ f\right) \cdot D_{d f(\cdot)}\left(s_{j}\right)+\left(s_{j} \circ f\right) \otimes d\left(\beta_{j} \circ f\right)\right) . \tag{151}
\end{equation*}
$$

On the other hand for any $p \in M$ and $v \in T_{p} M$ we have

$$
\begin{aligned}
D_{d f(v)}(s) & =D_{d f(v)}\left(\sum_{j=1}^{n} \beta_{j} s_{j}\right) \\
& =\sum_{j=1}^{n}\left(\beta_{j}(f(p)) \cdot D_{d f(v)}\left(s_{j}\right)+\left[d f_{p}(v)\right]\left(\beta_{j}\right) \cdot s_{j}(f(p))\right) .
\end{aligned}
$$

Here

$$
\left[d f_{p}(v)\right]\left(\beta_{j}\right)=\left(d \beta_{j}\right)_{f(p)}\left(d f_{p}(v)\right)=\left[d\left(\beta_{j} \circ f\right)\right](v) \in \mathbb{R}
$$

(by the chain rule), and hence by comparing the last two formulas we see that $\widetilde{D}(s \circ f)=D_{d f(\cdot)}(s)$. Hence we have proved that the connection \widetilde{D} satisfies the relation required for $f^{*} D$, (149). This proves that $f^{*} D$ exists, namely $f^{*} D=\widetilde{D}$!

We have thus proved that the pullback of any connection on a trivial vector bundle exists; and it is unique since we have noted that the pullback of any connection is unique if it exists.

Finally we will prove that the pullback connection $f^{*} D$ exists for an arbitrary vector bundle (E, π, N). Fix an open covering $\left(V_{\alpha}\right)_{\alpha \in A}$ of N such that $E_{\mid V_{\alpha}}$ is trivial for each $\alpha \in A$. Let $U_{\alpha}=f^{-1}\left(V_{\alpha}\right)$; then $\left(U_{\alpha}\right)_{\alpha \in A}$ is an open covering of M. Now $f_{\mid U_{\alpha}}$ is a C^{∞} map of manifolds $U_{\alpha} \rightarrow V_{\alpha}$, and $D_{\mid V_{\alpha}}$ is a connection on the trivial vector bundle $E_{V_{\alpha}}$ (cf. Problem 52); hence by what we have proved above, there exists a uniquely defined pullback connection $\widetilde{D}_{\alpha}:=f_{\mid U_{\alpha}}^{*}\left(D_{\mid V_{\alpha}}\right)$ on $f_{\mid U_{\alpha}}^{*}\left(E_{\mid V_{\alpha}}\right)=\left(f^{*} E\right)_{\mid U_{\alpha}} .53$ Let us prove that these connections $\widetilde{D}_{\alpha}(\alpha \in A)$ are compatible in the appropriate sense. Thus let $\alpha, \beta \in A$ and set $U^{\prime}:=U_{\alpha} \cap U_{\beta}$; assume $U^{\prime} \neq \emptyset$. Note that $U^{\prime}=f^{-1}\left(V^{\prime}\right)$ where $V^{\prime}:=V_{\alpha} \cap V_{\beta}$. We claim that

$$
\begin{equation*}
\widetilde{D}_{\alpha \mid U^{\prime}}\left(s^{\prime} \circ f_{\mid U^{\prime}}\right)=D_{d f_{\mid U^{\prime}}(\cdot)}\left(s^{\prime}\right), \quad \forall s^{\prime} \in \Gamma E_{\mid V^{\prime}} . \tag{152}
\end{equation*}
$$

(Here in the right hand side, " D " really stands for " $D_{\mid U}$ "; we will use this type of mild abuse of notation several times in the discussion below.) To prove (152), let $s^{\prime} \in \Gamma E_{\mid V^{\prime}}$ be given, and take $p \in U^{\prime}$. By Problem 35(a), there is a section $s \in \Gamma E_{\mid V_{\alpha}}$ such that $s_{\mid V^{\prime \prime}}=s_{\mid V^{\prime \prime}}^{\prime}$ for some open set $V^{\prime \prime} \subset V^{\prime}$ containing $f(p)$. Then $s \circ f_{\mid U_{\alpha}}$ and $s^{\prime} \circ f_{\mid U^{\prime}}$ have the same restrictions to $U^{\prime \prime}:=f^{-1}\left(V^{\prime \prime}\right)$, i.e. $\left(s \circ f_{\mid U_{\alpha}}\right)_{\mid U^{\prime \prime}}=\left(s^{\prime} \circ f_{\mid U^{\prime}}\right)_{\mid U^{\prime \prime}}$. Note also that $p \in U^{\prime \prime}$.

[^31]Now we get:

$$
\begin{aligned}
& \widetilde{D}_{\alpha \mid U^{\prime}}\left(s^{\prime} \circ f_{\mid U^{\prime}}\right)_{\mid U^{\prime \prime}} \\
&=\left(\widetilde{D}_{\alpha}\left(s \circ f_{\mid U_{\alpha}}\right)\right)_{\mid U^{\prime \prime}}
\end{aligned} \quad\left\{\begin{array}{l}
\text { since }\left(s \circ f_{\mid U_{\alpha}}\right)_{\mid U^{\prime \prime}}=\left(s^{\prime} \circ f_{\mid U^{\prime}}\right)_{\mid U^{\prime \prime}} ; \text { cf. the } \\
\text { solution to Problem } 52(\mathrm{~b}) .
\end{array}\right\} .
$$

Since every $p \in U^{\prime}$ has such a neighborhood $U^{\prime \prime}$, it follows that (152) holds!
But (152) says exactly that $\widetilde{D}_{\alpha \mid U^{\prime}}$ is the $f_{\mid U^{\prime}}$-pullback of $D_{\mid V^{\prime}}$ (which we know is unique if it exists). Changing the roles of α and β, it also follows that $\widetilde{D}_{\beta \mid U^{\prime}}$ is the $f_{\mid U^{\prime}}$-pullback of $D_{\mid V^{\prime}}$. Hence by the uniqueness of "the $f_{\mid U^{\prime}}$-pullback of $D_{\mid V^{\prime}}$ ", we conclude:

$$
\begin{equation*}
\widetilde{D}_{\alpha \mid U^{\prime}}=\widetilde{D}_{\beta \mid U^{\prime}} \tag{153}
\end{equation*}
$$

The fact that (153) holds for all $\alpha, \beta \in A$ with $U_{\alpha} \cap U_{\beta} \neq \emptyset$ implies by Problem 52(c) that there exists a unique connection \widetilde{D} on $f^{*} E$ satisfying $\widetilde{D}_{\mid U_{\alpha}}=\widetilde{D}_{\alpha}$ for all $\alpha \in A$. One easily proves that

$$
\begin{equation*}
\widetilde{D}(s \circ f)=D_{d f(\cdot)}(s), \quad \forall s \in \Gamma E . \tag{154}
\end{equation*}
$$

(Indeed, let $s \in \Gamma E$ be given. Then for every $\alpha \in A$ we have $(\widetilde{D}(s \circ f))_{\mid U_{\alpha}}=$ $\widetilde{D}_{\alpha}\left((s \circ f)_{\mid U_{\alpha}}\right)=\widetilde{D}_{\alpha}\left(s_{\mid V_{\alpha}} \circ f_{\mid U_{\alpha}}\right)=D_{d f_{U_{\alpha}}(\cdot)}\left(s_{\mid V_{\alpha}}\right)=D_{d f(\cdot)}(s)_{\mid U_{\alpha}}$, where each step is justified by arguments similar to those in the proof of (152). The fact that $(\widetilde{D}(s \circ f))_{\mid U_{\alpha}}=D_{d f(\cdot)}(s)_{\mid U_{\alpha}}$ for each $\alpha \in A$ implies that $\widetilde{D}(s \circ f)=D_{d f(\cdot)}(s)$. Done! $)$

The relation (154) says exactly that the connection \widetilde{D} satisfies the requirements on the pullback bundle $f^{*} D$; hence we have proved that $f^{*} D$ exists!
(b). Let us first prove that the connection $f^{*} D$ defined in part (a) indeed satisfies the stated condition. Thus let $s \in \Gamma f^{*} E=\Gamma_{f} E$ and let $c:(-\varepsilon, \varepsilon) \rightarrow$ M be a C^{∞} curve; also let $s_{1} \in \Gamma E$, and assume that $s_{1}(f(c(t)))=s(c(t))$ for all $t \in(-\varepsilon, \varepsilon)$. The assumption means that the two sections $s_{1} \circ f$ and s in $\Gamma f^{*} E$ are equal along the curve c. Hence by Problem [53,

$$
\left(f^{*} D\right)_{\dot{c}(0)}(s)=\left(f^{*} D\right)_{\dot{c}(0)}\left(s_{1} \circ f\right) .
$$

But also, by the defining property of $f^{*} D$,

$$
\left(f^{*} D\right)_{\dot{c}(0)}\left(s_{1} \circ f\right)=D_{d f(\dot{c}(0))}\left(s_{1}\right) .
$$

Hence $\left(f^{*} D\right)_{\dot{c}(0)}(s)=D_{d f(\dot{c}(0))}\left(s_{1}\right)$, and so we have proved that $f^{*} D$ satisfies the desired condition.

Next let us prove that $f^{*} D$ is the only connection on $f^{*} E$ which satisfies the stated condition. Thus let ∇ be any connection on $f^{*} E$ such that for any $s \in \Gamma f^{*} E=\Gamma_{f} E$, any $s_{1} \in \Gamma E$, and any curve $c:(-\varepsilon, \varepsilon) \rightarrow M$, if $s_{1}(f(c(t)))=s(c(t))(\forall t \in(-\varepsilon, \varepsilon))$, then $\nabla_{\dot{c}(0)}(s)=D_{d f(\dot{c}(0))}\left(s_{1}\right)$.

Consider an arbitrary section $s_{1} \in \Gamma E$ and an arbitrary $v \in T M$. Then there is a C^{∞} curve $c:(-\varepsilon, \varepsilon) \rightarrow M$ such that $v=\dot{c}(0)$. Note that $s_{1} \circ f \in$ $\Gamma f^{*} E$ and obviously $s_{1}(f(c(t)))=\left(s_{1} \circ f\right)(c(t))$ for all $t \in(-\varepsilon, \varepsilon)$. Hence by our assumption, $\nabla_{\dot{c}(0)}\left(s_{1} \circ f\right)=D_{d f(\dot{c}(0))}\left(s_{1}\right)$, i.e.

$$
\nabla_{v}\left(s_{1} \circ f\right)=D_{d f(v)}\left(s_{1}\right) .
$$

The fact that this holds for all $s_{1} \in \Gamma E$ and all $v \in T M$ means exactly that ∇ satisfies the defining condition for " $f^{*} D$ "; hence by the uniqueness proved in part (a) we must have $\nabla=f^{*} D$.
(c). Let $V \subset N$ be an open set containing q such that there exists a basis of sections $s_{1}, \ldots, s_{n} \in \Gamma E_{\mid V}$. Set $U=f^{-1}(V) \subset M$. Then, given $s \in \Gamma f^{*} E$, there exist unique $\alpha_{1}, \ldots, \alpha_{n} \in C^{\infty}(U)$ such that

$$
s_{\mid U}=\sum_{j=1}^{n} \alpha_{j} \cdot\left(s_{j} \circ f_{\mid U}\right)
$$

(cf. Problem44(b) and Problem 34). Now by the definition of $f^{*} D$ (cf. part a),
$\left(f^{*} D\right)(s)_{\mid U}=\sum_{j=1}^{n}\left(\left(s_{j} \circ f_{\mid U}\right) \otimes d \alpha_{j}+\alpha_{j} \cdot D_{d f(\cdot)}\left(s_{j}\right)\right) \quad$ in $\Gamma\left(\left(f^{*} E \otimes T^{*} M\right)_{\mid U}\right)$.
In particular,

$$
\left(f^{*} D\right)_{\dot{c}(0)}(s)=\sum_{j=1}^{n}\left(\left(\alpha_{j} \circ c\right)^{\prime}(0) \cdot s_{j}(q)+\alpha_{j}(c(0)) \cdot D_{d f(\dot{c}(0))}\left(s_{j}\right)\right)
$$

Here $d f(\dot{c}(0))=0$ since $f \circ c$ is constant; thus we are left with:

$$
\begin{equation*}
\left(f^{*} D\right)_{\dot{c}(0)}(s)=\sum_{j=1}^{n}\left(\alpha_{j} \circ c\right)^{\prime}(0) \cdot s_{j}(q) . \tag{155}
\end{equation*}
$$

On the other hand we have $s(c(t))=\alpha_{j}(c(t)) \cdot s_{j}(q)$ for all $t \in(-\varepsilon, \varepsilon)$, and hence the right hand side of (155) equals the tangent vector $\left(\frac{d}{d t}(s \circ c)(t)\right)_{\mid t=0}$ in $T_{s(c(0))}\left(E_{q}\right)=E_{q}$. Done!

Problem 58: The general structure of the following proof is very similar to the solution to Problem 57(a).

The requirement on D is

$$
\begin{equation*}
D(\mu \otimes \nu)=\left(D_{1} \mu\right) \otimes \nu+\mu \otimes\left(D_{2} \nu\right), \quad \forall \mu \in \Gamma E_{1}, \nu \in \Gamma E_{2} \tag{156}
\end{equation*}
$$

By the definition of tensor product (of $C^{\infty}(M)$-modules), every element in $\Gamma\left(E_{1}\right) \otimes \Gamma\left(E_{2}\right)$ can be written as a finite sum of pure tensors $\mu_{1} \otimes \mu_{2}\left(\mu_{1} \in\right.$ $\left.\Gamma E_{1}, \mu_{2} \in \Gamma E_{2}\right)$; hence by Problem 43 (d), the same is true for any section in $\Gamma\left(E_{1} \otimes E_{2}\right)$. (Note that a main portion of the solution to Problem43(d) was spent on proving exactly this fact.) Hence the formula (156), together with the requirement that D should be \mathbb{R}-linear (or merely additive) certainly makes the connection D uniquely defined, if it exists at all.

Thus it remains to prove that there exists such a connection D. Let us first prove the existence of D in the special case when both E_{1} and E_{2} are trivial vector bundles. Then fix a basis of sections $\mu_{1}, \ldots, \mu_{n} \in \Gamma E_{1}$ and a basis of sections $\nu_{1}, \ldots, \nu_{m} \in \Gamma E_{2}$ (cf. Problem 33), we set $n=\operatorname{rank} E_{1}$ and $m=\operatorname{rank} E_{2}$). Then $\left\{\mu_{i} \otimes \nu_{j}\right\}$ (with $i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}$) is a basis of sections in $\Gamma\left(E_{1} \otimes E_{2}\right)$, and so for any $s \in \Gamma\left(E_{1} \otimes E_{2}\right)$ there exist unique 'coefficient functions' $\alpha_{i, j} \in C^{\infty}(M)$ such that

$$
\begin{equation*}
s=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i, j} \mu_{i} \otimes \nu_{j} \tag{157}
\end{equation*}
$$

and we now define the map

$$
D: \Gamma\left(E_{1} \otimes E_{2}\right) \rightarrow \Gamma\left(E_{1} \otimes E_{2} \otimes T^{*} M\right)
$$

by setting ${ }^{36}$

$$
D(s):=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\mu_{i} \otimes \nu_{j} \otimes d \alpha_{i, j}+\alpha_{i, j}\left(D_{1} \mu_{i}\right) \otimes \nu_{j}+\alpha_{i, j} \mu_{i} \otimes\left(D_{2} \nu_{j}\right)\right)
$$

(Here we use the natural isomorphism between $\Gamma\left(E_{1} \otimes T^{*} M \otimes E_{2}\right)$ and $\Gamma\left(E_{1} \otimes E_{2} \otimes T^{*} M\right)$ to identify $\left(D_{1} \mu_{i}\right) \otimes \nu_{j} \in \Gamma\left(E_{1} \otimes T^{*} M \otimes E_{2}\right)$ with an element in $\Gamma\left(E_{1} \otimes E_{2} \otimes T^{*} M\right)$.) This map D is clearly well-defined and \mathbb{R}-linear. Furthermore, for any $f \in C^{\infty}(M)$ and s as in (157), we have

$$
f s=\sum_{i=1}^{n} \sum_{j=1}^{m} f \alpha_{i, j} \mu_{i} \otimes \nu_{j}
$$

[^32]and hence by our definition,
\[

$$
\begin{aligned}
D(f s) & =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\mu_{i} \otimes \nu_{j} \otimes d\left(f \alpha_{i, j}\right)+f \alpha_{i, j}\left(D_{1} \mu_{i}\right) \otimes \nu_{j}+f \alpha_{i, j} \mu_{i} \otimes\left(D_{2} \nu_{j}\right)\right) \\
& \left\{\text { use } d\left(f \alpha_{i, j}\right)=\alpha_{i, j} d f+f d \alpha_{i, j} \text { and our formula for } D(s)\right\} \\
& =f \cdot D(s)+\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i, j} \mu_{i} \otimes \nu_{j} \otimes d f \\
& =f \cdot D(s)+s \otimes d f
\end{aligned}
$$
\]

This proves that D is a connection! We next prove that D satisfies (156). Thus let $\mu \in \Gamma E_{1}$ and $\nu \in \Gamma E_{2}$ be given. Then there exist unique $\alpha_{1}, \ldots, \alpha_{n} \in$ $C^{\infty}(M)$ such that $\mu=\sum_{i=1}^{n} \alpha_{i} \mu_{i}$, and there exist unique $\beta_{1}, \ldots, \beta_{m} \in$ $C^{\infty}(M)$ such that $\nu=\sum_{j=1}^{m} \beta_{j} \nu_{j}$. Then

$$
\mu \otimes \nu=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \mu_{i} \otimes \nu_{j}
$$

and hence by our definition,

$$
\begin{aligned}
D(\mu \otimes \nu)= & \sum_{i=1}^{n} \sum_{j=1}^{m}\left(\mu_{i} \otimes \nu_{j} \otimes d\left(\alpha_{i} \beta_{j}\right)+\alpha_{i} \beta_{j}\left(D_{1} \mu_{i}\right) \otimes \nu_{j}+\alpha_{i} \beta_{j} \mu_{i} \otimes\left(D_{2} \nu_{j}\right)\right) \\
= & \sum_{i=1}^{n} \sum_{j=1}^{m}\left(\mu_{i} \otimes\left(\beta_{j} \nu_{j}\right) \otimes d \alpha_{i}+\left(\alpha_{i} D_{1} \mu_{i}\right) \otimes\left(\beta_{j} \nu_{j}\right)\right. \\
& \left.+\left(\alpha_{i} \mu_{i}\right) \otimes \nu_{j} \otimes d \beta_{j}+\alpha_{i} \mu_{i} \otimes\left(\beta_{j} D_{2} \nu_{j}\right)\right) \\
= & \sum_{i=1}^{n} \sum_{j=1}^{m}\left(D_{1}\left(\alpha_{i} \mu_{i}\right)\right) \otimes\left(\beta_{j} \nu_{j}\right)+\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i} \mu_{i}\right) \otimes\left(D_{2}\left(\beta_{j} \nu_{j}\right)\right) \\
= & \left(D_{1} \mu\right) \otimes \nu+\mu \otimes\left(D_{2} \nu\right) .
\end{aligned}
$$

Hence we have proved that D satisfies (156). This completes the proof in the special case when both E_{1} and E_{2} are trivial vector bundles.

Finally we will prove that the connection D on $\Gamma\left(E_{1} \otimes E_{2}\right)$ exists when E_{1}, E_{2} are arbitrary vector bundles over M. Fix an open covering $\left(U_{\alpha}\right)_{\alpha \in A}$ of M such that both $E_{1 \mid U_{\alpha}}$ and $E_{2 \mid U_{\alpha}}$ are trivial for all $\alpha \in A$. Then by what we have proved above, for each $\alpha \in A$ there exists a unique connection D_{α} on $\left(E_{1} \otimes E_{2}\right)_{\mid U_{\alpha}}=E_{1 \mid U_{\alpha}} \otimes E_{2 \mid U_{\alpha}}$ satisfying

$$
\begin{equation*}
D_{\alpha}(\mu \otimes \nu)=\left(D_{1} \mu\right) \otimes \nu+\mu \otimes\left(D_{2} \nu\right), \quad \forall \mu \in \Gamma E_{1 \mid U_{\alpha}}, \nu \in \Gamma E_{2 \mid U_{\alpha}} \tag{158}
\end{equation*}
$$

(Here " D_{1} " really stands for $D_{1 \mid U_{\alpha}}$ and similarly for D_{2}; cf. Problem 52.) Now one proves that these connections D_{α} are compatible in the sense that $\left(D_{\alpha}\right)_{\mid U_{\alpha} \cap U_{\beta}}=\left(D_{\beta}\right)_{\mid U_{\alpha} \cap U_{\beta}}$ for all $\alpha, \beta \in A$. (We leave out the details for
this; but cf. the solution to Problem 57] where we give a detailed proof of the same kind of compatibility in a different situation.) Hence by Problem 52(c), there exists a unique connection D on $\Gamma\left(E_{1} \otimes E_{2}\right)$ satisfying $D_{\mid U_{\alpha}}=D_{\alpha}$ for all $\alpha \in A$. One easily proves that this connection D satisfies (156). This completes the proof.

Problem 59; (a). By the now familiar argument (cf., e.g., the beginning of the solution to Problem [58), any section in $\Gamma\left(E_{1} \otimes E_{2}\right)$ can be written as a finite sum of pure tensor sections $s_{1} \otimes s_{2}$ with $s_{1} \in \Gamma E_{1}$ and $s_{2} \in \Gamma E_{2}$. The analogous fact holds for $\Gamma\left(E_{1}^{*} \otimes E_{3}\right)$. Hence, by \mathbb{R}-linearity, it suffices to prove the desired formula when $\alpha=s_{1} \otimes s_{2}$ and $\beta=u \otimes s_{3}$ for some $s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}, u \in \Gamma E_{1}^{*}, s_{3} \in \Gamma E_{3}$. In this case,

$$
(\alpha, \beta)=\left(s_{1} \otimes s_{2}, u \otimes s_{3}\right)=\left(s_{1}, u\right) \cdot s_{2} \otimes s_{3},
$$

and hence

$$
\begin{aligned}
D(\alpha, \beta)= & s_{2} \otimes s_{3} \otimes d\left(s_{1}, u\right)+\left(s_{1}, u\right) \cdot D\left(s_{2} \otimes s_{3}\right) \\
= & s_{2} \otimes s_{3} \otimes\left(\left(D s_{1}, u\right)+\left(s_{1}, D u\right)\right)+\left(s_{1}, u\right) \cdot\left(\left(D s_{2}\right) \otimes s_{3}+s_{2} \otimes\left(D s_{3}\right)\right) \\
= & \left(\left(D s_{1}\right) \otimes s_{2}+s_{1} \otimes\left(D s_{2}\right), u \otimes s_{3}\right) \\
& \quad+\left(s_{1} \otimes s_{2},(D u) \otimes s_{3}+u \otimes\left(D s_{3}\right)\right) \\
& =(D \alpha, \beta)+(\alpha, D \beta) .
\end{aligned}
$$

Done!
(b). We have standard identifications $\Gamma\left(\operatorname{Hom}\left(E_{2}, E_{3}\right)\right)=\Gamma\left(E_{2}^{*} \otimes E_{3}\right)$ and $\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)=\Gamma\left(E_{1}^{*} \otimes E_{2}\right)$, and under these identifications, the composition $\alpha \circ \beta$ is the section in $\Gamma\left(E_{1}^{*} \otimes E_{3}\right)$ obtained by contracting the E_{2}^{*}-part of α against the E_{2}-part of β. (Cf. the solution to Problem 50 where this is discussed in matrix notation.) Hence the stated formula is equivalent to the formula proved in part a. (Of course the formula in part a remains true regardless of the exact ordering of the factors in the tensor products.)
(c). We have the standard identification $\Gamma\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)=\Gamma\left(E_{1}^{*} \otimes E_{2}\right)$, and under this identification the composition $\alpha \circ \beta$ is the section in $\Gamma\left(E_{2}\right)$ obtained by contracting the E_{1}^{*}-part of α against β. Hence the stated formula is a special case of the formula in part a (namely: take $E_{3}=M \times \mathbb{R}$ and replace E_{1} by E_{1}^{*} in the formula in part a).

Problem 60:

(a). The general structure of the following proof is again similar to the solutions of Problems 57(a) and 58.

The requirement on $D: \Omega^{p}(E) \rightarrow \Omega^{p+1}(E)$ is \mathbb{R}-linearity and

$$
\begin{equation*}
D(\mu \otimes \omega)=(D \mu) \wedge \omega+\mu \otimes d \omega, \quad \forall \mu \in \Gamma E, \omega \in \Omega^{p}(M) \tag{159}
\end{equation*}
$$

We call such a map an exterior covariant derivative with respect to the connection D. It follows from $\Omega^{p}(E)=\Gamma\left(E \otimes \bigwedge^{p} M\right)=\Gamma(E) \otimes_{C} \infty_{M} \Omega^{p}(M)$ (cf. Problem 43(d)) that every $s \in \Omega^{p}(E)$ can be written as a finite sum of pure tensors $s \otimes \omega\left(s \in \Gamma(E), \omega \in \Omega^{p}(M)\right)$. Hence, since D is required to be \mathbb{R}-linear (in particular additive), the condition (159) certainly makes $D: \Omega^{p}(E) \rightarrow \Omega^{p+1}(E)$ uniquely determined, if it exists at all.

Thus it remains to prove that there exists such an exterior covariant derivative. We start by proving three lemmata:

Lemma 6. Let $\left(U_{\alpha}\right)_{\alpha \in A}$ be an open covering of M, and for each $\alpha \in A$ let $D_{\alpha}: \Omega^{p}\left(E_{\mid U_{\alpha}}\right) \rightarrow \Omega^{p+1}\left(E_{\mid U_{\alpha}}\right)$ be an exterior covariant derivative wrt the connection $D_{\mid U_{\alpha}}$ on $E_{\mid U_{\alpha}}$. Assume that $\left(D_{\alpha}\left(s_{\mid U_{\alpha}}\right)\right)_{\mid U_{\alpha} \cap U_{\beta}}=\left(D_{\beta}\left(s_{\mid U_{\beta}}\right)\right)_{\mid U_{\alpha} \cap U_{\beta}}$ for all $s \in \Omega^{p}(E)$ and all $\alpha, \beta \in A$. Then there exists a unique \mathbb{R}-linear map $D: \Omega^{p}(E) \rightarrow \Omega^{p+1}(E)$ satisfying $(D s)_{\mid U_{\alpha}}=D_{\alpha}\left(s_{\mid U_{\alpha}}\right)$ for all $s \in \Omega^{p}(E)$ and $\alpha \in A$, and this map is an exterior covariant derivative wrt D.

This lemma is proved by the same type of arguments as in the solution to Problem 52 (cf. in particular Remark 1).

Lemma 7. Let $U_{2} \subset U_{1}$ be open subsets of M, and for $j=1,2$ let $D_{j}: \Omega^{p}\left(E_{\mid U_{j}}\right) \rightarrow \Omega^{p+1}\left(E_{\mid U_{j}}\right)$ be an exterior covariant derivative wrt the connection $D_{\mid U_{j}}$. Then

$$
\begin{equation*}
\left(D_{1} s\right)_{\mid U_{2}}=D_{2}\left(s_{\mid U_{2}}\right), \quad \forall s \in \Omega^{p}\left(E_{\mid U_{1}}\right) \tag{160}
\end{equation*}
$$

Proof. Since every $s \in \Omega^{p}\left(E_{\mid U_{1}}\right)$ can be written as a finite sum of pure tensors $\mu \otimes \omega$, where $\mu \in \Gamma\left(E_{\mid U_{1}}\right)$ and $\omega \in \Omega^{p}\left(U_{1}\right)$, it suffices to prove (160) when s is such a pure tensor; $s=\mu \otimes \omega$. But then

$$
\begin{aligned}
\left(D_{1} s\right)_{\mid U_{2}}=\left(D_{1}(\mu \otimes \omega)\right)_{\mid U_{2}} & =\left(\left(D_{\mid U_{1}} \mu\right) \wedge \omega+\mu \otimes d \omega\right)_{\mid U_{2}} \\
& =\left(D_{\mid U_{1}} \mu\right)_{\mid U_{2}} \wedge \omega_{\mid U_{2}}+\mu_{\mid U_{2}} \otimes d\left(\omega_{\mid U_{2}}\right) \\
& =\left(D_{\mid U_{2}} \mu_{\mid U_{2}}\right) \wedge \omega_{\mid U_{2}}+\mu_{\mid U_{2}} \otimes d\left(\omega_{\mid U_{2}}\right) \\
& =D_{2}\left(\mu_{\mid U_{2}} \otimes \omega_{\mid U_{2}}\right)=D_{2}\left(s_{\mid U_{2}}\right)
\end{aligned}
$$

(In the above computation we used the fact that $\left(D_{\mid U_{1}}\right)_{\mid U_{2}}=D_{\mid U_{2}}-$ this fact is immediate from the solution of Problem 52,
Lemma 8. Let U be any open subset of M such that both the vector bundles $T U$ and $E_{\mid U}$ are trivializable. Then there exists a unique exterior covariant derivative $\widetilde{D}: \Omega^{p}\left(E_{\mid U}\right) \rightarrow \Omega^{p+1}\left(E_{\mid U}\right)$ wrt $D_{\mid U}$.

Proof. The assumptions imply that there exists a basis of sections $\omega_{1}, \ldots, \omega_{r}$ for $\Omega^{p}(U)\left(r=\binom{d}{p}\right)$ and a basis of sections μ_{1}, \ldots, μ_{n} for $\Gamma\left(E_{\mid U}\right)$. Then $\left(\mu_{j} \otimes \omega_{k}\right)$ form a basis of sections of $\Omega^{p}\left(E_{\mid U}\right)$ and hence every $s \in \Omega^{p}\left(E_{\mid U}\right)$ can be uniquely expressed as $s=a^{j k} \mu_{j} \otimes \omega_{k}$ with $a^{j k} \in C^{\infty} U$. We now define the map $\widetilde{D}: \Omega^{p}\left(E_{\mid U}\right) \rightarrow \Omega^{p+1}\left(E_{\mid U}\right)$ by

$$
\begin{equation*}
\widetilde{D}\left(a^{j k} \mu_{j} \otimes \omega_{k}\right):=\left(D\left(a^{j k} \mu_{j}\right)\right) \wedge \omega_{k}+a^{j k} \mu_{j} \otimes d \omega_{k} \tag{161}
\end{equation*}
$$

(In the right hand side, " D " of course stands for $D_{\mid U}$.) This map \widetilde{D} is clearly \mathbb{R}-linear. Let us verify that \widetilde{D} is an exterior covariant derivative wrt $D_{\mid U}$. Thus let $\mu \in \Gamma\left(E_{\mid U}\right)$ and $\omega \in \Omega^{p}(U)$ be given. Then there exist unique $b^{1}, \ldots, b^{n}, c^{1}, \ldots, c^{r} \in C^{\infty}(U)$ such that $\mu=b^{j} \mu_{j}$ and $\omega=c^{k} \omega_{k}$, and thus $\mu \otimes \omega=b^{j} c^{k} \mu_{j} \otimes \omega_{k}$. Hence by our definition,

$$
\widetilde{D}(\mu \otimes \omega)=\left(D\left(b^{j} c^{k} \mu_{j}\right)\right) \wedge \omega_{k}+b^{j} c^{k} \mu_{j} \otimes d \omega_{k},
$$

and this can be manipulated as follows:

$$
\begin{aligned}
& =\left(c^{k} D\left(b^{j} \mu_{j}\right)+b^{j} \mu_{j} \otimes d c^{k}\right) \wedge \omega_{k}+\left(b_{j} \mu_{j}\right) \otimes\left(c^{k} \cdot d \omega_{k}\right) \\
& =\left(D\left(b^{j} \mu_{j}\right)\right) \wedge\left(c^{k} \omega_{k}\right)+\left(b^{j} \mu_{j}\right) \otimes\left(d c^{k} \wedge \omega_{k}+c^{k} \cdot d \omega_{k}\right) \\
& =(D \mu) \wedge \omega+\mu \otimes d\left(c^{k} \omega_{k}\right) \\
& =(D \mu) \wedge \omega+\mu \otimes d \omega .
\end{aligned}
$$

Hence \widetilde{D} is indeed an exterior covariant derivative wrt $D_{\mid U}$.
The uniqueness follows by the argument immediately below (159). (In particular this shows that \widetilde{D} is independent of the choice of bases of sections $\omega_{1}, \ldots, \omega_{r}$ and μ_{1}, \ldots, μ_{n}.)

We now complete the proof of existence: Let $\left\{U_{\alpha}\right\}$ be a family of open subsets satisfying the assumption of Lemma 8, covering M. Let D_{α} : $\Omega^{p}\left(E_{\mid U_{\alpha}}\right) \rightarrow \Omega^{p+1}\left(E_{\mid U_{\alpha}}\right)$ be the exterior covariant derivative provided by Lemma 8. For any $\alpha, \beta \in A$ the set $V:=U_{\alpha} \cap U_{\beta}$ also satisfies the assumption of Lemma 8 (assume $V \neq \emptyset$ for nontriviality), and so there exists a unique exterior covariant derivative $\widetilde{D}: \Omega^{p}\left(E_{\mid V}\right) \rightarrow \Omega^{p+1}\left(E_{\mid V}\right)$ wrt $D_{\mid V}$. Then Lemma 7 (applied twice) implies that for every $s \in \Omega^{p}(E)$ we have

$$
\left(D_{\alpha}\left(s_{\mid U_{\alpha}}\right)\right)_{\mid V}=\widetilde{D}\left(s_{\mid V}\right)=\left(D_{\alpha}\left(s_{\mid U_{\beta}}\right)\right)_{\mid V} .
$$

Hence all assumptions of Lemma 6 are fulfilled and now that lemma proves the existence of an exterior covariant derivative $\Omega^{p}(E) \rightarrow \Omega^{p+1}(E)$ wrt D. Done!
(b). In order to simplify the notation let us replace M by U; thus from now on we can write " E " in place of " $E_{\mid U}$ ".

Note that both sides of the stated formula are \mathbb{R}-linear in μ; hence by the argument below (159) it suffices to prove the formula for μ of the form $\mu=s \otimes \omega$, with $s \in \Gamma(E)$ and $\omega \in \Omega^{p}(M)$. For such μ we have by the definition in part (a):

$$
\begin{aligned}
D \mu=D(s \otimes \omega)=(D s) \wedge \omega+\mu \otimes d \omega & =(d s+A s) \wedge \omega+s \otimes d \omega \\
& =(d s \wedge \omega+s \otimes d \omega)+A s \wedge \omega \\
& =d(s \otimes \omega)+A s \wedge \omega
\end{aligned}
$$

(In the last equality we again used the definition in part (a), this time for the naive connection d.) Note also that the " \wedge " in " $A s \wedge \omega$ " can be viewed as the combined vector-wedge-product (cf. Problem49(c)) $\Omega^{1}(E) \times \Omega^{p}(M) \rightarrow$ $\Omega^{p+1}(E)$ coming from the standard "scalar product map" $\Gamma(E) \times C^{\infty}(M) \rightarrow$ $\Gamma(E)$. As in the problem formulation, let us also write " \wedge " for the vector-wedge-product

$$
\begin{equation*}
\Omega^{1}(\text { End } E) \times \Omega^{r}(E) \rightarrow \Omega^{r+1}(E) \tag{162}
\end{equation*}
$$

coming from the standard contraction ("evaluation") $\Gamma($ End $E) \times \Gamma E \rightarrow \Gamma E$. (Thus " $A s$ " appearing above is the same as $A \wedge s$, namely the image of A and s under the map in (162) with $r=0$.) Noticing that the given multiplication rules $\Gamma($ End $E) \times \Gamma E \rightarrow \Gamma E$ and $\Gamma E \times C^{\infty}(M) \rightarrow \Gamma E$ satisfy the obvious associativity relation $\sqrt[37]{ }$, it follows by Problem 49(d) that

$$
A s \wedge \omega=(A \wedge s) \wedge \omega=A \wedge(s \wedge \omega)
$$

Using this in the previous computation gives

$$
D \mu=d(s \otimes \omega)+A \wedge(s \wedge \omega)=d \mu+A \wedge \mu
$$

Done!

[^33](c). Again by \mathbb{R}-(bi-)linearity it suffices to prove the stated formula for μ_{1}, μ_{2} of the form $\mu_{1}=s_{1} \otimes \omega_{1}$ and $\mu_{2}=s_{2} \otimes \omega_{2}$, with $\mu_{j} \in \Gamma E_{j}, \omega_{1} \in \Omega^{r}(M)$ and $\omega_{2} \in \Omega^{s}(M)$. In this case we have
\[

$$
\begin{aligned}
D\left(\mu_{1} \wedge \mu_{2}\right) & =D\left(\left(s_{1} \cdot s_{2}\right) \otimes\left(\omega_{1} \wedge \omega_{2}\right)\right) \\
& =\left(D\left(s_{1} \cdot s_{2}\right)\right) \wedge\left(\omega_{1} \wedge \omega_{2}\right)+\left(s_{1} \cdot s_{2}\right) \otimes d\left(\omega_{1} \wedge \omega_{2}\right)
\end{aligned}
$$
\]

where we used the definition of \wedge (Problem 49(c)) and then the definition of D (part (a) of this problem). Using now the assumption that the given connections respect our ".", we get

$$
\begin{align*}
=\left(\left(D s_{1}\right)\right. & \left.\wedge s_{2}\right) \wedge\left(\omega_{1} \wedge \omega_{2}\right)+\left(s_{1} \wedge D s_{2}\right) \wedge\left(\omega_{1} \wedge \omega_{2}\right) \\
& +\left(s_{1} \cdot s_{2}\right) \otimes\left(d \omega_{1} \wedge \omega_{2}\right)+(-1)^{r}\left(s_{1} \cdot s_{2}\right) \otimes\left(\omega_{1} \wedge d \omega_{2}\right) \tag{163}
\end{align*}
$$

Now note that the multiplication rule from E_{1}, E_{2} to \widetilde{E} satisfy the associativity relation $\left(s_{1} \cdot s_{2}\right) \cdot f=s_{1} \cdot\left(s_{2} \cdot f\right)$ for all $s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}$, $f \in C^{\infty}(M)=\Gamma(M \times \mathbb{R})$ (namely since the multiplication rule is $C^{\infty}(M)$ linear in s_{2}). By Problem 49(d), this implies that

$$
\begin{aligned}
\left(\varphi_{1} \wedge \varphi_{2}\right) \wedge \varphi_{3}=\varphi_{1} \wedge & \left(\varphi_{2} \wedge \varphi_{3}\right) \\
& \forall \varphi_{1} \in \Omega^{r_{1}}\left(E_{1}\right), \varphi_{2} \in \Omega^{r_{2}}\left(E_{2}\right), \varphi_{3} \in \Omega^{r_{3}}(M)
\end{aligned}
$$

Similarly we also have

$$
\begin{aligned}
\left(\varphi_{1} \wedge \varphi_{2}\right) \wedge \varphi_{3}=\varphi_{1} \wedge & \left(\varphi_{2} \wedge \varphi_{3}\right) \\
& \forall \varphi_{1} \in \Omega^{r_{1}}\left(E_{2}\right), \varphi_{2} \in \Omega^{r_{2}}(M), \varphi_{3} \in \Omega^{r_{3}}(M)
\end{aligned}
$$

and other similar associativity relations. Furthermore by Problem 49(c),

$$
\varphi_{1} \wedge \varphi_{2}=(-1)^{r_{1} r_{2}} \varphi_{2} \wedge \varphi_{1}, \quad \forall \varphi_{1} \in \Omega^{r_{1}}\left(E_{2}\right), \varphi_{2} \in \Omega^{r_{2}}(M)
$$

Using these facts (and $D s_{2} \in \Omega^{1}\left(E_{2}\right)$, and, again, the definition of \wedge), the expression in (163) is seen to be

$$
\begin{aligned}
& =\left(D s_{1}\right) \wedge \omega_{1} \wedge s_{2} \wedge \omega_{2}+(-1)^{r} s_{1} \wedge \omega_{1} \wedge\left(D s_{2}\right) \wedge \omega_{2} \\
& +\left(s_{1} \otimes d \omega_{1}\right) \wedge\left(s_{2} \otimes \omega_{2}\right)+(-1)^{r}\left(s_{1} \otimes \omega_{1}\right) \wedge\left(s_{2} \otimes d \omega_{2}\right) \\
& =\left(\left(D s_{1}\right) \wedge \omega_{1}+s_{1} \otimes d \omega_{1}\right) \wedge \mu_{2}+(-1)^{r} \mu_{1} \wedge\left(\left(D s_{2}\right) \wedge \omega_{2}+s_{2} \otimes d \omega_{2}\right) \\
& =\left(D \mu_{1}\right) \wedge \mu_{2}+(-1)^{r} \mu_{1} \wedge\left(D \mu_{2}\right) \text {. }
\end{aligned}
$$

Done!
(d). The statement that the given connections respect the multiplication rule can be expressed as:
$D\left(m\left(s_{1} \otimes s_{2}\right)\right)=m\left(D s_{1} \otimes s_{2}\right)+m\left(s_{1} \otimes D s_{2}\right) \quad\left(\forall s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}\right)$,
where in the right hand side, " $m(\alpha)$ " for $\alpha \in \Omega^{1}\left(E_{1} \otimes E_{2}\right)$ is the output of the vector-wedge-product

$$
\Gamma \operatorname{Hom}\left(E_{1} \otimes E_{2}, \widetilde{E}\right) \times \Omega^{1}\left(E_{1} \otimes E_{2}\right) \rightarrow \Omega^{1}(\widetilde{E})
$$

which extends the standard evaluation map

$$
\Gamma \operatorname{Hom}\left(E_{1} \otimes E_{2}, \widetilde{E}\right) \times \Gamma\left(E_{1} \otimes E_{2}\right) \rightarrow \Gamma(\widetilde{E}) .
$$

However by Problem 59(c) and Problem 58 we have:

$$
D\left(m\left(s_{1} \otimes s_{2}\right)\right)=(D m)\left(s_{1} \otimes s_{2}\right)+m\left(D s_{1} \otimes s_{2}\right)+m\left(s_{1} \otimes D s_{2}\right)
$$

for any $s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}$. Hence (164) is equivalent with:

$$
\begin{equation*}
(D m)\left(s_{1} \otimes s_{2}\right)=0 \quad\left(\forall s_{1} \in \Gamma E_{1}, s_{2} \in \Gamma E_{2}\right) \tag{165}
\end{equation*}
$$

But every section in $\Gamma\left(E_{1} \otimes E_{2}\right)$ can be written as a finite sum of sections of the form $s_{1} \otimes s_{2}$; hence (165) is equivalent with $(D m)(s)=0$ for all $s \in \Gamma\left(E_{1} \otimes E_{2}\right)$. This is equivalent with $D m=0$ in $\Omega^{1}\left(\operatorname{Hom}\left(E_{1} \otimes E_{2}, \widetilde{E}\right)\right)$ (via Problem 35(c)).

Problem 61:

It suffices to prove the stated formula when $s=\mu \otimes \omega(\mu \in \Gamma(E), \omega \in$ $\Omega^{r}(M)$), since an arbitrary section in $\Omega^{r}(E)$ can be expressed as a finite sum of such "pure tensor" sections. Now when $s=\mu \otimes \omega$, we find that the right hand side of the stated formula equals

$$
\begin{aligned}
& \sum_{j=0}^{r}(-1)^{j} D_{X_{j}}\left(\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \cdot \mu\right) \\
& +\sum_{0 \leq j<k \leq r}(-1)^{j+k} \omega\left(\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) \cdot \mu . \\
& =\sum_{j=0}^{r}(-1)^{j} X_{j}\left(\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \cdot \mu \\
& \quad+\sum_{j=0}^{r}(-1)^{j} \omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \cdot D_{X_{j}} \mu \\
& \quad+\sum_{0 \leq j<k \leq r}(-1)^{j+k} \omega\left(\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) \cdot \mu .
\end{aligned}
$$

On the other hand we have by definition $D s=(D \mu) \wedge \omega+\mu \otimes d \omega$ (cf. Problem 60(a)), and thus

$$
[D s]\left(X_{0}, \ldots, X_{r}\right)=((D \mu) \wedge \omega)\left(X_{0}, \ldots, X_{r}\right)+[d \omega]\left(X_{0}, \ldots, X_{r}\right) \cdot \mu
$$

For the first term we now use the definition of wedge product ${ }^{38}$, and for the second term we apply Problem 48(c); this gives:

$$
\begin{aligned}
& {[D s]\left(X_{0}, \ldots, X_{r}\right)=\sum_{j=0}^{r}(-1)^{j} \cdot \omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \cdot(D \mu)\left(X_{j}\right)} \\
& \quad+\sum_{j=0}^{r}(-1)^{j} X_{j}\left(\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \cdot \mu \\
& \quad+\sum_{0 \leq j<k \leq r}(-1)^{j+k} \omega\left(\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) \cdot \mu .
\end{aligned}
$$

Here " $(D \mu)\left(X_{j}\right)$ " stands for the contraction of the form part of $D \mu \in \Omega^{1}(E)$ against X_{j}; thus $(D \mu)\left(X_{j}\right)=D_{X_{j}} \mu$. Hence the last expression equals our previous expression for the right hand side of the stated formula. Hence the stated formula is proved!

[^34]
Problem 62:

By Problem 59, for each $j \in\{0, \ldots, r\}$ we have

$$
\begin{aligned}
&\left(\left[\begin{array}{l}
\nabla \\
]_{X_{j}}
\end{array} \widetilde{s}^{s}\right)\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right. \\
&= D_{X_{j}}\left(s\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
&-\sum_{k=0}^{j-1} s\left(X_{0}, \ldots, \nabla_{X_{j}} X_{k}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \\
&-\sum_{k=j+1}^{r} s\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, \nabla_{X_{j}} X_{k}, \ldots, X_{r}\right) \\
&=D_{X_{j}}\left(s\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right)-\sum_{k=0}^{j-1}(-1)^{k} s\left(\nabla_{X_{j}} X_{k}, X_{0}, \ldots, \hat{X}_{k}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \\
&-\sum_{k=j+1}^{r}(-1)^{k-1} s\left(\nabla_{X_{j}} X_{k}, X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right),
\end{aligned}
$$

where in the last step we used the fact that the form part of s is alternating. Using the above it follows that

$$
\begin{aligned}
& \sum_{j=0}^{r}(-1)^{j}\left(\left[\begin{array}{l}
\nabla \\
\hline
\end{array}\right]_{X_{j}} \widetilde{s}\right)\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \\
& =\sum_{j=0}^{r}(-1)^{j} D_{X_{j}}\left(s\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
& -\sum_{0 \leq k<j \leq r}(-1)^{j+k} s\left(\nabla_{X_{j}} X_{k}, X_{0}, \ldots, \hat{X}_{k}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right) \\
& +\sum_{0 \leq j<k \leq r}(-1)^{j+k} s\left(\nabla_{X_{j}} X_{k}, X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) .
\end{aligned}
$$

In the middle sum we change names between j and k; this gives:

$$
\begin{aligned}
& =\sum_{j=0}^{r}(-1)^{j} D_{X_{j}}\left(s\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
& +\sum_{0 \leq j<k \leq r}(-1)^{j+k} s\left(\nabla_{X_{j}} X_{k}-\nabla_{X_{k}} X_{j}, X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right) . \\
& =\sum_{j=0}^{r}(-1)^{j} D_{X_{j}}\left(s\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{r}\right)\right) \\
& +\sum_{0 \leq j<k \leq r}(-1)^{j+k} s\left(\left[X_{j}, X_{k}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{k}, \ldots, X_{r}\right),
\end{aligned}
$$

where in the last step we used the assumption that ∇ is torsion free. By Problem 61, the above equals $[D s]\left(X_{0}, \ldots, X_{r}\right)$. Hence we have proved the desired formula.

Problem 63:

(a). Let (U, φ) be any bundle chart for E, and let $s_{1}, \ldots, s_{n} \in \Gamma E_{\mid U}$ be the corresponding basis of sections. Then we get a corresponding bundle chart $(U, \widetilde{\varphi})$ for End E by mapping any $B \in \operatorname{End} E_{p}(p \in U)$ to the matrix for B with respect to the basis $s_{1}(p), \ldots, s_{n}(p)$ of E_{p}.
(Then $\widetilde{\varphi}$ is a C^{∞} diffeomorphism from End $E_{\mid U}$ onto $U \times M_{n}(\mathbb{R})$; pedantically for this to be a bundle chart we also need to fix an identification of $M_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$. Furthermore: The bundle chart described here is the same as the one which we give in the solution to Problem 39, after identifying $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with $M_{n}(\mathbb{R})$ in the obvious way.)

Now if (U, φ) is a metric bundle chart then the image of $\operatorname{Ad} E_{\mid U}$ under $\widetilde{\varphi}$ is exactly $U \times \mathfrak{o}(n)$ where $\mathfrak{o}(n)$ is the set of skew-symmetric matrices in $M_{n}(\mathbb{R})$. Hence since $\mathfrak{o}(n)$ is a linear subspace of $M_{n}(\mathbb{R}) \sqrt[39]{ }$, and since (E, π, M) can be covered with metric bundle charts [12, Thm. 2.1.3], it follows that $\operatorname{Ad} E$ is a vector subbundle of End E.

Remark: Recall that we write $\mathfrak{g l}(E)$ for the vector bundle End E equipped with its standard Lie algebra bundle structure. Similarly we write $\mathfrak{g l}_{n}(\mathbb{R})$ for $M_{n}(\mathbb{R})$ equipped with its standard Lie algebra structure; and $\mathfrak{o}(n)$ is in fact a Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{R})$. Also for each $p \in U, \widetilde{\varphi}_{p}$ is in fact a Lie algebra isomorphism $\mathfrak{g l}\left(E_{p}\right) \xrightarrow{\sim} \mathfrak{g l}_{n}(\mathbb{R})$ which maps $\operatorname{Ad} E_{p}$ onto $\mathfrak{o}(n)$. Hence $\operatorname{Ad} E$ is a Lie algebra subbundle of $\mathfrak{g l}(E)$.

[^35](b). Assume $s \in \Gamma(\operatorname{Ad} E)$. Let (U, φ) be any metric bundle chart for E, and let μ_{1}, \ldots, μ_{n} be the corresponding basis of sections in $\Gamma E_{\mid U}$. With respect to (U, φ) we write $D_{\mid U}=d+A$ with $A=\left(A_{j}^{k}\right) \in \Omega^{1}($ End $E)$; thus each A_{j}^{k} is in $\Omega^{1}(U)$ and $D\left(\mu_{j}\right)=A\left(\mu_{j}\right)=\mu_{k} \otimes A_{j}^{k}$ for all $j \in\{1, \ldots, n\}$; cf. $\# 9$, p. 6. Then $A_{j}^{k}=-A_{k}^{j}$ for all $j, k \in\{1, \ldots, n\}$, by Lemma 2 in $\# 11$.

Let $\mu^{1 *}, \ldots, \mu^{n *}$ be the basis of sections in $\Gamma E_{\mid U}^{*}$ which is dual to μ_{1}, \ldots, μ_{n}; then $\left\{\mu^{j *} \otimes \mu_{k}: j, k \in\{1, \ldots, n\}\right\}$ is a basis of sections in Γ End E. Take $a_{j}^{k} \in C^{\infty}(U)$ for $j, k \in\{1, \ldots, n\}$ so that $s_{\mid U}=a_{j}^{k} \mu^{j *} \otimes \mu_{k}$. This means that for any $p \in U,\left(a_{j}^{k}(p)\right)$ is the matrix for $s(p) \in \operatorname{End} E_{p}$ with respect to the basis for E_{p} which comes from (U, φ); hence by the definition of $\operatorname{Ad} E$ (Cf. \#11, Def. 2) we have $a_{j}^{k}=-a_{k}^{j}$ throughout U, for all $j, k \in\{1, \ldots, n\} 4$

Now we have

$$
(D s)_{\mid U}=d s+[A, s] .
$$

(This was seen in the proof of the second Bianchi identity; cf. \#11, p. 6.) Here since A and s have the matrices $\left(A_{j}^{k}\right)$ and $\left(a_{j}^{k}\right)$, respectively, we find that $[A, s]$ has the matrix $\left(A_{j}^{k} a_{i}^{j}-a_{j}^{k} A_{i}^{j}\right)_{i, k}$. 41 Hence:

$$
(D s)_{\mid U}=d s+[A, s]=\mu^{i *} \otimes \mu_{k} \otimes\left(d a_{i}^{k}+a_{i}^{j} A_{j}^{k}-a_{j}^{k} A_{i}^{j}\right) .
$$

Using now the fact that $a_{j}^{k}=-a_{k}^{j}$ and $A_{j}^{k}=-A_{k}^{j}$ throughout $U(\forall j, k)$ it follows that $d a_{i}^{k}=-d a_{k}^{i}$ and $a_{i}^{j} A_{j}^{k}-a_{j}^{k} A_{i}^{j}=-\left(a_{k}^{j} A_{j}^{i}-a_{j}^{i} A_{k}^{j}\right)$ throughout $U(\forall i, k)$. Hence $(D s)_{\mid U}$ is represented by a skew-symmetric matrix wrt the basis coming from (U, φ), and therefore $(D s)_{\mid U} \in \Gamma\left(\operatorname{Ad} E_{\mid U}\right)$. Since this holds for any metric bundle chart (U, φ) for E, it follows that $s \in \Gamma(\operatorname{Ad} E)$. Done!

See also alternative solution on the next page.

[^36]Alternative (not using local coordinates): For any $s \in \Gamma($ End $E)$ and $X, Y \in \Gamma E$ we have

$$
(D s)(X)=D(s(X))-s(D X)
$$

by Problem 59(c), and hence

$$
\begin{equation*}
\langle(D s)(X), Y\rangle=\langle D(s(X)), Y\rangle-\langle s(D X), Y\rangle \tag{166}
\end{equation*}
$$

(Here of course $\langle\cdot, \cdot\rangle$ stands for the vector-wedge-product $\Omega^{1}(E) \times \Gamma(E) \rightarrow$ $\Omega^{1}(M)$ which comes from the given bundle metric $\Gamma(E) \times \Gamma(E) \rightarrow \Gamma(M)$.) Using also the fact that D is metric, we can write the above relation as:

$$
\begin{equation*}
\langle(D s)(X), Y\rangle=d\langle s(X), Y\rangle-\langle s(X), D Y\rangle-\langle s(D X), Y\rangle \tag{167}
\end{equation*}
$$

Switching X and Y we also have:

$$
\begin{equation*}
\langle X,(D s)(Y)\rangle=d\langle X, s(Y)\rangle-\langle D X, s(Y)\rangle-\langle X, s(D Y)\rangle \tag{168}
\end{equation*}
$$

Now assume $s \in \Gamma(\operatorname{Ad} E)$. Then $\left\langle s\left(Z_{1}\right), Z_{2}\right\rangle=-\left\langle Z_{1}, s\left(Z_{2}\right)\right\rangle$ for any two sections $Z_{1}, Z_{2} \in \Gamma E$. This implies that more generally

$$
\begin{equation*}
\left\langle s\left(\mu_{1}\right), \mu_{2}\right\rangle=-\left\langle\mu_{1}, s\left(\mu_{2}\right)\right\rangle, \quad \forall \mu_{1} \in \Omega^{p}(E), \mu_{2} \in \Omega^{q}(E) \tag{169}
\end{equation*}
$$

[Indeed, if $\mu_{1}=Z_{1} \otimes \omega_{1}$ and $\mu_{2}=Z_{2} \otimes \omega_{2}$ with $Z_{1}, Z_{2} \in \Gamma E, \omega_{1} \in \Omega^{p}(M)$, $\omega_{2} \in \Omega^{q}(M)$, then

$$
\begin{aligned}
\left\langle s\left(\mu_{1}\right), \mu_{2}\right\rangle=\left\langle s\left(Z_{1}\right) \otimes \omega_{1}, Z_{2} \otimes \omega_{2}\right\rangle & =\left\langle s\left(Z_{1}\right), Z_{2}\right\rangle \cdot \omega_{1} \wedge \omega_{2} \\
& =-\left\langle Z_{1}, s\left(Z_{2}\right)\right\rangle \cdot \omega_{1} \wedge \omega_{2}=-\left\langle\mu_{1}, s\left(\mu_{2}\right)\right\rangle
\end{aligned}
$$

i.e. (169) holds. The general case follows by \mathbb{R}-(bi)-linearity.] Applying (169) it follows that the right hand side of (167) equals the negative of the right hand side of (168). Hence:

$$
\begin{equation*}
\langle(D s)(X), Y\rangle=-\langle X,(D s)(Y)\rangle \quad \text { in } \Omega^{1}(M) \tag{170}
\end{equation*}
$$

The fact that this holds for all $X, Y \in \Gamma E$ implies that

$$
\begin{equation*}
D s \in \Omega^{1}(\operatorname{Ad} E) \tag{171}
\end{equation*}
$$

Done!
[Detailed proof that (170) implies (171): Let (U, x) be any C^{∞} chart for M; then $d x^{1}, \ldots, d x^{d}$ is a basis of sections in $\Gamma T^{*} U$. Hence there exist unique $\beta_{1}, \ldots, \beta_{d} \in \Gamma$ End $E_{\mid U}$ such that $D s_{\mid U}=\beta_{j} \otimes d x^{j}$, and now the above relation says that

$$
\left\langle\beta_{j}(X), Y\right\rangle \cdot d x^{j}=-\left\langle X, \beta_{j}(Y)\right\rangle \cdot d x^{j} \quad \text { in } \Omega^{1}(U)
$$

and therefore

$$
\left\langle\beta_{j}(X), Y\right\rangle=-\left\langle X, \beta_{j}(Y)\right\rangle \quad \text { in } C^{\infty}(U), \quad \forall j
$$

Using Problem 35(c) and the definition of $\operatorname{Ad} E$, this implies that $\beta_{j}(p) \in$ $\operatorname{Ad} E_{p}, \forall p \in U$, i.e. $\beta_{j} \in \Gamma\left(\operatorname{Ad} E_{\mid U}\right)$, for all j. Therefore $D s_{\mid U} \in \Omega^{1}\left(\operatorname{Ad} E_{\mid U}\right)$. Since M can be covered by C^{∞} charts, it follows that $D s \in \Omega^{1}(\operatorname{Ad} E)$.]

Problem 64:

(a). First assume that the statement in $\bigwedge^{r}(V)$ holds. Note that $v_{1} \wedge \cdots \wedge$ $v_{r} \neq 0$ implies that v_{1}, \ldots, v_{r} are linearly independent. (Proof: exercise!) Hence $r \leq n:=\operatorname{dim} V$ and we can choose $v_{r+1}, \ldots, v_{n} \in V$ so that v_{1}, \ldots, v_{n} is a basis for V. Then we know (cf., e.g., "Prop. 3" in Sec. 7.2 in the lecture notes) that $\left(v_{I}\right)_{I \in \mathcal{I}}$ is a basis for $\bigwedge^{r}(V)$, where \mathcal{I} is the family of all r-tuples $I=\left(i_{1}, \ldots, i_{r}\right) \in\{1, \ldots, n\}^{r}$ with $i_{1}<\cdots<i_{r}$, and

$$
v_{I}:=v_{i_{1}} \wedge \cdots \wedge v_{i_{r}} .
$$

(Thus $\operatorname{dim} \bigwedge^{r}(V)=\# \mathcal{I}=\binom{n}{r}$.) Also since v_{1}, \ldots, v_{n} is a basis for V, there exist unique constants $c_{j}^{k} \in \mathbb{R}(j \in\{1, \ldots, r\}, k \in\{1, \ldots, n\})$ such that $w_{j}=c_{j}^{k} v_{k}$ for $j=1, \ldots, r$. Then

$$
\begin{aligned}
w_{1} \wedge \cdots \wedge w_{r} & =\left(c_{1}^{k_{1}} v_{k_{1}}\right) \wedge\left(c_{2}^{k_{2}} v_{k_{2}}\right) \wedge \cdots \wedge\left(c_{r}^{k_{r}} v_{k_{r}}\right) \\
& =c_{1}^{k_{1}} c_{2}^{k_{2}} \cdots c_{r}^{k_{r}} \cdot v_{k_{1}} \wedge v_{k_{2}} \wedge \cdots \wedge v_{k_{r}} .
\end{aligned}
$$

Note that the last expression is a sum over all $\left(k_{1}, \ldots, k_{r}\right) \in\{1, \ldots, n\}^{r}$, and for each such $\left(k_{1}, \ldots, k_{r}\right)$ there exist a unique $I \in \mathcal{I}$ and a unique permutation $\sigma \in \mathfrak{S}_{r}$ such that

$$
\left(k_{1}, \ldots, k_{r}\right)=\left(i_{\sigma(1)}, \ldots, i_{\sigma(r)}\right) .
$$

Hence:

$$
\begin{aligned}
w_{1} \wedge \cdots \wedge w_{r} & =\sum_{I \in \mathcal{I}} \sum_{\sigma \in \mathfrak{G}_{r}} c_{1}^{i_{\sigma(1)}} c_{2}^{i_{\sigma(2)}} \cdots c_{r}^{i_{\sigma(r)}} \cdot v_{i_{\sigma(1)}} \wedge v_{i_{\sigma(2)}} \wedge \cdots \wedge v_{i_{\sigma(r)}} \\
& =\sum_{I \in \mathcal{I}}\left(\sum_{\sigma \in \mathfrak{S}_{r}}(\operatorname{sgn} \sigma) c_{1}^{i_{\sigma(1)}} c_{2}^{i_{\sigma(2)}} \cdots c_{r}^{i_{\sigma(r)}}\right) \cdot v_{I} \\
& =\sum_{I \in \mathcal{I}} \operatorname{det}\left(c_{\ell}^{i_{j}}\right) \cdot v_{I} .
\end{aligned}
$$

(In the second equality we made repeated use of the rule $u_{1} \wedge u_{2}=-u_{2} \wedge u_{1}$, $\forall u_{1}, u_{2} \in V$. In the last line $\left(c_{\ell}^{i_{j}}\right)$ is an $r \times r$-matrix; $\ell, j \in\{1, \ldots, r\}$.) Now from our assumption $v_{1} \wedge \cdots \wedge v_{r}=c \cdot w_{1} \wedge \cdots \wedge w_{r}$ and the fact that $\left(v_{I}\right)_{I \in \mathcal{I}}$ is a basis for $\bigwedge^{r}(V)$, it follows that $c \neq 0, \operatorname{det}\left(c_{\ell}^{i_{j}}\right)=c^{-1}$ for $I=(1, \ldots, r)$ (in other words: $\operatorname{det}\left(c_{\ell}^{j}\right)=c^{-1}$), while $\operatorname{det}\left(c_{\ell}^{i_{j}}\right)=0$ for all $I \in \mathcal{I} \backslash\{(1, \ldots, r)\}$. In other words, in the $r \times n$ matrix

$$
\left(\begin{array}{cccc}
c_{1}^{1} & c_{1}^{2} & \cdots & c_{1}^{n} \\
\vdots & \vdots & & \vdots \\
c_{r}^{1} & c_{r}^{2} & \cdots & c_{r}^{n}
\end{array}\right),
$$

the $r \times r$ minor which is furthest to the left equals $c^{-1} \neq 0$, while all other $r \times r$ minors vanish! This implies that the first r columns of the above matrix (viewed as vectors in \mathbb{R}^{r}) form a basis for \mathbb{R}^{r}. Furthermore, it follows that every other column vanishes, i.e. $c_{\ell}^{i}=0$ for all $i>r$ and $\ell \in\{1, \ldots, r\}$. (Proof: Suppose that there is some $i>r$ such that the
i th column is not 0 . Then there exists a subset of $r-1$ among the first r columns which together with the i th column form a basis for \mathbb{R}^{r}. This implies that the corresponding $r \times r$ minor is non-zero, a contradiction.) Therefore $w_{\ell}=c_{\ell}^{k} v_{k} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{r}\right\}$ for each $\ell \in\{1, \ldots, r\}$; furthermore since the matrix $\left(c_{\ell}^{k}\right)_{\ell, k \in\{1, \ldots, r\}}$ is invertible we get $v_{\ell} \in \operatorname{Span}\left\{w_{1}, \ldots, w_{r}\right\}$ for each $\ell \in\{1, \ldots, r\}$; hence $\operatorname{Span}\left\{v_{1}, \ldots, v_{r}\right\}=\operatorname{Span}\left\{w_{1}, \ldots, w_{r}\right\}$, as we wanted to prove!

Conversely, now assume that v_{1}, \ldots, v_{r} are linearly independent and v_{1}, \ldots, v_{r} and w_{1}, \ldots, w_{r} span the same r-dimensional linear subspace of V. This means that $w_{\ell}=c_{\ell}^{k} v_{k}$ for some constants $c_{\ell}^{k} \in \mathbb{R}(\ell, k \in\{1, \ldots, r\})$ such that the $r \times r$ matrix $\left(c_{\ell}^{k}\right)$ is non-singular. Then $v_{1} \wedge \cdots \wedge v_{r} \neq 0$ in $\bigwedge^{r}(V)$, since $v_{1} \wedge \cdots \wedge v_{r}$ can be part of a basis for $\wedge^{r}(V)$ by "Prop. 3" in Sec. 7.2 in the lecture notes. Let $\left(\gamma_{i}^{j}\right):=\left(c_{\ell}^{k}\right)^{-1} \in M_{r}(\mathbb{R})$; then $v_{k}=\gamma_{k}^{\ell} w_{\ell}$ and so

$$
v_{1} \wedge \cdots \wedge v_{r}=\left(\gamma_{1}^{\ell_{1}} w_{\ell_{1}}\right) \wedge \cdots \wedge\left(\gamma_{r}^{\ell_{r}} w_{\ell_{r}}\right)=\operatorname{det}\left(\gamma_{k}^{\ell}\right) \cdot w_{1} \wedge \cdots \wedge w_{r}
$$

and $\operatorname{det}\left(\gamma_{k}^{\ell}\right) \neq 0$. Done!
(b).
(c). If v_{1}, \ldots, v_{r} are not linearly independent then the parallelotope in question is contained in some $r-1$ dimensional subspace and so has r dimensional volume 0 ; also $v_{1} \wedge \cdots \wedge v_{r}=0$ and so $\left\|v_{1} \wedge \cdots \wedge v_{r}\right\|=0$, i.e. the formula holds.

Now assume that v_{1}, \ldots, v_{r} are linearly independent. Pick an ON-basis e_{1}, \ldots, e_{r} for the r-dimensional subspace spanned by v_{1}, \ldots, v_{r}, and choose e_{r+1}, \ldots, e_{n} such that e_{1}, \ldots, e_{n} is an ON-basis for V. Take $c_{j}^{k} \in \mathbb{R}$ so that $v_{j}=c_{j}^{k} e_{k}$. Then the volume of the r-dimensional parallelotope spanned by v_{1}, \ldots, v_{r} equals $\left|\operatorname{det}\left(c_{j}^{k}\right)\right|$ (basic fact about volumes). On the other hand $v_{1} \wedge \cdots \wedge v_{r}=\operatorname{det}\left(c_{j}^{k}\right) \cdot e_{1} \wedge \cdots \wedge e_{r}$ (by a computation similar to a step in the solution to part a) and hence

$$
\left.\begin{array}{rl}
\left\langle v_{1} \wedge \cdots \wedge v_{r}, v_{1} \wedge \cdots \wedge v_{r}\right\rangle=\left(\operatorname{det}\left(c_{j}^{k}\right)\right)^{2} \cdot\left\langle e_{1} \wedge \cdots \wedge e_{r},\right. & e_{1}
\end{array} \wedge \cdots \wedge e_{r}\right\rangle .
$$

where the last equality holds by property (i) in part b. Hence

$$
\left\|v_{1} \wedge \cdots \wedge v_{r}\right\|=\sqrt{\left(\operatorname{det}\left(c_{j}^{k}\right)\right)^{2}}=\left|\operatorname{det}\left(c_{j}^{k}\right)\right| .
$$

Done!

Problem 65:

(a). (i) \Rightarrow (ii): Let \mathcal{A} be an oriented atlas for M. By a simple modification of the standard C^{∞} charts for $T M$ (cf. Lecture $\# 2$, pp. 10-11, and Problem (16), one proves that for any C^{∞} chart (U, x) for $M,\left(U, \eta_{x}\right)$ is a bundle chart for $(T M, \pi, M)$, where η_{x} is the map

$$
\begin{aligned}
& \eta_{x}: T U \rightarrow U \times \mathbb{R}^{d} \\
& \eta_{x}(w)=\left(\pi(w), d x_{\pi(w)}(w)\right)
\end{aligned}
$$

In particular the following is an atlas of bundle charts for $(T M, \pi, M)$:

$$
\mathcal{A}^{\prime}:=\left\{\left(U, \eta_{x}\right):(U, x) \in \mathcal{A}\right\}
$$

We claim that \mathcal{A}^{\prime} makes $(T M, \pi, M)$ an oriented vector bundle. To prove this consider any two charts $(U, x),(V, y) \in \mathcal{A}$, and any point $p \in U \cap V$. Our task is to prove that the linear map

$$
\eta_{y, p} \circ \eta_{x, p}^{-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

is in $\mathrm{GL}_{d}^{+}(\mathbb{R})$. However $\eta_{x, p}=d x_{p}$ and $\eta_{y, p}=d y_{p}$ (both are linear maps from $T_{p}(M)$ to $\left.\mathbb{R}^{d}\right)$; hence $\eta_{y, p} \circ \eta_{x, p}^{-1}=d y_{p} \circ d x_{p}^{-1}=d\left(y \circ x^{-1}\right)_{x(p)}$. However $y \circ x^{-1}: x(U \cap V) \rightarrow y(U \cap V)$ is the chart transition map between (U, x) and (V, y); hence by our assumption on \mathcal{A}, $\operatorname{det} d\left(y \circ x^{-1}\right)_{x(p)}>0$, i.e.

$$
\eta_{y, p} \circ \eta_{x, p}^{-1}=d\left(y \circ x^{-1}\right)_{x(p)} \in \mathrm{GL}_{d}^{+}(\mathbb{R})
$$

Hence \mathcal{A}^{\prime} indeed makes $(T M, \pi, M)$ an oriented vector bundle.
(ii) \Rightarrow (i): Let \mathcal{A}^{\prime} be an atlas of bundle charts for $(T M, \pi, M)$ with respect to which $(T M, \pi, M)$ is an oriented vector bundle. We will prove that M possesses an oriented atlas. Let \mathcal{A}_{1} be an arbitrary C^{∞} atlas for M. Set $\mathcal{A}_{2}:=\left\{\left(W, x_{\mid W}\right):(U, x) \in \mathcal{A}_{1},(V, \varphi) \in \mathcal{A}^{\prime}\right.$, and W is a path-connected component of $U \cap V\}$.
Then \mathcal{A}_{2} is also a C^{∞} atlas for M, and it has the convenient property that whenever (U, x) is a chart in \mathcal{A}_{2}, U is path-connected and there is a bundle chart (V, φ) in \mathcal{A}^{\prime} such that $U \subset V$.

Now consider any $(U, x) \in \mathcal{A}_{2}$ and $(V, \varphi) \in \mathcal{A}^{\prime}$ subject to $U \subset V$. (More generally, the following argument applies to any $C^{\infty} \operatorname{chart}(U, x)$ on M such that U is path-connected and $U \subset V$ for some $(V, \varphi) \in \mathcal{A}^{\prime}$.) Then for any $p \in U$ both $d x_{p}$ and φ_{p} are linear isomorphisms from $T_{p} U$ onto \mathbb{R}^{d}; hence $d x_{p} \circ \varphi_{p}^{-1}$ is a linear isomorphism of \mathbb{R}^{d} onto itself, and so the determinant $\operatorname{det}\left(d x_{p} \circ \varphi_{p}^{-1}\right)$ is well-defined and non-zero. Hence by continuity (crucially using the fact that U is path-connected) $\sqrt[42]{42}$ we either have $\operatorname{det}\left(d x_{p} \circ \varphi_{p}^{-1}\right)>0$ for all $p \in U$ or $\operatorname{det}\left(d x_{p} \circ \varphi_{p}^{-1}\right)<0$ for all $p \in U$. Let us define the "sign of (U, x) wrt (V, φ) " to be $s=+1$ in the first case and $s=-1$ in the second case. In this situation, we note that: for every $(W, \eta) \in \mathcal{A}^{\prime}$ and every $p \in U \cap W$, we have $\operatorname{det}\left(d x_{p} \circ \eta_{p}^{-1}\right)=s$. (Proof: For each $p \in U$ we have $d x_{p} \circ \eta_{p}^{-1}=d x_{p} \circ \varphi_{p}^{-1} \circ\left(\varphi_{p} \circ \eta_{p}^{-1}\right)$ and $\operatorname{det}\left(\varphi_{p} \circ \eta_{p}^{-1}\right)>0$ since \mathcal{A}^{\prime} makes $(T M, \pi, M)$ oriented; hence $\operatorname{det}\left(d x_{p} \circ \eta_{p}^{-1}\right)$ and $\operatorname{det}\left(d x_{p} \circ \varphi_{p}^{-1}\right)$ have the same sign.)

From the previous discussion we conclude: Every $(U, x) \in \mathcal{A}_{2}$ (and more generally every C^{∞} chart (U, x) on M such that U is path-connected and $U \subset V$ for some $\left.(V, \varphi) \in \mathcal{A}^{\prime}\right)$ has a well-defined $\operatorname{sign} s \in\{-1,1\}$ wrt \mathcal{A}^{\prime}, with the property that

$$
\begin{equation*}
\forall(W, \eta) \in \mathcal{A}^{\prime}, \forall p \in U \cap W: \quad \operatorname{det}\left(d x_{p} \circ \eta_{p}^{-1}\right)=s \tag{172}
\end{equation*}
$$

Now let us fix a non-singular linear map $R \in \mathrm{GL}_{d}(\mathbb{R})$ with $\operatorname{det} R<0$ (e.g. a reflection). For any $(U, x) \in \mathcal{A}_{2}$ we define

$$
\widehat{x}:= \begin{cases}x & \text { if }(U, x) \text { has sign }+1 \operatorname{wrt} \mathcal{A}^{\prime} \\ R \circ x & \text { if }(U, x) \text { has sign }-1 \operatorname{wrt} \mathcal{A}^{\prime} .\end{cases}
$$

[^37]Note that then also (U, \widehat{x}) is a C^{∞} chart on M, and (U, \widehat{x}) has sign +1 wrt \mathcal{A}^{\prime}. We set:

$$
\mathcal{A}_{3}:=\left\{(U, \widehat{x}):(U, x) \in \mathcal{A}_{2}\right\} .
$$

Then \mathcal{A}_{3} is also a C^{∞} atlas for M, and it has the property that for any chart $(U, x) \in \mathcal{A}_{3}, U$ is path-connected, there is some $(V, \varphi) \in \mathcal{A}^{\prime}$ with $U \subset V$, and (U, x) has sign +1 wrt \mathcal{A}^{\prime}. We claim that \mathcal{A}_{3} is an oriented atlas. To prove this, consider any two charts $(U, x),(V, y) \in \mathcal{A}_{3}$, and any point $p \in U \cap W$. We have to prove that $\operatorname{det}\left(d x_{p} \circ d y_{p}^{-1}\right)>0$. Take a bundle chart $(W, \eta) \in \mathcal{A}^{\prime}$ with $p \in W$. Since both (U, x) and (V, y) have sign +1 wrt \mathcal{A}^{\prime}, we have both $\operatorname{det}\left(d x_{p} \circ \eta_{p}^{-1}\right)=+1$ and $\operatorname{det}\left(d y_{p} \circ \eta_{p}^{-1}\right)=+1$ (cf. (1721)). Hence

$$
\begin{aligned}
\operatorname{det}\left(d x_{p} \circ d y_{p}^{-1}\right) & =\operatorname{det}\left(\left(d x_{p} \circ \eta_{p}^{-1}\right) \circ\left(d y_{p} \circ \eta_{p}^{-1}\right)^{-1}\right) \\
& =\operatorname{det}\left(d x_{p} \circ \eta_{p}^{-1}\right) \cdot \operatorname{det}\left(d y_{p} \circ \eta_{p}^{-1}\right)^{-1}=1 .
\end{aligned}
$$

Done!
(i) \Leftrightarrow (iii): Cf., e.g., 1 , Def. V.7.5, Thm. V.7.6].
(b). Let \mathcal{A} be any C^{∞} atlas for M; then we know from Lecture $\# 2$, pp. 10-11 (cf. also Problem [16) that the family

$$
\mathcal{A}^{\prime}:=\{(T U, d x):(U, x) \in \mathcal{A}\}
$$

is a C^{∞} atlas for $T M$. Let us prove that \mathcal{A}^{\prime} is an oriented atlas! Thus fix any two charts $(U, x),(V, y) \in \mathcal{A}$. Set $W:=U \cap V$ and $\eta:=y \circ x^{-1}$; then η is a C^{∞} diffeomorphism from $x(W)$ onto $y(W)$. We have to prove that the diffeomorphism $d y \circ(d x)^{-1}=d \eta$ from $T(x(W))=x(W) \times \mathbb{R}^{d}$ onto $T(y(W))=y(W) \times \mathbb{R}^{d}$ has everywhere positive Jacobian determinant. For any $(p, v) \in x(W) \times \mathbb{R}^{d}$ we have

$$
d \eta(p, v)=\left(\eta(p), d \eta_{p}(v)\right)
$$

Hence the Jacobian matrix of $d \eta$ at (p, v) has a block decomposition

$$
\left(\begin{array}{cc}
d \eta_{p} & 0 \\
* & d \eta_{p}
\end{array}\right),
$$

where " $d \eta_{p}$ ", " 0 " and "*" are $d \times d$ matrices (here $*$ stands for a matrix which we don't care exactly what it is; note also that the bottom right $d \times d$ matrix equals $d \eta_{p}$ since the differential of a linear map at any point equals the map itself). The determinant of the above $2 d \times 2 d$-matrix is $\left(\operatorname{det}\left(d \eta_{p}\right)\right)^{2}$, which is everywhere positive. Done!

Problem 66:

(a). Let us use the short-hand notation

$$
\partial_{i}:=\frac{\partial}{\partial x^{i}} \in \Gamma(T U) .
$$

By definition we have

$$
A_{i ; k}^{j}=\left(\nabla_{\partial_{k}} A\right)\left(\partial_{i} \otimes d x^{j}\right),
$$

where the right hand side stands for the contraction of $\nabla_{\partial_{k}} A \in \Gamma\left(T_{1}^{1} U\right)$ against $\partial_{i} \otimes d x^{j} \in T_{1}^{1} U$. This gives, via Problem 59.

$$
\begin{aligned}
A_{i ; k}^{j} & =\partial_{k}\left(A\left(\partial_{i} \otimes d x^{j}\right)\right)-A\left(\left(\nabla_{\partial_{k}} \partial_{i}\right) \otimes d x^{j}\right)-A\left(\partial_{i} \otimes\left(\nabla_{\partial_{k}}\left(d x^{j}\right)\right)\right) \\
& =\partial_{k} A_{i}^{j}-A\left(\left(\Gamma_{k i}^{\ell} \partial_{\ell}\right) \otimes d x^{j}\right)-A\left(\partial_{i} \otimes\left(-\Gamma_{k \ell}^{j} d x^{\ell}\right)\right) \\
& =\partial_{k} A_{i}^{j}-\Gamma_{k i}^{\ell} \cdot A\left(\partial_{\ell} \otimes d x^{j}\right)+\Gamma_{k \ell}^{j} \cdot A\left(\partial_{i} \otimes d x^{\ell}\right) \\
& =\partial_{k} A_{i}^{j}-\Gamma_{k i}^{\ell} \cdot A_{\ell}^{j}+\Gamma_{k \ell}^{j} \cdot A_{i}^{\ell} .
\end{aligned}
$$

(In the second equality we used [12, (4.1.22)] for the last term.) Done!
(b). (Cf. [14, Lemma 4.8].) Suppose that

$$
A_{\mid U}=A_{i_{1} \cdots i_{s}}^{j_{1} \cdots j_{r}} \cdot d x^{i_{1}} \otimes \cdots \otimes d x^{i_{s}} \otimes \frac{\partial}{\partial x^{j_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_{r}}},
$$

and write

$$
\nabla_{\frac{\partial}{\partial x^{k}}} A=A_{i_{1} \cdots i_{s} ; k}^{j_{1} \cdots j_{r}} \cdot d x^{i_{1}} \otimes \cdots \otimes d x^{i_{s}} \otimes \frac{\partial}{\partial x^{j_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_{r}}}
$$

in U. Then by the same type of computation as in part a we find:

$$
A_{i_{1} \cdots i_{s} ; k}^{j_{1} \cdots j_{r}}=\frac{\partial}{\partial x^{k}} A_{i_{1} \cdots i_{s}}^{j_{1} \cdots j_{r}}-\sum_{p=1}^{s} \Gamma_{k i_{p}}^{\ell} \cdot A_{i_{1} \cdots \ell \cdots i_{s}}^{j_{1} \cdots j_{r}}+\sum_{p=1}^{r} \Gamma_{k \ell}^{j_{p}} \cdot A_{i_{1} \cdots i_{s}}^{j_{1} \cdots \ell \ell j_{r}}
$$

Problem 67:

We first make some computations useful for all parts of the problem: As in [12, p. 3, Ex. 1]), we also introduce the chart (V, z) on S^{d}, with

$$
V=S^{d} \backslash\{(0, \ldots, 0,1)\} ; \quad z(x)=\left(\frac{x_{1}}{1-x_{d+1}}, \ldots, \frac{x_{d}}{1-x_{d+1}}\right)
$$

Note that both y and z are diffeomorphism onto all of \mathbb{R}^{d}. We compute that the inverse map of y is given by

$$
x=\left(\frac{2 y_{1}}{1+\|y\|^{2}}, \cdots, \frac{2 y_{d}}{1+\|y\|^{2}}, \frac{1-\|y\|^{2}}{1+\|y\|^{2}}\right), \quad \forall y \in \mathbb{R}^{d} .
$$

Here $\|y\|$ is the standard Euclidean norm; thus $\|y\|^{2}=y_{1}^{2}+\cdots y_{d}^{2}$. Similarly, the inverse map of z is given by

$$
x=\left(\frac{2 z_{1}}{1+\|z\|^{2}}, \cdots, \frac{2 z_{d}}{1+\|z\|^{2}}, \frac{\|z\|^{2}-1}{\|z\|^{2}+1}\right), \quad \forall z \in \mathbb{R}^{d} .
$$

Note also that $U \cap V=S^{d} \backslash\{(0, \ldots, 0, \pm 1)\}$ and

$$
y\left(U_{1} \cap U_{2}\right)=z\left(U_{1} \cap U_{2}\right)=\mathbb{R}^{d} \backslash\{0\},
$$

and so $y \circ z^{-1}$ is a diffeomorphism from $\mathbb{R}^{d} \backslash\{0\}$ onto itself. We compute that $y \circ z^{-1}$ is explicitly given by

$$
y_{j}=\frac{\left(\frac{2 z_{j}}{\|z\|^{2}+1}\right)}{1+\frac{\|z\|^{2}-1}{\|z\|^{2}+1}}=\frac{z_{j}}{\|z\|^{2}} \quad\left(z \in \mathbb{R}^{d} \backslash\{0\}, j=1, \ldots, d\right) .
$$

Note also that

$$
\|y\|^{2}=\frac{\|z\|^{2}}{\|z\|^{4}}=\frac{1}{\|z\|^{2}},
$$

and hence

$$
z_{j}=\|z\|^{2} y_{j}=\frac{y_{j}}{\|y\|^{2}} \quad\left(y \in \mathbb{R}^{d} \backslash\{0\}, j=1, \ldots, d\right)
$$

(Note that $y \circ z^{-1}$ and $z \circ y^{-1}$ are in fact the same map from $\mathbb{R}^{d} \backslash\{0\}$ onto $\mathbb{R}^{d} \backslash\{0\}$. Geometrically this map is inversion in the sphere $S^{d-1} \subset \mathbb{R}^{d}$.)

Next we compute, for all $y \in \mathbb{R}^{d} \backslash\{0\}$:

$$
\frac{\partial z_{k}}{\partial y_{j}}=\frac{\partial}{\partial y_{j}}\left(\frac{y_{k}}{\|y\|^{2}}\right)=\frac{\delta_{j k}\|y\|^{2}-y_{k} \cdot 2 y_{j}}{\|y\|^{4}}=\delta_{j k}\|z\|^{2}-2 z_{k} z_{j} \quad(j, k \in\{1, \ldots, d\}) .
$$

Hence

$$
\begin{equation*}
\frac{\partial}{\partial y_{j}}=\frac{\partial z_{k}}{\partial y_{j}} \frac{\partial}{\partial z_{k}}=\|z\|^{2} \frac{\partial}{\partial z_{j}}-2 z_{j} z_{k} \frac{\partial}{\partial z_{k}} \quad(j \in\{1, \ldots, d\}) . \tag{173}
\end{equation*}
$$

(The last relation is an equality between vector fields on $U \cap V \subset S^{d}$.)
(a). Assume the opposite, i.e. that there exists a vector field $X \in \Gamma\left(T S^{2}\right)$ such that $X_{\mid U}=y_{1} \frac{\partial}{\partial y_{1}}($ wrt the chart $(U, y))$. Then there exist unique functions $\alpha_{1}, \alpha_{2} \in C^{\infty}(V)$ such that

$$
X_{\mid V}=\alpha_{1} \frac{\partial}{\partial z_{1}}+\alpha_{2} \frac{\partial}{\partial z_{2}}
$$

(wrt the chart (V, z)). However by (173) we have on $U \cap V$:

$$
\frac{\partial}{\partial y_{1}}=\|z\|^{2} \frac{\partial}{\partial z_{1}}-2 z_{1}^{2} \frac{\partial}{\partial z_{1}}-2 z_{1} z_{2} \frac{\partial}{\partial z_{2}}=\left(-z_{1}^{2}+z_{2}^{2}\right) \frac{\partial}{\partial z_{1}}-2 z_{1} z_{2} \frac{\partial}{\partial z_{2}},
$$

and $y_{1}=z_{1} /\|z\|^{2}$. Hence we must have

$$
\alpha_{1}(z)=\frac{z_{1}\left(-z_{1}^{2}+z_{2}^{2}\right)}{\|z\|^{2}}, \quad \alpha_{2}(z)=-\frac{2 z_{1}^{2} z_{2}}{\|z\|^{2}}
$$

for all $z \in \mathbb{R}^{2} \backslash\{0\}$. We will now prove that the above formula implies that α_{2} cannot be extended to a smooth function on all of \mathbb{R}^{2}; this gives a contradiction against $\alpha_{2} \in C^{\infty}(V)$ and so the solution to part a will be complete.

The above formula implies

$$
\frac{\partial \alpha_{2}}{\partial z_{1}}=-\frac{4 z_{1} z_{2}^{3}}{\|z\|^{4}}=-\frac{4 z_{1} z_{2}^{3}}{z_{1}^{2}+z_{2}^{2}}, \quad \forall z \in \mathbb{R}^{2} \backslash\{0\}
$$

and the limit of this function as $z \rightarrow 0$ in \mathbb{R}^{2} does not exist! (Indeed, for $z=t(a, b) \neq 0$ the above expression equals $-\frac{4 a b^{3}}{\left(a^{2}+b^{2}\right)^{2}}$, and for any fixed $(a, b) \in \mathbb{R}^{2} \backslash\{0\}$ this tends to $-\frac{4 a b^{3}}{\left(a^{2}+b^{2}\right)^{2}}$ as $t \rightarrow 0$. Now one immediately verifies that $-\frac{4 a b^{3}}{\left(a^{2}+b^{2}\right)^{2}}$ can take different values for different choices of $(a, b) \in \mathbb{R}^{2} \backslash\{0\}$. This shows that $\frac{\partial \alpha_{2}}{\partial z_{1}}$ has different limits as z approaches the origin along different lines in \mathbb{R}^{2}, and therefore the 'full 2-dim limit' of $\frac{\partial \alpha_{2}}{\partial z_{1}}$ as $z \rightarrow(0,0)$ does not exist.) This proves that we cannot have $\alpha_{2} \in C^{1}\left(\mathbb{R}^{2}\right)$, and hence, afortiori, we cannot have $\alpha_{2} \in C^{\infty}\left(\mathbb{R}^{2}\right)$. (In fact the same argument applies to any of the partial derivatives $\frac{\partial \alpha_{j}}{\partial z_{k}}, j, k \in\{1,2\}$, and in particular we cannot have $\alpha_{1} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ either.)
(b). In $U \cap V$ we have

$$
\begin{align*}
& \left(y_{1} y_{3}-y_{2}\right) \frac{\partial}{\partial y_{1}}+\left(y_{2} y_{3}+y_{1}\right) \frac{\partial}{\partial y_{2}}+\frac{1-y_{1}^{2}-y_{2}^{2}+y_{3}^{2}}{2} \frac{\partial}{\partial y_{3}} \tag{174}\\
& =\frac{z_{1} z_{3}-z_{2}\|z\|^{2}}{\|z\|^{4}} \cdot\left(\|z\|^{2} \frac{\partial}{\partial z_{1}}-2 z_{1} z_{k} \frac{\partial}{\partial z_{k}}\right)+\frac{z_{2} z_{3}+z_{1}\|z\|^{2}}{\|z\|^{4}} \cdot\left(\|z\|^{2} \frac{\partial}{\partial z_{2}}-2 z_{2} z_{k} \frac{\partial}{\partial z_{k}}\right) \\
& \quad \quad+\frac{\|z\|^{4}-z_{1}^{2}-z_{2}^{2}+z_{3}^{2}}{2\|z\|^{4}} \cdot\left(\|z\|^{2} \frac{\partial}{\partial z_{3}}-2 z_{3} z_{k} \frac{\partial}{\partial z_{k}}\right) \\
& =\frac{1}{\|z\|^{2}}(\\
& \left.\quad\left(z_{1} z_{3}-z_{2}\|z\|^{2}\right) \frac{\partial}{\partial z_{1}}+\left(z_{2} z_{3}+z_{1}\|z\|^{2}\right) \frac{\partial}{\partial z_{2}}+\frac{\|z\|^{4}-z_{1}^{2}-z_{2}^{2}+z_{3}^{2}}{2} \frac{\partial}{\partial z_{3}}\right) \\
& \quad \frac{1}{\|z\|^{4}}(\underbrace{-2 z_{1}\left(z_{1} z_{3}-z_{2}\|z\|^{2}\right)-2 z_{2}\left(z_{2} z_{3}+z_{1}\|z\|^{2}\right)-z_{3}\left(\|z\|^{4}-z_{1}^{2}-z_{2}^{2}+z_{3}^{2}\right)}_{(*)}) z_{k} \frac{\partial}{\partial z_{k}}
\end{align*}
$$

Here the expression called "(*)" equals:

$$
\begin{aligned}
-2 z_{1}^{2} z_{3}-2 z_{2}^{2} z_{3}-z_{3}\left(\|z\|^{4}-z_{1}^{2}-z_{2}^{2}+z_{3}^{2}\right) & =-z_{3}\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+\|z\|^{4}\right) \\
& =-z_{3}\|z\|^{2}\left(1+\|z\|^{2}\right)
\end{aligned}
$$

Hence we can continue; the vector field in (174) equals

$$
\begin{gathered}
\frac{1}{\|z\|^{2}}\left(\left(z_{1} z_{3}-z_{2}\|z\|^{2}-z_{3} z_{1}\left(1+\|z\|^{2}\right)\right) \frac{\partial}{\partial z_{1}}+\left(z_{2} z_{3}+z_{1}\|z\|^{2}-z_{3} z_{2}\left(1+\|z\|^{2}\right)\right) \frac{\partial}{\partial z_{2}}\right. \\
\left.+\left(\frac{\|z\|^{4}-z_{1}^{2}-z_{2}^{2}+z_{3}^{2}}{2}-z_{3}^{2}\left(1+\|z\|^{2}\right)\right) \frac{\partial}{\partial z_{3}}\right)
\end{gathered}
$$

Here

$$
\begin{aligned}
\frac{1}{\|z\|^{2}}\left(\frac{\|z\|^{4}-z_{1}^{2}-z_{2}^{2}+z_{3}^{2}}{2}-z_{3}^{2}\left(1+\|z\|^{2}\right)\right) & =\frac{1}{\|z\|^{2}}\left(\frac{\|z\|^{4}-\|z\|^{2}}{2}-z_{3}^{2}\|z\|^{2}\right) \\
= & \frac{\|z\|^{2}-1-2 z_{3}^{2}}{2}=\frac{z_{1}^{2}+z_{2}^{2}-z_{3}^{2}-1}{2}
\end{aligned}
$$

and hence we finally conclude that the above vector field equals

$$
\begin{equation*}
-\left(z_{2}+z_{1} z_{3}\right) \frac{\partial}{\partial z_{1}}+\left(z_{1}-z_{2} z_{3}\right) \frac{\partial}{\partial z_{2}}+\frac{z_{1}^{2}+z_{2}^{2}-z_{3}^{2}-1}{2} \frac{\partial}{\partial z_{3}} . \tag{175}
\end{equation*}
$$

Recall that this computation was performed in the set $U \cap V$; however the expression in (175) clearly defines a $\left(C^{\infty}\right)$ vector field on all of V. Hence we can define the $\left(C^{\infty}\right)$ vector field $X \in \Gamma\left(T S^{3}\right)$ to be given by the expression in (the first line of) (174) in U, and by the expression in (175) in V; the above computation shows that this vector field is well-defined, i.e. the two formulas really give the same vector field in the region of overlap, $U \cap V$.
(c). In $U \cap V$ we have

$$
d y_{j}=\frac{\partial y_{j}}{\partial z_{k}} d z_{k}=\frac{\delta_{j k}\|z\|^{2}-2 z_{j} z_{k}}{\|z\|^{4}} d z_{k},
$$

i.e.

$$
d y_{1}=\frac{z_{2}^{2}-z_{1}^{2}}{\|z\|^{4}} d z_{1}-\frac{2 z_{1} z_{2}}{\|z\|^{4}} d z_{2}
$$

and

$$
d y_{2}=-\frac{2 z_{1} z_{2}}{\|z\|^{4}} d z_{1}+\frac{z_{1}^{2}-z_{2}^{2}}{\|z\|^{4}} d z_{2}
$$

Hence:

$$
\begin{aligned}
& d y_{1} \otimes d y_{1}=\frac{1}{\eta^{4}}\left(\left(z_{2}^{2}-z_{1}^{2}\right) d z_{1}-2 z_{1} z_{2} d z_{2}\right) \otimes\left(\left(z_{2}^{2}-z_{1}^{2}\right) d z_{1}-2 z_{1} z_{2} d z_{2}\right) \\
& \begin{array}{r}
=\frac{1}{\eta^{4}}\left(\left(z_{2}^{2}-z_{1}^{2}\right)^{2} d z_{1} \otimes d z_{1}-2 z_{1} z_{2}\left(z_{2}^{2}-z_{1}^{2}\right)\left(d z_{1} \otimes d z_{2}+d z_{2} \otimes d z_{1}\right)\right. \\
\\
\left.+4\left(z_{1} z_{2}\right)^{2} d z_{2} \otimes d z_{2}\right)
\end{array}
\end{aligned}
$$

The formula for $d y_{2} \otimes d y_{2}$ is exactly the same except that all z_{1} 's and z_{2} 's are swapped. Hence, noticing also

$$
\left(z_{2}^{2}-z_{1}^{2}\right)^{2}+4\left(z_{1} z_{2}\right)^{2}=\left(z_{2}^{2}+z_{1}^{2}\right)^{2}=\|z\|^{4}
$$

and
$\frac{1}{\left(1+y_{1}^{2}+y_{2}^{2}\right)^{4}} \cdot \frac{1}{\|z\|^{8}}=\frac{1}{\left(1+\|y\|^{2}\right)^{4}\|z\|^{8}}=\frac{1}{\left(1+\|z\|^{-2}\right)^{4}\|z\|^{8}}=\frac{1}{\left(1+\|z\|^{2}\right)^{4}}$,
we obtain:

$$
\begin{align*}
\frac{1}{\left(1+y_{1}^{2}+y_{2}^{2}\right)^{4}} & \left(d y_{1} \otimes d y_{1}+d y_{2} \otimes d y_{2}\right) \\
& =\frac{\|z\|^{4}}{\left(1+\|z\|^{2}\right)^{4}}\left(d z_{1} \otimes d z_{1}+d z_{2} \otimes d z_{2}\right) \tag{176}
\end{align*}
$$

Recall that this computation was performed in the set $U \cap V$; however the last expression clearly defines a $\left(C^{\infty}\right)$ section of all of $T_{2}^{0}(V)$. Hence we can define the $\left(C^{\infty}\right)$ section

$$
m \in \Gamma\left(T_{2}^{0}\left(S^{2}\right)\right)
$$

to be given by the expression in the left hand side of (176) in U, and by the expression in the right hand side of (176) in V; the above equality (which is valid in $U \cap V$) shows that this section in m is well-defined.

For each $p \in S^{2}, m(p)$ is a vector in $T_{2}^{0}\left(S^{2}\right)_{p}=T_{p}^{*}\left(S^{2}\right) \otimes T_{p}^{*}\left(S^{2}\right)$ and can thus be viewed as a bilinear form on $T_{p}\left(S^{2}\right)$. We see by inspection in (176) that this bilinear form is symmetric at every $p \in S^{2}$. Furthermore it is positive definite at every $p \in U$, since its matrix with respect to the basis $\frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial y_{2}}$ equals the positive number $\left(1+\|y\|^{2}\right)^{-4}$ times the 2×2 identity
matrix. Hence $m_{\mid U}$ indeed defines a Riemannian metric on U. However at the point $(0,0,-1) \in S^{2}$, which corresponds to $z=(0,0) \in V, m(p)$ is the zero form, thus not positive definite. Hence m does not define a Riemannian metric on S^{2}.
(d). Such a vector bundle can in fact be constructed for any given C^{∞} function $\mu: U \cap V \rightarrow \mathrm{GL}_{2}(\mathbb{R})$; and similarly a rank n vector bundle over S^{2} can be constructed having any given C^{∞} function $\mu: U \cap V \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ as transition function; there is simply no obstruction present!

The easiest solution is to simply refer to Jost's [12, Thm. 2.1.1]. However that theorem is not very clearly formulated; let us attempt to give an alternative, more precise statement here:

Theorem. Let M be a C^{∞} manifold, let $\left(U_{\alpha}\right)_{\alpha \in A}$ be a covering of M by open sets, and for any $\alpha, \beta \in A$ let $\varphi_{\beta \alpha}$ be a C^{∞} function from $U_{\alpha} \cap U_{\beta}$ to $G L(n, \mathbb{R})$. Assume that for all $\alpha, \beta, \gamma \in A$, the following holds:

$$
\begin{array}{ll}
\varphi_{\alpha \alpha}(x)=\operatorname{id}_{\mathbb{R}^{n}}, & \forall x \in U_{\alpha} ; \\
\varphi_{\alpha \beta}(x) \varphi_{\beta \alpha}(x)=\mathrm{id}_{\mathbb{R}^{n}}, & \forall x \in U_{\alpha} \cap U_{\beta} ; \\
\varphi_{\alpha \gamma}(x) \varphi_{\gamma \beta}(x) \varphi_{\beta \alpha}(x)=\operatorname{id}_{\mathbb{R}^{n}}, & \forall x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma} .
\end{array}
$$

Then there exists a vector bundle E over M (unique up to isomorphism of vector bundles over M) which has a bundle atlas $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in A}$ for which the transition functions are given by the above $\varphi_{\beta \alpha}$'s.

Using the above theorem, the existence of the desired vector bundle E over S^{2} is immediate; simply take $A=\{1,2\} ; U_{1}=U, U_{2}=V, \varphi_{12} \equiv \mu$ and $\varphi_{21} \equiv \mu^{-1}$ in $U \cap V, \varphi_{11} \equiv \operatorname{id}_{\mathbb{R}^{2}}$ in U and $\varphi_{22} \equiv \operatorname{id}_{\mathbb{R}^{2}}$ in V. One verifies that these $\varphi_{\alpha \beta}$'s satisfy all conditions in the above theorem; and the vector bundle which the theorem gives has the desired property!

Exercise: Prove the above theorem, e.g. using Problem 36, (Cf. also [15, Exc. 10-6].)

Alternative: We will construct the desired vector bundle E over S^{2} using Problem [36. As a set we define

$$
E:=S^{2} \times \mathbb{R}^{2}
$$

We also set $\pi:=\operatorname{pr}_{1}: E \rightarrow S^{2}$, i.e. projection onto the first coordinate. Note, though, that (unless $m=0$) E will not become equipped with the standard product C^{∞} manifold structure of $S^{2} \times \mathbb{R}^{2}$! Note that $\pi^{-1}(U)=U \times \mathbb{R}^{2}$ and $\pi^{-1}(V)=V \times \mathbb{R}^{2}$. Also $E_{p}=\pi^{-1}(p)=\{p\} \times \mathbb{R}^{2}$ for every $p \in S^{2}$, and we equip each such fiber with the standard vector space structure of \mathbb{R}^{2}. Let ϕ be the identity map on $U \times \mathbb{R}^{2}$, and let ψ be the map

$$
\begin{aligned}
& \psi: V \times \mathbb{R}^{2} \rightarrow V \times \mathbb{R}^{2}, \\
& \psi(p, v):= \begin{cases}(p, \mu(p) \cdot v) & \text { if } p \in U \cap V \\
(p, v) & \text { if } p=(0,0,-1) .\end{cases}
\end{aligned}
$$

(This map is well-defined since V is the disjoint union of $U \cap V$ and $\{(0,0,-1)\}$. Note that " $\mu(p) \cdot v$ " denotes the product of the matrix $\mu(p) \in \mathrm{GL}_{2}(\mathbb{R})$ and the vector $v \in \mathbb{R}^{2}$ viewed as a 2×1 column matrix.)

Now $\pi: E \rightarrow M$ toghether with the family $\{(U, \phi),(V, \psi)\}$ is easily seen to satisfy all the assumptions of Problem 36. (In particular $\psi \circ \phi^{-1}(p, v)=$ $(p, \mu(p) \cdot v)$ and $\phi \circ \psi^{-1}(p, v)=\left(p, \mu(p)^{-1} \cdot v\right)$ for all $(p, v) \in(U \cap V) \times \mathbb{R}^{2}$, from which we se 3 that both the maps $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are C^{∞} maps from $(U \cap V) \times \mathbb{R}^{2}$ onto itself.)

Hence by Problem 36, E possesses a unique C^{∞} manifold structure such that (E, π, M) is a vector bundle of rank 2 and (U, ϕ) and (V, ψ) are bundle charts. Note that the transition function from (U, ϕ) to (V, ψ) equals μ by construction!

Remark: From a conceptual point of view the "discontinuity" of the above map ψ at $p=(0,0,-1)$ is confusing and ugly! The way to think about this is that our initial definition of E as a set, " $S^{2} \times \mathbb{R}^{2}$ " is only a technical device used to fit the construction into the result from Problem 36, where we need from start E to be a given (well-defined) set! Note that this " $S^{2} \times \mathbb{R}^{2}$ " carries no topology from start, so it is actually meaningless to speak about continuity/discontinuity of the maps ψ and ϕ ! The only topology and differential structure which we endow " $S^{2} \times \mathbb{R}^{2}$ " with, is the one imposed by requiring that the two bundle charts should be diffeomorphisms! Hence conceptually it is much better to think of E as the result of gluing the two vector bundles $V \times \mathbb{R}^{2}$ and $U \times \mathbb{R}^{2}$ together in line with the above description — and forget about the set " $S^{2} \times \mathbb{R}^{2 "}$ used in the construction.

[^38]
Problem 68:

(a). By the definition of $\widetilde{\Gamma}_{i j}^{k}$ we have

$$
\widetilde{\Gamma}_{i j}^{k} \cdot\left(s_{k} \circ f\right)=\left(f^{*} D\right)_{\frac{\partial}{\partial y^{i}}}\left(s_{j} \circ f\right) \quad \text { in } \Gamma\left(f^{*} E\right)_{\mid V},
$$

for all $i \in\left\{1, \ldots, d^{\prime}\right\}$ and $j \in\{1, \ldots, n\}$. Let us evaluate the above at an arbitrary point $p \in V$, using the identity from Problem 57(a); this gives:

$$
\begin{equation*}
\widetilde{\Gamma}_{i j}^{k}(p) \cdot s_{k}(f(p))=D_{v}\left(s_{j}\right), \tag{177}
\end{equation*}
$$

where $v:=d f_{p}\left(\frac{\partial}{\partial y^{2}}\right) \in T_{f(p)} N$. We have

$$
v=\frac{\partial f^{\ell}}{\partial y^{i}}(p) \cdot \frac{\partial}{\partial x^{\ell}}(f(p)) .
$$

(Here we write $f^{\ell}:=x^{\ell} \circ f$, as usual.) Hence the right hand side of (177) can be evaluated as

$$
D_{v}\left(s_{j}\right)=\frac{\partial f^{\ell}}{\partial y^{i}}(p) \cdot \Gamma_{\ell j}^{k}(f(p)) \cdot s_{k}(f(p)) .
$$

Comparing with (177), and using the fact that $s_{1}(f(p)), \ldots, s_{n}(f(p))$ is a basis of $E_{f(p)}$, we conclude:

$$
\widetilde{\Gamma}_{i j}^{k}(p)=\frac{\partial f^{\ell}}{\partial y^{i}}(p) \cdot \Gamma_{\ell j}^{k}(f(p)) .
$$

This can also be expressed as:

$$
\widetilde{\Gamma}_{i j}^{k}=\frac{\partial f^{\ell}}{\partial y^{i}} \cdot\left(\Gamma_{\ell j}^{k} \circ f\right) .
$$

(b). Proof of existence of $f^{*}: \Omega^{r}(E) \rightarrow \Omega^{r}\left(f^{*} E\right)$, first alternative: We wish to prove that there exists a unique \mathbb{R}-linear map $f^{*}: \Omega^{r}(E) \rightarrow$ $\Omega^{r}\left(f^{*} E\right)$ satisfying

$$
\begin{equation*}
f^{*}(\mu \otimes \omega)=(\mu \circ f) \otimes f^{*}(\omega) \quad \text { for all } \mu \in \Gamma E \text { and } \omega \in \Omega^{r}(N) . \tag{178}
\end{equation*}
$$

It follows from $\Omega^{r}(E)=\Gamma\left(E \otimes \bigwedge^{r}\left(T^{*} N\right)\right)=\Gamma(E) \otimes \Gamma\left(\bigwedge^{r}\left(T^{*} N\right)\right)$ (cf. Problem 43(d)) that every section in $\Omega^{r}(E)$ can be expressed as a finite sum of sections of the form $\mu \otimes \omega$ with $\mu \in \Gamma E$ and $\omega \in \Omega^{r}(N)$. Hence the formula (178) together with the \mathbb{R}-linearity certainly makes the map f^{*} uniquely defined, if it exists at all. The problem is that different decompositions of a given section $s \in \Omega^{r}(E)$ as a sum of "pure" sections $\mu \otimes \omega$ might apriori lead to different answers for what " $f^{*}(s)$ " should be. To resolve this we will give an alternative, "pointwise", definition for $f^{*}(s)$.

For each $p \in M$, let $A_{p}: \bigwedge^{r}\left(T_{f(p)}^{*} N\right) \rightarrow \bigwedge^{r}\left(T_{p}^{*} M\right)$ be the map given by

$$
A_{p}(\alpha)\left(v_{1}, \ldots, v_{r}\right):=\alpha\left(d f_{p}\left(v_{1}\right), \ldots, d f_{p}\left(v_{r}\right)\right), \quad \forall \alpha \in \bigwedge^{r}\left(T_{f(p)}^{*} N\right), v_{1}, \ldots, v_{r} \in T_{p} M
$$

This map A_{p} is clearly \mathbb{R}-linear. (Note that this map A_{p} in principle appears in Definition 5 in Lecture \#8; namely we have $f^{*}(\omega)_{p}=A_{p}\left(\omega_{f(p)}\right)$ for any $\omega \in \Omega^{r}(N)$ and any $p \in M$.) Hence for each $p \in M$ there is a unique \mathbb{R}-linear map

$$
B_{p}:=1_{E_{f(p)}} \otimes A_{p}: E_{f(p)} \otimes \bigwedge^{r}\left(T_{f(p)}^{*} N\right) \rightarrow E_{f(p)} \otimes \bigwedge^{r}\left(T_{p}^{*} M\right)
$$

satisfying $B_{p}(v \otimes \alpha)=v \otimes A_{p}(\alpha)$ for all $v \in E_{f(p)}$ and $\alpha \in \bigwedge^{r}\left(T_{f(p)}^{*} N\right)$. Note that under standard identifications, B_{p} can equivalently be viewed as a map

$$
B_{p}:\left(E \otimes \bigwedge^{r} T^{*} N\right)_{f(p)} \rightarrow\left(f^{*} E \otimes \bigwedge^{r} T^{*} M\right)_{p}
$$

Now let us define $f^{*}(s)$, for any $s \in \Omega^{r}(E)$, by ${ }^{44}$

$$
\begin{equation*}
\left(f^{*}(s)\right)(p):=B_{p}(s(f(p))), \quad \forall p \in M \tag{179}
\end{equation*}
$$

Then for every $s \in \Omega^{r}(E), f^{*}(s)$ is a function from M to $f^{*} E \otimes \bigwedge^{r}\left(T^{*} M\right)$, mapping each $p \in M$ into the fiber $\left(f^{*} E \otimes \bigwedge^{r}\left(T^{*} M\right)\right)_{p}$. It is also clear from (179) that $f^{*}(s)$ is $C^{\infty} 45$ and hence $f^{*}(s) \in \Omega^{r}\left(f^{*} E\right)$. Therefore f^{*} is a map from $\Omega^{r}(E)$ to $\Omega^{r}\left(f^{*} E\right)$, and it is immediate from (179) that this map is \mathbb{R}-linear. Finally, for any $s=\mu \otimes \omega$ with $\mu \in \Gamma E$ and $\omega \in \Omega^{r}(N)$, we have, for all $p \in M$:

$$
\begin{align*}
\left(f^{*}(s)\right)(p)=B_{p}(s(f(p)))=B_{p}(\mu(f(p)) & \otimes \omega(f(p)))=\mu(f(p)) \otimes A_{p}(\omega(f(p))) \\
(180) & =\mu(f(p)) \otimes f^{*}(\omega)(p)=f^{*}(\mu \otimes \omega)(p), \tag{180}
\end{align*}
$$

and hence our map f^{*} satisfies (178). Done!

[^39]Proof of existence of $f^{*}: \Omega^{r}(E) \rightarrow \Omega^{r}\left(f^{*} E\right)$, second alternative:
Using $\Omega^{r}(E)=\Gamma E \otimes \Omega^{r}(N)$ and $\Omega^{r}\left(f^{*} E\right)=\Gamma f^{*} E \otimes \Omega^{r}(M)$, it is tempting to simply say that, by the machinery from Problem 43 etc., "it suffices to show that the corresponding map from $\Gamma E \times \Omega^{r}(N)$ to $\Gamma f^{*} E \otimes \Omega^{r}(M)$ is bilinear" (cf. (182)). However there are complications due to the fact that we here have a mix of $C^{\infty}(N)$-modules and $C^{\infty}(M)$-modules, and one has to be careful about what "bilinear" really means... One can fill in the details as follows.

On $C^{\infty}(N)=\Omega^{0}(N)$ the map f^{*} is

$$
\begin{equation*}
f^{*}: C^{\infty}(N) \rightarrow C^{\infty}(M) ; \quad f^{*}(g)=g \circ f \quad\left(\forall g \in C^{\infty}(N)\right) \tag{181}
\end{equation*}
$$

and one verifies that f^{*} is a ring homomorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$. Using this ring homomorphism, any $C^{\infty}(M)$-module gets an induced structure of a $C^{\infty}(N)$-module.

Now consider the map
(182) $J: \Gamma E \times \Omega^{r}(N) \rightarrow \Gamma f^{*} E \otimes \Omega^{r}(M) ; \quad J(\mu, \omega)=(\mu \circ f) \otimes f^{*}(\omega)$.

Note that J is a map from a Cartesian product of two $C^{\infty}(N)$-modules to the $C^{\infty}(M)$-module $\Gamma f^{*} E \otimes \Omega^{r}(M) ;{ }^{46}$ however by what we have said above, $\Gamma f^{*} E \otimes \Omega^{r}(M)$ also has an induced structure of a $C^{\infty}(N)$-module, via the homomorphism f^{*} in (181). Now one verifies that the map J is $C^{\infty}(N)$ bilinear. [Details: One immediately verifies that $J\left(\mu_{1}+\mu_{2}, \omega\right)=J\left(\mu_{1}, \omega\right)+$ $J\left(\mu_{2}, \omega\right)$ and $J\left(\mu, \omega_{1}+\omega_{2}\right)=J\left(\mu, \omega_{1}\right)+J\left(\mu, \omega_{2}\right)$ for all $\mu_{1}, \mu_{2}, \mu \in \Gamma E$ and $\omega_{1}, \omega_{2}, \omega \in \Omega^{r}(M)$. Next for arbitrary $\mu \in \Gamma E, \omega \in \Omega^{r}(M)$ and $g \in C^{\infty}(N)$ we have $(g \cdot \mu) \circ f=(g \circ f) \cdot(\mu \circ f)$, and therefore

$$
J(g \cdot \mu, \omega)=(g \circ f) \cdot J(\mu, \omega)=f^{*}(g) \cdot J(\mu, \omega) .
$$

Also $f^{*}(g \cdot \omega)=f^{*}(g) \cdot f^{*}(\omega)$ and therefore

$$
J(\mu, g \cdot \omega)=f^{*}(g) \cdot J(\mu, \omega)
$$

Hence J is $C^{\infty}(N)$-bilinear.]
The fact that the map (182) is $C^{\infty}(N)$-bilinear now implies, via the defining property of tensor product (of $C^{\infty}(N)$-modules) that there exists a unique $C^{\infty}(N)$-linear map

$$
f^{*}: \Gamma E \otimes \Omega^{r}(N) \rightarrow \Gamma f^{*} E \otimes \Omega^{r}(M)
$$

such that

$$
f^{*}(\mu \otimes \omega)=J(\mu, \omega)=(\mu \circ f) \otimes f^{*}(\omega) .
$$

This is the desired map! (Indeed recall $\Gamma E \otimes \Omega^{r}(N)=\Omega^{r}(E)$ and $\Gamma f^{*} E \otimes$ $\Omega^{r}(M)=\Omega^{r}\left(f^{*} E\right)$. The fact that f^{*} is $C^{\infty}(N)$-linear implies in particular that f^{*} is \mathbb{R}-linear, as desired.)

[^40]Proof of the formula involving $d^{f^{*} D}$. We now turn to the second task of the problem, i.e. to prove that for any $s \in \Omega^{r}(E)$ we have

$$
\begin{equation*}
\left(d^{f^{*} D}\right)\left(f^{*}(s)\right)=f^{*}\left(d^{D} s\right) \tag{183}
\end{equation*}
$$

We first prove the auxiliary result that the map $f^{*}: \Omega^{r}(E) \rightarrow \Omega^{r}\left(f^{*} E\right)$ respects wedge product, i.e.

$$
\begin{equation*}
f^{*}(\sigma \wedge \eta)=f^{*}(\sigma) \wedge f^{*}(\eta) \text { in } \Omega^{r+s}(E), \quad \forall \sigma \in \Omega^{r}(E), \eta \in \Omega^{s}(N) \tag{184}
\end{equation*}
$$

By \mathbb{R}-linearity in σ it suffices to prove (184) for $\sigma=\sigma_{1} \otimes \eta_{1}$ with $\sigma_{1} \in \Gamma E$ and $\eta_{1} \in \Omega^{r}(N)$. In this case,

$$
\begin{array}{r}
f^{*}(\sigma \wedge \eta)=f^{*}\left(\sigma_{1} \otimes\left(\eta_{1} \wedge \eta\right)\right)=\left(\sigma_{1} \circ f\right) \otimes f^{*}\left(\eta_{1} \wedge \eta\right) \\
=\left(\sigma_{1} \circ f\right) \otimes f^{*}\left(\eta_{1}\right) \wedge f^{*}(\eta)=f^{*}(\sigma) \wedge f^{*}(\eta)
\end{array}
$$

where in the third equality we used the fact that $f^{*}: \Omega(N) \rightarrow \Omega(M)$ respects wedge product (cf. \#8, p. 9). Hence (184) is proved.

Now we prove (183). In the case $r=0$ (i.e., $s \in \Gamma E$ and $d^{D}=D$ and $d^{f^{*} D}=f^{*} D$) we see that (183) is equivalent with the identity in Problem 57(a) if we can only prove that

$$
\begin{equation*}
D_{d f(\cdot)}(s)=f^{*}(D s) \tag{185}
\end{equation*}
$$

and assuming $D s=\sum_{j=1}^{m} \mu_{j} \otimes \omega_{j}$ with $\mu_{1}, \ldots, \mu_{m} \in \Gamma E$ and $\omega_{1}, \ldots, \omega_{m} \in$ $\Omega^{1}(N)$ we have, for every $p \in M$ and $X \in T_{p} M$:

$$
\begin{aligned}
\left(f^{*}(D s)\right)(X)=\sum_{j=1}^{m}\left(\left(\mu_{j} \circ f\right) \otimes f^{*}\left(\omega_{j}\right)\right)(X) & =\sum_{j=1}^{m} \omega_{j}(d f(X)) \cdot \mu_{j}(f(p) \\
& =(D s)(d f(X))=D_{d f(X)}(s)
\end{aligned}
$$

Hence (185) holds, and so we have proved that (183) holds when $r=0$.
Finally we prove (183) for $r \geq 1$. By \mathbb{R}-linearity, it is enough to check that (183) holds when $s=\mu \otimes \omega$ for some $\mu \in \Gamma E, \omega \in \Omega^{r}(N)$. Then:

$$
\begin{aligned}
f^{*}\left(d^{D} s\right) & =f^{*}\left(d^{D}(\mu \otimes \omega)\right) \\
& =f^{*}(D \mu \wedge \omega+\mu \otimes d \omega) \\
{[1] } & =f^{*}(D \mu) \wedge f^{*}(\omega)+(\mu \circ f) \otimes f^{*}(d \omega) \\
{[2] } & =\left(\left(f^{*} D\right)(\mu \circ f)\right) \wedge f^{*}(\omega)+(\mu \circ f) \otimes d f^{*}(\omega) \\
& =\left(d^{f^{*} D}\right)\left((\mu \circ f) \otimes f^{*} \omega\right) \\
& =\left(d^{f^{*} D}\right)\left(f^{*}(\mu \otimes \omega)\right) \\
& =\left(d^{f^{*} D}\right)\left(f^{*}(s)\right)
\end{aligned}
$$

(Here equality [1] holds by \mathbb{R}-linearity and (184), and equality [2] holds by [(183) for $r=0]$.) Hence we have proved that (183) holds for any $r \geq 0$.

Problem 70; Let ∇ be the Levi-Civita connection for $(M,\langle\cdot, \cdot\rangle)$. Then ∇ is metric also wrt $[\cdot, \cdot]$, since for any vector fields $X, Y \in \Gamma(T M)$ we have

$$
\begin{array}{r}
d[X, Y]=d(c\langle X, Y\rangle)=c \cdot d\langle X, Y\rangle=c \cdot\langle\nabla X, Y\rangle+c \cdot\langle X, \nabla Y\rangle \\
=[\nabla X, Y]+[X, \nabla Y]
\end{array}
$$

in $\Omega^{1}(M)$. Also ∇ is torsion free (recall that this notion is independent of the Riemannian metric). Hence, by the uniqueness in Theorem 1 in $\# 13, \nabla$ is the Levi-Civita connection also for $(M,[\cdot, \cdot])$.

Hence $(M,\langle\cdot, \cdot\rangle)$ and $(M,[\cdot, \cdot])$ also have the same curvature tensor, $R=$ $\nabla \circ \nabla \in \Omega^{2}(\operatorname{End} T M)$. (However the tensor field " $R m$ " - cf. p. 1 in Lecture $\# 14$ - is not the same for $(M,\langle\cdot, \cdot\rangle)$ and $(M,[\cdot, \cdot])$, since its definition involves the inner product.) Now from Definition 1 in $\# 15$ it follows that, if K and \widetilde{K} denote sectional curvature on $(M,\langle\cdot, \cdot\rangle)$ and on $(M,[\cdot, \cdot])$, respectively, then for any $p \in M$ and any linearly independent $X, Y \in T_{p} M$,

$$
\widetilde{K}(X \wedge Y)=\frac{[R(X, Y) Y, X]}{[X \wedge Y, X \wedge Y]}=\frac{c\langle R(X, Y) Y, X\rangle}{\left.c^{2}\langle X \wedge Y, X \wedge Y\rangle\right)}=c^{-1} K(X \wedge Y)
$$

Example: Let $(M,\langle\cdot, \cdot\rangle)$ be the standard unit sphere S^{d} in \mathbb{R}^{d+1}, and let $[\cdot, \cdot]$ be the Riemannian metric obtained by instead using the embedding $x \mapsto R x$ of S^{d} into \mathbb{R}^{d+1}, for some fixed $R>0$ (still using the standard Riemannian metric on $\left.\mathbb{R}^{d+1}\right)$. In other words $(M,[\cdot, \cdot])$ is the sphere of radius R in \mathbb{R}^{d+1}. Then $[\cdot, \cdot]=R^{2}\langle\cdot, \cdot\rangle$ and thus

$$
\widetilde{K}(X \wedge Y)=R^{-2} K(X \wedge Y)
$$

for any X, Y as above. This agrees with the fact that the sphere of radius R has constant sectional curvature R^{-2}.

Problem 71; Let $p \in M$ and $X \in T_{p} M$ with $\|X\|=1$. Choose an ON basis X_{1}, \ldots, X_{d} of $T_{p} M$ with $X_{d}=X$. Then the uniform average of the sectional curvatures of all planes in $T_{p} M$ containing X equals:

$$
A=\frac{1}{\omega\left(S^{d-2}\right)} \int_{S^{d-2}} K\left(X_{d} \wedge\left(\alpha_{1} X_{1}+\cdots+\alpha_{d-1} X_{d-1}\right)\right) d \omega(\boldsymbol{\alpha})
$$

where $S^{d-2}=\left\{\boldsymbol{\alpha} \in \mathbb{R}^{d-1}: \alpha_{1}^{2}+\cdots+\alpha_{d-1}^{2}=1\right\}$ is the standard $d-2$ dimensional unit sphere and ω is the is its standard volume measure (cf., e.g., [6, Thm. 2.49]). Using the fact that for any $\boldsymbol{\alpha} \in S^{d-2}$, the two vectors X_{d} and $\alpha_{1} X_{1}+\cdots+\alpha_{d-1} X_{d-1}$ in $T_{p} M$ are orthogonal and have unit length, we get

$$
\begin{aligned}
A & =\frac{1}{\omega\left(S^{d-2}\right)} \int_{S^{d-2}}\left\langle R\left(X_{d}, \sum_{j=1}^{d-1} \alpha_{j} X_{j}\right) \sum_{j=1}^{d-1} \alpha_{j} X_{j}, X_{d}\right\rangle d \omega(\boldsymbol{\alpha}) \\
& =\frac{1}{\omega\left(S^{d-2}\right)} \sum_{j=1}^{d-1} \sum_{k=1}^{d-1} \int_{S^{d-2}}\left\langle R\left(X_{d}, \alpha_{j} X_{j}\right) \alpha_{k} X_{k}, X_{d}\right\rangle d \omega(\boldsymbol{\alpha}) \\
& =\sum_{j=1}^{d-1} \sum_{k=1}^{d-1}\left\langle R\left(X_{d}, X_{j}\right) X_{k}, X_{d}\right\rangle \frac{1}{\omega\left(S^{d-2}\right)} \int_{S^{d-2}} \alpha_{j} \alpha_{k} d \omega(\boldsymbol{\alpha})
\end{aligned}
$$

Here we note that for any $j \neq k \in\{1, \ldots, d-1\}$ we have $\int_{S^{d-2}} \alpha_{j} \alpha_{k} d \omega(\boldsymbol{\alpha})=$ 0 , since the measure ω is preserved by the reflection in the hyperplane $\alpha_{j}=0$. On the other hand for each $j \in\{1, \ldots, d-1\}$, the integral $\omega\left(S^{d-2}\right)^{-1} \int_{S^{d-2}} \alpha_{j}^{2} d \omega(\boldsymbol{\alpha})$ equals a constant which is independent of j, since ω is invariant under any permutation of the coordinates $\alpha_{1}, \ldots, \alpha_{d-1}$. Let us define C_{d} by

$$
C_{d}^{-1}:=\frac{1}{\omega\left(S^{d-2}\right)} \int_{S^{d-2}} \alpha_{j}^{2} d \omega(\boldsymbol{\alpha})
$$

(any $j \in\{1, \ldots, d-1\}$); this is a positive number which only depends on the dimension d.
(For $d=2$ we immediately compute $C_{2}=1$; indeed note that in this case $S^{d-2}=\{1,-1\} \subset \mathbb{R}$ and $\omega(\{1\})=\omega(\{-1\})=\frac{1}{2}$. Furthermore for $d=3$ we have $C_{3}^{-1}=(2 \pi)^{-1} \int_{0}^{2 \pi}(\cos \varphi)^{2} d \varphi=\frac{1}{2}$, i.e. $C_{3}=2$.)

We get:

$$
\begin{array}{r}
A=C_{d}^{-1} \sum_{j=1}^{d-1}\left\langle R\left(X_{d}, X_{j}\right) X_{j}, X_{d}\right\rangle=C_{d}^{-1} \sum_{j=1}^{d}\left\langle R\left(X_{d}, X_{j}\right) X_{j}, X_{d}\right\rangle \\
=C_{d}^{-1} \cdot \operatorname{Ric}(X, X),
\end{array}
$$

where in the second equality we used the fact that $\left\langle R\left(X_{d}, X_{d}\right) X_{d}, X_{d}\right\rangle=0$, and in the last equality we used the definition of the Ricci tensor, Def. 2 in Lecture $\# 15$. (Details for the last step: Fix any chart (U, x) on
M with $p \in U$, such that $X_{j}=\frac{\partial}{\partial x^{j}}$ at p, for $j=1, \ldots, d$. Then $\left(g_{i j}\right)$ equals the identity matrix at p, and hence also the inverse matrix, $\left(g^{i j}\right)$ equals the identity matrix. Hence $\operatorname{Ric}(X, X)=g^{j \ell}\left\langle R\left(X, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{\ell}}, X\right\rangle=$ $\sum_{j=1}^{d}\left\langle R\left(X, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{j}}, X\right\rangle=\sum_{j=1}^{d}\left\langle R\left(X_{d}, X_{j}\right) X_{j}, X_{d}\right\rangle$, as claimed.)

Summing up, we have proved

$$
\operatorname{Ric}(X, X)=C_{d} \cdot A
$$

and this is the desired formula. It only remains to compute C_{d}. Since C_{d} only depends on the dimension d, it can be conveniently computed by considering any manifold of constant sectional curvature $(\neq 0)$. For example let M be the unit sphere S^{d} with its standard Riemannian metric. Then the sectional curvature is everywhere equal to 1 , and so $A=1$ for any $p \in M$ and any unit vector $X \in T_{p} M$. On the other hand by again choosing an ONbasis $X_{1}, \ldots, X_{d} \in T_{p} M$ with $X_{d}=X$ then as above we have $\operatorname{Ric}(X, X)=$ $\sum_{j=1}^{d}\left\langle R\left(X_{d}, X_{j}\right) X_{j}, X_{d}\right\rangle=\sum_{j=1}^{d-1} 1=d-1$. Hence:

$$
C_{d}=d-1 .
$$

Remark: It is also somewhat satisfactory to compute C_{d} directly from its definition. Using basic properties of ω, in particular $\omega\left(S^{d-2}\right)=\frac{2 \pi^{(d-1) / 2}}{\Gamma((d-1) / 2)}$, we get:

$$
\begin{aligned}
C_{d}^{-1} & =\frac{\Gamma\left(\frac{d-1}{2}\right)}{2 \pi^{(d-1) / 2}} \int_{-1}^{1} \alpha_{1}^{2} \cdot \frac{2 \pi^{(d-2) / 2}}{\Gamma\left(\frac{d-2}{2}\right)}\left(1-\alpha_{1}^{2}\right)^{\frac{d-4}{2}} d \alpha_{1} \\
& =\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{d-2}{2}\right)} \cdot 2 \int_{0}^{1} x(1-x)^{\frac{d-4}{2}} \frac{d x}{2 \sqrt{x}} \\
& =\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{d-2}{2}\right)} \cdot \int_{0}^{1} x^{\frac{1}{2}}(1-x)^{\frac{d-4}{2}} d x \\
& =\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{d-2}{2}\right)} \cdot \frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{d-2}{2}\right)}{\Gamma\left(\frac{d+1}{2}\right)} \\
& =\frac{1}{d-1} .
\end{aligned}
$$

Problem 72; First note that, for any $X, Y, Z \in V$:

$$
2 \mathcal{R}(X, Z, Z, Y)=K(X+Y, Z)-K(X, Z)-K(Y, Z)
$$

Next, for any $X, Y, Z, W \in V$:

$$
\begin{aligned}
& \mathcal{R}(X, Z, W, Y)+\mathcal{R}(X, W, Z, Y) \\
& \begin{array}{r}
=\mathcal{R}(X, Z+W, Z+W, Y)-\mathcal{R}(X, Z, Z, Y)-\mathcal{R}(X, W, W, Y) \\
=\frac{1}{2}(K(X+Y, Z+W)-K(X, Z+W)-K(Y, Z+W)) \\
\\
\quad-\frac{1}{2}(K(X+Y, Z)-K(X, Z)-K(Y, Z)) \\
\\
\quad-\frac{1}{2}(K(X+Y, W)-K(X, W)-K(Y, W))
\end{array}
\end{aligned}
$$

Using also $\mathcal{R}(X, W, Z, Y)=-\mathcal{R}(W, X, Z, Y)$, the above identity can be rewritten as
$2 \mathcal{R}(X, Z, W, Y)=2 \mathcal{R}(W, X, Z, Y)$

$$
\begin{align*}
+(K(X+ & Y, Z+W)-K(X, Z+W)-K(Y, Z+W)) \tag{186}\\
& -(K(X+Y, Z)-K(X, Z)-K(Y, Z)) \\
& -(K(X+Y, W)-K(X, W)-K(Y, W))
\end{align*}
$$

Here is the same identity with X, Z, W cyclically permuted:

$$
\begin{align*}
& 2 \mathcal{R}(W, X, Z, Y)=2 \mathcal{R}(Z, W, X, Y) \\
& \tag{187}\\
& (187)
\end{align*}
$$

We rewrite (186) by solving for $\mathcal{R}(W, X, Z, Y)$:

$$
\begin{align*}
& 2 \mathcal{R}(W, X, Z, Y)=2 \mathcal{R}(X, Z, W, Y) \\
& \begin{aligned}
(188) & -(K(X+ \\
& +(K, Z+W)-K(X, Z+W)-K(Y, Z+W)) \\
& +(K(X+Y, W)-K(X, W)-K(Y, W))
\end{aligned} \tag{188}
\end{align*}
$$

Now add (187) and (188) and add an extra $2 \mathcal{R}(W, X, Z, Y)$ on both sides, and then use the first Bianchi identity in the right hand side. This gives:

$$
\begin{aligned}
6 \mathcal{R}(W, X, Z, Y)= & (\\
& (W+Y, X+Z)-K(W, X+Z)-K(Y, X+Z)) \\
& -(K(W+Y, X)-K(W, X)-K(Y, X)) \\
& -(K(W+Y, Z)-K(W, Z)-K(Y, Z)) \\
& -(K(X+Y, Z+W)-K(X, Z+W)-K(Y, Z+W)) \\
& +(K(X+Y, Z)-K(X, Z)-K(Y, Z)) \\
& +(K(X+Y, W)-K(X, W)-K(Y, W)) \\
= & K(W+Y, X+Z)-K(W, X+Z)-K(Y, X+Z) \\
& -K(W+Y, X)+K(Y, X) \\
& -K(W+Y, Z)+K(W, Z) \\
& -K(X+Y, Z+W)+K(X, Z+W)+K(Y, Z+W) \\
& +K(X+Y, Z)-K(X, Z) \\
& +K(X+Y, W)-K(Y, W) .
\end{aligned}
$$

This is an explicit formula for \mathcal{R} in terms of K ! Changing letters ($W \rightarrow X$, $X \rightarrow Y, Y \rightarrow W)$ the formula reads:

$$
\begin{aligned}
6 \cdot \mathcal{R}(X, Y, Z, W)= & K(X+W, Y+Z)-K(X, Y+Z)-K(W, Y+Z) \\
& -K(X+W, Y)+K(W, Y) \\
& -K(X+W, Z)+K(X, Z) \\
& -K(Y+W, Z+X)+K(Y, Z+X)+K(W, Z+X) \\
& +K(Y+W, Z)-K(Y, Z) \\
& +K(Y+W, X)-K(W, X)
\end{aligned}
$$

which is exactly the formula which Jost states in his [12, Lemma 4.3.3], except for the factor " 6 " in the left hand side.

Problem 73: Cf., e.g., [13, p. 292, Thm. 1] or [14, Prop. 7.8].
Assume that there is a function $c: M \rightarrow \mathbb{R}$ such that (wrt any C^{∞} chart ($U, x)$ on M):

$$
\begin{equation*}
R_{i k}=c \cdot g_{i k} \tag{190}
\end{equation*}
$$

(Cf. the note on p. 5 in Lecture \#15.)
Fix a point $p \in M$ and assume that (U, x) are normal coordinates around p. Then by the second Bianchi identity,

$$
\partial_{h} R_{i j k \ell}+\partial_{k} R_{i j \ell h}+\partial_{\ell} R_{i j h k}=0 \quad \text { at } p .
$$

(Here $\partial_{h}:=\frac{\partial}{\partial x^{h}}$.) Multiply the above relation with $g^{i k} g^{j \ell}$ and add over all i, k, j, ℓ; this gives:

$$
g^{i k} g^{j \ell} \cdot \partial_{h} R_{i j k \ell}+g^{i k} g^{j \ell} \cdot \partial_{k} R_{i j \ell h}+g^{i k} g^{j \ell} \cdot \partial_{\ell} R_{i j h k}=0 \quad \text { at } p .
$$

However we have $\partial_{h} g^{i k}=0$ at p, for all h, i, k; hence the above relation is equivalent with:

$$
\begin{equation*}
\partial_{h}\left(g^{i k} g^{j \ell} R_{i j k \ell}\right)+\partial_{k}\left(g^{i k} g^{j \ell} R_{i j \ell h}\right)+\partial_{\ell}\left(g^{i k} g^{j \ell} R_{i j h k}\right)=0 \quad \text { at } p . \tag{191}
\end{equation*}
$$

Recall now that $g^{j \ell} R_{i j k \ell}=R_{i k}$, by definition. Hence using also (190) we get

$$
g^{i k} g^{j \ell} R_{i j k \ell}=g^{i k} R_{i k}=g^{i k} \cdot c \cdot g_{i k}=c \cdot \delta_{i}^{i}=d \cdot c,
$$

where $d:=\operatorname{dim} M$. Also

$$
g^{i k} g^{j \ell} R_{i j \ell h}=-g^{i k} g^{j \ell} R_{i j h \ell}=-g^{i k} R_{i h}=-g^{i k} \cdot c \cdot g_{i h}=-\delta_{h}^{k} \cdot c .
$$

and

$$
g^{i k} g^{j \ell} R_{i j h k}=-g^{i k} g^{j \ell} R_{j i h k}=-g^{j \ell} R_{j h}=-g^{j \ell} \cdot c \cdot g_{j h}=-\delta_{h}^{\ell} \cdot c
$$

Substituting these relations in (191) we obtain, at p :

$$
0=d \cdot \partial_{h} c-\partial_{h} c-\partial_{h} c=(d-2) \partial_{h} c .
$$

Hence since we are assuming $d \geq 3$, we conclude that $\partial_{h} c=0$ at p. This is true for all h; hence $d c_{p}=0$. This is true for all $p \in M$; hence c is constant, qed.

Problem 76:

(a) By Problem 35(c), every vector in $E_{f(p)}$ can be obtained as $s(f(p))$ for some $s \in \Gamma E$; hence it suffices to prove that for any $s \in \Gamma E$:

$$
\begin{aligned}
\widetilde{R}(s \circ f)\left(X_{1}, X_{2}\right)=(R s)\left(d f\left(X_{1}\right), d f\left(X_{2}\right)\right) \quad & \text { in }\left(f^{*} E\right)_{p}=E_{f(p)} \\
& \forall p \in M, X, Y \in T_{p}(M)
\end{aligned}
$$

Using (for $r=2$) the map $f^{*}: \Omega^{r}(E) \rightarrow \Omega^{r}\left(f^{*} E\right)$ defined in Problem 68(b), the above relation can be expressed:

$$
\widetilde{R}(s \circ f)=f^{*}(R s) \quad \text { in } \Omega^{2}\left(f^{*} E\right)
$$

By the definition of $f^{*}: \Omega^{0}(E) \rightarrow \Omega^{0}\left(f^{*} E\right)$, this can also be expressed (slightly more nicely?) as

$$
\begin{equation*}
\widetilde{R}\left(f^{*}(s)\right)=f^{*}(R s) \quad \text { in } \Omega^{2}\left(f^{*} E\right) \tag{192}
\end{equation*}
$$

Recall that, by definition,

$$
\widetilde{R}=d^{f^{*} D} \circ f^{*} D \quad \text { and } \quad R=d^{D} \circ D
$$

(Here, as in Problem 68(b), we write $d^{f^{*} D}$ and d^{D} for the exterior covariant derivatives, and not just " $f^{*} D$ " and " D " as we usually do.) Now we compute, for any $s \in \Gamma E$:

$$
\widetilde{R}\left(f^{*}(s)\right)=d^{f^{*} D}\left(\left(f^{*} D\right)\left(f^{*} s\right)\right)
$$

[Apply Problem 57(a); cf. also Problem 68(b).]

$$
=d^{f^{*} D}\left(f^{*}(D s)\right)
$$

[Apply Problem 68(b).]
$=f^{*}\left(d^{D}(D s)\right)$
$=f^{*}(R(s))$.
Hence (192) is proved!
(b). Here we are considering a C^{∞} map $c \equiv F: H \rightarrow M$, where

$$
H=[a, b] \times(-\varepsilon, \varepsilon)
$$

and where M is a Riemannian manifold with ∇ being the Levi-Civita connection on $T M$. (Actually, in order not to have to consider a manifold with boundary, we should instead take $H=\left(a-\varepsilon^{\prime}, b+\varepsilon^{\prime}\right) \times(-\varepsilon, \varepsilon)$; cf. section 3.1 in the lecture notes.) Also (t, s) are the standard coordinates on H; thus $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial s}$ are well-defined vector fields in $\Gamma(T H)$. Finally recall that in " $\nabla_{\frac{\partial}{\partial t}}$ " and " $\nabla_{\frac{\partial}{\partial s}}$ ", the " ∇ " is really a short-hand notation for the pullback connection $F^{*} \stackrel{\nabla}{\partial s}$ on $\Gamma\left(F^{*}(T M)\right)$. Hence our task is to prove:

$$
\begin{align*}
& R\left(\frac{\partial}{\partial t} F, \frac{\partial}{\partial s} F\right)\left(\frac{\partial}{\partial s} F\right) \\
& \quad=\left(F^{*} \nabla\right)_{\frac{\partial}{\partial s}}\left(F^{*} \nabla\right)_{\frac{\partial}{\partial t}}\left(\frac{\partial}{\partial s} F\right)-\left(F^{*} \nabla\right)_{\frac{\partial}{\partial t}}\left(F^{*} \nabla\right)_{\frac{\partial}{\partial s}}\left(\frac{\partial}{\partial s} F\right) . \tag{193}
\end{align*}
$$

(Here $\frac{\partial}{\partial s} F=d F \circ \frac{\partial}{\partial s}$ and $\frac{\partial}{\partial t} F=d F \circ \frac{\partial}{\partial t}$ are sections in $\Gamma_{F}(T M)=$ $\Gamma\left(F^{*}(T M)\right.$), so that the expression in the right-hand side makes sense. Note also that the expressions on both sides of the equality are sections in $\Gamma_{F}(T M)=\Gamma\left(F^{*}(T M)\right)$.)

From now on let us use the short-hand notation $\partial_{t}:=\frac{\partial}{\partial t}, \partial_{s}:=\frac{\partial}{\partial s}$.
Note that for every $p \in H$ we have $\left(\partial_{t} F\right)(p)=d F\left(\partial_{t}(p)\right)$ and $\left(\partial_{s} F\right)(p)=$ $d F\left(\partial_{s}(p)\right)$ in $T_{F(p)}(M)$. Hence by part a,

$$
R\left(\partial_{t} F, \partial_{s} F\right)\left(\partial_{s} F\right)=\widetilde{R}\left(\partial_{t}, \partial_{s}\right)\left(\partial_{s} F\right) \quad \text { in } \Gamma_{F}(T M)
$$

where \widetilde{R} is the curvature of the connection $F^{*} \nabla$ on $F^{*}(T M)$. However by Theorem 1 in Lecture $\# 11$, using $\left[\partial_{t}, \partial_{s}\right] \equiv 0$, we have

$$
\widetilde{R}\left(\partial_{t}, \partial_{s}\right)\left(\partial_{s} F\right)=\left(F^{*} \nabla\right)_{\partial_{t}}\left(\left(F^{*} \nabla\right)_{\partial_{s}}\left(\partial_{s} F\right)\right)-\left(F^{*} \nabla\right)_{\partial_{s}}\left(\left(F^{*} \nabla\right)_{\partial_{t}}\left(\partial_{s} F\right)\right)
$$

This proves (193)!

Problem [78: (Cf. [14, Prop. 10.9].) Recall that the fact that the chart (U, x) gives normal coordinates means that there is some $r>0$ such that $\exp _{p \mid B_{r}(0)}$ is a diffeomorphism onto U, where $B_{r}(0)$ is the open ball of radius r about the origin in $T_{p}(M)$ (wrt the Riemannian metric $\langle\cdot, \cdot\rangle$); also we fix an identification $T_{p}(M)=\mathbb{R}^{d}$ which carries $\langle\cdot, \cdot\rangle$ on $T_{p}(M)$ to the standard scalar product on \mathbb{R}^{d}; thus $B_{r}(0)$ is now the open ball of radius r about the origin in \mathbb{R}^{d}; and finally $x:=\left(\exp _{p \mid B_{r}(0)}\right)^{-1}: U \rightarrow \mathbb{R}^{d}$, with image $x(U)=B_{r}(0)$.

Now fix a point $x \in B_{r}(0) \backslash\{0\}$. Set $T:=\|x\| \in(0, r)$ and consider the geodesic

$$
c:[0, T] \rightarrow M, \quad c(t)=\exp _{p}\left(t\|x\|^{-1} x\right) .
$$

Note that c is parametrized by arc length, i.e. $\|\dot{c}(t)\|=1$ for all $t \in[0, T]$. Using the chart (U, x) to identify U and $B_{r}(0)$, the map $\exp _{p}: B_{r}(0) \rightarrow U$ becomes simply the identity map on $B_{r}(0)$; the geodesic c becomes $c(t)=t x$, and also for any $w \in B_{r}(0)$ the differential of $\exp _{p}: T_{p}(M) \rightarrow M$ at w,

$$
\begin{equation*}
\left(d \exp _{p}\right)_{w}: T_{w}\left(T_{p}(M)\right)=\mathbb{R}^{d} \rightarrow T_{\exp _{p}(w)}(M)=\mathbb{R}^{d} \tag{194}
\end{equation*}
$$

get ${ }^{47}$ identified with the identity map on \mathbb{R}^{d}. Hence by Cor. 1 in Lecture $\# 17$, for any $v \in \mathbb{R}^{d}$ the formula

$$
\begin{equation*}
X(t):=t \cdot v \in T_{c(t)}(M)=\mathbb{R}^{d} \quad(t \in[0, T]) \tag{195}
\end{equation*}
$$

defines a Jacobi field along c.
The Riemannian metric $\langle\cdot, \cdot\rangle$ on U carries over to a Riemannian metric $\langle\cdot, \cdot\rangle$ on $B_{r}(0)$, which is given by

$$
\langle v, w\rangle=g_{i j}(x) v^{i} w^{j}
$$

for any $x \in B_{r}(0)$ and $v, w \in \mathbb{R}^{d}$.
Let us first assume that the vector v in (195) satisfies $v \cdot x=0$. Since $g_{i j}(0)=\delta_{i j}$ (by Lemma 1 in \#4), this implies that v and $\|x\|^{-1} x$ are orthogonal when viewed as tangent vectors in $T_{p}(M)$. Note also $\dot{c}(0)=\|x\|^{-1} x$; hence by "Gauss' Lemma" (Cor. 2 in Lecture \#17), $\langle X(t), \dot{c}(t)\rangle=0$ for all $t \in[0, T]$, i.e. X is a normal Jacobi field along c. Hence by the discussion on pp. 5-6 in Lecture \#17 we have

$$
\begin{equation*}
X(t)=s_{\rho}(t) \cdot X_{1}(t), \quad \forall t \in[0, T], \tag{196}
\end{equation*}
$$

where $X_{1}(t)$ is a parallel vector field along c, and

$$
s_{\rho}(t)= \begin{cases}\rho^{-1 / 2} \sin \left(\rho^{1 / 2} t\right) & \text { if } \rho>0 \\ t & \text { if } \rho=0 \\ |\rho|^{-1 / 2} \sinh \left(|\rho|^{1 / 2} t\right) & \text { if } \rho<0\end{cases}
$$

[^41]Using $X(t)=t \cdot v$ and $g_{i j}(0)=\delta_{i j}$ we see that $\left\langle t^{-1} X(t), t^{-1} X(t)\right\rangle \rightarrow\|v\|^{2}$ as $t \rightarrow 0^{+}$. Combining this with (196) and $t^{-1} s_{\rho}(t) \rightarrow 1$ as $t \rightarrow 0^{+}$we conclude that $\left\langle X_{1}(t), X_{1}(t)\right\rangle \rightarrow\|v\|^{2}$ as $t \rightarrow 0^{+}$. However $\left\langle X_{1}(t), X_{1}(t)\right\rangle$ is independent of t since X_{1} is parallel along c; hence

$$
\left\langle X_{1}(t), X_{1}(t)\right\rangle=\|v\|^{2}, \quad \forall t \in[0, T]
$$

In particular, since $T \cdot v=X(T)=s_{\rho}(T) \cdot X_{1}(T)$, it follows that for v viewed as a vector in $T_{x}(M)=T_{c(T)}(M)($ recall $T=\|x\|)$:

$$
\langle v, v\rangle=T^{-2} s_{\rho}(T)^{2}\|v\|^{2}=\left\{\begin{array}{ll}
\frac{\sin ^{2}\left(\rho^{1 / 2}\|x\|\right)}{\rho\|x\|^{2}} & \text { if } \rho>0 \\
1 & \text { if } \rho=0 \\
\frac{\sinh ^{2}\left(|\rho|^{1 / 2}\|x\|\right)}{|\rho|\|x\|^{2}} & \text { if } \rho<0
\end{array}\right\} \cdot\|v\|^{2}
$$

On the other hand if v is proportional to x then we know (by Gauss' Lemma or by Problem [23 $=[12]$) that for v viewed as a vector in $T_{c(t)}(M)$ for any $t \in[0, T]$,

$$
\langle v, v\rangle=\|v\|^{2}
$$

In particular this holds at $x=c(T)$.
Finally let v be an arbitrary vector in \mathbb{R}^{d}. We can then write $v=a x+w$ where $a=\|x\|^{-2}(v \cdot x)$ and $w=v-a x$; then $a x$ is proportional to x while $v \cdot w=0$. It follows from Gauss' Lemma (or Problem 23 = 12]) that $\langle a x, w\rangle=0$ when $a x$ and w are viewed as vectors in $T_{x}(M)$. Hence

$$
\langle v, v\rangle=\langle a x, a x\rangle+\langle w, w\rangle=\frac{(v \cdot x)^{2}}{\|x\|^{2}}+\left\{\begin{array}{ll}
\frac{\sin ^{2}\left(\rho^{1 / 2}\|x\|\right)}{\rho\|x\|^{2}} & \text { if } \rho>0 \\
1 & \text { if } \rho=0 \\
\frac{\sinh ^{2}\left(|\rho|^{1 / 2}\|x\|\right)}{|\rho|\|x\|^{2}} & \text { if } \rho<0 .
\end{array}\right\} \cdot\|w\|^{2}
$$

Note here that

$$
\|w\|^{2}=\|v\|^{2}-\frac{(v \cdot x)^{2}}{\|x\|^{2}}
$$

By polarization (i.e. using $\left\langle v, v^{\prime}\right\rangle=\frac{1}{2}\left(\left\langle v+v^{\prime}, v+v^{\prime}\right\rangle-\langle v, v\rangle-\left\langle v^{\prime}, v^{\prime}\right\rangle\right)$), the above formula leads to

$$
\left\langle v, v^{\prime}\right\rangle=\frac{(v \cdot x)\left(v^{\prime} \cdot x\right)}{\|x\|^{2}}+\left\{\begin{array}{ll}
\frac{\sin ^{2}\left(\rho^{1 / 2}\|x\|\right)}{\rho\|x\|^{2}} & \text { if } \rho>0 \\
1 & \text { if } \rho=0 \\
\frac{\sinh ^{2}\left(|\rho|^{1 / 2}\|x\|\right)}{|\rho|\|x\|^{2}} & \text { if } \rho<0 .
\end{array}\right\} \cdot\left(v \cdot v^{\prime}-\frac{(v \cdot x)\left(v^{\prime} \cdot x\right)}{\|x\|^{2}}\right)
$$

for any $v, v^{\prime} \in \mathbb{R}^{d}$ viewed as vectors in $T_{x}(M)$. Inserting here $v=e_{i}, v^{\prime}=e_{j}$ we conclude:

$$
g_{i j}(x)=\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}\frac{x_{i} x_{j}}{\|x\|^{2}}+\frac{\sin ^{2}\left(\rho^{1 / 2}\|x\|\right)}{\rho\|x\|^{2}}\left(\delta_{i j}-\frac{x_{i} x_{j}}{\|x\|^{2}}\right) & \text { if } \rho>0 \\ \delta_{i j} & \text { if } \rho=0 \\ \frac{x_{i} x_{j}}{\|x\|^{2}}+\frac{\sinh ^{2}\left(|\rho|^{1 / 2}\|x\|\right)}{|\rho|\|x\|^{2}}\left(\delta_{i j}-\frac{x_{i} x_{j}}{\|x\|^{2}}\right) & \text { if } \rho<0\end{cases}
$$

which is the desired formula.
(Using the fact that the Taylor series for $\left(\frac{\sin r}{r}\right)^{2}$ and for $\left(\frac{\sinh r}{r}\right)^{2}$ has the form $1+c_{1} r^{2}+c_{2} r^{4}+\cdots$, which converges for all $r \in \mathbb{R}$, one immediately verifies that the last expression is C^{∞} also at $x=0$, if extended by continuity to this point.)

Problem 79:

For symmetry reasons we may assume $i=1, j=2$. Since (U, x) gives normal coordinates, we know that $x(U)$ is an open ball in \mathbb{R}^{d} centered at the origin; take $R>0$ so that $x(U)=B_{R}(0)$. As usual we identify U and $B_{R}(0)$ via x. Let us furthermore introduce the short-hand notation " (x, y) " for $(x, y, 0, \ldots, 0) \in \mathbb{R}^{d}$.

Given a point (x, y) with $0<\|(x, y)\|<R$, we consider the two tangent vectors $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ in $T_{(x, y)}(M)$. We note that for an arbitrary choice of polar coordinates $\left(r, \theta_{1}, \ldots, \theta_{d-1}\right)$ on $\mathbb{R}^{d} 4$, these two vectors are given by

$$
\begin{equation*}
x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}=r \frac{\partial}{\partial r}, \quad \text { and } \quad-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}=\sum_{j=1}^{d-1} \alpha_{j} \frac{\partial}{\partial \theta_{j}} \tag{197}
\end{equation*}
$$

for some $\alpha_{1}, \ldots, \alpha_{d-1} \in \mathbb{R}$ (which depend on (x, y) and on the choice of polar coordinates). The first formula in (197) follows from the fact that $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ is the tangent vector of the curve $c(t):=(t x, t y, 0, \ldots, 0)$ at $t=1$, and in polar coordinates this curve is given by $c(t)=\left(t r, \theta_{1}, \ldots, \theta_{d-1}\right)$ for some fixed $\theta_{1}, \ldots, \theta_{d-1}$. Similarly the second formula in (197) follows from the fact that $-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ is the tangent vector of the curve $\gamma(t)=(r \cos t, r \sin t)$ at a certain $t=t_{0}$, where $r:=\|(x, y)\|=\sqrt{x^{2}+y^{2}}$, and in polar coordinates this curve takes the form $\gamma(t)=\left(r, \theta_{1}(t), \ldots, \theta_{d-1}(t)\right)$ where $r=\|(x, y)\|$ is fixed and $\theta_{1}(t), \ldots, \theta_{d-1}(t)$ are some smooth real-valued functions of t.

It follows from (197) and Problem 23 that, for any point (x, y) in the punctured disc $0<\|(x, y)\|<R$,

$$
\begin{equation*}
\left\langle x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right\rangle=r^{2}=x^{2}+y^{2} \tag{198}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y},-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right\rangle=0, \tag{199}
\end{equation*}
$$

as stated in the hint to the problem. Note that (198) and (199) are also valid at $(x, y)=(0,0)$, by inspection (or by continuity). [Remark on notation: In (198) and (199), " $\langle\cdot, \cdot\rangle$ " denotes the Riemannian scalar product on $T_{(x, y)}(M)$, whereas we use "\| $(x, y) \|$ " to denote the standard Euclidean norm, $\sqrt{x^{2}+y^{2}}$.]

[^42]Expanding the left hand sides of (198) and (199) we get

$$
\begin{equation*}
x^{2} g_{11}+2 x y g_{12}+y^{2} g_{22}=x^{2}+y^{2} \tag{200}
\end{equation*}
$$

and

$$
\begin{equation*}
-x y g_{11}+\left(x^{2}-y^{2}\right) g_{12}+x y g_{22}=0 \tag{201}
\end{equation*}
$$

where $g_{i j}$ of course stands for $g_{i j}(x, y)=g_{i j}(x, y, 0, \ldots, 0)$. The relations (200) and (201) are valid for all (x, y) with $\|(x, y)\|<R$.

Taking $y=0$ in (200) we obtain $g_{11}(x, 0)=1$ for all $x \in(-R, R) \backslash\{0\}$; and by continuity this is also valid for $x=0$. This implies that all iterated derivatives $g_{11,1}(x, 0), g_{11,11}(x, 0), g_{11,111}(x, 0), \ldots$, vanish identically for all $x \in(-R, R)$. In particular

$$
g_{11,11}(0)=0
$$

as desired. Note that a symmetric argument (exchanging the roles of x and $y)$ also gives $g_{22}(0, y)=1$ and $g_{22,2}(0, y)=g_{22,22}(0, y)=\ldots=0$ for all $y \in(-R, R)$.

Differentiating (201) with respect to x we get

$$
-y g_{11}-x y g_{11,1}+2 x g_{12}+\left(x^{2}-y^{2}\right) g_{12,1}+y g_{22}+x y g_{22,1}=0
$$

and differentiating this three times with respect to y gives 49

$$
y \cdot *+x \cdot \boxed{*}-3 g_{11,22}-6 g_{12,12}+3 g_{22,22}=0
$$

where each " ${ }^{*}$ ", stands for a sum where each term is a polynomial in x and y times a partial derivative of g_{11} or g_{12} or g_{22}. The above is valid for all (x, y) in the disc $\|(x, y)\|<R$. Setting now $(x, y)=(0,0)$, and using $g_{22,22}(0,0)=0$, we conclude that

$$
g_{11,22}(0,0)=-2 g_{12,12}(0)
$$

By the symmetric argumment $(x \leftrightarrow y)$ we also have

$$
g_{22,11}(0,0)=-2 g_{12,12}(0)
$$

[^43]
Problem 80:

(See wikipedia; Bertrand-Diquet-Puiseux Theorem.)
Let the chart (U, z) on M be normal coordinates centered at p such that $X:=\frac{\partial}{\partial z^{1}}(p)$ and $Y:=\frac{\partial}{\partial z^{2}}(p)$ form an ON-basis of Π. (Such a chart is easily obtained by choosing the identification between $T_{p} M$ and \mathbb{R}^{d} appropriately in the construction of normal coordinates.) As usual, we will identify U with the open ball $z(U) \subset \mathbb{R}^{d}$ (via $\left.z\right)$. In particular the submanifold $\exp _{p}\left(D_{r}\right)$ gets identified with

$$
D_{r}=\left\{(x, y, 0, \ldots, 0): x^{2}+y^{2}<r^{2}\right\}
$$

From now on we will write " (x, y) " as a short-hand for " $(x, y, 0, \ldots, 0)$ " (denoting either a point in $\mathbb{R}^{d}=T_{p} M$ or a point in M).

Let the Riemannian metric be represented by $\left(g_{i j}(z)\right)$ with respect to (U, z). Then the induced Riemannian metric on the submanifold $\exp _{p}\left(D_{r}\right)$ is represented by the 2×2 matrix function

$$
\binom{g_{11}(x, y) g_{12}(x, y)}{g_{21}(x, y) g_{22}(x, y)}, \quad \forall(x, y) \in D_{r} .
$$

(this is immediate from the definition of the induced Riemannian metric; cf. Problem 18). Hence by the definition of the volume measure on a Riemannian manifold (cf. $\# 12$, p. 1), we have

$$
\begin{equation*}
A_{r}=\int_{D_{r}} \sqrt{g_{11}(x, y) g_{22}(x, y)-g_{12}(x, y)^{2}} d x d y \tag{202}
\end{equation*}
$$

Recall that $g_{i j}(0)=\delta_{i j}$ and $g_{i j, k}(0)=0$ for all $i, j, k \in\{1, \ldots, d\}$ (cf. Lemma 1 in Lecture \#4). Hence we have the Taylor expansion

$$
g_{i j}(x, y)=\delta_{i j}+\frac{g_{i j, 11}(0)}{2} x^{2}+g_{i j, 12}(0) x y+\frac{g_{i j, 22}(0)}{2} y^{2}+O\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right)
$$

for all (x, y) near $(0,0)$. This gives

$$
\begin{aligned}
& g_{11}(x, y) g_{22}(x, y)-g_{12}(x, y)^{2} \\
& \begin{array}{r}
=\left(1+\frac{g_{11,11}}{2} x^{2}+g_{11,12} x y+\frac{g_{11,22}}{2} y^{2}\right)\left(1+\frac{g_{22,11}}{2} x^{2}+g_{22,12} x y+\frac{g_{22,22}}{2} y^{2}\right) \\
\\
+O\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right)
\end{array}
\end{aligned}
$$

where all the $g_{i j, k l}$'s in the right hand side are evaluated at 0 . Multiplying out and using $g_{11,11}(0)=g_{22,22}(0)=0$ (cf. Problem 79), we get

$$
\begin{aligned}
& g_{11}(x, y) g_{22}(x, y)-g_{12}(x, y)^{2} \\
& =1+\frac{g_{22,11}}{2} x^{2}+\left(g_{11,12}+g_{22,12}\right) x y+\frac{g_{11,22}}{2} y^{2}+O\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right)
\end{aligned}
$$

Hence, using the fact that $\sqrt{1+\alpha}=1+\frac{1}{2} \alpha+O\left(\alpha^{2}\right)$ for α near 0 , we conclude that for all (x, y) sufficiently near 0 :

$$
\begin{aligned}
& \sqrt{g_{11}(x, y) g_{22}(x, y)-g_{12}(x, y)^{2}} \\
& =1+\frac{g_{22,11}}{4} x^{2}+\frac{g_{11,12}+g_{22,12}}{2} x y+\frac{g_{11,22}}{4} y^{2}+O\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right)
\end{aligned}
$$

Inserting this in (202), we note that the $x y$-term gives a 0 -contribution, since the function $x y$ is odd wrt x. Passing to polar coordinates we now get, for $r>0$ sufficiently small

$$
\begin{aligned}
A_{r} & =\int_{0}^{r} \int_{0}^{2 \pi}\left(1+r_{1}^{2}\left(\frac{g_{22,11}}{4} \cos ^{2} \varphi+\frac{g_{11,22}}{4} \sin ^{2} \varphi\right)+O\left(r_{1}^{3}\right)\right) r_{1} d \varphi d r_{1} \\
& =\pi r^{2}+\frac{\pi r^{4}}{16}\left(g_{22,11}+g_{11,22}\right)+O\left(r^{5}\right)
\end{aligned}
$$

Hence

$$
\lim _{r \rightarrow 0^{+}} 12 \frac{\pi r^{2}-A_{r}}{\pi r^{4}}=-\frac{3}{4}\left(g_{22,11}+g_{11,22}\right)=-\frac{3}{2} g_{11,22}
$$

where the last equality holds by Problem [79. On the other hand we have

$$
\begin{array}{r}
K(\Pi)=K(X \wedge Y)=K(X, Y)=\langle R(X, Y) Y, X\rangle=\left\langle R_{212}^{k} \frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{1}}\right\rangle \\
=R_{212}^{1}=\frac{1}{2}\left(g_{12,12}+g_{12,12}-g_{22,11}-g_{11,22}\right)=-\frac{3}{2} g_{11,22}
\end{array}
$$

where at the end we used Lemma 3 of Lecture $\# 14$ and then the relations from Problem 79, Hence

$$
\lim _{r \rightarrow 0^{+}} 12 \frac{\pi r^{2}-A_{r}}{\pi r^{4}}=K(\Pi)
$$

as desired!

Problem 81; Let $I: S \rightarrow \mathbb{R}^{3}$ be the inclusion map, i.e. $I(x, \alpha)=$ $(x, f(x) \cos \alpha, f(x) \sin \alpha)$. Then

$$
d I_{(x, \alpha)}\left(\frac{\partial}{\partial x}\right)=\left(1, f^{\prime}(x) \cos \alpha, f^{\prime}(x) \sin \alpha\right)
$$

and

$$
d I_{(x, \alpha)}\left(\frac{\partial}{\partial \alpha}\right)=(0,-f(x) \sin \alpha, f(x) \cos \alpha)
$$

Hence on S we have (cf. Problem 18):

$$
\begin{aligned}
& \left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle=1^{2}+\left(f^{\prime}(x) \cos \alpha\right)^{2}+\left(f^{\prime}(x) \sin \alpha\right)^{2}=1+f^{\prime}(x)^{2} \\
& \left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial \alpha}\right\rangle=f^{\prime}(x) f(x)(-\cos \alpha \sin \alpha+\cos \alpha \sin \alpha)=0 \\
& \left\langle\frac{\partial}{\partial \alpha}, \frac{\partial}{\partial \alpha}\right\rangle=f(x)^{2}
\end{aligned}
$$

In other words, the matrix representing the Riemannian metric on S wrt the (x, α) coordinates is:

$$
g(x, \alpha)=\left(\begin{array}{cc}
1+f^{\prime}(x)^{2} & 0 \\
0 & f(x)^{2}
\end{array}\right)
$$

We also note that the inverse matrix is:

$$
g(x, \alpha)^{-1}=\left(\begin{array}{cc}
\left(1+f^{\prime}(x)^{2}\right)^{-1} & 0 \\
0 & f(x)^{-2}
\end{array}\right)
$$

From this, using the formula for the Christoffel symbols of the Levi-Civita connection,

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i l}\left(g_{j l, k}+g_{k l, j}-g_{j k, l}\right)
$$

we compute:

$$
\begin{aligned}
\Gamma_{11}^{1}(x, \alpha)=\frac{f^{\prime}(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} ; & \Gamma_{12}^{2}(x, \alpha)
\end{aligned}=\Gamma_{21}^{2}(x, \alpha)=\frac{f^{\prime}(x)}{f(x)},
$$

while all other functions $\Gamma_{j k}^{i}$ are identically zero. Suppose now that $c(t)=$ $(x(t), \alpha(t))$ is a C^{∞} curve on S and $s(t)$ is a vector field along c; we write

$$
\begin{equation*}
s(t)=a^{1}(t) \frac{\partial}{\partial x}+a^{2}(t) \frac{\partial}{\partial \alpha} \tag{203}
\end{equation*}
$$

Then by the formula for $\dot{s}(t)$ in local coordinates (cf. Lecture $\# 9$, p. 8):

$$
\begin{aligned}
\dot{s}(t) & =\dot{a}^{1}(t) \frac{\partial}{\partial x}+\dot{a}^{2}(t) \frac{\partial}{\partial \alpha}+\dot{c}^{j}(t) a^{k}(t)\left(\Gamma_{j k}^{1}(c(t)) \frac{\partial}{\partial x}+\Gamma_{j k}^{2}(c(t)) \frac{\partial}{\partial \alpha}\right) \\
& =\dot{a}^{1} \frac{\partial}{\partial x}+\dot{a}^{2} \frac{\partial}{\partial \alpha}+\frac{f^{\prime} f^{\prime \prime}}{1+f^{\prime 2}} \dot{x} a^{1} \frac{\partial}{\partial x}+\frac{f^{\prime}}{f}\left(\dot{x} a^{2}+\dot{\alpha} a^{1}\right) \frac{\partial}{\partial \alpha}-\frac{f f^{\prime}}{1+f^{\prime 2}} \dot{\alpha} a^{2} \frac{\partial}{\partial x}
\end{aligned}
$$

$$
\begin{equation*}
=\left(\dot{a}^{1}+\frac{f^{\prime} f^{\prime \prime}}{1+f^{\prime 2}} \dot{x} a^{1}-\frac{f f^{\prime}}{1+f^{\prime 2}} \dot{\alpha} a^{2}\right) \frac{\partial}{\partial x}+\left(\dot{a}^{2}+\frac{f^{\prime}}{f}\left(\dot{x} a^{2}+\dot{\alpha} a^{1}\right)\right) \frac{\partial}{\partial \alpha} . \tag{204}
\end{equation*}
$$

(a). The equation for c being a geodesic is $\nabla_{\dot{c}} \dot{c}=0$. But the vector field $s(t)=\dot{c}(t)$ is given by (203) with $a^{1}=\dot{x}$ and $a^{2}=\dot{\alpha}$. Hence the equation becomes (cf. (204)):

$$
\left\{\begin{array}{l}
\ddot{x}+\frac{f^{\prime}(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} \dot{x}^{2}-\frac{f(x) f^{\prime}(x)}{1+f^{\prime}(x)^{2}} \dot{\alpha}^{2}=0 \tag{205}\\
\ddot{\alpha}+2 \frac{f^{\prime}(x)}{f(x)} \dot{x} \dot{\alpha}=0 .
\end{array}\right.
$$

To prove that $f(x(t))^{2} \dot{\alpha}(t)$ remains constant along any geodesic, we simply note that

$$
\frac{d}{d t}\left(f(x)^{2} \dot{\alpha}\right)=2 f(x) f^{\prime}(x) \dot{x} \dot{\alpha}+f(x)^{2} \ddot{\alpha}=0
$$

where the last equality holds by the second equation in (205).
Remark: The fact that $f(x)^{2} \dot{\alpha}$ remains constant around any geodesic is called Clairaut's relation. Note that $f(x(t)) \dot{\alpha}(t)=\|\dot{c}(t)\| \sin \psi(t)$, where $\psi(t)$ is the angle between $\dot{c}(t)$ and the meridians of S. Hence (since $\|\dot{c}(t)\|$ is constant along any geodesic) an equivalent formulation of the relation is to say that $f(x) \sin \psi$ remains constant along any geodesic.

From (205) we see that the geodesics with $x \equiv$ constant are exactly the curves $c(t)=\left(k_{1}, k_{2}+k_{3} t\right)$ with $k_{1}, k_{2}, k_{3} \in \mathbb{R}$, and $\left[k_{3}=0\right.$ or $\left.f^{\prime}\left(k_{1}\right)=0\right]$. Any curve $c(t)=\left(k_{1}, k_{2}+k_{3} t\right)$ with $k_{3} \neq 0$ is called a parallel of S, and what we have just shown is that a parallel of S is a geodesic iff its x-value satisfies $f^{\prime}(x)=0$.

Finally, let us consider a curve with $\alpha \equiv$ constant, i.e. $c(t)=(x(t), \alpha)$. By (205), this is a geodesic iff

$$
\begin{equation*}
\ddot{x}+\frac{f^{\prime}(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} \dot{x}^{2} \equiv 0 . \tag{206}
\end{equation*}
$$

We may note that the function $x(t)$ satisfies (206) iff

$$
\begin{equation*}
\dot{x}(t) \equiv \frac{C}{\sqrt{1+f^{\prime}(x(t))^{2}}} \quad \text { for some constant } C \in \mathbb{R} \tag{207}
\end{equation*}
$$

[Proof: Note that for every real-valued C^{∞} function $x(t)$ we have

$$
\begin{aligned}
\frac{d}{d t}\left(\dot{x}(t) \sqrt{1+f^{\prime}(x(t))^{2}}\right) & =\ddot{x} \sqrt{1+f^{\prime}(x)^{2}}+\dot{x} \cdot \frac{f^{\prime}(x)}{\sqrt{1+f^{\prime}(x)^{2}}} \cdot f^{\prime \prime}(x) \cdot \dot{x} \\
& =\sqrt{1+f^{\prime}(x)^{2}}\left(\ddot{x}+\frac{f^{\prime}(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} \cdot \dot{x}^{2}\right) .
\end{aligned}
$$

This implies that the function $\dot{x}(t) \sqrt{1+f^{\prime}(x(t))^{2}}$ is constant iff (206) holds. This is the desired equivalence.]

The equation (207) is seen to be equivalent with the statement that $c(t)=$ $(x(t), \alpha)$ viewed as a curve in \mathbb{R}^{3} (that is, $c(t)=(x(t), f(x(t)) \cos \alpha, f(x(t)) \sin \alpha)$), is parametrized proportionally to arc length. In particular, up to rescaling the parametrization and changing direction, there exists a unique geodesic $\alpha \equiv$ constant for every choice of the constant α ! Such a curve is called a meridian of S.
(b). The equation for parallel transport along a given curve $c(t)=$ $(x(t), \alpha(t))$ is $\dot{s}(t)=0$, i.e., by (204):

$$
\left\{\begin{array}{l}
\dot{a}^{1}+\frac{f^{\prime}(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} \dot{x} a^{1}-\frac{f(x) f^{\prime}(x)}{1+f^{\prime}(x)^{2}} \dot{\alpha} a^{2}=0 \\
\dot{a}^{2}+\frac{f^{\prime}(x)}{f(x)}\left(\dot{x} a^{2}+\dot{\alpha} a^{1}\right)=0
\end{array}\right.
$$

We should consider this for the curve $c(t)=(x, t), t \in[0,2 \pi]$. Then the above equation becomes:

$$
\left\{\begin{array}{l}
\dot{a}^{1}-\frac{f(x) f^{\prime}(x)}{1+f^{\prime}(x)^{2}} a^{2}=0 \tag{208}\\
\dot{a}^{2}+\frac{f^{\prime}(x)}{f(x)} a^{1}=0
\end{array}\right.
$$

If $f^{\prime}(x)=0$ then the equation implies that both a^{1} and a^{2} are constant.
Now assume $f^{\prime}(x) \neq 0$. Then differentiating the first equation and substituting the second into the result gives:

$$
\ddot{a}^{1}(t)=-\frac{f^{\prime}(x)^{2}}{1+f^{\prime}(x)^{2}} a^{1}(t) .
$$

Here $-\frac{f^{\prime}(x)^{2}}{1+f^{\prime}(x)^{2}}<0$; hence the general solution is

$$
a^{1}(t)=C_{1} \sin \left(C_{2}+\frac{f^{\prime}(x)}{\sqrt{1+f^{\prime}(x)^{2}}} t\right)
$$

with $C_{1}, C_{2} \in \mathbb{R}$. Then from the first equation in (208) we get

$$
\begin{aligned}
a^{2}(t) & =\frac{1+f^{\prime}(x)^{2}}{f(x) f^{\prime}(x)} C_{1} \frac{f^{\prime}(x)}{\sqrt{1+f^{\prime}(x)^{2}}} \cos \left(C_{2}+\frac{f^{\prime}(x)}{\sqrt{1+f^{\prime}(x)^{2}}} t\right) \\
& =C_{1} \frac{\sqrt{1+f^{\prime}(x)^{2}}}{f(x)} \cos \left(C_{2}+\frac{f^{\prime}(x)}{\sqrt{1+f^{\prime}(x)^{2}}} t\right) .
\end{aligned}
$$

It is nicer to express $s(t)$ in terms of the following ON basis for $T_{(x, \alpha)} S$:

$$
\begin{equation*}
b_{1}:=\frac{1}{\sqrt{1+f^{\prime}(x)^{2}}} \frac{\partial}{\partial x}, \quad b_{2}:=\frac{1}{f(x)} \frac{\partial}{\partial \alpha} . \tag{209}
\end{equation*}
$$

We get:

$$
\begin{equation*}
s(t)=\widetilde{C}_{1}\left(\sin \left(C_{2}+\sigma_{x} t\right) b_{1}+\cos \left(C_{2}+\sigma_{x} t\right) b_{2}\right) \tag{210}
\end{equation*}
$$

where $\sigma_{x}:=\frac{f^{\prime}(x)}{\sqrt{1+f^{\prime}(x)^{2}}}$ and $\widetilde{C}_{1}=C_{1} \sqrt{1+f^{\prime}(x)^{2}}$. Thus in these ON coordinates the vector is simply rotating at constant speed along the curve.

Alternative; a more geometrical solution (outline) (cf., e.g., stackexchange): Let S^{\prime} be the cone (or cylinder, if $f^{\prime}(x)=0$) in \mathbb{R}^{3} which is tangent to S along c. It follows from [12, Thm. 4.7.1] that the Levi-Civita connections for S and S^{\prime} are equal at every point along c; hence also parallel transport along c is the same in S and S^{\prime}. But we can imagine the cone S^{\prime} being constructed by rolling a paper; unrolling the paper then gives a (local) isometry between S^{\prime} and \mathbb{R}^{2} with its standard Riemannian metric; and in \mathbb{R}^{2} parallel transport of any vector along any curve means simply keeping the vector constant in the standard coordinates on $T_{c(t)} \mathbb{R}^{2}=\mathbb{R}^{2}$. Our curve c is mapped by the isometry to an arc of angle $\frac{\left|f^{\prime}(x)\right|}{\sqrt{f^{\prime}(x)^{2}+1}} 2 \pi$ along a circle with radius $f(x) \cdot \frac{\sqrt{f^{\prime}(x)^{2}+1}}{\left|f^{\prime}(x)\right|}$. Parallel transport of any vector $v \in \mathbb{R}^{2}$ along this circle means that the angle between v and \dot{c} increases/decreases with a constant rate, with the total change being $\frac{\left|f^{\prime}(x)\right|}{\sqrt{f^{\prime}(x)^{2}+1}} 2 \pi$ as t goes from 0 to 2π. Hence in the basis b_{1}, b_{2} (209) The general form of such a motion is indeed given by (210), with $\sigma_{x}:= \pm \frac{\left|f^{\prime}(x)\right|}{\sqrt{1+f^{\prime}(x)^{2}}}$. Further inspection of the cone unfolding argument shows that in the (x, α) coordinates, v rotates in positive direction if $f^{\prime}(x)<0$, and negative direction if $f^{\prime}(x)>0$; thus in fact in (210) we have $\sigma_{x}:=\frac{f^{\prime}(x)}{\sqrt{1+f^{\prime}(x)^{2}}}$.
(c). Since $\operatorname{dim} T_{p} S=\operatorname{dim} S=2$ we can indeed speak of the sectional curvature of S at a point $p \in S$, and this sectional curvature equals $K(X \wedge Y)$ where X, Y is any basis for $T_{p} S$; cf. Problem 69, We compute this with $X=\frac{\partial}{\partial x}, Y=\frac{\partial}{\partial \alpha}$ at the point $p=(x, \alpha)$. First note:

$$
\begin{aligned}
K\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial \alpha}\right)=\left\langle R\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial \alpha}\right) \frac{\partial}{\partial \alpha}, \frac{\partial}{\partial x}\right\rangle & =\left\langle R_{212}^{1} \frac{\partial}{\partial x}+R_{212}^{2} \frac{\partial}{\partial \alpha}, \frac{\partial}{\partial x}\right\rangle \\
& =\left(1+f^{\prime}(x)^{2}\right) \cdot R_{212}^{1}(x, \alpha) .
\end{aligned}
$$

Now use the formula from Lecture \#11, p. 3:

$$
\begin{aligned}
R_{212}^{1}= & \frac{\partial \Gamma_{22}^{1}}{\partial x}-\frac{\partial \Gamma_{12}^{1}}{\partial \alpha}+\Gamma_{1 j}^{1} \Gamma_{22}^{j}-\Gamma_{2 j}^{1} \Gamma_{12}^{j} \\
= & -\frac{\partial}{\partial x}\left(\frac{f(x) f^{\prime}(x)}{1+f^{\prime}(x)^{2}}\right)-\frac{f^{\prime}(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} \cdot \frac{f(x) f^{\prime}(x)}{1+f^{\prime}(x)^{2}} \\
& \quad+\frac{f(x) f^{\prime}(x)}{1+f^{\prime}(x)^{2}} \cdot \frac{f^{\prime}(x)}{f(x)} \\
= & -\frac{\left(f^{\prime 2}+f f^{\prime \prime}\right)\left(1+f^{\prime 2}\right)-2 f f^{\prime 2} f^{\prime \prime}}{\left(1+f^{\prime 2}\right)^{2}}-\frac{f f^{\prime 2} f^{\prime \prime}}{\left(1+f^{\prime 2}\right)^{2}}+\frac{f^{\prime 2}}{1+f^{\prime 2}} \\
= & -\frac{f(x) f^{\prime \prime}(x)}{\left(1+f^{\prime}(x)^{2}\right)^{2}} .
\end{aligned}
$$

Hence

$$
K\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial \alpha}\right)=-\frac{f(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} .
$$

Also, since $\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial \alpha}\right\rangle=0$,

$$
\left\|\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial \alpha}\right\|^{2}=\left\|\frac{\partial}{\partial x}\right\|^{2} \cdot\left\|\frac{\partial}{\partial \alpha}\right\|^{2}=\left(1+f^{\prime}(x)^{2}\right) f(x)^{2} .
$$

Hence

$$
K\left(\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial \alpha}\right)=-\frac{f(x) f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}} \cdot \frac{1}{\left(1+f^{\prime}(x)^{2}\right) f(x)^{2}}=-\frac{f^{\prime \prime}(x)}{f(x)\left(1+f^{\prime}(x)^{2}\right)^{2}} .
$$

Answer: The sectional curvature at (x, α) is $-\frac{f^{\prime \prime}(x)}{f(x)\left(1+f^{\prime}(x)^{2}\right)^{2}}$.
In particular we note that the sectional curvature at (x, α) is positive iff $f^{\prime \prime}(x)<0$ and negative iff $f^{\prime \prime}(x)>0$.

Finally for $f(x)=\sqrt{r^{2}-x^{2}}$ we compute that

$$
-\frac{f^{\prime \prime}(x)}{f(x)\left(1+f^{\prime}(x)^{2}\right)^{2}}=\frac{1}{r^{2}} \quad \text { for all } x \in(-r, r)
$$

This is indeed the scalar curvature at any point of a sphere of radius r.

Problem 82;

(Cf. [14, p. 128, Problem 7-3].)
We have

$$
\begin{aligned}
\left(\nabla^{2} \eta\right)(X, Y, Z)= & \left(\nabla_{Z}(\nabla \eta)\right)(X, Y) \\
= & Z((\nabla \eta)(X, Y))-\left(\nabla_{\eta}\right)\left(\nabla_{Z} X, Y\right)-(\nabla \eta)\left(X, \nabla_{Z} Y\right) \\
= & Z\left(\left(\nabla_{Y} \eta\right)(X)\right)-\left(\nabla_{Y} \eta\right)\left(\nabla_{Z} X\right)-\left(\nabla_{\nabla_{Z} Y}(\eta)\right)(X) \\
= & Z\left(Y(\eta(X))-\eta\left(\nabla_{Y} X\right)\right)-Y\left(\eta\left(\nabla_{Z} X\right)\right)+\eta\left(\nabla_{Y} \nabla_{Z} X\right) \\
& \quad-\left(\nabla_{Z} Y\right)(\eta(X))+\eta\left(\nabla_{\nabla_{Z} Y} X\right) .
\end{aligned}
$$

(In the above computation, in the first and the third equalities we used the definition of $\nabla: \Gamma T_{s}^{r}(M) \rightarrow \Gamma T_{s+1}^{r}(M)$ given in the problem formulation, while in the second and the fourth equalities we used the formula from Problem 55(a).) Subtracting the corresponding expression for $\left(\nabla^{2} \eta\right)(X, Z, Y)$ from the above expression, and using

$$
\begin{aligned}
Z(Y(\eta(X)))-Y(Z(\eta(X)))- & \left(\nabla_{Z} Y\right)(\eta(X))+\left(\nabla_{Y} Z\right)(\eta(X)) \\
& =\left([Z, Y]-\nabla_{Z} Y+\nabla_{Y} Z\right)(\eta(X))=0,
\end{aligned}
$$

we obtain:

$$
\begin{aligned}
& \left(\nabla^{2} \eta\right)(X, Y, Z)-\left(\nabla^{2} \eta\right)(X, Z, Y) \\
& =\eta\left(\nabla_{Y} \nabla_{Z} X-\nabla_{Z} \nabla_{Y} X+\nabla_{\nabla_{Z} Y} X-\nabla_{\nabla_{Y} Z} X\right) \\
& =\eta\left(\nabla_{Y} \nabla_{Z} X-\nabla_{Z} \nabla_{Y} X-\nabla_{[Y, Z]} X\right) \\
& =\eta(R(Y, Z) X) .
\end{aligned}
$$

Done!

Alternative: It suffices to prove that the two functions $\left(\nabla^{2} \eta\right)(X, Y, Z)-$ $\left(\nabla^{2} \eta\right)(X, Z, Y)$ and $\eta(R(Y, Z) X)$ have the identical restrictions to the set U for any chart (U, x). Given such a chart, by expanding each of X, Y, Z in the basis of sections $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{d}} \in \Gamma(T U)$, and using the fact that both $\left(\nabla^{2} \eta\right)(X, Y, Z)-\left(\nabla^{2} \eta\right)(X, Z, Y)$ and $\eta(R(Y, Z) X)$ are $C^{\infty}(M)$-linear in each of X, Y, Z, we see that it suffices to prove that, for any i, j, k,

$$
\begin{equation*}
\left(\nabla^{2} \eta\right)\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right)-\left(\nabla^{2} \eta\right)\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{j}}\right)=\eta\left(R\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right) \frac{\partial}{\partial x^{i}}\right) \tag{211}
\end{equation*}
$$

From now on let us use the short-hand notation $\partial_{i}:=\frac{\partial}{\partial x^{i}}$. Take $\eta_{1}, \ldots, \eta_{d} \in$ $C^{\infty}(U)$ so that

$$
\eta_{\mid U}=\eta_{l} d x^{l}
$$

Then in U we have

$$
\begin{array}{r}
\nabla \eta=\nabla\left(\eta_{l} d x^{l}\right)=d x^{l} \otimes d \eta_{l}+\eta_{l} \nabla\left(d x^{l}\right)=d x^{l} \otimes\left(\left(\partial_{m} \eta_{l}\right) d x^{m}\right)-\eta_{l} \Gamma_{a b}^{l} d x^{b} \otimes d x^{a} \\
=\left(\partial_{a} \eta_{b}-\eta_{l} \Gamma_{a b}^{l}\right) d x^{b} \otimes d x^{a}
\end{array}
$$

where we used [12, (4.1.22)]. It follows that, for any k,

$$
\begin{aligned}
& \nabla_{\partial_{k}}(\nabla \eta)= \nabla_{\partial_{k}}\left(\left(\partial_{a} \eta_{b}-\eta_{l} \Gamma_{a b}^{l}\right) d x^{b} \otimes d x^{a}\right) \\
&=\left(\partial_{k}\left(\partial_{a} \eta_{b}-\eta_{l} \Gamma_{a b}^{l}\right)\right) d x^{b} \otimes d x^{a}+\left(\partial_{a} \eta_{b}-\eta_{l} \Gamma_{a b}^{l}\right) \nabla_{\partial_{k}}\left(d x^{b}\right) \otimes d x^{a} \\
& \quad+\left(\partial_{a} \eta_{b}-\eta_{l} \Gamma_{a b}^{l}\right) d x^{b} \otimes \nabla_{\partial_{k}}\left(d x^{a}\right) \\
&=\left(\partial_{k} \partial_{a} \eta_{b}-\left(\partial_{k} \eta_{l}\right) \Gamma_{a b}^{l}-\left(\partial_{k} \Gamma_{a b}^{l}\right) \eta_{l}\right) d x^{b} \otimes d x^{a} \\
&-\left(\partial_{a} \eta_{b}-\eta_{l} \Gamma_{a b}^{l}\right) \Gamma_{k c}^{b} d x^{c} \otimes d x^{a}-\left(\partial_{a} \eta_{b}-\eta_{l} \Gamma_{a b}^{l}\right) \Gamma_{k c}^{a} d x^{b} \otimes d x^{c} \\
&=\left(\partial_{k} \partial_{a} \eta_{b}-\left(\partial_{k} \eta_{l}\right) \Gamma_{a b}^{l}-\left(\partial_{k} \Gamma_{a b}^{l}\right) \eta_{l}-\left(\partial_{a} \eta_{c}\right) \Gamma_{k b}^{c}+\eta_{l} \Gamma_{a c}^{l} \Gamma_{k b}^{c}\right. \\
&\left.-\left(\partial_{c} \eta_{b}\right) \Gamma_{k a}^{c}+\eta_{l} \Gamma_{c b}^{l} \Gamma_{k a}^{c}\right) d x^{b} \otimes d x^{a}
\end{aligned}
$$

This means that

$$
\begin{aligned}
& \left(\nabla^{2} \eta\right)\left(\partial_{i}, \partial_{j}, \partial_{k}\right)=\left(\nabla_{\partial_{k}}(\partial \eta)\right)\left(\partial_{i}, \partial_{j}\right) \\
& =\partial_{k} \partial_{j} \eta_{i}-\left(\partial_{k} \eta_{l}\right) \Gamma_{j i}^{l}-\left(\partial_{k} \Gamma_{j i}^{l}\right) \eta_{l}-\left(\partial_{j} \eta_{c}\right) \Gamma_{k i}^{c}+\eta_{l} \Gamma_{j c}^{l} \Gamma_{k i}^{c}-\left(\partial_{c} \eta_{i}\right) \Gamma_{k j}^{c}+\eta_{l} \Gamma_{c i}^{l} \Gamma_{k j}^{c}
\end{aligned}
$$

Subtracting the corresponding expression with j and k swapped (and using $\Gamma_{k j}^{c}=\Gamma_{j k}^{c}$, which holds since the Levi-Civita connection is torsion free; cf. Lemma 2 in \#13), we obtain
$\left(\nabla^{2} \eta\right)\left(\partial_{i}, \partial_{j}, \partial_{k}\right)-\left(\nabla^{2} \eta\right)\left(\partial_{i}, \partial_{k}, \partial_{j}\right)=\left(-\partial_{k} \Gamma_{j i}^{l}+\Gamma_{j c}^{l} \Gamma_{k i}^{c}+\partial_{j} \Gamma_{k i}^{l}-\Gamma_{k c}^{l} \Gamma_{j i}^{c}\right) \eta_{l}$.
Comparing with the formula for R on p. 3 in Lecture $\# 11$, we get

$$
=R_{i j k}^{l} \eta_{l}=\eta\left(R\left(\partial_{j}, \partial_{k}\right) \partial_{i}\right)
$$

(The last equality holds since $R\left(\partial_{j}, \partial_{k}\right) \partial_{i}=R_{i j k}^{l} \partial_{l}$ and $\eta=\eta_{l} d x^{l}$.) Hence we have proved (211)!

Problem 83:

(a). One simple construction is as follows: Equip M with an arbitrary Riemannian metric. This is possible by [12, Thm. 1.4.1]. Let $\exp : \mathcal{D} \rightarrow M$ be the corresponding exponential map with its maximal domain \mathcal{D} (an open subset of $T M$). By a simple compactness argument (using the fact that $0_{p} \in \mathcal{D}$ for all $\left.p \in M\right)$, there exists some $\varepsilon>0$ such that $s \cdot Y(t) \in \mathcal{D}$ for all $t \in[0,1]$ and all $s \in(-\varepsilon, \varepsilon)$. Now define

$$
\begin{equation*}
c(t, s):=\exp (s \cdot Y(t)), \quad(t \in[0,1], s \in(-\varepsilon, \varepsilon)) \tag{212}
\end{equation*}
$$

This is easily verified to be a smooth variation of the given curve c with $c^{\prime}=Y$, which is furthermore proper if $Y(0)=0=Y(1)$.
(b). (Outline.) First assume $c(0) \neq c(1)$. Then it is possible to choose the Riemannian metric on M so that for each $j \in\{0,1\}$, either $Y(j)=0$ or else γ_{j} is a geodesic. [Indeed, inspecting the construction in [12, Thm. 1.4.1] we see that it suffices to prove that if $\dot{\gamma}_{j}(0)=Y(j) \neq 0$ then there exist $\varepsilon>0$ and an open neighborhood U of $\gamma_{j}(0)$ which can be equipped with a Riemannian metric such that $\gamma_{j \mid[-\varepsilon, \varepsilon]}$ is a geodesic in U. And this can be constructed by letting U be the domain of a chart (U, x) such that $x\left(\gamma_{j}(t)\right)=(t, 0, \ldots, 0)$ for all t near 0 (as is possible by Problem 12), and then equipping U with the Riemannian metric inherited from the standard Riemannian metric on \mathbb{R}^{d} via $x: U \rightarrow \mathbb{R}^{d}$.] With this choice, the variation in (212) again has all the desired properties.

If $c(0)=c(1)$ then the above construction can be modified e.g. as follows: For $j=0,1$, choose a Riemannian metric m_{j} on M such that if $Y(j) \neq 0$ then γ_{j} is a geodesic wrt m_{j}. Then also $u \mathrm{~m}_{0}+(1-u) \mathrm{m}_{1}$ is a Riemannian metric on M for each $u \in[0,1]$, and we denote by $\exp (\cdot ; u): \mathcal{D}_{u} \rightarrow M$ the corresponding exponential map. Now one can prove that there is some $\varepsilon>0$ such that $s \cdot Y(t) \in \mathcal{D}_{t}$ for all $t \in[0,1]$ and $s \in(-\varepsilon, \varepsilon)$. Then define

$$
c(t, s):=\exp (s \cdot Y(t) ; t)
$$

This is a variation having the required properties.
Remark: Note that when we apply the result of this Problem83 in practice, M often comes already equipped with a Riemannian metric; however the Riemannian metric which is chosen in the above construction may well be another ("completely unrelated") Riemannian metric!

Problem 84; Lemma 1 in Lecture \#16 implies that, in our situation, $E^{\prime}(s)=L^{\prime}(s)=0$ for all s. Hence $E(s)$ and $L(s)$ are indeed constant functions.

Problem 85:

(a). Identify $T_{p} M$ with \mathbb{R}^{d} by some fixed linear map respecting the inner product. Let γ_{1} and γ_{2} be the following C^{∞} curves in $T_{p} M=\mathbb{R}^{d}$:

$$
\gamma_{1}(t)=t e_{1}, \quad t \in[0, \pi]
$$

where $e_{1}=(1,0, \ldots, 0)$, and

$$
\gamma_{2}(t)=(\pi \cos t, \pi \sin t, 0,0, \ldots, 0), \quad t \in[0, a]
$$

where a is any fixed positive constant. Then set:

$$
\gamma=\gamma_{1} \cdot \gamma_{2} \cdot \overline{\gamma_{2}}
$$

In order to fit into the problem formulation, this product path should be understood to be reparametrized in some way so that the domain of γ is $[0,1]$.

Note then that

$$
\gamma(1)=\gamma_{1}(\pi)=\pi e_{1}
$$

Also $\left\|\gamma_{2}(t)\right\|=\pi$ and thus $\exp _{p}\left(\gamma_{2}(t)\right)=-p$ for all $t \in[0, a]$! Hence

$$
L\left(\exp _{p} \circ \gamma\right)=L\left(\exp _{p} \circ \gamma_{1}\right)=\left\|\gamma_{1}(\pi)\right\|=\|\gamma(1)\|
$$

where the second equality holds since $t \mapsto \exp _{p} \circ \gamma_{1}(t)=\exp _{p}\left(t e_{1}\right)$ is a geodesic. However γ is certainly not a reparametrization of the curve $t \mapsto$ $t \cdot \gamma(1)=t \cdot \pi e_{1}(t \in[0,1])$, since the image of γ in \mathbb{R}^{d} contains points outside the line $\mathbb{R} e_{1}$.
(b). Writing e_{1}, \ldots, e_{d} for the standard basis vectors in \mathbb{R}^{d}, our task is to prove that

$$
\begin{equation*}
\left\langle d\left(\exp _{p} \circ y^{-1}\right)_{\tilde{y}}\left(e_{1}\right), d\left(\exp _{p} \circ y^{-1}\right)_{\tilde{y}}\left(e_{1}\right)\right\rangle=1 \tag{213}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle d\left(\exp _{p} \circ y^{-1}\right)_{\tilde{y}}\left(e_{1}\right), d\left(\exp _{p} \circ y^{-1}\right)_{\tilde{y}}\left(e_{j}\right)\right\rangle=0 \quad \text { for } j=2, \ldots, d . \tag{214}
\end{equation*}
$$

Now for any $v \in \mathbb{R}^{d}$ we have

$$
d\left(\exp _{p} \circ y^{-1}\right)_{\tilde{y}}(v)=\left(d \exp _{p}\right)_{y^{-1}(\tilde{y})} \circ\left(d y^{-1}\right)_{\tilde{y}}(v)
$$

Furthermore, the "polar coordinates" assumption implies that, for any $\tilde{y} \in$ $y(W)$, if $w=y^{-1}(\tilde{y}) \in W$ then

$$
\begin{equation*}
\|w\|=\tilde{y}^{1}>0 ; \quad\left(d y^{-1}\right)_{\tilde{y}}\left(e_{1}\right)=\|w\|^{-1} w \tag{215}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left(d y^{-1}\right)_{\tilde{y}}\left(e_{j}\right), w\right\rangle=0, \quad \text { for } j=2, \ldots, d \tag{216}
\end{equation*}
$$

[Proof: We have $y^{1}\left(w^{\prime}\right)=\left\|w^{\prime}\right\| \geq 0$ for all $w^{\prime} \in W$, and $y(W)$ is open; hence $y^{1}\left(w^{\prime}\right)>0$ for all $w^{\prime} \in W$, and in particular the first relation in (215) holds. Next consider the curve $c(t)=(1+t) w(-\varepsilon<t<\varepsilon)$ in $T_{p} M$; for ε sufficiently small this curve is contained in W, and the polar coordinates assumption implies that $y(c(t))=\left((1+t) \tilde{y}^{1}, \tilde{y}^{2}, \ldots, \tilde{y}^{d}\right)$ for all $t \in(-\varepsilon, \varepsilon)$. Considering the tangent vector of this curve at $t=0$ we find $d y_{w}(w)=\widetilde{y}^{1} e_{1}$, and this implies the second relation in (215). Finally for given $j \in\{2, \ldots, d\}$ consider the curve $\gamma(t)=\tilde{y}+t e_{j}(-\varepsilon<t<\varepsilon)$ in \mathbb{R}^{d}; for ε sufficiently small this curve is contained in $y(W)$, and the polar coordinates assumption implies that the curve $y^{-1} \circ \gamma$ is contained in the sphere $\left\{w^{\prime} \in W:\left\|w^{\prime}\right\|=\|w\|>0\right\}$. Note also $y^{-1}(\gamma(0))=w$. Hence the tangent vector of $y^{-1}(\gamma(t))$ at $t=0$ is orthogonal to w, and since $\dot{\gamma}(0)=e_{j}$ this implies (216).]

In view of the above, (213) is equivalent with 5

$$
\begin{equation*}
\left\langle\left(d \exp _{p}\right)_{w}\left(\|w\|^{-1} w\right),\left(d \exp _{p}\right)_{w}\left(\|w\|^{-1} w\right)\right\rangle=1, \quad \forall w \in W \tag{217}
\end{equation*}
$$

and in order to prove (214) it suffices to prove that

$$
\begin{align*}
& \left\langle\left(d \exp _{p}\right)_{w}\left(\|w\|^{-1} w\right),\left(d \exp _{p}\right)_{w}(v)\right\rangle=0 \tag{218}\\
& \quad \text { whenever } w \in W, v \in T_{p} M,\langle w, v\rangle=0 .
\end{align*}
$$

However these two statements are clearly implied by "Gauss Lemma"!

[^44](c). Outline: We follow the argument on pp. 8-9 in Lecture \#4 (mutatis mutandis) using the fact proved in part b (where of course the bottom right $(d-1) \times(d-1)$ submatrix must be everywhere positive semidefinite). Note that in that argument, in
$$
L(\gamma)=\int_{0}^{1}\left\|\left(\exp _{p} \circ \gamma\right)^{\cdot}(t)\right\| d t \geq \int_{0}^{1}|\dot{r}(t)| d t \geq|r(1)-r(0)|=\|v\|,
$$
we now cannot claim that equality in the first inequality holds iff $\dot{\varphi}(t)=0$ $\forall t \in(0,1)$, namely since $\left(d \exp _{p}\right)_{\gamma(t)}$ may be singular. However equality in the second equality holds iff $\dot{r}(t) \geq 0 \forall t \in(0,1)$. Thus, since we are assuming $L(\gamma)=\|v\|$, the function $r(t)=\|\gamma(t)\|$ must be increasing, and so $r(t) \leq\|\gamma(1)\|=\|v\|$ for all $t \in[0,1]$.

Now assume that there is some $t \in(0,1)$ with $\gamma(t) \notin[0,1] \cdot\|v\|$, and let $t_{0} \in$ $(0,1]$ be the supremum of the set of such t. By continuity, $\gamma\left(t_{0}\right) \in[0,1] \cdot\|v\|$, say $\gamma\left(t_{0}\right)=t_{1}\|v\|\left(t_{1} \in[0,1]\right)$. Now since the point $c\left(t_{1}\right)=\exp \left(t_{1} v\right)$ is not conjugate to $c(0)$ along c, we have that $\left(d \exp _{p}\right)_{\gamma\left(t_{0}\right)}$ is non-singular, and hence $\left(d \exp _{p}\right)_{w}$ is non-singular for all w in some open neighborhood $\Omega \subset \mathcal{D}_{p}$ of $\gamma\left(t_{0}\right)$. On the other hand it follows from the definition of t_{0} that there exist t-values $<t_{0}$ arbitrarily near t_{0} where $\gamma(t) \notin[0,1] \cdot\|v\|$. Hence there also exist t-values $<t_{0}$ arbitrarily near t_{0} where $\dot{\varphi}(t) \neq 0$. Since such a t can be found arbitrarily near t_{0}, we can ensure that $\gamma(t) \in \Omega$. Both $\dot{\varphi}(t) \neq 0$ and $\gamma(t) \in \Omega$ are "open" conditions; hence there must in fact exist a whole open interval $\left(t_{2}, t_{2}+\eta\right) \subset\left(0, t_{0}\right)(\eta>0)$ such that $\dot{\varphi}(t) \neq 0$ and $\gamma(t) \in \Omega$ for all $t \in\left(t_{2}, t_{2}+\eta\right)$. Now we can conclude

$$
\int_{t_{2}}^{t_{2}+\eta}\left\|\left(\exp _{p} \circ \gamma\right)^{\cdot}(t)\right\| d t>\int_{t_{2}}^{t_{2}+\eta} \| \dot{r}(t) \mid d t
$$

since $\left\|\left(\exp _{p} \circ \gamma\right)^{\cdot}(t)\right\|>\| \dot{r}(t) \mid$ for all $t \in\left(t_{2}, t_{2}+\eta\right)$, and so in total we must have a strict inequality $L(\gamma)>\|v\|$, contradicting our assumption.

Hence we must have $\gamma(t) \in[0,1] \cdot\|v\|$ for all t; and since also $r(t)$ is increasing, it follows that γ is a reparametrization of the curve $t \mapsto t v$.

Problem 86: As stated in the lecture notes, this is clear from Cor. 1 in Lecture \#17. Indeed, after possibly shrinking and reparametrizing the geodesic, and possibly changing its direction, we may assume $t_{0}=a=0$, $t_{1}=b=T>0$. Set also $p=c(0)$ and $q=c(T)$. Then our task is to prove that $c(0)$ and $c(T)$ are conjugate along c iff

$$
\left(d \exp _{p}\right)_{T \cdot \dot{c}(0)}: T_{p}(M) \rightarrow T_{q}(M)
$$

is singular. By Cor. 1 in $\# 17$, for every $v \in T_{p}(M)$ we have that $\left(d \exp _{p}\right)_{T \cdot \dot{c}(0)}(v)$ equals $X(T)$ when X is the unique Jacobi field along c with $X(0)=0$, $\dot{X}(0)=v$. 51 Hence, since also $T_{p}(M)$ and $T_{q}(M)$ have the same dimension, $\left(d \exp _{p}\right)_{T \cdot \dot{c}(0)}$ is singular iff there is some $v \neq 0$ in $T_{p}(M)$ with such that the unique Jacobi field along c with $X(0)=0$ and $\dot{X}(0)=v$ satisfies $X(T)=0$. In other words, $\left(d \exp _{p}\right)_{T \cdot \dot{c}(0)}$ is singular iff there is some Jacobi field $X \not \equiv 0$ along c with $X(0)=0$ and $X(T)=0$, i.e. iff $c(0)$ and $c(T)$ are conjugate along c.

[^45]Problem 88: As in the proof of Lemma 1 in $\# 17$, let $X_{1}, \ldots, X_{d} \in \mathcal{V}_{c}$ be parallel vector fields along c such that $X_{1}(t), \ldots, X_{d}(t)$ forms an ON-basis $T_{c(t)}(M)$ for each $t \in[a, b]$, and define $\rho_{i}^{k} \in C^{\infty}([a, b])$ by $R\left(X_{i}, \dot{c}\right) \dot{c}=\rho_{i}^{k} X_{k}$. Then any pw C^{∞} vector field Y along c can be (uniquely) expressed as

$$
Y=\xi^{i} X_{i},
$$

where ξ_{1}, \ldots, ξ_{d} are pw C^{∞} functions $[a, b] \rightarrow \mathbb{R}$. We then also have

$$
\begin{align*}
I(Y, Y) & =\int_{a}^{b}\left(\left\|\nabla_{\frac{\partial}{\partial t}} Y\right\|^{2}-\langle R(Y, \dot{c}) \dot{c}, Y\rangle\right) d t \tag{219}\\
& =\int_{a}^{b}\left(\sum_{i=1}^{d} \dot{\xi}_{i}(t)^{2}-\sum_{i=1}^{d} \sum_{k=1}^{d} \rho_{i}^{k}(t) \xi_{i}(t) \xi_{k}(t)\right) d t .
\end{align*}
$$

Hence the problem is reduced to a problem in real analysis: We see that it now suffices to prove that if f is any pw C^{∞} function $f:[a, b] \rightarrow \mathbb{R}$, then there exists a sequence f_{1}, f_{2}, \ldots of functions in $C^{\infty}([a, b])$ such that

$$
\begin{align*}
& \left\|f_{k}-f\right\|_{L^{\infty}} \rightarrow 0 \text { and }\left\|f_{k}^{\prime}-f^{\prime}\right\|_{L^{1}} \rightarrow 0, \tag{220}\\
& \text { and }\left\|f_{k}^{\prime}\right\|_{L^{\infty}} \text { stays bounded as } k \rightarrow \infty,
\end{align*}
$$

and that we may furthermore choose this sequence so that $f_{k}(t)=f(t)$ for all k and all $t \in[a, b] \backslash \cup_{j=1}^{m-1}\left(t_{j}-\varepsilon, t_{j}+\varepsilon\right)$, where $\varepsilon>0$ is any fixed constant and $t_{1}<t_{2}<\cdots<t_{m-1}$ are any given numbers in (a, b) including all 'break-points' of f (viz., $f_{\mid\left[t_{j-1}, t_{j}\right]} \in C^{\infty}\left(\left[t_{j-1}, t_{j}\right]\right)$ for $j=1, \ldots, m$, where $t_{0}=a$ and $t_{m}=b$).
(Indeed, if we can prove the statement of the last sentence, then we apply it to each of the functions ξ_{1}, \ldots, ξ_{d} describing the given $\mathrm{pw} C^{\infty}$ vector field Y, with fixed $\varepsilon>0$ and with $t_{1}<\cdots<t_{m-1}$ being all the 'break-points' of Y in (a, b). This gives a sequence of C^{∞} vector fields Z_{1}, Z_{2}, \ldots along c each satisfying $Z_{k}(t)=Y(t)$ for all $t \in[a, b] \backslash \cup_{j=1}^{m-1}\left(t_{j}-\varepsilon, t_{j}+\varepsilon\right)$, and, as one verifies using (219): $I\left(Z_{k}, Z_{k}\right) \rightarrow I(Y, Y)$ as $k \rightarrow \infty$.)

Outline of real analysis argument: Thus assume that $f:[a, b] \rightarrow \mathbb{R}$ is pw C^{∞} and let $a=t_{0}<t_{1}<\cdots<t_{m}=b$ be such that $f_{\left[\left[t_{j-1}, t_{j}\right]\right.} \in$ $C^{\infty}\left(\left[t_{j-1}, t_{j}\right]\right)$ for $j=1, \ldots, m$. In fact we may extend f to a pw C^{∞} function $(a-\varepsilon, b+\varepsilon) \rightarrow \mathbb{R}$ so that $f_{\mid\left(a-\varepsilon, t_{1}\right]}$ and $f_{\mid\left[t_{m-1}, b+\varepsilon\right)}$ are C^{∞}. (Cf. the lecture notes, Sec. 3.1.) Fix a C^{∞} function $\phi: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ with support contained in $(-1,1)$ and $\int_{\mathbb{R}} \phi=1$. For every $\eta>0$ set $\phi_{\eta}(t):=\eta^{-1} \phi\left(\eta^{-1} t\right)$; then ϕ_{η} has support contained in $(-\eta, \eta)$ and $\int_{\mathbb{R}} \phi_{\eta}=1$. Now choose any sequence $\varepsilon>\eta_{1}>\eta_{2}>\cdots>0$ with $\eta_{k} \rightarrow 0$, and set $f_{k}:=\phi_{\eta_{k}} * f$ (convolution), i.e.

$$
f_{k}(t)=\int_{\mathbb{R}} f(t-x) \phi_{\eta_{k}}(x) d x .
$$

It follows from $\operatorname{supp}\left(\phi_{\eta_{k}}\right) \subset(-\varepsilon, \varepsilon)$ that f_{k} is well-defined and C^{∞} for $t \in$ $[a, b]$. One now verifies that (220) holds (in fact $\left|f_{k}^{\prime}\right|_{L^{\infty}} \leq\left\|f^{\prime}\right\|_{L^{\infty}}$ for all k).

Finally one can use a partition of unity argument, creating $f_{k}^{\text {new }}$ weighting appropriately between f_{k} and f, to also ensure $f_{k}(t)=f(t)$ for all k and all $t \in[a, b] \backslash \cup_{j=1}^{m-1}\left(t_{j}-\varepsilon, t_{j}+\varepsilon\right)$ (while (220) remains true).

Problem 89: We are assuming that $\exp _{p}$ is defined and injective on the open ball $B_{r}(0)$ in $T_{p}(M)$. We claim that $\left(d \exp _{p}\right)_{v}$ is non-singular for every $v \in B_{r}(0)$. Assume the opposite, i.e. assume that $v \in B_{r}(0)$ is such that $\left(d \exp _{p}\right)_{v}$ is singular. Take $b>1$ so that $b v \in B_{r}(0)$, and let c be the geodesic

$$
c:[0, b] \rightarrow M ; \quad c(t):=\exp _{p}(t v) .
$$

Our assumption that $\left(d \exp _{p}\right)_{v}$ is singular implies that the point $c(1)$ is conjugate to $c(0)$ along c (by Problem 86). Hence by Theorem 1 in Lecture $\# 18, c$ is not a local minimum for L among pw C^{∞} curves from p to $q:=$ $c(b)$. This implies in particular that $d(p, q)<L(c)$. Now by Problem 28 there is a geodesic from p to q realizing the distance $d(p, q)$, i.e. there is some $w \in T_{p}(M)$ such that $q=\exp _{p}(w)$ and $\|w\|=d(p, q)$. Of course $w \in B_{r}(0)$ and $w \neq b v$, since $\|w\|=d(p, q)<L(c)=\|b v\|<r$. Now we have $\exp _{p}(b v)=q=\exp _{p}(w)$, contradicting the fact that $\exp _{p \mid B_{r}(0)}$ is injective. This completes the proof that $\left(d \exp _{p}\right)_{v}$ is non-singular for every $v \in B_{r}(0)$.

From the non-singularity just proved it follows, via the Inverse Function Theorem, that $\exp _{p \mid B_{r}(0)}$ is a local diffeomorphism and that $U:=$ $\exp _{p}\left(B_{r}(0)\right)$ is an open subset of M. Since $\exp _{p \mid B_{r}(0)}$ is injective, this map is a bijection of $B_{r}(0)$ onto U. Let $f: U \rightarrow B_{r}(0)$ be the inverse map. The fact that $\exp _{p \mid B_{r}(0)}$ is a local diffeomorphism implies that f is C^{∞} in all U. Hence $\exp _{p \mid B_{r}(0)}$ is a diffeomorphism onto the open set U.

Problem 90; Let (U, x) and (V, y) be two charts with $p \in U, p \in V$, and assume that

$$
\begin{equation*}
\frac{\partial}{\partial x^{j_{1}}} \cdots \frac{\partial}{\partial x^{j_{r}}} f=0 \quad \text { at } p \tag{221}
\end{equation*}
$$

for any $1 \leq r \leq k$ and any $j_{1}, \ldots, j_{r} \in\{1, \ldots, d\}$. We know that

$$
\frac{\partial}{\partial y^{i}}=\varphi_{i}^{j} \frac{\partial}{\partial x^{j}} \quad(\forall i \in\{1, \ldots, d\})
$$

(equality of vector fields in $\Gamma T(U \cap V)$), where

$$
\varphi_{i}^{j}:=\frac{\partial x^{j}}{\partial y^{i}} \in C^{\infty}(U \cap V)
$$

Now take any $r \in\{1, \ldots, k\}$ and $i_{1}, \ldots, i_{r} \in\{1, \ldots, d\}$. Then in $U \cap V$ we have

$$
\frac{\partial}{\partial y^{i_{1}}} \cdots \frac{\partial}{\partial y^{i_{r}}} f=\left(\varphi_{i_{1}}^{j_{1}} \frac{\partial}{\partial x^{j_{1}}}\right) \cdots\left(\varphi_{i_{r}}^{j_{r}} \frac{\partial}{\partial x^{j_{r}}}\right) f
$$

and this can be expanded as a sum where each term is of the form " $A \cdot B$ " where each " A " is a product of partial derivatives of some of the functions $\varphi_{i_{l}}^{j_{l}}$, and each " B " equals $\frac{\partial}{\partial x^{j_{l(1)}}} \cdots \frac{\partial}{\partial x^{j_{l(s)}}} f$ for some $1 \leq l(1)<l(2)<\cdots<$ $l(s) \leq r($ with $1 \leq s \leq r)$. Evaluating this sum at p, each B-factor vanishes, because of (221) (and since $s \leq r \leq k$). Hence

$$
\frac{\partial}{\partial y^{i_{1}}} \cdots \frac{\partial}{\partial y^{i_{r}}} f=0 \quad \text { at } p
$$

Problem 91;

(a). Let (U, x) be any chart on S^{d} and let $\left(g_{i j}(x)\right)$ give the standard Riemannian metric $\langle\cdot, \cdot\rangle$ with respect to (U, x). Then the Riemannian metric $[\cdot, \cdot]$ is given by $\left(h_{i j}(x)\right)$ where 52

$$
h_{i j}(x)=f(x) \cdot g_{i j}(x), \quad \forall i, j \in\{1, \ldots, d\}, x \in x(U)
$$

Now for any j, l, k, and for all $x \in x(U)$:

$$
\frac{\partial}{\partial x_{k}} h_{j l}(x)=\frac{\partial}{\partial x_{k}}\left(f(x) g_{j l}(x)\right)=\left(\frac{\partial}{\partial x_{k}} f(x)\right) \cdot g_{j l}(x)+f(x) \cdot \frac{\partial}{\partial x_{k}} g_{j l}(x)
$$

If x lies on the curve c then $f(x)=1$ and $\frac{\partial}{\partial x_{k}} f(x)=0$ (since $f \in \mathcal{F}_{1}$), and hence

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}} h_{j l}(x)=\frac{\partial}{\partial x_{k}} g_{j l}(x) \tag{222}
\end{equation*}
$$

Also of course $h_{j l}(x)=f(x) g_{j l}(x)=g_{j l}(x)$ for all x along c. Let ∇ and $\widetilde{\nabla}$ be the Levi-Civita connections on $T\left(S^{d}\right)$ corresponding to the Riemannian metrics $\langle\cdot, \cdot\rangle$ and $[\cdot, \cdot]$, respectively, and let $\Gamma_{j k}^{i}$ and $\widetilde{\Gamma}_{j k}^{i}$ be the Christoffel symbols for ∇ and $\widetilde{\nabla}$, respectively, with respect to the basis of sections $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{d}} \in \Gamma(T U)$. Then

$$
\begin{equation*}
\Gamma_{j k}^{i}(x)=\frac{1}{2} g^{i l}(x)\left(\frac{\partial}{\partial x^{k}} g_{j l}(x)+\frac{\partial}{\partial x^{j}} g_{k l}(x)-\frac{\partial}{\partial x^{l}} g_{j k}(x)\right) \tag{223}
\end{equation*}
$$

and

$$
\widetilde{\Gamma}_{j k}^{i}(x)=\frac{1}{2} h^{i l}(x)\left(\frac{\partial}{\partial x^{k}} h_{j l}(x)+\frac{\partial}{\partial x^{j}} h_{k l}(x)-\frac{\partial}{\partial x^{l}} h_{j k}(x)\right)
$$

(for all $x \in x(U)$). It follows from the observations made above that

$$
\widetilde{\Gamma}_{j k}^{i}(x)=\Gamma_{j k}^{i}(x) \quad \text { for all } x \text { along } c
$$

Since c is a geodesic on S^{d} we have

$$
\ddot{c}^{i}(t)+\Gamma_{j k}^{i}(c(t)) \dot{c}^{j}(t) \dot{c}^{k}(t)=0
$$

for all $i \in\{1, \ldots, d\}$ and all $t \in[0, \pi]$ with $c(t) \in x(U)$. (Here $c^{i}:=x^{i} \circ c$.) It follows that also

$$
\ddot{c}^{i}(t)+\widetilde{\Gamma}_{j k}^{i}(c(t)) \dot{c}^{j}(t) \dot{c}^{k}(t)=0
$$

for all $t \in[0, \pi]$ with $c(t) \in x(U)$. The fact that this holds for every chart (U, x) on S^{d} implies that c is a geodesic in S_{f}^{d}.

[^46](b). Let $f \in \mathcal{F}_{2}$. Then c is a geodesic in S_{f}^{d}, by part (a). We also know that in $S^{d}, c(0)$ and $c(\pi)$ are conjugate along c, and there is no point before $c(\pi)$ conjugate to $c(0)$ along c. (This can for example be easily verified from the explicit formula for a general Jacobi field along a geodesic in constant curvature; cf. pp. 5-6 in \#17. Alternatively, the statement can be proved using Theorem 1 in \#18 combined with the known facts that any arc of length $<\pi$ of a great circle on S^{d} is a strict local minimum for L, while any arc of length $>\pi$ of a great circle on S^{d} is not a local minimum for L.)

Hence it now suffices to prove that an arbitrary vector field along c is a Jacobi field in S_{f}^{d} iff it is a Jacobi field in S_{f}.

Thus consider an arbitrary vector field X along c. Note that apriori " $\dot{X}(t)$ " stands for different things in S^{d} and S_{f}^{d}, since it is defined in terms of the Levi-Civita connection. However in local coordinates, the expression for $\dot{X}(t)$ only involves the Christoffel symbols evaluated at points along $c, 53$ and we know from part (a) that these agree for S^{d} and S_{f}^{d} (since $f \in \mathcal{F}_{2} \subset \mathcal{F}_{1}$). Hence " $\dot{X}(t)$ " means the same thing in S^{d} and S_{f}^{d}, for any vector field X along c. Repeated use of this fact implies that also $\ddot{X}(t)$ means the same thing in S^{d} and S_{f}^{d}, for any vector field X along c.

Recall that by definition, X is a Jacobi field iff " $\ddot{X}+R(X, \dot{c}) \dot{c} \equiv 0$ "; hence it now only remains to prove that " $R(X, \dot{c}) \dot{c}$ " stands for the same thing in S^{d} and S_{f}^{d}. However, if (U, x) is an arbitrary chart on M, and $J:=\{t \in[0, \pi]: c(t) \in U\}$, and if X is represented by the functions $a^{1}, \ldots, a^{d} \in C^{\infty}(J)$ (viz., $\left.X(t)=a^{j}(t) \cdot\left(\frac{\partial}{\partial x^{j}}\right)_{c(t)}, \forall t \in J\right)$, then

$$
R(X(t), \dot{c}(t)) \dot{c}(t)=R_{j i m}^{k}(c(t)) \cdot a^{i}(t) \dot{c}^{m}(t) \dot{c}^{j}(t)\left(\frac{\partial}{\partial x^{k}}\right)_{c(t)}, \quad \forall t \in J
$$

Hence it suffices to prove that " $R_{j i m}^{k}(c(t))$ " is the same for S^{d} and S_{f}^{d}, for all $t \in J$. In view of the formula

$$
R_{j i m}^{k}=\frac{\partial \Gamma_{m j}^{k}}{\partial x^{i}}-\frac{\partial \Gamma_{i j}^{k}}{\partial x^{m}}+\Gamma_{i l}^{k} \Gamma_{m j}^{l}-\Gamma_{m l}^{k} \Gamma_{i j}^{l} \quad(\text { valid in all } U)
$$

it suffices to prove that " $\Gamma_{m j}^{k}$ " and " $\frac{\partial}{\partial x^{2}} \Gamma_{m j}^{k}$ " are the same for S^{d} and S_{f}^{d}, at every point $c(t), t \in J$ (and for all $m, j, k, i \in\{1, \ldots, d\}$). For $\Gamma_{m j}^{k}$ this

[^47]Then if $\Gamma_{j k}^{l} \in C^{\infty}(x(U))$ are the Christoffel symbols for the Levi-Civita connection, we have

$$
\dot{X}(t)=\nabla_{\dot{c}(t)} X(t)=\left(\dot{a}^{l}(t)+\dot{c}^{j}(t) a^{k}(t) \Gamma_{j k}^{l}(c(t))\right)\left(\frac{\partial}{\partial x^{l}}\right)_{c(t)}, \quad \forall t \in J
$$

Cf. Lecture \# 9, p. 8.
was proved in the solution to part (a). In order to prove it also for the derivative " $\frac{\partial}{\partial x^{i}} \Gamma_{m j}^{k}$ ", we see from the formula (223) that it suffices to prove that $g_{j l}(x)$ and all its first and second derivatives "are the same" for S^{d} and S_{f}^{d}, at every point $c(t)(t \in J)$, and also that the corresponding thing holds for $g^{i l}(x)$ and all its first derivatives. We already know this fact for $g_{j l}(x)$ and $g^{i l}(x)$ themselves, and also for all the first derivatives of $g_{j l}(x)$; cf. part (a). Thus, in the notation from the solution to part (a), what remains to prove is that, for any $k, i, l, j \in\{1, \ldots, d\}$,

$$
\begin{equation*}
\frac{\partial}{\partial x^{k}} g^{i l}(x)=\frac{\partial}{\partial x^{k}} h^{i l}(x) \tag{224}
\end{equation*}
$$

and also

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{i} \partial x^{k}} g_{j l}(x)=\frac{\partial^{2}}{\partial x^{i} \partial x^{k}} h_{j l}(x) \tag{225}
\end{equation*}
$$

for all x along c. Note that $h^{i l}(x)=f(x)^{-1} \cdot g^{i l}(x)$ throughout $x(U)$, and also that for every x along c we have $f(x)^{-1}=1$ and $\frac{\partial}{\partial x^{k}}\left(f(x)^{-1}\right)=$ $-f(x)^{-2} \frac{\partial}{\partial x^{k}} f(x)=0$; with these observations, (224) follows in the same way as (222). On the other hand, (225) follows from

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{i} \partial x^{k}} g_{j l}(x)=\left(\frac{\partial^{2}}{\partial x^{i} \partial x^{k}} f(x)\right) \cdot g_{j l}(x)+\left(\frac{\partial}{\partial x_{i}} f(x)\right) \cdot \frac{\partial}{\partial x_{k}} g_{j l}(x) \\
&+\left(\frac{\partial}{\partial x_{k}} f(x)\right) \cdot \frac{\partial}{\partial x_{i}} g_{j l}(x)+f(x) \cdot \frac{\partial^{2}}{\partial x^{i} \partial x^{k}} g_{j l}(x),
\end{aligned}
$$

and the fact that if x lies on c then $f(x)=1$ and $\frac{\partial^{2}}{\partial x^{i} \partial x^{k}} f(x)=\frac{\partial}{\partial x_{i}} f(x)=$ $\frac{\partial}{\partial x_{k}} f(x)=0$ (since $f \in \mathcal{F}_{2}$). Done!
(c). Take $t_{1} \in[0, \pi]$ so that $q:=c\left(t_{1}\right)$ lies in U. Then also $c(t) \in U$ for all t in some neighborhood of t_{1} in $[0, \pi]$. Hence we may assume from start that $t_{1} \in(0, \pi)$. Now take $r>0$ so small that $B_{q}(r) \subset U$, where $B_{q}(r)$ is the open ball in S_{f}^{d} of radius r about the point q. Let $c_{1}:[0, \pi] \rightarrow S_{f}^{d}$ be any pw C^{∞} curve with $c_{1}(0)=c(0)$ and $c_{1}(\pi)=c(\pi)$ and $d_{f}\left(c_{1}(t), c(t)\right)<r$, $\forall t \in[0, \pi]$. We then claim that $L_{f}\left(c_{1}\right) \geq L_{f}(c)$ with equality only if c_{1} is a reparametrization of c. Here and in the following we write d_{f} and L_{f} for the metric and length of curves in S_{f}^{d}, and we will write d and L for the corresponding things in S^{d}.

Note that $[v, w] \geq\langle v, w\rangle$ for all $p \in S^{d}, v, w \in T_{p} S^{d}$, since $f \geq 1$ everywhere. Hence

$$
\left.\begin{array}{rl}
L_{f}\left(c_{1}\right)=\int_{0}^{\pi} \sqrt{\left[\dot{c}_{1}(t), \dot{c}_{1}(t)\right]} d t \geq \int_{0}^{\pi} \sqrt{\left\langle\dot{c}_{1}(t), \dot{c}_{1}(t)\right\rangle} & d t \tag{226}
\end{array}\right)=L\left(c_{1}\right), ~(c)=L_{f}(c), ~ 又 L(c)
$$

where $L\left(c_{1}\right) \geq L(c)$ holds since we know that c is a distance minimizing geodesic in S^{d}, and $L(c)=L_{f}(c)$ holds since $f=1$ along c. Hence we have proved the desired inequality, $L_{f}\left(c_{1}\right) \geq L_{f}(c)$, and it only remains to prove the statement about when equality holds.

Thus assume $L_{f}\left(c_{1}\right)=L_{f}(c)$. Then equality must hold in both " \geq " in (226). The fact that equality holds in the second " \geq " in (226) implies that c_{1} is a geodesic in S^{d}, up to reparametrization (cf. Problem 24). However we know that the geodesics in S^{d} are exactly the (pieces of) great circles in S^{d}; hence we conclude that c_{1} is an arc of a great circle between the antipodal points $c(0)$ and $c(\pi)$. If this great circle is not equal to (the image of) c itself then $c_{1}(t) \notin c([0, \pi])$ for all $t \in(0, \pi)$. In particular $c_{1}\left(t_{1}\right) \notin c([0, \pi])$. But we have $d_{f}\left(c_{1}\left(t_{1}\right), c\left(t_{1}\right)\right)<r$ by assumption, i.e. $c_{1}\left(t_{1}\right) \in B_{q}(r)$. Hence $c_{1}\left(t_{1}\right) \in U \backslash c([0, \pi])$, and therefore $f\left(c_{1}\left(t_{1}\right)\right)<1$. This implies that

$$
\left[\dot{c}_{1}(t), \dot{c}_{1}(t)\right]>\left\langle\dot{c}_{1}(t), \dot{c}_{1}(t)\right\rangle
$$

for all t in some neighborhood of t_{1}, and therefore the first " \geq " in (226) must be a strict inequality, contradicting $L_{f}\left(c_{1}\right)=L_{f}(c)$! Hence the great circle $c_{1}([0, \pi])$ must be equal to $c([0, \pi])$, i.e. c_{1} is a reparametrization of c, qed.
(d). Take $t_{1} \in(0, \pi)$ and r as in part (c). Let $c_{1}:[0, \pi] \rightarrow S^{d}$ be any great circle from $c(0)$ to $c(\pi)$, parametrized by arc length, not equal to c itself and satisfying $d_{f}\left(c_{1}\left(t_{1}\right), c\left(t_{1}\right)\right)<r$. We will then prove that $L_{f}\left(c_{1}\right)<L_{f}(c)$. Since such curves c_{1} can be chosen with $\sup _{t \in[0, \pi]} d_{f}\left(c_{1}(t), c(t)\right)$ arbitrarily smal 54 this will complete the proof that c is not a local minimum for L in S_{f}^{d} among pw C^{∞} curves with fixed endpoints (in fact it even follows that there exists a proper variation $c(t, s)$ of c such that $L\left(c_{s}\right)<L(c)$ for all $s \neq 0$ near 0).

We have:

$$
\begin{aligned}
L_{f}\left(c_{1}\right)=\int_{0}^{\pi} \sqrt{\left[\dot{c}_{1}(t), \dot{c}_{1}(t)\right]} d t<\int_{0}^{\pi} \sqrt{\left\langle\dot{c}_{1}(t), \dot{c}_{1}(t)\right\rangle} d t= & L\left(c_{1}\right)=\pi \\
& =L(c)=L_{f}(c)
\end{aligned}
$$

The " $<$ " in the above computation holds since $f \leq 1$ throughout S^{d} and since by an argument as in part (c) we have

$$
\left[\dot{c}_{1}(t), \dot{c}_{1}(t)\right]<\left\langle\dot{c}_{1}(t), \dot{c}_{1}(t)\right\rangle
$$

for all t in some neighborhood of t_{1}. Hence we have proved $L_{f}\left(c_{1}\right)<L_{f}(c)$, as desired!

[^48]Problem 92: (Cf. Cheeger \& Ebin [2, Cor. 1.30].)
In view of the definition of the length of a curve in a Riemannian manifold, and the fact that $\frac{d}{d t}\left(\exp _{p}(c(t))\right)=d\left(\exp _{p}\right)_{c(t)}(\dot{c}(t))$ (and similarly for $\left.\exp _{p_{0}}\right)$, it suffices to prove that

$$
\left\|d\left(\exp _{p}\right)_{c(t)}(\dot{c}(t))\right\| \geq\left\|d\left(\exp _{p_{0}}\right)_{c(t)}(\dot{c}(t))\right\|, \quad \forall t \in[a, b]
$$

(Here in the left hand side $\|\cdot\|$ is the norm on $T_{\exp _{p}(c(t))}(M)$ coming from the Riemannian metric on M, while in the right hand side $\|\cdot\|$ is the norm on $T_{\exp _{p_{0}}(c(t))}\left(M_{0}\right)$ coming from the Riemannian metric on M_{0}.) We will prove the stronger statement that

$$
\begin{equation*}
\left\|d\left(\exp _{p}\right)_{x}(v)\right\| \geq\left\|d\left(\exp _{p_{0}}\right)_{x}(v)\right\|, \quad \forall x \in B_{r}(0), v \in T_{x} \mathbb{R}^{d}=\mathbb{R}^{d} \tag{227}
\end{equation*}
$$

If $v=0$ then $(\underline{227})$ is trivial. If $x=0$ then $d\left(\exp _{p}\right)_{x}$ is the identity map on $T_{p}(M)=\mathbb{R}^{d}=T_{0}\left(\mathbb{R}^{d}\right)$, and similarly for $d\left(\exp _{p_{0}}\right)_{x}$, and therefore (227) holds with equality for all $v \in \mathbb{R}^{d}$. From now on we assume both $v \neq 0$ and $x \neq 0$. Let us decompose v as $v=u+w$ where $u \in \mathbb{R} x$ and $w \cdot x=0$. (Thus $u=\frac{v \cdot x}{x \cdot x} \cdot x$.) Then by Gauss' Lemma ($=$ Cor. 2 in Lecture $\# 17), d\left(\exp _{p}\right)_{x}(u)$ and $d\left(\exp _{p}\right)_{x}(w)$ are orthogonal in $T_{\exp _{p}(x)}(M)$, and $\left\|d\left(\exp _{p}\right)_{x}(u)\right\|=\|u\|$ (the standard length of u as a vector in $\left.\mathbb{R}^{d}\right)$; hence

$$
\begin{equation*}
\left\|d\left(\exp _{p}\right)_{x}(v)\right\|=\sqrt{\|u\|^{2}+\left\|d\left(\exp _{p}\right)_{x}(w)\right\|^{2}} \tag{228}
\end{equation*}
$$

The analogous formula holds for $\left\|d\left(\exp _{p_{0}}\right)_{x}(v)\right\|$, and hence, in order to prove (227), it suffices to prove the corresponding inequality with w in place of v. In other words, it suffices to prove (227) under the extra assumption that $v \cdot x=0$. We impose this assumption from now on.

Set

$$
\hat{x}:=\|x\|^{-1} x \quad \text { and } \quad \hat{v}:=\|x\|^{-1} v
$$

Let $\gamma:[0,\|x\|] \rightarrow M$ be the geodesic $\gamma(t)=\exp _{p}(t \hat{x})$; note that γ is parametrized by arc length, i.e. $\|\dot{\gamma}(t)\|=1$ for all t, since $\|\hat{x}\|=1$. Set

$$
J(t):=\left(d \exp _{p}\right)_{t \hat{x}}(t \hat{v}) \quad \text { for } t \in[0,\|x\|]
$$

Then by Corollary 1 (and Lemma 1) in Lecture $\# 17, J$ is a Jacobi field along γ with $J(0)=0, \dot{J}(0)=\hat{v}$. Note that $J^{\tan }(0)=0$, and $\dot{J}^{\tan }(0)=0$ since $\hat{v} \cdot \hat{x}=0$, i.e. $\langle\hat{v}, \hat{x}\rangle=0$ in $T_{p} M$. Also $J^{\tan }$ is a Jacobi field along γ by Lemma 3 in Lecture $\# 17$; hence $J^{\tan } \equiv 0$ by Lemma 1 in Lecture $\# 17$.

Similarly if we also set $\gamma_{0}(t)=\exp _{p_{0}}(t \hat{x})$ and

$$
J_{0}(t):=\left(d \exp _{p_{0}}\right)_{t \hat{x}}(t \hat{v}) \quad \text { for } t \in[0,\|x\|]
$$

then γ_{0} is a geodesic in M_{0} and J_{0} is a Jacobi field along γ_{0} with $J_{0}(0)=0$, $\dot{J}_{0}(0)=\hat{v}$ and $J_{0}^{\tan } \equiv 0$.

Now let X_{1}, \ldots, X_{d} be parallel vector fields along γ_{0} which form an ONbasis in $T_{\gamma(0)}\left(M_{0}\right)$ (and hence in each tangent space $\left.T_{\gamma(t)}\left(M_{0}\right)\right)$, and which are chosen so that $X_{1}(0)=\dot{\gamma}_{0}(0)$ (thus $X_{1}(t)=\dot{\gamma}_{0}(t)$ for all $\left.t \in[0,1]\right)$ and

$$
\hat{v}=k \cdot X_{2}(0) \quad \text { for some } k>0
$$

(recall that we assume $v \neq 0$; thus $\hat{v} \neq 0$). Then by pp. 5-6 in Lecture $\# 17$,

$$
J_{0}(t)=k \cdot s_{\mu}(t) \cdot X_{2}(t), \quad \forall t \in[0,\|x\|]
$$

where

$$
s_{\mu}(t)= \begin{cases}\mu^{-1 / 2} \sin \left(\mu^{1 / 2} t\right) & (\mu>0) \\ t & (\mu=0) \\ |\mu|^{-1 / 2} \sinh \left(|\mu|^{1 / 2} t\right) & (\mu>0)\end{cases}
$$

Recall that we are assuming that $\exp _{p_{0}}$ restricted to $B_{r}(0)$ is a diffeomorphism. This implies that $\left(d \exp _{p_{0}}\right)_{t \hat{x}}$ is a linear bijection for each $t \in[0,\|x\|]$, and in particular $J_{0}(t) \neq 0$ for all $t \in[0,\|x\|]$. This implies that $s_{\mu}(t)>0$ for all $t \in(0,\|x\|]$. Now the Rauch Comparison Theorem (Theorem 1 in Lecture \#19) applies to our situation, with

$$
f_{\mu}=\|J\|^{\cdot}(0) \cdot s_{\mu}=k \cdot s_{\mu}
$$

(indeed we have $\|J\|^{\cdot}(0)=\|\dot{J}(0)\|=\|\hat{v}\|$ since $J(0)=0$), and that theorem implies

$$
\|J(t)\| \geq f_{\mu}(t)=\left\|J_{0}(t)\right\|, \quad \forall t \in[0,\|x\|]
$$

Taking $t=\|x\|$ in the last inequality, we conclude that (227) holds!

Problem 93:

Assume that $\tau \in(a, b)$ and that $c(\tau)$ is a focal point of γ along c. Let X be a nontrivial Jacobi field along c satisfying $X(\tau)=0$ and

$$
\begin{equation*}
X(a) \in \operatorname{Span}(\dot{\gamma}(0)) \quad \text { and } \quad\langle\dot{X}(a), \dot{\gamma}(0)\rangle=0 \quad \text { in } T_{c(a)}(M) \tag{229}
\end{equation*}
$$

It follows that $X^{\tan }(a)=0$ (since $\langle\dot{c}(a), \dot{\gamma}(0)\rangle=0$) and $X^{\tan }(\tau)=0$; hence by Lemmata 2,3 in Lecture $\# 17$ we must have $X^{\tan } \equiv 0$. Define the pw C^{∞} vector field Y along c by

$$
Y(t)= \begin{cases}X(t) & \text { if } t \in[a, \tau] \\ 0 & \text { if } t \in[\tau, b]\end{cases}
$$

(Note in particular that Y is a well-defined and continuous function, since $X(\tau)=0$.) We have:

$$
\begin{aligned}
I(Y, Y)=I\left(X^{1}, X^{1}\right) & =\int_{a}^{\tau}(\langle\dot{X}, \dot{X}\rangle-\langle R(\dot{c}, X) X, \dot{c}\rangle) d t \\
& =\int_{a}^{\tau}\left(\frac{d}{d t}\langle\dot{X}, X\rangle-\langle\ddot{X}+R(X, \dot{c}) \dot{c}, X\rangle\right) d t \\
& =\langle\dot{X}(\tau), X(\tau)\rangle-\langle\dot{X}(a), X(a)\rangle=0
\end{aligned}
$$

where the last equality holds since $X(\tau)=0$ and because of (229).
Consider any $Z \in \stackrel{\circ}{\mathcal{V}}_{c}$ (viz., $Z \in \Gamma_{c}(T M)$ with $Z(a)=0=Z(b)$). Write Z^{1} for the restriction of Z to $[a, \tau]$. Then

$$
\begin{aligned}
I(Y+Z, Y+Z) & =I(Y, Y)+2 \cdot I\left(X^{1}, Z^{1}\right)+I(Z, Z) \\
& =2 \cdot I\left(X^{1}, Z^{1}\right)+I(Z, Z)
\end{aligned}
$$

and here

$$
\begin{aligned}
I\left(X^{1}, Z^{1}\right) & =\int_{a}^{\tau}(\langle\dot{X}, \dot{Z}\rangle-\langle R(\dot{c}, X) Z, \dot{c}\rangle) d t \\
& =\int_{a}^{\tau}\left(\frac{d}{d t}\langle\dot{X}, Z\rangle-\langle\ddot{X}+R(X, \dot{c}) \dot{c}, Z\rangle\right) d t \\
& =\langle\dot{X}(\tau), Z(\tau)\rangle-\langle\dot{X}(a), Z(a)\rangle \\
& =\langle\dot{X}(\tau), Z(\tau)\rangle
\end{aligned}
$$

As in the proof of Theorem 1 in $\# 18$ we now fix a vector field $Z \in \stackrel{\circ}{\mathcal{V}}_{c}$ which is normal and which satisfies $Z(\tau)=-\dot{X}(\tau)$ Applying the above formulas with $\eta Z(\eta \in \mathbb{R})$ in place of Z gives

$$
I(Y+\eta Z, Y+\eta Z)=-2 \cdot\|\dot{X}(\tau)\|^{2} \cdot \eta+I(Z, Z) \cdot \eta^{2}
$$

[^49]Here $\|\dot{X}(\tau)\|>0$ since X is nontrivial and $X(\tau)=0$ (cf. Lemma 1 in \#17). Hence for $\eta>0$ small enough we have

$$
I(Y+\eta Z, Y+\eta Z)<0
$$

Fix such an η. Note that $Y+\eta Z$ is a normal pw C^{∞} vector field along c, and by Problem 88 there is a C^{∞} vector field U along c which also satisfies $I(U, U)<0$, as well as $U(t)=Y(t)+\eta Z(t)$ for all t near a or b; in particular $U(a)=X(a) \in \operatorname{Span}(\dot{\gamma}(0))$ and $U(b)=0$. Using the fact that $Y+\eta Z$ is normal along c and inspecting the solution to Problem 88, we see that we can also take U to be normal along c.

Take $k \in \mathbb{R}$ so that $U(a)=k \cdot \dot{\gamma}(0)$. Now by Problem 83(b) there exists a C^{∞} variation $c:[a, b] \times(-\varepsilon, \varepsilon) \rightarrow M$ of c satisfying $c^{\prime} \equiv U$ as well as $c(a, s)=\gamma(k s)$ and $c(b, s)=c(b)$ for all $s \in(-\varepsilon, \varepsilon)$. Set $L(s):=L\left(c_{s}\right)$. By Lemma 1 in \#16 (and a remark on p. 3 of \#16, and using $\langle U(a), \dot{c}(0)\rangle=0$ and $U(b)=0$) we have $L^{\prime}(0)=0$. Next we apply Theorem 1 in $\# 16$. Note that $c^{\perp} \equiv c^{\prime}$ since U is normal along c. Note also that $\nabla_{\frac{\partial}{\partial s}} c^{\prime}=0$ at $t=a$ and at $t=b$, since $c(a, s)=\gamma(k s)$ (a geodesic) and $c(b, s)=c(b)$ for all $s \in(-\varepsilon, \varepsilon)$. Hence Theorem 1 in \#16 says:

$$
L^{\prime \prime}(0)=\frac{1}{\|\dot{c}\|} I(U, U) .
$$

Hence by what we proved above, $L^{\prime \prime}(0)<0$. This means that after shrinking ε if necessary, we have $L(s)<L(0)$ for all $s \in(-\varepsilon, \varepsilon) \backslash\{0\}$. Done!
(Remark: An alternative solution, which is perhaps a bit simpler and even closer to the proof of Theorem 1 in $\# 18$, is to construct the vector field U without insisting that U is normal - but with all the other properties required above. Then we use Theorem 1 in $\# 16$ to deduce $E^{\prime \prime}(0)<0$ in place of $L^{\prime \prime}(0)=0$. We also have $E^{\prime}(0)=0$; and then the argument in the notes for \#18 applies and lets us conclude what we want, i.e. that $L(s)<L(0)$ for all $s \neq 0$ sufficiently near 0 .)

Problem 94: See Lee, [14, Lemma 11.6].
Problem 95: (We follow the proof of [14, Theorem 11.12].)
Let the constant sectional curvature of M be $\rho \in \mathbb{R}$.
Let us first assume $\rho \leq 0$. If $\rho=0$ then set $H:=\mathbb{R}^{n}$; if $\rho<0$ then set $H=H^{n}(|\rho|)$, i.e. hyperbolic n-space scaled to have constant curvature $\rho{ }^{56]}$ Fix any point $p \in M$. By the Cartan-Hadamard Theorem (=Theorem 2 in Lecture \#19), $\exp _{p}: T_{p} M \rightarrow M$ is a surjective diffeomorphism. Hence if we fix any identification of $T_{p} M$ with \mathbb{R}^{n} respecting the inner product, then the C^{∞} chart ($M, \exp _{p}^{-1}$) give normal coordinates on all M with center p. Similarly, for any fixed point $q \in H,\left(H, \exp _{q}^{-1}\right)$ give normal coordinates on all H with center q. (Here $\exp _{q}$ is the exponential map from $\mathbb{R}^{n}=$ $T_{q} H$ to H.) Now by Problem [78, since M and H have the same constant curvature ρ everywhere, the two C^{∞} functions $\mathbb{R}^{n} \rightarrow M_{n}(\mathbb{R})$ which give the Riemannian metric of M wrt. ($M, \exp _{p}^{-1}$) and the Riemannian metric of H wrt. $\left(H, \exp _{q}^{-1}\right)$, respectively, are equal; indeed this function $\mathbb{R}^{n} \rightarrow M_{n}(\mathbb{R})$ is given explicitly in Problem 78, Hence the map $\exp _{p} \circ \exp _{q}^{-1}$ is an isometry of H onto M, and we are done!

Next assume $\rho>0$. Let $S \subset \mathbb{R}^{n+1}$ be the n-dimensional sphere with radius $r:=\rho^{-1 / 2}$ about the origin, with its standard Riemannian metric. S has constant sectional curvature ρ. For any $q \in S$ we know that $\exp _{q}$: $T_{q} S \rightarrow S$ restricted to $B_{\pi r}(0) \subset T_{q} S$ is a diffeomorphism onto $S \backslash\{-q\} ;$ hence the chart $\left(S \backslash\{-q\}, \exp _{q}^{-1}\right)$ give normal coordinates on S with center q. Also for any $p \in M$ it follows from Cor. 1 in $\# 19$ that $\exp _{p}$ restricted to $B_{\pi r}(0) \subset T_{p} M$ has everywhere non-singular differential, and hence is a local diffeomorphism (by the Inverse Function Theorem). Hence the ball $B_{\pi r}(0) \subset T_{p} M$ can be endowed with a unique Riemannian metric M such that $\exp _{p}: B_{\pi r}(0) \rightarrow M$ is a local isometry (cf. Problem 18). Note that $B_{\pi r}(0)$ with the Riemannian metric M has constant sectional curvature $=\rho$, since M has so. We fix identifications $T_{q} S=\mathbb{R}^{n}$ and $T_{p} M=\mathbb{R}^{n}$ respecting the inner products. Note that then $\left(B_{\pi r}(0), I\right)$ (where I is the identity map) form normal coordinates on $B_{\pi r}(0)$ wrt the metric M , since for any unit vector $v \in \mathbb{R}^{n}$ the curve $c:(-\pi r, \pi r) \rightarrow B_{\pi r}(0), c(t)=t v$, is a geodesic. Hence the metric M is explicitly given in by the formula in Problem 78, On the other hand the expression for the metric on S wrt $\left(S \backslash\{-q\}, \exp _{q}^{-1}\right)$ must be given by the same formula. Hence the map

$$
\Phi:=\exp _{p} \circ \exp _{q}^{-1}
$$

from $S \backslash\{-q\}$ to M is a local isometry.

[^50]Next fix any $q^{\prime} \in S \backslash\{q,-q\}$ and set $p^{\prime}:=\Phi\left(q^{\prime}\right) \in M$. Then by repeating the above discussion we obtain a local isometry

$$
\begin{equation*}
\widetilde{\Phi}:=\exp _{p^{\prime}} \circ \exp _{q^{\prime}}^{-1} \tag{230}
\end{equation*}
$$

from $S \backslash\left\{-q^{\prime}\right\}$ to M with $\widetilde{\Phi}\left(q^{\prime}\right)=p^{\prime}$. Note that this $\widetilde{\Phi}$ depends on which identifications $T_{q^{\prime}} S=\mathbb{R}^{n}$ and $T_{p^{\prime}} M=\mathbb{R}^{n}$ we choose; more to the point what matters is how $T_{q^{\prime}} S$ gets identified with $T_{p^{\prime}} M$, since this is what is needed to make unique sense of (230). Any identification respecting the respective Riemannian scalar products on $T_{q^{\prime}} S$ and $T_{p^{\prime}} M$ is ok. Let us choose the identification of $T_{q^{\prime}} S$ and $T_{p^{\prime}} M$ to be given by $d \Phi_{q^{\prime}}: T_{q^{\prime}} S \rightarrow$ $T_{p^{\prime}} M$; this is indeed a linear bijection respecting the respective Riemannian scalar products, since Φ is a local isometry. Having made this choice, our map $\widetilde{\Phi}$ satisfies

$$
d \widetilde{\Phi}_{q^{\prime}}=d \Phi_{q^{\prime}},
$$

since $\left(d \exp _{p^{\prime}}\right)_{0}: T_{p^{\prime}} M=T_{p^{\prime}}\left(T_{p^{\prime}} M\right) \rightarrow T_{p^{\prime}} M$ is the identity map, and similarly for $\left(d \exp _{q^{\prime}}\right)_{0}$. Hence by the following lemma, we actually have

$$
\begin{equation*}
\widetilde{\Phi}_{\mid S \backslash\left\{-q,-q^{\prime}\right\}} \equiv \Phi_{\mid S \backslash\left\{-q,-q^{\prime}\right\}} . \tag{231}
\end{equation*}
$$

Lemma 9. Let N and \widetilde{N} be Riemannian manifolds and let $\varphi, \psi: N \rightarrow \widetilde{N}$ be local isometries. Suppose that for some point $p \in N$ we have $\varphi(p)=\psi(p)$ and $d \varphi_{p}=d \psi_{p}$. Then $\varphi \equiv \psi$.

Proof. First assume that $q \in N$ is such that there exists a geodesic from p to q, say $c(t)=\exp _{p}(t v), t \in[0, T]$, for some $v \in T_{p}(M) .\left(\right.$ Thus $\left.\exp _{p}(T v)=q.\right)$ Then since φ and ψ are local isometries, both $\varphi \circ c$ and $\psi \circ c$ are geodesics in \widetilde{N}. These two geodesics have $\varphi \circ c(0)=\varphi(p)=\psi(p)=\psi \circ c(0)$ and

$$
(\varphi \circ c)^{\cdot}(0)=\left(d \varphi_{p}\right)(\dot{c}(0))=\left(d \psi_{p}\right)(\dot{c}(0))=(\psi \circ c)^{\cdot}(0) ;
$$

hence by uniqueness of geodesics, $\varphi \circ c(t)=\psi \circ c(t)$ for all $t \in[0, T]$, and in particular

$$
\varphi(q)=\varphi \circ c(T)=\psi \circ c(T)=\psi(q)
$$

It follows from the above that if U is any open subset of N such that every point $q \in U$ can be reached by a geodesic from p, then $\varphi_{\mid U}=\psi_{\mid U}$.

Now let q be an arbitrary point in N. By Problem $⿴$ there is a curve $c:[0,1] \rightarrow M$ with $c(0)=p, c(1)=q$. Consider the set

$$
F:=\left\{t \in[0,1]: \varphi(c(t))=\psi(c(t)) \text { and } d \varphi_{c(t)}=d \psi_{c(t)}\right\} .
$$

This is a closed subset of $[0,1]$, since $\varphi, \psi, d \varphi, d \psi$ are all continuous. Also $0 \in F$, since $\varphi(p)=\psi(p)$ and $d \varphi_{p}=d \psi_{p}$ by assumption. Let us prove that F is also an open subset of $[0,1]$. Thus take any $t \in F$. Then $\varphi(c(t))=\psi(c(t))$ and $d \varphi_{c(t)}=d \psi_{c(t)}$. By Theorem 3 in \#4 there exists an open neighborhood U of $c(t)$ in N such that every point in U can be reached by a geodesic from
$c(t)$. Now by the above argument applied to the point $c(t)$ in place of p, $\varphi_{\mid U}=\psi_{\mid U}$, and hence $\varphi(q)=\psi(q)$ and $d \varphi_{q}=d \psi_{q}$ for all $q \in U$. Hence F contains the set $\left\{t^{\prime} \in[0,1]: c\left(t^{\prime}\right) \in U\right\}$, and this is an open neighborhood of t in $[0,1]$. Since every point $t \in F$ has such an open neighborhood, it follows that F is open in $[0,1]$. Hence F is connected, being both open and closed. This together with $0 \in F$ implies $F=[0,1]$. In particular $1 \in F$, and thus $\varphi(q)=\psi(q)$. Since q was arbitrary, this completes the proof that $\varphi \equiv \psi$.

Continuing with our proof of the Killing-Hopf Theorem, we have now proved (231) and this means that Φ and $\widetilde{\Phi}$ together define a C^{∞} map Ψ from the whole of S to M, and this map Ψ is a local isometry since Φ and $\widetilde{\Phi}$ are.

Lemma 10. Suppose that f is a local diffeomorphism from a C^{∞} manifold N_{1} to a C^{∞} manifold N_{2}. Assume that N_{1} is compact. Then f is a covering map.

Proof. Since N_{1} is compact and f is continuous, $f\left(N_{1}\right)$ is a compact subset of N_{2}. In particular $f\left(N_{1}\right)$ is a closed subset of N_{2}. But $f\left(N_{1}\right)$ is also an open subset of N_{2} since f, being a local diffeomorphism, is an open map. Hence $f\left(N_{1}\right)$ (which is of course non-empty) is a connected component of N_{2}, i.e. $f\left(N_{1}\right)=N_{2}$. Hence we have proved that f is surjective (and also that N_{2} is compact).

Now let p be an arbitrary point in N_{2}. Then $f^{-1}(p)$ is a closed subset of N_{1}, and hence compact, since N_{1} is compact. Furthermore $f^{-1}(p)$ is a discrete subset of N_{1}, since f is a local diffeomorphism. (Indeed, for any $q \in f^{-1}(p)$ there is an open set $U \subset N_{1}$ with $q \in U$ such that $f_{\mid U}$ is a diffeomorphism; then $U \cap f^{-1}(p)=f_{\mid U}^{-1}(p)=\{q\}$, and this says that $\{q\}$ is an open subset of $f^{-1}(p)$ when $f^{-1}(p)$ is endowed with the relative topology as a subset of N_{1}. Hence $f^{-1}(p)$ with this topology is discrete.) Hence $f^{-1}(p)$, being both compact and discrete, is finite. Note that $f^{-1}(p) \neq \emptyset$ since f is surjective. Let us write $f^{-1}(p)=\left\{q_{1}, \ldots, q_{m}\right\}$ (with q_{1}, \ldots, q_{m} pairwise distinct).

Now since f is a local diffeomorphism, there exist open subsets $U_{1}, \ldots, U_{m} \subset$ N_{1} such that $q_{j} \in U_{j}$ and $f_{\mid U_{j}}$ is a diffeomorphism onto an open subset of N_{2}, for each j. Also, since N_{1} is Hausdorff, there exist open subsets $U_{1}^{\prime}, \ldots, U_{m}^{\prime} \subset N_{1}$ such that $q_{j} \in U_{j}^{\prime}$ for all j and $U_{i}^{\prime} \cap U_{j}^{\prime}=\emptyset$ for all $i \neq j$. Set $U_{j}^{\prime \prime}:=U_{j} \cap U_{j}^{\prime}$ for $j=1, \ldots, m$. Then for each $j, U_{j}^{\prime \prime}$ is open, $q_{j} \in U_{j}^{\prime \prime}$ and $f_{\mid U_{j}^{\prime \prime}}$ is a diffeomorphism onto an open subset of N_{2}, and furthermore the sets $U_{1}^{\prime \prime}, \ldots, U_{m}^{\prime \prime}$ are pairwise disjoint. Set $V:=\cap_{j=1}^{m} f\left(U_{j}^{\prime \prime}\right)$. This is an open subset of N_{2} containing p. Let $V=V_{0} \supset V_{1} \supset V_{2} \supset \cdots$ be a sequence of open subsets of V which form a neighborhood basis for the point p. (Viz., $p \in V_{k}$ for all k, and for every open set V^{\prime} containing p there is some k
such that $V_{k} \subset V^{\prime}$. For example we can take V_{1}, V_{2}, \ldots to be a decreasing sequence of open balls around p with radius tending to zero, with respect to any fixed chart containing p.) Assume that $f^{-1}\left(V_{k}\right) \not \subset \cup_{j=1}^{m} U_{j}^{\prime \prime}$ for every $k \geq 1$. This means that for every $k \geq 1$ there exists some point $p_{k}^{\prime} \in N_{1}$, $p_{k}^{\prime} \notin \cup_{j=1}^{m} U_{j}^{\prime \prime}$, such that $f\left(p_{k}^{\prime}\right) \in V_{k}$. Since N_{1} is compact, after passing to a subsequence we may assume that p_{k}^{\prime} tends to a limit point $p^{\prime} \in N_{1}$ as $k \rightarrow \infty$. Then $f\left(p_{k}^{\prime}\right) \rightarrow f\left(p^{\prime}\right)$ in N_{2}, and $f\left(p_{k}^{\prime}\right) \in V_{k}$, and by our choice of V_{1}, V_{2}, \ldots this implies that $f\left(p^{\prime}\right)=p$. On the other hand $p^{\prime} \notin\left\{q_{1}, \ldots, q_{m}\right\}$, since for each j we have $q_{j} \in U_{j}^{\prime \prime}$ with $U_{j}^{\prime \prime}$ open, and $p_{k}^{\prime} \notin U_{j}^{\prime \prime}$. This is a contradiction against $f^{-1}(p)=\left\{q_{1}, \ldots, q_{m}\right\}$. Hence we must have $f^{-1}\left(V_{k}\right) \subset \cup_{j=1}^{m} U_{j}^{\prime \prime}$ for some $k \geq 1$. For this $k, f^{-1}\left(V_{k}\right)$ equals the disjoint union of the sets $W_{j}:=U_{j}^{\prime \prime} \cap f^{-1}\left(V_{k}\right)=f_{\mid U_{j}^{\prime \prime}}^{-1}\left(V_{k}\right), j=1, \ldots, m$, and $f_{\mid W_{j}}$ is a diffeomorphism of W_{j} onto V_{k} (since $f_{\mid U_{j}^{\prime \prime}}$ is a diffeomorphism and $\left.V_{k} \subset f\left(U_{j}^{\prime \prime}\right)\right)$. The fact that every point $p \in N_{2}$ has such an open neighborhood V_{k} proves that f is a covering map.

The lemma applies to our situation, and gives that $\Psi: S \rightarrow M$ is a covering map. Hence since we are assuming that M is simply connected, Ψ must be a homeomorphism, hence an isometry of S onto M.

References

1. W. M. Boothby, An introduction to differentiable manifolds and riemannian geometry, Academic Press, 1986.
2. Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008, Revised reprint of the 1975 original. MR 2394158
3. Lawrence Conlon, Differentiable manifolds, second ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1821549
4. Anton Deitmar and Siegfried Echterhoff, Principles of harmonic analysis, second ed., Universitext, Springer, Cham, 2014. MR 3289059
5. Karl-Heinz Fieseler, Riemannian geometry, lecture notes; from his www, 2015.
6. Gerald B. Folland, Real analysis, second ed., Pure and Applied Mathematics (New York), John Wiley \& Sons Inc., New York, 1999, Modern techniques and their applications, A Wiley-Interscience Publication. MR 1681462 (2000c:00001)
7. Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
8. Sigurdur Helgason, Differential geometry, lie groups, and symmetric spaces, Academic Press, 1978.
9. Witold Hurewicz and Henry Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948.
10. L. Hörmander, The analysis of linear partial differential operators i, Springer-Verlag, 1990.
11. Jürgen Jost, Riemannian geometry and geometric analysis, fourth ed., Universitext, Springer-Verlag, Berlin, 2005.
12. Jürgen Jost, Riemannian geometry and geometric analysis, sixth ed., Universitext, Springer, Heidelberg, 2011. MR 2829653
13. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1996, Reprint of the 1963 original, A Wiley-Interscience Publication. MR 1393940
14. John M. Lee, Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer-Verlag, New York, 1997, An introduction to curvature. MR 1468735
15. , Introduction to smooth manifolds, second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
16. Walter A. Poor, Differential geometric structures, McGraw-Hill Book Co., New York, 1981. MR 647949

[^0]: ${ }^{1}$ I think the group which Jost calls " $O(n, 1)$ " is more appropriately called " $O(1, n)$ ", in view of the definition of $\langle\cdot, \cdot$,$\rangle .$

[^1]: ${ }^{2}$ Here we use the natural notation $I_{v}-s:=\left\{x-s: x \in I_{v}\right\}$.

[^2]: ${ }^{3}$ By this we mean: X is a Riemannian manifold and d is the metric on X which comes from the Riemannian structure.

[^3]: ${ }^{4}$ Note that $d \omega_{I}=\frac{\partial \omega_{I}}{\partial x^{j}} d x^{j} ;$ hence our definition indeed agrees with [12, Def. 2.1.15].

[^4]: 5 (cf. Problem 30(a))

[^5]: ${ }^{6}$ we will discuss these notions in Lecture $\# 6$, and the product path in question will be denoted " $\gamma_{1} \cdot \bar{\gamma}_{2}$ "; however it should hopefully be clear already at this point how the curve in question is constructed; just draw a picture!

[^6]: ${ }^{7}$ In the literature it varies whether one defines a "manifold" to always be connected. However recall that in our course, we do require every manifold to be connected!
 ${ }^{8}$ (In fact one can show that $\mathcal{A}_{\mid U}$ is itself a C^{∞} structure on U.)

[^7]: ${ }^{9}$ Note that there is a glitch between this notation " (x, y) " and the notation " (f, g) " used in part (c). Let us discuss this carefully in the abstract setting of maps between sets: Thus if A, B_{1}, B_{2} are three sets and $\alpha: A \rightarrow B_{1}$ and $\beta: A \rightarrow B_{2}$ are maps, then we define the map " $(\alpha, \beta): A \rightarrow B_{1} \times B_{2}$ " by $(\alpha, \beta)(p):=(\alpha(p), \beta(p))$ ". This is the notation which we use in part (c), and it is also the standard notation for "category theoretical product"; cf. wikipedia On the other hand if $A_{1}, A_{2}, B_{1}, B_{2}$ are sets and $\gamma: A_{1} \rightarrow B_{1}$ and $\delta: A_{2} \rightarrow B_{2}$ are maps then we define the map $[\gamma, \delta]: A_{1} \times A_{2} \rightarrow B_{1} \times B_{2}$ by $[\gamma, \delta](p, q):=(\gamma(p), \delta(q))$. The " (x, y) " which we use here in our solution to part (a) is this constructions; we use the notation " $[\cdot, \cdot]$ " in this footnote for clarity, but in practice there is no problem to use " (\cdot, \cdot) " for both, and it is also quite standard. Note that the two constructions are related by the simple relation $[\gamma, \delta]=\left(\gamma \circ \operatorname{pr}_{1}, \delta \circ \operatorname{pr}_{2}\right)$; indeed see part (d) of the present problem.

[^8]: 10 also recalling our convention that column matrices are identified with vectors

[^9]: ${ }^{11}$ We will discuss this notion in Lecture $\# 6$; however it should hopefully be clear here how the curve in question is constructed; just draw a picutre!

[^10]: ${ }^{12}$ Here by "open" we mean wrt the topology of $[0,1]$ induced by the topology of \mathbb{R}; in particular $[0, x)$ and $(x, 1]$ are open subintervals of $[0,1]$ for any $x \in(0,1)$, and also $[0,1]$ itself is an open subinterval of $[0,1]$.

[^11]: 13 we now leave some details to the reader...

[^12]: ${ }^{14}$ Some further explanation: Here we are using the fact that the relation " $p=$ $\lim _{j \rightarrow \infty} p_{j}$ " (\Leftrightarrow " $p_{j} \rightarrow p$ ") only depends on the topology of the space which we are working in, and not on the choice of metric metrizing that topology. For example, $p_{j} \rightarrow p$ in N holds iff for every open neighborhood $U \subset N$ of p, there exists $J \in \mathbb{Z}^{+}$such that $p_{j} \in U$ for all $j \geq J$ (and this is equivalent to (76) holding for any metric metrizing N 's topology). Now in our situation we wish to prove that $\lim _{j \rightarrow \infty} d_{M}\left(p_{j}, p\right)=0$, or equivalently that for every open set U in M with $p \in U$, there exists $J \in \mathbb{Z}^{+}$such that $p_{j} \in U$ for all $j \geq J$. Let such an open set $U \subset M$ be given. Since M has the subspace topology as a subset of N, there is an open set V in N such that $U=M \cap V$. Next, since $p_{j} \rightarrow p$ in N there exists $J \geq \mathbb{Z}^{+}$such that $p_{j} \in V$ for all $j \geq J$. But the points p_{1}, p_{2}, \ldots all lie in M; hence $p_{j} \in V \cap M=U$ for all $j \geq J$. Therefore $p_{j} \rightarrow p$ in M.

[^13]: ${ }^{15}$ Indeed, by inspection g is a continuous function from \mathbb{R}^{2} to \mathbb{R}^{3}, and $g(x, \alpha) \in S$ for all $(x, \alpha) \in \mathbb{R}^{2}$. Hence since S is a (disconnected) union of differentiable submanifolds of \mathbb{R}^{3} and thus the topology of S agrees with the subset topology from $S \subset \mathbb{R}^{3}$, it follows that g is continuous also as a function from \mathbb{R}^{2} to S.

[^14]: ${ }^{16}$ Of course, " $(\alpha, 1)$ " here stands for the map $U \times \mathbb{R}^{n} \rightarrow \alpha(U) \times \mathbb{R}^{n},(x, v) \mapsto(\alpha(x), v)$. Cf. footnote 9 above - in the (pedantic) language of that footnote, we would write " $[\alpha, 1]$ " in place of " $(\alpha, 1)$ ".

[^15]: ${ }^{17}$ And this choice of C^{∞} manifold structure is clearly forced on us, from the requirements that (E, π, M) is a vector bundle of rank n, and $\left(U_{\alpha}, \varphi_{\alpha}\right)$ is a bundle chart for every $\alpha \in A$.

[^16]: ${ }^{18}$ Of course, " $(0, u)$ " here stands for the arc $\{[x]: x \in(0, u)\}$ in $S^{1}=\mathbb{R} / \sim$. We will employ this type of mild abuse of notation several times in the following...

[^17]: 19 each application reduces the number of arcs by one, and we stop whenever we find two arcs which together cover S^{1}

[^18]: ${ }^{20}$－with the same U ！Note that the family of such open sets U certainly cover M ，i．e． for each $p \in M$ there exist $U, \varphi_{1}, \varphi_{2}$ such that $p \in U$ and $\left(U, \varphi_{j}\right)$ is a bundle chart for E_{j} for $j=1,2$ ！（Proof？）

[^19]: ${ }^{21}$ Here $M_{m}(\mathbb{R})$ is the space of real $m \times m$ matrices.

[^20]: ${ }^{22}$ Thus for " \otimes " and "Hom" we have $k=2$, and for "dual" we have $k=1$.
 ${ }^{23}$ contravariant - because of the switch of order between A and A^{\prime} in (96) versus in " $h: A^{\prime} \rightarrow A$ ", and the corresponding switch of order between h^{\prime} and h in the left versus the right hand side of (97).

[^21]: ${ }^{24}$ In many situations in mathematics, such a phenomenon is a clear warning sign that one does not really have a complete proof - and so there is good reason to carefully work out the details. But for the task at hands it seems that there is not so much to worry about...

[^22]: ${ }^{25}$ Here one could expand and give many more details! :-)

[^23]: ${ }^{26}$ The conclusion here has the following generalization: Let S, N be C^{∞} manifolds, let $f: S \rightarrow N$ be a C^{∞} map, and let $M \subset N$ be a differentiable submanifold of N. Assume that $f(S) \subset M$. Then f is C^{∞} also as a map $S \rightarrow M$. Cf., e.g., [15, Cor. 5.30]. The proof of this fact basically reduces to what we have already done, if one uses charts as in 12 , Lemma 1.3.1]. Note that if we merely assume that M is an immersed submanifold of N, then the corresponding statement is false in general! (Can you give an example?)

[^24]: ${ }^{27}$ Here we are sweeping a lot of details under the carpet; however we have discussed similar things many times previously...

[^25]: ${ }^{28}$ Apply Problem 38 to both E_{1} and E_{2}; then consider the common refinement of the two open covers, i.e. the family of pair-wise intersections of the open sets.

[^26]: ${ }^{29}$ Here we use the notation from the solution of Problem 42 (a); thus $\widetilde{\varphi}$ is the C^{∞} diffeomorphism of $\widetilde{\pi}^{-1}\left(f^{-1}(U)\right)$ onto $f^{-1}(U) \times \mathbb{R}^{n}$ given by $\widetilde{\varphi}(p, v):=\left(p, \mathrm{pr}_{2}(\varphi(v))\right)$; then $\left(f^{-1}(U), \widetilde{\varphi}\right)$ is a bundle chart for $\left(f^{*} E, \widetilde{\pi}, M\right)$.

[^27]: ${ }^{30}$ Here the inclusion $\operatorname{supp}\left(\rho_{j} \circ f\right) \subset f^{-1}\left(\operatorname{supp}\left(\rho_{j}\right)\right)$ holds since $f^{-1}\left(\operatorname{supp}\left(\rho_{j}\right)\right)$ is a closed subset of M which contains every $x \in M$ satisfying $\rho_{j}(f(x)) \neq 0$.

[^28]: ${ }^{31}$ very convenient!

[^29]: ${ }^{32}$ Note that we are now using " \wedge " in quite a few different ways; however it will always be clear from the type of the two arguments which " \wedge " is used in each instance.

[^30]: ${ }^{33}$ Indeed, using standard bundle charts, this boils down to the local fact that $U \times$ $\bigwedge^{r}\left(\left(\mathbb{R}^{n}\right)^{*}\right)$ is a subbundle of $U \times\left(\mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}\right)^{*}($ for U open $\subset M)$.
 ${ }^{34}$ General fact (complement to Problems 39(a) and 41): If E_{1}, E_{2}, F are vector bundles over M and E_{1} is a subbundle of E_{2}, then $E_{1} \otimes F$ is a subbundle of $E_{2} \otimes F$.

[^31]: ${ }^{35}$ Prove this identification, " $f_{\mid U_{\alpha}}^{*}\left(E_{\mid V_{\alpha}}\right)=\left(f^{*} E\right)_{\mid U_{\alpha}}$ ", as a complement to Problem42,

[^32]: ${ }^{36}$ Note that this definition of D apriori depends on the choice of the bases of sections μ_{1}, \ldots, μ_{n} and ν_{1}, \ldots, ν_{n}; however we will soon prove that D is a connection satisfying (156), and then it follows that our D is in fact independent of the choices of μ_{1}, \ldots, μ_{n} and ν_{1}, \ldots, ν_{n}, since we noted from start that there exists at most one connection satisfying (156)!

[^33]: ${ }^{37}$ This merely captures the fact that the map $\Gamma($ End $E) \times \Gamma E \rightarrow \Gamma E$ is $C^{\infty}(M)$-linear in its second argument (in fact it is also $C^{\infty}(M)$-linear in its first argument).

[^34]: ${ }^{38}$ together with a computation reducing the " \mathcal{A}-sum" over \mathfrak{S}_{r+1} to a sum over only $r+1$ distinct permutations; we leave this step to the reader.

[^35]: ${ }^{39}$ and so we can fix a linear isomorphism $M_{n}(\mathbb{R})=\mathbb{R}^{n^{2}}$ under which $\mathfrak{o}(n)$ becomes identified with $\mathbb{R}^{k}=\{(*, \cdots, *, 0, \cdots, 0)\} \subset \mathbb{R}^{n^{2}}$ for some k. (In fact $k=n(n-1) / 2$.)

[^36]: ${ }^{40}$ Here's a more explicit version of exactly the same argument: By the definition of $\operatorname{Ad} E$ we have $\left\langle s\left(\mu_{i}\right), \mu_{\ell}\right\rangle=-\left\langle\mu_{i}, s\left(\mu_{\ell}\right)\right\rangle$ throughout U, for all $i, \ell \in\{1, \ldots, n\}$. But $\left\langle s\left(\mu_{i}\right), \mu_{\ell}\right\rangle=\left\langle a_{i}^{k} \mu_{k}, \mu_{\ell}\right\rangle=a_{i}^{\ell}$ and similarly $\left\langle\mu_{i}, s\left(\mu_{\ell}\right)\right\rangle=a_{\ell}^{i}$. Hence $a_{i}^{\ell}=-a_{\ell}^{i}$ throughout U.
 ${ }^{41}$ Details: We have $[A, s]=A \circ s-s \circ A$ since $A \in \Omega^{1}\left(\operatorname{End} E_{\mid U}\right)$ and $s \in \Omega^{0}($ End $E)$; cf. \#11, p. 7. Now

 $$
 \begin{aligned}
 {[A, s] } & =A \circ s-s \circ A \\
 & =\left(\mu^{j *} \otimes \mu_{k} \otimes A_{j}^{k}\right) \circ\left(a_{i}^{\ell} \mu^{i *} \otimes \mu_{\ell}\right)-\left(a_{j}^{k} \mu^{j *} \otimes \mu_{k}\right) \circ\left(\mu^{i *} \otimes \mu_{\ell} \otimes A_{i}^{\ell}\right) \\
 & =\mu^{i *} \otimes \mu_{k} \otimes\left(a_{i}^{j} A_{j}^{k}-a_{j}^{k} A_{i}^{j}\right) .
 \end{aligned}
 $$

[^37]: ${ }^{42}$ some more details: we have to prove that $\operatorname{det}\left(d x_{p} \circ \varphi_{p}^{-1}\right)$ is a continuous function of $p \in U$. But we know that $\alpha:=d x \circ \varphi_{\mid T U}^{-1}$ is a C^{∞} diffeomorphism from $U \times \mathbb{R}^{d}$ onto $T(x(U))=x(U) \times \mathbb{R}^{d}$, and for any $m, n \in\{1, \ldots, d\}$, the (m, n)-entry of the matrix representing the linear map $d x_{p} \circ \varphi_{p}^{-1}$ equals $e_{m} \cdot \operatorname{pr}_{2}\left(\alpha\left(p, e_{n}\right)\right)$, where e_{m} is the m th standard unit vector in \mathbb{R}^{d}, is the standard scalar product on \mathbb{R}^{d}, and $\mathrm{pr}_{2}: x(U) \times \mathbb{R}^{d} \rightarrow$ \mathbb{R}^{d} is the projection onto the second factor. From this we see that each matrix entry of (the matrix representing) $d x_{p} \circ \varphi_{p}^{-1}$ depends continuously on p; hence also the determinant of $d x_{p} \circ \varphi_{p}^{-1}$ depends continuously on p.

[^38]: ${ }^{43}$ Of course here it is crucial to note that μ is a C^{∞} map from $U \cap V$ to $\mathrm{GL}_{2}(\mathbb{R})$. This is clear from the formula defining μ, if we view $\alpha(y)=\arg \left(y^{1}+i y^{2}\right)$ as a C^{∞} function from $\mathbb{R}^{2} \backslash\{0\}$ to the circle $\mathbb{R} / 2 \pi \mathbb{Z}$ and then use the fact that both $\cos (m \alpha)$ and $\sin (m \alpha)$ are well-defined C^{∞} functions on $\mathbb{R} / 2 \pi \mathbb{Z}$.

[^39]: ${ }^{44}$ The way one initially finds out that this formula (179) should/must hold, is by a computation similar to (180), but "in the other direction".
 ${ }^{45}$ The fact that $f^{*}(s)$ is C^{∞} can also be seen as follows: Decompose s in some way as a finite $\operatorname{sum} s=\mu_{1} \otimes \omega_{1}+\cdots+\mu_{m} \otimes \omega_{m}$ with $\mu_{1}, \ldots, \mu_{m} \in \Gamma E$ and $\omega_{1}, \ldots, \omega_{m} \in \Omega^{r}(N)$. Then similarly as in the computation (180) we have $f^{*}(s)=\sum_{j=1}^{m}\left(\mu_{j} \circ f\right) \otimes f^{*}\left(\omega_{j}\right)$, and the right hand side is C^{∞} by inspection.

[^40]: ${ }^{46}$ Recall that the tensor product in " $\Gamma f^{*} E \otimes \Omega^{r}(M)$ " always stands for tensor product of $C^{\infty}(M)$-modules. A more precise notation is " $\Gamma f^{*} E \otimes_{C^{\infty}(M)} \Omega^{r}(M)$ ".

[^41]: ${ }^{47}$ In (194), the last identification " $T_{\exp _{p}(w)}(M)=\mathbb{R}^{d "}$ of course comes from using the basis of sections $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{d}} \in \Gamma(T U)$, at the point $\exp _{p}(w) \in U$.

[^42]: ${ }^{48}$ by this we mean: We have fixed a chart (V, φ) on S^{d-1} and we then consider the corresponding chart $\left(\mathbb{R}^{+} V,\left(r, \theta_{1}, \ldots, \theta_{d-1}\right)\right)$ on \mathbb{R}^{d}, where $r(z)=\|z\|$ (standard Euclidean length of the vector z) and $\left(\theta_{1}(z), \ldots, \theta_{d-1}(z)\right)=\varphi\left(\|z\|^{-1} z\right)$ for all z in the open cone $\mathbb{R}^{+} V$. This is just as in Problem [23, but with different variable names. Of course, we assume that the given point $(x, y)=(x, y, 0, \ldots, 0)$ lies in the cone $\mathbb{R}^{+} V$.

[^43]: 49 using the general Leibniz rule; specifically
 $\left(\frac{\partial}{\partial y}\right)^{3}(a(y) b(y))=a^{\prime \prime \prime}(y) b(y)+3 a^{\prime \prime}(y) b^{\prime}(y)+3 a^{\prime}(y) b^{\prime \prime}(y)+a(y) b^{\prime \prime \prime}(y)$.

[^44]: ${ }^{50}$ Recall that we saw in (215) that $\|w\|>0$ for all $w \in W$; thus the statements (217) and (218) make sense.

[^45]: ${ }^{51}$ The fact that there indeed exists a unique such Jacobi field is provided by Lemma 1 in $\# 17$.

[^46]: ${ }^{52}$ As usual, " x " denotes two things, namely a map from U to \mathbb{R}^{d} and also a general point in $x(U)$; also " $f(x)$ " really stands for " $f\left(x^{-1}(x)\right)$ ".

[^47]: ${ }^{53}$ Indeed, let (U, x) be an arbitrary chart on M and set $J:=\{t \in[0, \pi]: c(t) \in U\} ;$ then there exist unique functions $a^{1}, \ldots, a^{d} \in C^{\infty}(J)$ such that

 $$
 X(t)=a^{j}(t) \cdot\left(\frac{\partial}{\partial x^{j}}\right)_{c(t)}, \quad \forall t \in J
 $$

[^48]: ${ }^{54}$ Indeed, note that $d_{f}(p, q) \leq\left(\sup _{\mathrm{S}^{d}} \sqrt{f}\right) \cdot d(p, q), \forall p, q \in S^{d}$, and we can make $\sup _{t \in[0, \pi]} d\left(c_{1}(t), c(t)\right)$ arbitrarily small.

[^49]: ${ }^{55}$ To see that this can be done, note that $-\dot{X}(\tau)$ is normal against $\dot{c}(\tau)$; hence we can simply set Z equal to the parallel transport of $-\dot{X}(\tau)$ along c, multiplied by some smooth function $f:[a, b] \rightarrow \mathbb{R}$ with $f(\tau)=1$ and $f(a)=f(b)=0$.

[^50]: ${ }^{56}$ We obtain $H^{n}(|\rho|)$ by replacing the Riemannian metric $\langle\cdot, \cdot\rangle$ on the standard hyperbolic n-space, H^{n}, by the Riemannian metric $[\cdot, \cdot]:=|\rho|^{-1}\langle\cdot, \cdot\rangle$. Cf. Problem 70 Note that there's a misprint in Jost, [12, p. 228 (line -1)]; his " ρ " should be " ρ " ".

