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Abstract. We study a classical Bayesian statistics problem of sequen-
tially testing the sign of the drift of an arithmetic Brownian motion with
the ‘0−1’ loss function and a constant cost of observation per unit of time
for general prior distributions. The statistical problem is reformulated
as an optimal stopping problem with the current conditional probability
that the drift is non-negative as the underlying process. The volatility
of this conditional probability process is shown to be non-increasing in
time, which enables us to prove monotonicity and continuity of the op-
timal stopping boundaries as well as to characterize them completely in
the finite-horizon case as the unique continuous solution to a pair of inte-
gral equations. In the infinite-horizon case, the boundaries are shown to
solve another pair of integral equations and a converging approximation
scheme for the boundaries is provided. Also, we describe the dependence
between the prior distribution and the long-term asymptotic behaviour
of the boundaries.

1. Introduction

One of the classical questions in Sequential Analysis concerns the test-
ing of two simple hypotheses about the sign of the drift of an arithmetic
Brownian motion. More precisely, suppose that an observed process Xt is
an arithmetic Brownian motion

Xt = Bt+Wt,

where the constant B is unknown and W is a standard driftless Brown-
ian motion. Based on observations of the process X, one wants to test
sequentially the hypotheses H0 : B < 0 and H1 : B ≥ 0. In the Bayesian
formulation of this sequential testing problem, the drift B is a random vari-
able with distribution µ, corresponding to the hypothesis tester’s prior belief
about the likeliness of the different values B may take. Moreover, it is as-
sumed that B and W are independent. In this article, we consider a classical
formulation of the problem in which the accuracy and urgency of a decision
is governed by a ‘0− 1’ loss function together with a constant cost c > 0 of
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observation per unit time. The ‘0 − 1’ loss function means that the tester
gains nothing for a right decision but pays a penalty of size 1 for being
wrong. The overall goal is to find a decision rule minimising the expected
total cost (provided such a decision rule exists). If the decision is required
to be made before a fixed predetermined time T > 0, the problem is said to
have a finite horizon, and if there is no upper bound on the decision time,
an infinite horizon.

In the classical literature [5] by Chernoff and [2] by Bather on Bayesian
sequential testing procedures for the sign of a drift, the special case of a
normal prior distribution is studied. While Bather considers the ‘0− 1’ loss
function described above as well as a few other alternatives, Chernoff deals
with a different penalty function, which equals the magnitude |B| of the
error. In these papers, it is argued that the sequential analysis problem
reduces to a free-boundary problem for a function of time and the current
value of the observation process, but, as in the case of most time-dependent
free-boundary problems, the free-boundary problem lacks an explicit solu-
tion. Instead, the focus of these and many follow-up articles in the area,
including [3], [4], [6], [7], and [14] to mention a few, is on asymptotic ap-
proximations for optimal stopping boundaries (for more references, see the
survey article [15]). Only recently, [21] has characterised the optimal stop-
ping boundaries for the original Chernoff’s problem in terms of an integral
equation, which can be solved numerically.

In [20], the sequential testing problem is solved explicitly for a two-
point prior distribution by utilising the connection with a time-homogeneous
free-boundary problem. Notably, the natural spatial variable in this free-
boundary problem is not the value of the observation process, but the con-
ditional probability of the drift taking one of the two possible values. (Since
there is a one-to-one correspondence between these two processes at each
fixed time, the free-boundary problem could be transformed into one based
on the observation process instead, but that formulation would introduce
time-dependencies and thus make the explicit solution more difficult to find.)

The fact that the problem can be solved in a very special case of a
two-point prior, raises a natural question – can the sequential testing prob-
lem be solved for a more general prior distribution? In this article, we in-
vestigate the sequential testing problem under a general prior distribution.
Since this introduces time-dependencies in the problem, there is generally
no hope for explicit solutions. Nevertheless, additional structure is found,
which enables us to arrive at a fairly satisfactory answer.

To explain in some further detail, following standard arguments, the sta-
tistical problem is shown to admit an equivalent formulation as an optimal
stopping problem, which we study to characterise optimal decision rules.
The underlying process of the optimal stopping problem is chosen to be
the current probability, conditional on observations of X, that the drift is
non-negative, i.e.

Πt := P(B ≥ 0|FXt ).
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The pay-off function of the associated optimal stopping problem is then
concave in Π, so general results about preservation of concavity for optimal
stopping problems may be employed to derive structural properties of the
continuation region. Moreover, the volatility of the underlying process Π
can be shown to be decreasing in time (except for the two-point distribution
discussed above, in which case it is constant). These important facts allow us
to show that the optimal stopping boundaries are monotone, so techniques
from the theory of free-boundary problems with monotone boundaries can
be applied. In particular, the monotonicity of the boundaries enables us to
prove the smooth-fit condition and the continuity of the boundaries, as well
as to study the corresponding integral equations. In the finite-horizon case,
we characterise the optimal boundaries as a unique continuous solution to
a pair of integral equations. In the infinite-horizon case, the situation turns
out to be more subtle. The boundaries are shown to solve another pair of
integral equations, but whether the system admits a unique solution remains
unanswered. Instead, we provide a converging approximation scheme for the
optimal stopping boundaries, establishing that the optimal boundaries of the
finite-horizon problem converge pointwise to the optimal boundaries of the
infinite-horizon problem. Also, we determine the long-term asymptotes of
the boundaries and describe their dependence on the prior distribution.

From a technical perspective, we tackle a number of issues stemming from
the infinite-dimensionality of the parameter space of the underlying process
Π, the particular form of the unbounded payoff function, as well as the
presence of time-dependent infinite-horizon boundaries. Filtering and an-
alytic techniques are used to understand the behaviour of the conditional
probability Π, with a particular focus on the properties that are invariant
under any prior distribution. Also, the generality of the prior makes the
verification of the smooth-fit condition more involved than in standard situ-
ations. Moreover, the specific form of the payoff function with the additive
unbounded time term requires some additional effort to prove optimality of
the hitting time in the infinite-horizon case. Our approach to approximate
the optimal infinite-horizon boundaries could possibly be utilised in other
similar situations.

The paper is organised as follows. In Section 2, the sequential testing
problem is formulated and reduced to an optimal stopping problem. In Sec-
tion 3, filtering techniques are applied to find an expression for Π in terms
of the observation process X, and its dynamics in terms of the innovation
process are determined. We also study the volatility function of Π, and it is
shown that this function is non-increasing in time. In Section 4, the optimal
stopping problem is studied together with the corresponding free-boundary
problem, and it is shown that the optimal stopping boundaries are continu-
ous. In Section 5, integral equations for the boundaries are determined, and
uniqueness of solutions is established in the finite-horizon case. The long-
term asymptotic behaviour of the infinite-horizon boundaries is presented
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in Section 6. Finally, Section 7 is devoted to a special case of the normal
prior distribution.

Acknowledgement. We are most grateful to Ioannis Karatzas for his sug-
gestion to generalise the setting of an early version of the current paper, and
for sharing his unpublished notes on a related problem with us.

2. Problem formulation and reduction to an optimal stopping
problem

Let (Ω,P,F) be a complete probability space supporting a Brownian mo-
tion W and a random variable B with distribution µ such that W and B
are independent. Define

Xt = Bt+Wt.

Writing FX =
{
FXt
}
t≥0

for the filtration generated by the process X and the

null sets in F , our goal is to find a pair (τ, d) consisting of an FX -stopping
time τ and an FXτ -measurable decision rule d : Ω→ {0, 1}, indicating which
of the hypotheses H0 : B < 0 or H1 : B ≥ 0 to accept, in order to minimise
the Bayes risk

R(τ, d) := E[1{d=1,B<0}] + E[1{d=0,B≥0}] + cE[τ ].

Since d is FXτ -measurable, we have

R(τ, d) = E
[
E
[
1{B<0}|FXτ

]
1{d=1} + E

[
1{B≥0}|FXτ

]
1{d=0} + cτ

]
, (1)

which shows that, at a given stopping time τ , the decision rule

d =

{
1 if P

(
B ≥ 0|FXτ

)
≥ P

(
B < 0|FXτ

)
,

0 otherwise

is optimal. Consequently, writing

Πt := P(B ≥ 0|FXt ),

the sequential testing problem (1) reduces to an optimal stopping problem

V = inf
τ∈T

E[g(Πτ ) + cτ ], (2)

where g(π) = π ∧ (1− π) and T denotes the set of FX -stopping times. We
also consider the same sequential testing problem but with a finite horizon
T <∞. The corresponding optimal stopping problem is then

V T = inf
τ∈T T

E[g(Πτ ) + cτ ],

where T T = {τ ∈ T : τ ≤ T}.
Remark By translation, our study readily extends to testing the hypotheses
H0 : B < θ and H1 : B ≥ θ for any given θ ∈ R. The methods also extend to
the case when the two types of possible errors are associated with different
costs, i.e. when

R(τ, d) = aE[1{d=1,B<0}] + bE[1{d=0,B≥0}] + cE[τ ]
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for constants a > 0 and b > 0 with a 6= b. For simplicity of the presentation,
however, we assume throughout the article that θ = 0 and a = b = 1.

Note that in the cases when µ ((−∞, 0)) = 0 or µ ([0,∞)) = 0, the sequen-
tial testing problem becomes trivial as we can make the correct statement
about the sign of the drift at time zero. Hence, from now onwards, we always
assume that

0 < µ ([0,∞)) < 1. (3)

3. Conditional probability of non-negative drift

In this section, we derive a filtering equation for the distribution of B
conditional on the observations of X, which is then applied to prove some
elementary results concerning the conditional distribution of the sign of B.
We also show that there is an explicit one-to-one correspondence between
Π and the observation process X at each fixed time, and we determine the
dynamics of X and Π in terms of the innovation process.

3.1. Filtering of the unknown drift.

Proposition 3.1. Assume that q : R → R satisfies
∫
R |q(b)|µ(db) < ∞.

Then

E
[
q(B)|FXt

]
=

∫
R q(b)e

bXt−b2t/2µ(db)∫
R e

bXt−b2t/2µ(db)
(4)

for any t > 0.

Proof. The proof is based on standard methods in filtering theory, see e.g.
[1, Section 3.3], yet we include it for completeness. First define an enlarged
filtration G = {Gt}0≤t<∞ as the completion of {σ(B,Ws : 0 ≤ s ≤ t)}0≤t<∞.

Clearly, FXt ⊆ Gt for any t ≥ 0, so G is an enlargement of FX . Observing

that Zt := e−BWt−B2t/2 is a G-martingale, we define a new probability
measure P∗ on the restriction (Ω,GT ) for some large enough T by

dP∗
dP
|GT := ZT .

It can be shown that under P∗, Xt is a Brownian motion independent of
G0 and therefore also of B and that the law of B is µ (see [1, Proposition
3.13]). Thus Bayes’ rule (cf., for example, [16]) gives that

E
[
q(B)|FXt

]
=

E∗
[
q(B)/Zt|FXt

]
E∗
[
1/Zt|FXt

] =

∫
R q(b)e

bXt−b2t/2µ(db)∫
R e

bXt−b2t/2µ(db)

for t > 0 and for any function q : R→ R with
∫
R |q(b)|µ(db) <∞. �
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3.2. Conditional probability of non-negative drift. According to Propo-
sition 3.1,

Πt = E
[
1[0,∞)(B)|FXt

]
= π(t,Xt),

where the function π(t, x) : (0,∞)× R→ (0, 1) is given by

π(t, x) :=

∫
[0,∞) e

bx−b2t/2µ(db)∫
R e

bx−b2t/2µ(db)
. (5)

Denoting by

µt,x(db) :=
ebx−

b2

2
tµ(db)∫

R e
bx− b2

2
tµ(db)

(6)

the distribution of B at time t conditional on Xt = x, we thus have

π(t, x) =

∫
[0,∞)

µt,x(db).

Proposition 3.2. Assume that q : R → R is non-decreasing and satisfies∫
R |q(b)|µ(db) <∞. Then the function

u(t, x) :=

∫
R q(b)e

bx−b2t/2µ(db)∫
R e

bx−b2t/2µ(db)
=

∫
R
q(b)µt,x(db) (7)

is non-decreasing in x for any fixed t > 0.

Proof. We will prove the claim by showing that u(t, ·) is differentiable with
a non-negative derivative on R. By a standard differentiation lemma (see,
for example, [13, Theorem 6.28]), both the numerator and the denominator
in (7) are differentiable with respect to x with their derivatives obtained by
differentiating under the integral sign. Thus the derivative of u with respect
to the second argument x is given by

∂2u(t, x) =

∫
R
q(b)bµt,x(db)−

∫
R
q(b)µt,x(db)

∫
R
bµt,x(db) (8)

= Et,x [q(B)B]− Et,x [q(B)]Et,x [B] ,

where Et,x is the expectation operator under the probability measure Pt,x(·) :=
P(·|Xt = x). Since

Et,x [q(B)B]− Et,x [q(B)]Et,x [B] (9)

= Et,x [(B − Et,x[B])(q(B)− q(Et,x[B]))] ≥ 0,

this finishes the proof. �

Corollary 3.3. Let a ∈ R and t > 0. Then

(1) P (B > a |Xt = x) is non-decreasing in x,
(2) P (B < a |Xt = x) is non-increasing in x.
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Proof. The first claim follows by applying Proposition 3.2 to the function
q(b) = 1(a,∞)(b). The second claim follows from P (B < a |Xt = x) = 1 −
P (B ≥ a |Xt = x) and by applying Proposition 3.2 to the function q(b) =
1[a,∞)(b). �

Proposition 3.4. For any given t > 0, the function π(t, ·) : R → (0, 1)
defined in (5) is a strictly increasing continuous bijection.

Proof. First note that

(B − Et,x[B])(1[0,∞)(B)− 1[0,∞)(Et,x[B])) ≥ 0

and that

Pt,x
(
(B − Et,x[B])(1[0,∞)(B)− 1[0,∞)(Et,x[B])) > 0

)
> 0

since (3) implies µt,x ((−∞, 0)) > 0 and µt,x ([0,∞)) > 0. Consequently, the
inequality in (9) is strict, so x 7→ π(t, x) is strictly increasing.

Next, note that

π(t, x) =
1

1 +A(t, x)
,

where

A(t, x) =

∫
(−∞,0) e

bx− b
2

2
tµ(db)∫

[0,∞) e
bx− b2

2
tµ(db)

. (10)

By monotone convergence, we find that A(t, x)→ 0 as x→∞ and A(t, x)→
∞ as x→ −∞. Consequently, limx→∞ π(t, x) = 1 and limx→−∞ π(t, x) = 0,
which finishes the proof. �

An immediate consequence of Proposition 3.4 is that for any fixed t > 0,
the spatial inverse π(t, ·)−1 : (0, 1) → R exists. To facilitate intuition, we
denote the inverse by x(t, ·).

We end this subsection with a result that describes the long-term be-
haviour of the process Π.

Proposition 3.5. Πt → Π∞ a.s. as t → ∞, where Π∞ is a Bernoulli
random variable with P(Π∞ = 0) = µ((−∞, 0)) and P(Π∞ = 1) = µ([0,∞)).

Proof. Firstly, since Πt = E[1[0,∞)(B) | FXt ] is a bounded martingale, by the
martingale convergence theorem, the pointwise limit Π∞ := limt→∞Πt is a
well-defined random variable closing the martingale Π. By the law of large
numbers for Brownian motion and Proposition 6.1 below (the proof of which
is independent of the current result), for any b < 0 in the support of µ we
have

P (Π∞ = 0 |B = b) = 1,

so

P (Π∞ = 0) =

∫
(−∞,0)

P (Π∞ = 0 |B = b)µ(db) = µ((−∞, 0)).

Hence as Π∞ can only take values in [0, 1], the fact that E[Π∞] = E[Π0] =
µ([0,∞)) implies P (Π∞ = 1) = µ([0,∞)). �
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3.3. SDE for the conditional probability of non-negative drift. As-
suming that B has a first moment, the conditional expectation of B exists
and is given by

E[B|FXt ] =

∫
R be

bXt−b2t/2µ(db)∫
R e

bXt−b2t/2µ(db)
, (11)

compare (4). Moreover, the observation process X is represented in terms
of the innovation process

Ŵt := Xt −
∫ t

0
E[B|FXs ] ds

as

dXt = E[B|FXt ] dt+ dŴt.

Here Ŵ is a standard FX -Brownian motion (see [1, Proposition 2.30 on

p. 33]). Moreover, writing FŴ = {FŴt }t≥0 for the completion of the filtra-

tion {σ(Ŵs : 0 ≤ s ≤ t)}t≥0, we have FX = FŴ (see the remark on p. 35 in
[1]).

From now onwards, the following integrability condition on µ will be
imposed throughout the article.

Assumption.

∫
R
eεb

2
µ(db) <∞ for some ε > 0. (12)

Note that this assumption is a minor restriction on our hypothesis testing
problem since, given any probability distribution µ, the distributions µt,x
all satisfy (12) for t > 0. In other words, no matter what prior distribution
µ one starts with, the condition (12) will be satisfied after any infinitesimal
time of observation. Also, note that the assumption allows us to extend the
definition of µt,x in (6) to t = 0. Moreover, if we have a prior distribution ξ
on R given by

ξ(db) :=
eεb

2
µ(db)∫

R e
εb2µ(db)

,

then

µ0,x(db) = ξ2ε,x(db) :=
ebx−b

2(2ε)/2ξ(db)∫
R e

bx−b2(2ε)/2ξ(db)
. (13)

Consequently, the distribution µ0,x can be identified with a conditional dis-
tribution at time 0 given that the prior distribution at time −2ε was ξ and
the current value of the observation process is x. This gives us a general-
isation of the notion of the starting point of the observation process X to
allow X0 = x 6= 0, and we may regard time 0 as an interior point of the time
interval.

A closer look at the condition (12) and the expression (5) assures that
the standard differentiability lemma can be applied to differentiate π(t, x)
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with respect to both variables multiple times inside (−2ε,∞)×R. Applying
Ito’s formula to Πt = π(t,Xt), we find that

dΠt =

(
∂1π(t,Xt) + E[B|FXt ]∂2π(t,Xt) +

1

2
∂2

2π(t,Xt)

)
dt+ ∂2π(t,Xt) dŴt

= ∂2π(t, x(t,Πt)) dŴt,

where the second equality is verified using the expression (11) and

∂1π(t, x) = −
∫

[0,∞)

b2

2
µt,x(db) +

∫
[0,∞)

µt,x(db)

∫
R

b2

2
µt,x(db),

∂2π(t, x) =

∫
[0,∞)

bµt,x(db)−
∫
R
bµt,x(db)

∫
[0,∞)

µt,x(db), (14)

∂2
2π(t, x) =

∫
[0,∞)

b2µt,x(db)− 2

∫
R
bµt,x(db)

∫
[0,∞)

bµt,x(db)

−
∫
R
b2µt,x(db)

∫
[0,∞)

µt,x(db) + 2

∫
[0,∞)

µt,x(db)

(∫
R
bµt,x(db)

)2

.

Thus the dynamics of Πt are specified by a zero drift and the volatility

σ(t,Πt) = ∂2π(t, x(t,Πt)), (15)

being a positive function of the current time and the current value of Π.
Using (8), the volatility function can be expressed as

σ(t, π) = Et,x(t,π)[B1{B≥0}]− Pt,x(t,π) (B ≥ 0)Et,x(t,π)[B]

= (1− π)Et,x(t,π)[B1{B≥0}]− πEt,x(t,π)[B1{B<0}]. (16)

Example (The two-point distribution). Assume that P(B = a1) =
1 − p and P(B = a2) = p for some constants a1 < 0 < a2 and p ∈ (0, 1).
Then

P(B = a2|Xt = x) = π(t, x) =
pea2x−a

2
2t/2

(1− p)ea1x−a21t/2 + pea2x−a
2
2t/2

,

and
σ(t, π) = (a2 − a1)π(1− π).

This example with a two-point prior distribution is a special case of the
Wonham filter.

Example (The normal distribution). Assume that µ is the normal
distribution with meanm and variance γ2. Then the conditional distribution

P(·|Xt = x) = µt,x is also normal but with mean m+γ2x
1+tγ2

and variance γ2

1+tγ2
.

Consequently,

π(t, x) = Φ

(
m+ γ2x

γ
√

1 + tγ2

)
(17)

and
σ(t, π) = ϕ(Φ−1(π))

γ√
1 + tγ2

,
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where

ϕ(z) =
1√
2π
e−z

2/2 dz

and

Φ(y) =

∫ y

−∞
ϕ(z) dz

are the density and the cumulative distribution of the standard normal ran-
dom variable, respectively. Note that this instance of a normal prior dis-
tribution is a special case of the well-known Kalman-Bucy filter, see for
example [16, Chapter 6].

3.4. Volatility of the conditional probability process. In this section
we study the volatility function σ. The main result, Corollary 3.8, states
that the volatility is non-increasing as a function of time.

Let π ∈ (0, 1) be a fixed number and consider the map x(·, π) : [0,∞)→ R
sending t 7→ x(t, π). Note that the graph of this function is the trajectory
that the process Xt has to follow in order for the conditional probability
process Πt to stay constant at the value π. Thus we call x(·, π) the π-level
curve. Some handy regularity of x(·, ·) and σ(·, ·) is brought to light in the
following.

Proposition 3.6. The functions x(·, ·) : [0,∞) × (0, 1) → R and σ(·, ·) :
[0,∞)× (0, 1)→ R are both C1.

Proof. Define F : (−ε,∞) × R → (−ε,∞) × (0, 1) by F (t, x) = (t, π(t, x)),
where ε is as in the assumption (12). The function F is C1, which is evident
by applying the standard differentiation lemma as in the proof of Proposition
3.2. The Jacobian matrix of F is

JF (t, x) =

(
1 0

∂1π(t, x) ∂2π(t, x)

)
.

Since F is invertible and det(JF (t, x)) = ∂2π(t, x) > 0 for all t > −ε and all
x ∈ R, the inverse function theorem tells us that the inverse of F is also C1,
with

JF−1(F (t, x)) = (JF (t, x))−1 .

Consequently, x(·, ·) is C1 on (−ε,∞)×(0, 1) with the derivatives ∂1x(t, π) =
−∂1π(t, x(t, π))/∂2π(t, x(t, π)) and ∂2x(t, π) = 1/∂2π(t, x(t, π)). Finally,
since a product of continuous functions is continuous, by the chain rule,
σ(·, ·) is continuously differentiable on (−ε,∞) × (0, 1) and so on [0,∞) ×
(0, 1). �

Next, denoting the initial value Π0 by π0 ∈ (0, 1), we show that the tails of
the conditional distribution µt,x are decreasing along the level curve x(·, π0).

Proposition 3.7.
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(1) If a ≥ 0, then for any t > 0,

P (B > a|Xt = x(t, π0))− P(B > a) ≤ 0. (18)

Supposing µ((a,∞)) > 0, the inequality above is strict if and only if
µ([0, a]) > 0.

(2) Likewise, if a < 0, then for any t > 0,

P (B < a|Xt = x(t, π0))− P(B < a) ≤ 0. (19)

Supposing µ((−∞, a)) > 0, the inequality above is strict if and
only if µ([a, 0)) > 0.

Proof. We prove only the first of the two claims as the proof of the second
one follows the same argument with straightforward modifications.

In the case µ((a,∞)) = 0, the claim holds trivially with equality in (18).
Thus we assume that µ((a,∞)) > 0 in what follows. Writing x(t) instead
of x(t, π0) for brevity, we note that using µt,x(t)([0,∞)) = µ([0,∞)), the
inequality (18) is easily seen to be equivalent to∫

(a,∞) e
bx(t)−b2 t

2µ(db)∫
[0,∞) e

bx(t)−b2 t
2µ(db)

≤ µ((a,∞))

µ([0,∞))
. (20)

Now, we will split the proof into consideration of two separate cases.
Case 1: a ≥ 2x(t)/t. Here∫

[0,a] e
bx(t)−b2 t

2µ(db)∫
(a,∞) e

bx(t)−b2 t
2µ(db)

≥ eax(t)−a2 t
2µ([0, a])

eax(t)−a2 t
2µ((a,∞))

=
µ([0, a])

µ((a,∞))
,

which is equivalent to (20). Since µ((a,∞)) > 0, the inequality above is
strict if and only if µ([0, a]) > 0.
Case 2: x(t) > 0 and 0 < a < 2x(t)/t. Using that µt,x(t)([0,∞)) = µ([0,∞)),
we get ∫

[0,∞)
ebx(t)−b2t/2µ(db) = µ([0,∞))

∫
(−∞,0) e

bx(t)−b2t/2µ(db)

µ((−∞, 0))

< µ([0,∞)),

where the inequality holds since x(t) > 0. Hence rewriting∫
(a,∞) e

bx(t)−b2t/2µ(db)

µ((a,∞))
=

∫
[0,∞) e

bx(t)−b2t/2µ(db)−
∫

[0,a] e
bx(t)−b2t/2µ(db)

µ([0,∞))− µ([0, a])

and keeping in mind that 0 < a < 2x(t)/t, one clearly sees that∫
(a,∞) e

bx(t)−b2t/2µ(db)

µ((a,∞))
≤
∫

[0,∞) e
bx(t)−b2t/2µ(db)

µ([0,∞))
(21)

with the strict inequality if and only if µ([0, a]) > 0. As (21) is equivalent
to (20), the proof is complete. �
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Corollary 3.8. For any π ∈ (0, 1) fixed, the volatility function σ(·, π) : [0,∞)→ R
defined in (15) is non-increasing in time. Moreover, it is strictly decreas-
ing for any initial prior µ except a two-point distribution in which case
t 7→ σ(t, π) is a constant function.

Proof. A key to the proof is a realisation that it is sufficient to prove that
σ(0, π0) ≥ σ(s, π0) for any s > 0; the rest will immediately follow by a
‘moving-frame’ argument. More precisely, by ‘moving-frame’ we mean that
for any π ∈ (0, 1), t ≥ 0, one can think of µt,x(t,π) as the initial prior
distribution at time zero and so immediately obtain that σ(t, π) ≥ σ(t+s, π)
for any s > 0.

Using a shorthand x(t) for x(t, π0) as before, recall from (16) that

σ(t, π0) = (1− π0)Et,x(t)[B1{B≥0}]− π0Et,x(t)[B1{B<0}].

Consequently,

σ(0, π0)− σ(t, π0) = (1− π0)
(
E[B1{B≥0}]− Et,x(t)[B1{B≥0}]

)
+π0

(
Et,x(t)[B1{B<0}]− E[B1{B<0}]

)
≥ 0

by Proposition 3.7. Moreover, by the same proposition, the inequality re-
duces to an equality if and only if µ is a two-point distribution. �

Remark It seems difficult to find an easy intuitive argument for the mono-
tonicity of the volatility function. As an example, consider a symmetric
prior distribution, and a strictly positive time-point t at which the obser-
vation process satisfies Xt = 0. Then the conditional distribution µt,0 is
also symmetric, so Πt = Π0 = 1/2. One certainly expects that µt,0 is ob-
tained from the prior distribution µ by pushing mass towards zero (this
is also verified in Proposition 3.7 above). One could expect that the Π-
process of a distribution with a lot of mass close to zero is sensitive to small
changes in the observation process since the mass easily may ‘spill over’ to
the other side of zero, and thus such a distribution gives rise to a compara-
tively large volatility. On the other hand, a concentrated distribution makes
it difficult to distinguish possible drifts from each other, and changes in the
observation process would to a higher degree be attributed to the Brownian
fluctuations. This implies a slow learning process, which indicates a small
volatility. Corollary 3.8 shows that the latter effect outweighs the former
one.

4. Analysis of the optimal stopping problem

In this section, we study the perpetual optimal stopping problem (2) and
its finite-horizon counterpart under the integrability condition (12). Most
of the time the emphasis is on the perpetual case, though the corresponding
results also hold for the finite horizon case by the same arguments. If the
analogy is straightforward, we only comment on it, otherwise, more details
are provided.
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4.1. The value function with arbitrary starting points. Recall that

dΠt = σ(t,Πt) dŴt,

where

σ(t, π) = ∂2π(t, x(t, π)) > 0

for all (t, π) ∈ [0,∞) × (0, 1) (beware that π(·, ·) is a function, while π is a
real number). We embed the optimal stopping problem (2), in which the
starting point of the process Π is given by Π0 := P(B ≥ 0), into the optimal
stopping problem

v(t, π) = inf
τ∈T

E
[
g(Πt,π

t+τ ) + cτ
]
, (t, π) ∈ [0,∞)× (0, 1), (22)

for the process Πt,π = Π given by{
dΠt+s = σ(t+ s,Πt+s) dŴs , (s > 0)
Πt = π,

(23)

where T denotes the set of stopping times with respect to the completed
filtration of Ŵ . The SDE (23) possesses a unique solution since σ(·, ·) is
locally Lipschitz by Proposition 3.6. Furthermore, the embedding has a
consistent interpretation also at time t = 0, which is given by (13) and the
remark following it. Note that choosing τ = 0 gives v(t, π) ≤ g(π).

Proposition 4.1. The value function v(t, π) is concave in π for any fixed
t ≥ 0.

Proof. This follows by a standard approximation argument using optimal
stopping problems where stopping is only allowed at a discrete set of time-
points, compare [8].

To outline this, denote by Tt,n, where t ≤ n, the set of stopping times in
T taking values in {k2−n, k = 0, 1, ..., n2n} ∩ [0, n− t], n = 1, 2, ..., and let

vn(t, π) = inf
τ∈Tt,n

E
[
g(Πt,π

t+τ ) + cτ
]
.

Then vn(n, π) = g(π) is concave in π. By preservation of concavity for
martingale diffusions, see [10] (the results of [10] extend to the current setting
with both an upper and a lower bound on the state space), π 7→ vn(t, π) is
concave also for t ∈ (n − 2−n, n). Next, at time t = n − 2−n the value is
given by dynamic programming as

vn(t, π) = min
{
g(π),E

[
vn(n,Πt,π

n ) + c2−n
]}
,

which is concave (being the minimum of two concave functions). Proceeding
recursively shows that vn is concave in π at all times t ∈ [0, n]. Since vn
converges pointwise to v as n → ∞, this implies that also v is concave in
π. �

Proposition 4.2. The value function v(t, π) is non-decreasing in t for every
fixed π ∈ (0, 1).
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Proof. This can be proven using approximation by Bermudan options as in
the proof of Proposition 4.1 above. Indeed, for a fixed time t ≥ 0 one may
approximate v(t, π) by the optimal value in the case when stopping times
are restricted to take values in the set {k2−n : n ∈ N, k ∈ {0, 1, . . . , n2n}}.
Since the expected value of a concave function of a martingale diffusion is
non-increasing in the volatility, see [10], the approximation is non-decreasing
in t by Corollary 3.8. Letting n→∞ finishes the proof. �

Proposition 4.3. The value function v is continuous on [0,∞)× [0, 1].

Proof. By concavity of v in the second variable together with the bounds
0 ≤ v ≤ g, we have that v is Lipschitz continuous in π for any fixed t, with
Lipschitz coefficient 1. Thus it suffices to check that v is continuous in time.
To do this, let t2 > t1 ≥ 0 and note that

v(t1, π) ≥ v(t2, π) ≥ E[v(t2,Π
t1,π
t2

)] ≥ v(t2, π)− E[|Πt1,π
t2
− π|]

In the above, the first inequality holds by Proposition 4.2, the second one
follows from Jensen’s inequality, and the third one holds by the concavity
of v in the second variable and the bounds 0 ≤ v ≤ g. Thus

0 ≤ v(t2, π)− v(t1, π) ≤ E[|Πt1,π
t2
− π|].

Since the expected value of a convex function of a martingale diffusion
is non-decreasing in the volatility (again by [10]) and σ(0, ·) ≥ σ(·, ·) on

[0,∞)× (0, 1), we deduce that E[|Πt1,π
t2
− π|] ≤ E[|Π0,π

t2−t1 − π|] → 0 as
t2 − t1 ↘ 0. This finishes the proof. �

Lemma 4.4. We have v(t, 1/2) < g(1/2) for all times t ≥ 0.

Proof. Let t ≥ 0, and define Aε := [t, t+ ε]× [1/2− (c+ 1)ε, 1/2 + (c+ 1)ε]
for ε small enough so that Aε ⊆ [t,∞)× (0, 1). Let

τε := inf{s ≥ 0 : (t+ s,Π
t,1/2
t+s ) /∈ Aε}

be the first exit time from Aε. By Proposition 3.6 and Corollary 3.8,
σ(·, ·) is continuous and strictly positive on [0,∞) × (0, 1). Thus σε :=
inf(s,π)∈Aε σ(s, π) is strictly positive and non-increasing as a function of ε,
so σε is bounded away from 0 as ε→ 0. Now,

g(1/2)− v(t, 1/2) ≥ 1/2− E
[
g(Π

t,1/2
t+τε ) + cτε

]
≥ 1/2− (1/2− (c+ 1)ε+ cε)P(τε < ε)− (1/2 + cε)P(τε = ε)

= ε− (c+ 1)εP(τε = ε). (24)

Here

P(τε = ε) = P
(

sup
0≤s≤ε

∣∣∣∣∫ s

0
σ(t+ u,Π

t,1/2
t+u ) dŴu

∣∣∣∣ ≤ (c+ 1)ε

)
≤ P

(
sup

0≤s≤ε

∣∣∣σεŴs

∣∣∣ ≤ (c+ 1)ε

)
≤ P

(
sup

0≤s≤ε
Ŵs ≤ (c+ 1)ε/σε

)
→ 0 (25)
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as ε → 0, where the first inequality follows from [10, Lemma 10]. Conse-
quently, (24) and (25) yield that g(1/2) − v(t, 1/2) > 0, which finishes the
proof of the claim. �

4.2. The structure of an optimal strategy. Recalling that 0 ≤ v(t, π) ≤
g(π), we denote by

C := {(t, π) ∈ [0,∞)× (0, 1) : v(t, π) < g(π)}
the continuation region, and by

D := {(t, π) ∈ [0,∞)× (0, 1) : v(t, π) = g(π)}
the stopping region. Since v is continuous, C is open and D is closed. Resort-
ing to intuition from optimal stopping theory, we expect that the stopping
time

τ∗ := inf{s ≥ 0 : (t+ s,Πt,π
t+s) ∈ D} (26)

is an optimal stopping time in (22). (Note that standard optimal stopping
theory does not apply since the pay-off process is not uniformly integrable.)
The optimality of τ∗ is verified below, see Theorem 4.6.

Proposition 4.5. There exist two functions b1(t) : [0,∞) → [0, 1/2) and
b2(t) : [0,∞)→ (1/2, 1] such that

C = {(t, π) : b1(t) < π < b2(t)}.
The function b1 is non-decreasing and right-continuous with left limits. Sim-
ilarly, b2 is non-increasing and right-continuous with left limits.

Proof. The existence of b1 and b2 follows from the concavity of v and Lemma 4.4.
The monotonicity properties are immediate consequences of Proposition 4.2.
Moreover, by the continuity of v, the function b1 is upper semi-continuous
and b2 is lower semi-continuous. Hence, they are right-continuous with left
limits. �

Let us also consider the same optimal stopping problem with a finite
horizon T > 0. It is written as

vT (t, π) = inf
τ∈TT−t

E
[
g(Πt,π

t+τ ) + cτ
]
, (27)

where TT−t = {τ ∈ T : τ ≤ T − t}. Note that all results for the perpetual
problem (22) described above in this section also hold for the finite horizon
problem (27), with the obvious modifications regarding the time horizon,
by the same proofs. Moreover, the pay-off process in (27) is continuous
and bounded, so standard optimal stopping theory (see, for example, [19,
Corollary 2.9 on p. 46]) yields that

τT := inf{s ≥ 0 : Πt,π
t+s /∈ (bT1 (t+ s), bT2 (t+ s))}

is an optimal stopping time in (27), where bT1 and bT2 are the corresponding
boundaries enclosing the finite-horizon continuation region

CT := {(t, π) ∈ [0, T ]× (0, 1) : vT (t, π) < g(π)}.
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The infinite-horizon problem can be approximated by finite-horizon prob-
lems in the following sense.

Theorem 4.6. The functions vT ↘ v, bT1 ↘ b1, and bT2 ↗ b2 pointwise as
T → ∞. The stopping times τT ↗ τ∗ a.s. as T → ∞, where τ∗ is defined
in (26). Moreover, τ∗ is optimal in (22).

Proof. Since vT ≥ v, we have that b1 ≤ bT1 < bT2 ≤ b2 and τT ≤ τ∗.
By bounded and monotone convergence, vT (t, π) ↘ v(t, π) pointwise as
T → ∞, so bT1 ↘ b1 and bT2 ↗ b2 pointwise as T → ∞. Consequently, by
the monotonicity of bi and bTi , it follows that τT ↗ τ∗ a.s. Thus

vT (t, π) = E
[
g(Πt,π

t+τT
) + cτT

]
→ E

[
g(Πt,π

t+τ∗) + cτ∗
]

by bounded and monotone convergence. By uniqueness of limits,

v(t, π) = E
[
g(Πt,π

t+τ∗) + cτ∗
]
,

so τ∗ is optimal. �

4.3. Optimal stopping boundaries and the free-boundary problem.

Proposition 4.7. The boundaries b1 and b2 satisfy 0 < b1(t) < 1/2 <
b2(t) < 1 for all times t ≥ 0.

Proof. The two middle inequalities are granted by Lemma 4.4. To see that
b1 > 0 on [0,∞), without loss of generality, it is sufficient to show that
b1 > 0 on (0,∞); this is due to the possibility provided by (13) to start
the process Π slightly earlier. Let us assume, to reach a contradiction, that
b1(t) = 0 for some t > 0. Then, by monotonicity, b1 ≡ 0 on [0, t]. By the
martingale inequality,

P(τ∗ ≤ t) ≤ P
(

sup
0≤s≤t

Π0,π
s ≥ 1/2

)
≤ 2π.

Consequently,

E[τ∗] ≥ t(1− 2π),

so if π ≤ ct/(2ct+1), then v(0, π) ≥ cE[τ∗] ≥ π. Thus b1(0) ≥ ct/(2ct+1) >
0, which contradicts our assumption. Therefore b1 > 0 at all times. The
proof that b2 < 1 is analogous. �

Proposition 4.8. The triplet (v, b1, b2) satisfies the free boundary problem ∂1v(t, π) + σ(t,π)2

2 ∂2
2v(t, π) + c = 0 b1(t) < π < b2(t)

v(t, π) = π π ≤ b1(t)
v(t, π) = 1− π π ≥ b2(t).

(28)

Moreover, the smooth-fit condition holds in the sense that the function π 7→
v(t, π) is C1 for all t ≥ 0.
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Proof. The proof that the differential equation in (28) holds is based on the
strong Markov property and the continuity of v. However, the procedure is
standard and we therefore omit the argument, referring to the proof of [12,
Theorem 7.7] for the details instead. The value of v for π /∈ (b1(t), b2(t))
follows from concavity and the definition of b1 and b2.

For the smooth-fit condition, note that the value function π 7→ v(t, π) is
continuous on (0, 1) and C1 for π ∈ (b1(t), b2(t)) as well as for π ∈ (0, b1(t))∪
(b2(t), 1). Thus it remains to check the C1 property at b1(t) and b2(t). To
prove the C1 property at b1(t) (the C1 property at b2(t) being completely
analogous), note that since v is concave in π, it suffices to show that

lim inf
ε↓0

v(t, b(t) + ε)− v(t, b(t))

ε
≥ 1. (29)

Without loss of generality, we do this for t = 0, letting π = b1(0).
Let ε ∈ (0, 1/2−π) and denote by τ ε the first hitting time of the stopping

region for Π0,π+ε. Then

v(0, π + ε)− v(0, π) ≥ E
[
g(Π0,π+ε

τε )− g(Π0,π
τε )
]

≥ ε− 2E
[
(Π0,π+ε

τε −Π0,π
τε )1{Π0,π+ε

τε >1/2}

]
.

Thus, to prove (29) it suffices (by the Cauchy-Schwartz inequality) to show
that

E
[
(Π0,π+ε

τε −Π0,π
τε )2

]
P
(

Π0,π+ε
τε > 1/2

)
= o(ε2) (30)

as ε→ 0. To do this, first assume that σ is Lipschitz continuous in π on any
compact time interval, and define

h(t) := E
[
(Π0,π+ε

t∧τε −Π0,π
t∧τε)

2
]
.

Fixing T > 0, for t ∈ [0, T ] we have

h(t) = E

[(
ε+

∫ t∧τε

0
σ(s,Π0,π+ε

s )− σ(s,Π0,π
s ) dŴs

)2
]

≤ ε2 +

∫ t

0
E
[
D(T )2

(
Π0,π+ε
s −Π0,π

s

)2
1{s≤τε}

]
ds

≤ ε2 +D(T )2

∫ t

0
h(s) ds,

where D(T ) is a Lipschitz constant for σ on [0, T ] × (0, 1). Consequently,
Gronwall’s inequality yields

h(T ) ≤ ε2eD(T )2T . (31)
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Next, denote by f(y) := π − π
1−π (y − π) the affine function satisfying

f(π) = π and f(1) = 0, and note that f ≤ g on [π, 1]. Therefore,

cE[τ ε] = v(0, π + ε)− E[g(Π0,π+ε
τε )]

≤ g(π + ε)− E[f(Π0,π+ε
τε )]

= π + ε− (π − π

1− πE[Π0,π+ε
τε − π])

= ε/(1− π),

where the inequality follows from the monotonicity of b1 and the last equality
by optional sampling. Thus, writing D = 1/(1− π), we have

P(τε > T ) ≤ Dε/(cT ). (32)

Moreover, writing

τπ,1/2 := inf{s ≥ 0 : Π0,π+ε
s /∈ (π, 1/2)},

we have

P
(

Π0,π+ε
τε > 1/2

)
≤ P

(
Π0,π+ε
τπ,1/2

= 1/2
)
≤ ε

1
2 − π

= Cε (33)

for C = 2/(1−2π), where we used the martingality of Π to obtain the second
inequality. Putting together (31), (32) and (33) yields

E
[
(Π0,π+ε

τε −Π0,π
τε )2

]
P
(

Π0,π+ε
τε > 1/2

)
≤
(
E
[
(Π0,π+ε

τε −Π0,π
τε )2

1{τε≤T}

]
+ P(τε > T )

)
P
(

Π0,π+ε
τε > 1/2

)
≤ ε2C(εeD(T )2T +D/(cT )).

Given δ > 0, it is possible to choose T large enough so that CD/(cT ) ≤ δ/2,

and then to choose ε > 0 small enough so that CεeD
2(T )T ≤ δ/2. This proves

(30) and thus finishes the proof of the smooth-fit property if σ is Lipschitz
in π, locally uniformly in t.

For a general σ, due to the C1 regularity of σ on [0,∞)× (0, 1), one can
find another volatility function σ̂ that is Lipschitz continuous in π on any
given compact interval in time, and that satisfies 0 ≤ σ̂ ≤ σ everywhere
and σ̂ = σ on [0,∞) × [b1(0), b2(0)]. By monotonicity in the volatility, the
corresponding value function v̂ satisfies v̂ ≥ v. On the other hand, since
σ̂ = σ on [0,∞) × [b1(0), b2(0)] and since τ∗ is optimal for the volatility σ,
we also have v̂ ≤ v, so v̂ = v. By the above argument, v̂ is C1, which finishes
the proof. �

Theorem 4.9. The boundaries b1 and b2 are both continuous.

Proof. Let us prove continuity of b1 (the proof for b2 is analogous). We know
that b1 is right-continuous, so it suffices to assume for a contradiction that
b1 is not continuous at some time t0 > 0. By monotonicity, b1(t0) > b1(t0−).
In the continuation region, ∂1v ≥ 0, so (28) yields

σ2

2
∂2

2v ≤ −c.
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Since σ is locally bounded away from zero, this means that on each compact
set we can find some constant d > 0 such that ∂2

2v ≤ −d. By Proposition 4.8,
the map π 7→ v(t, π) is C1 on [b1(t), b2(t)] for any t ≥ 0, so for t < t0 and
b1(t) < π < b1(t0), we have

v(t, π)− g(π) =

∫ π

b1(t)

∫ w

b1(t)
∂2

2(v − g)(t, u) du dw

≤ −d(π − b1(t))2/2.

Choosing π = b1(t0−)+b1(t0)
2 and letting t→ t0 gives

v(t0,
b1(t0−) + b1(t0)

2
)− g(

b1(t0−) + b1(t0)

2
) ≤ −d(b1(t0)− b1(t0−))2/2 < 0.

This contradicts the assumption that (t0,
b1(t0−)+b1(t0)

2 ) belongs to the stop-
ping region, so b1 has to be continuous. �

Remark Even though, in this section, all the results are formulated for the
perpetual problem (22), it is straightforward to check that the correspond-
ing results for the finite-horizon problem (27) also hold. In that case, the
boundaries are continuous and monotone, with 0 < bT1 < 1/2 < bT2 < 1 on
[0, T ) and b1(T ) = b2(T ) = 1/2. Also, the assertions of Proposition 4.8 hold
for (vT , bT1 , b

T
2 ) on the time interval [0, T ] in place of (v, b1, b2).

5. Integral equations for the boundaries

It is well-known that optimal stopping boundaries, under some condi-
tions, can be characterized by certain integral equations, compare [9] and
[18]. In this section, we study the integral equations for the optimal stop-
ping boundaries arising in our sequential testing problem. For the problem
(27) with finite horizon, a pair of integral equations is shown to completely
characterise the optimal stopping boundaries within the class of continu-
ous solutions. The situation in the perpetual case is more delicate, and
uniqueness of solutions remains an open question.

5.1. A pair of integral equations for the finite-horizon boundaries.

Theorem 5.1. Assume that T < ∞. Then the pair (bT1 , b
T
2 ) is the unique

continuous solution of c1(t) = E
[
g(Π

t,c1(t)
T )

]
+ c

∫ T−t
0 P(c1(t+ u) < Π

t,c1(t)
t+u < c2(t+ u)) du

1− c2(t) = E
[
g(Π

t,c2(t)
T )

]
+ c

∫ T−t
0 P(c1(t+ u) < Π

t,c2(t)
t+u < c2(t+ u)) du

(34)

such that 0 < c1(t) ≤ 1/2 ≤ c2(t) < 1 for all t ∈ [0, T ].

Proof. Applying Ito’s formula (more precisely, an extension of Ito’s formula,
compare the results of [17], which can be applied thanks to the monotonicity
of bT1 and bT2 ) and then taking expectations yields

E
[
g(Πt,π

T )
]

= vT (t, π)− c
∫ T−t

0
P(bT1 (t+ u) < Πt,π

t+u < bT2 (t+ u)) du.
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Plugging in π = bT1 (t) and π = bT2 (t) shows that (bT1 , b
T
2 ) solves (34).

For uniqueness, assume that (c1, c2) is another continuous solution to (34)
with 0 < c1(t) ≤ 1/2 ≤ c2(t) < 1, and define

V (t, π) := E
[
g(Πt,π

T )
]

+ c

∫ T−t

0
P(c1(t+ u) < Πt,π

t+u < c2(t+ u)) du.

Then V (t, c1(t)) = c1(t) and V (t, c2(t)) = 1 − c2(t) by (34), and V (T, π) =
g(π). Moreover, by the Markov property, the process

Ms := V (t+ s,Πt,π
t+s) + c

∫ s

0
1(c1(t+u),c2(t+u))(Π

t,π
t+u) du

is a martingale for any (t, π). In particular, the process

M̃s := vT (t+ s,Πt,π
t+s) + c

∫ s

0
1(bT1 (t+u),bT2 (t+u))(Πt,π

t+u) du

is also a martingale.
Claim 1: V (t, π) = g(π) for π /∈ (c1(t), c2(t)).
Assume that π ≤ c1(t) (the case π ≥ c2(t) is similar), and let

γc := inf{s ≥ 0 : Πt,π
t+s ≥ c1(t+ s)} ∧ (T − t).

Then

V (t, π) = E
[
V (t+ γc,Π

t,π
t+γc)

]
= E

[
Πt,π
t+γc

]
= π = g(π)

by optional sampling and the martingale property of M and Π.
Claim 2: V ≥ vT .
Take (t, π) such that c1(t) < π < c2(t), and let

τc := inf{s ≥ 0 : Πt,π
t+s /∈ (c1(t+ s), c2(t+ s))} ∧ (T − t).

Then

V (t, π) = E
[
V (t+ τc,Π

t,π
t+τc)

]
+ cE

[∫ τc

0
1(c1(t+u),c2(t+u))(Π

t,π
t+u) du

]
= E

[
g(Πt,π

t+τc)
]

+ cE [τc] ≥ vT (t, π).

From this and Claim 1, Claim 2 follows.
Claim 3: bT1 ≤ c1 and c2 ≤ bT2 .
Assume that bT1 (t) > c1(t) for some t. Choose π = c1(t), and let

γb := inf{s ≥ 0 : Πt,π
t+s ≥ bT1 (t+ s)} ∧ (T − t).

Then, by right-continuity of bT1 and c1,

E
[∫ γb

0
1(c1(t+u),c2(t+u))(Π

t,π
t+u) du

]
> 0. (35)
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On the other hand, by optional sampling and martingality of M and M̃ we
have

0 = V (t, π)− vT (t, π)

= E
[
V (t+ γb,Π

t,π
t+γb

)− vT (t+ γb,Π
t,π
t+γb

)
]

+cE
[∫ γb

0
1(c1(t+u),c2(t+u))(Π

t,π
t+u) du

]
.

Since V ≥ v by Claim 2, this contradicts (35) and thus bT1 ≤ c1. The claim
c2 ≤ bT2 is proved similarly.
Claim 4: bT1 ≥ c1 and c2 ≥ bT2 .
Assume that c1(t) > bT1 (t) for some t ≥ 0, and pick π ∈ (bT1 (t), c1(t)). Let
τb := inf{s ≥ 0 : Πt,π

t+s /∈ (bT1 (t+ s), bT2 (t+ s))} ∧ (T − t). Then

E
[∫ τb

0
1(bT1 (t+u),c1(t+u)](Π

t,π
t+u)

]
> 0. (36)

On the other hand,

E
[
g(Πt,π

t+τb
)
]

= Et,π
[
V (t+ τb,Π

t,π
t+τb

)
]

= V (t, π)− cE
[∫ τb

0
1(c1(t+u),c2(t+u))(Π

t,π
t+u) du

]
and

E
[
g(Πt,π

t+τb
)
]

= Et,π
[
vT (t+ τb,Π

t,π
t+τb

)
]

= vT (t, π)− cE
[∫ τb

0
1(bT1 (t+u),bT2 (t+u))(Π

t,π
t+u) du

]
.

Hence, using Claim 2 and Claim 3 above, we find that

E
[∫ τb

0
1(bT1 (t+u),c1(t+u)](Π

t,π
t+u) du

]
≤ 0,

which contradicts (36). Consequently, such a point π does not exist, so
bT1 ≥ c1. Similarly, c2 ≥ bT2 .

Finally, combining Claim 3 and Claim 4 finishes the proof of the theorem.
�

5.2. A pair of integral equations for the infinite-horizon bound-
aries.

Theorem 5.2. The pair (b1, b2) is a solution of{
b1(t) = c

∫∞
0 P(b1(t+ u) < Π

t,b1(t)
t+u < b2(t+ u)) du

1− b2(t) = c
∫∞

0 P(b1(t+ u) < Π
t,b2(t)
t+u < b2(t+ u)) du.

(37)

Proof. For fixed T > 0, an application of Itô’s formula as in the preceding
proof gives

E
[
v(T,Πt,π

T )
]

= v(t, π)− c
∫ T−t

0
P(b1(t+ u) < Πt,π

t+u < b2(t+ u)) du.
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Since v is bounded and Πt,π
T converges to either 0 or 1 as T →∞ by Propo-

sition 3.5, we find that

v(t, π) = c

∫ ∞
0

P(b1(t+ u) < Πt,π
t+u < b2(t+ u)) du.

Plugging in π = b1(t) and π = b2(t) shows that (b1, b2) solves (37). �

Remark The main technical difficulty when trying to apply the uniqueness
proof of Theorem 5.1 to the perpetual problem lies in the lack of a straight-
forward extension of the optional sampling theorem to unbounded, possibly
infinite stopping times.

5.3. The case of a symmetric volatility function. Now assume that the
volatility function is symmetric about π = 1/2, i.e. σ(t, π) = σ(t, 1−π). This
is the case, for example, if the prior distribution µ is symmetric about zero
in the sense that µ([0, a)) = µ((−a, 0)) for all a > 0. Then, by symmetry,
bT1 = 1− bT2 , and we set bT := bT1 . The following result is a straightforward
consequence of Theorem 5.1.

Theorem 5.3. Assume that σ is symmetric about π = 1/2. Then the
boundary bT is the unique continuous solution of

c(t) = E
[
g(Π

t,c(t)
T )

]
+ c

∫ T−t

0
P(c(t+ u) < Π

t,c(t)
t+u < 1− c(t+ u)) du(38)

such that 0 < c(t) ≤ 1/2 for all t ∈ [0, T ].

Remark Although not necessarily symmetric, all normal prior distributions
as well as all two-point priors give rise to symmetric volatilities, compare
Section 3.

6. Long-term asymptotics of the volatility and the boundaries

Since the boundaries b1 and b2 are monotone, the limits bi(∞) := limt→∞ bi(t),
i = 1, 2, exist with b1(∞) ≤ 1/2 and b2(t) ≥ 1/2. In this section we de-
termine these limits. To do that, we first derive a few limiting properties
of level curves as well as study the limit σ(∞, π) := limt→∞ σ(t, π) of the
volatility.

Let us define

r = inf{s ≥ 0 : µ ([s, s+ ε)) > 0 for all ε > 0} (39)

and

l = sup{s < 0 : µ ((s− ε, s]) > 0 for all ε > 0}. (40)

We write m = (l + r)/2 for the midpoint between l and r.
The following proposition will serve as a useful device for understanding

long-term volatility.

Proposition 6.1.
1. If α > m, then π(t, αt)→ 1 as t→∞.
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2. If α < m, then π(t, αt)→ 0 as t→∞.

Proof. Given α ∈ R, define

h(t) :=

∫
(−∞,0) exp

(
−(b− α)2 t

2

)
µ(db)∫

[0,∞) exp
(
−(b− α)2 t

2

)
µ(db)

,

so that π(t, αt) = 1/(1 + h(t)). We will prove the claims in two different
cases separately.

(i) First case: l < r.
1. First note that, in view of Proposition 3.4, it suffices to treat the

case α ∈ (m, r). For such α, fix γ > r such that γ−α < α− l. Then

h(t) ≤
exp

(
−(α− l)2 t

2

) ∫
(−∞,0) µ(db)

exp
(
−(γ − α)2 t

2

) ∫
[0,γ] µ(db)

→ 0

as t→∞. Hence π(t, αt)→ 1 as t→∞.
2. For the second result, suppose that α < m, and note that it suffices

to treat the case α ∈ (l,m). Let γ < l be such that α − γ < r − α.
Then

h(t) ≥
exp

(
−(α− γ)2 t

2

) ∫
(γ,0) µ(db)

exp
(
−(r − α)2 t

2

) ∫
[0,∞) µ(db)

→∞

as t→∞. Hence π(t, αt)→ 0 as t→∞.
(ii) Second case: l = r = 0.

1. Assume that α > 0, and let ε > 0. Then

h(t) ≤
∫

(−∞,−ε) exp
(
−(α+ ε)2 t

2

)
µ(db) +

∫
[−ε,0) exp

(
−α2 t

2

)
µ(db)∫

[0,α] exp
(
−α2 t

2

)
µ(db)

→ µ([−ε, 0))

µ([0, α])

as t → ∞. Thus, since ε > 0 is arbitrary and µ([−ε, 0)) → 0
as ε → 0, we conclude that h(t) → 0 as t → ∞. Consequently,
π(t, αt)→ 1.

2. Next, assume that α < 0. Choosing γ ∈ (α, 0) with µ ((α, γ)) > 0,
we find that

h(t) ≥
exp

(
−(α− γ)2 t

2

) ∫
(α,γ) µ(db)

exp
(
−α2 t

2

) ∫
[0,∞) µ(db)

→∞

as t→∞. Consequently, π(t, αt)→ 0 as t→∞, which finishes the
proof.

�

Remark Notice that Proposition 6.1 implies that for any fixed value π, the
corresponding level curve x(·, π) satisfies limt→∞(ct−x(t, π)) =∞ if α > m,
and limt→∞(αt− x(t, π)) = −∞ if α < m.
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6.1. Long-term behaviour of the volatility. Now, we are in a position
to determine the limit σ(∞, π) := limt→∞ σ(t, π) of the volatility as time
increases.

Proposition 6.2. The long-term limit σ(∞, π) = (r − l)π(1− π).

Remark Note that if l = r = 0, then the volatility converges to zero as
time tends to infinity. Also, note that if l < r, then the volatility tends to
the volatility from the case of a two-point prior distribution.

Proof of Proposition 6.2. We first claim that

Et,x(t,π)

[
B1[0,∞)(B)

]
→ πr

as t → ∞. To see this, suppose that a > r and take γ ∈ (r, a) such that
γ − r < a− γ. By Corollary 3.3 and Proposition 6.1, for all large enough t,

Et,x(t,π)

[
B1(a,∞)(B)

]
≤ Et,γt

[
B1(a,∞)(B)

]
=

∫
(a,∞) be

−(b−γ)2 t
2µ(db)∫

R e
−(b−γ)2 t

2µ(db)

≤
exp

(
−(a− γ)2 t

2

) ∫
(a,∞) bµ(db)

exp
(
−(γ − r)2 t

2

)
µ([r, γ))

,

which tends to 0 as t → ∞. Now, the fact that Pt,x(t,π)(B ∈ [0, r)) = 0 for
all t ≥ 0 finishes the claim.

Next, straightforward modifications of the arguments above show that

Et,x(t,π)

[
B1(−∞,0)(B)

]
→ (1− π)l

as t→∞. Since

σ(t, π) = (1− π)Et,x(t,π)

[
B1[0,∞)(B)

]
− πEt,x(t,π)

[
B1(−∞,0)(B)

]
,

this finishes the proof. �

Remark Similar arguments as in the proof above show that µt,x(t,π) ⇒
(1 − π)δl + πδr as t → ∞. Thus, along a level curve x(·, π) the conditional
distribution of B converges weakly to the two-point distribution with mass
π at r and mass 1− π at l.

6.2. Long-term behaviour of the boundaries.

Theorem 6.3.
• If l = r = 0, then b1(∞) = b2(∞) = 1/2.

• If l < r, then b1(∞) = br−l1 and b2(∞) = br−l2 , where br−l1 < 1/2 <

br−l2 are the optimal boundaries for a two-point prior distribution
with mass at points separated by 0 and at a distance r− l from each
other.
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Proof. Since the volatility σ(·, ·) is non-increasing in time, Proposition 6.2
and Dini’s theorem yield that σ(t, ·) converges to σ(∞, π) = (r− l)π(1− π)
uniformly on the compact interval [b1(0), b2(0)] as t→∞. Therefore, given
ε > 0 we can find t0 large enough so that σ(t0, π) ≤ (ε + r − l)π(1 − π) for
π ∈ [b1(0), b2(0)]. Define

σ̂(t, π) := σ(t, π)1[b1(0),b2(0)](π),

and denote by v̂ the corresponding value function. Since the optimal stop-
ping problem (22) is monotone in the volatility (compare e.g. [10, Lemma
10]), we have that v̂ ≥ v. On the other hand, since σ̂ = σ on the contin-
uation region {(t, π) : b1(t) < π < b2(t)}, we also have v̂ ≤ v, so v̂ = v.
Moreover, by monotonicity in the volatility,

vε+r−l ≤ v̂ = v ≤ vr−l

on [t0,∞) × (0, 1), where va denotes the value function corresponding to
a volatility function aπ(1 − π). Since the value function v is squeezed in
between the value functions vε+r−l and vr−l from time t0, the optimal stop-
ping boundaries b1 and b2 are squeezed in between the corresponding optimal
stopping boundaries for vε+r−l and vr−l. By inspection of the explicit for-
mulas in the two-point distribution case, see [19, Theorem 21.1], the gaps

br−l1 − bε+r−l1 and bε+r−l2 − br−l2 between the boundaries vanish as ε → 0,
which finishes the proof.

�

Remark It is also of interest to determine bi(0) for i = 1, 2 in order to
find the best bounds for the continuation region. It seems difficult to deter-
mine these quantities in general, but an upper bound for the continuation
region initially (and thus at all times) can be established by solving the free-
boundary problem for the time-homogeneous volatility σ(0, π). However, we
expect these bounds to be rather crude, and therefore do not provide any
details.

7. The normal prior distribution

In this final section, we study the case of a normal prior distribution. In
particular, we show that the kernel in the integral equations determined in
Section 5 can be calculated explicitly for normal priors.

First, recall from Section 3 that a normal prior distribution with mean
m and variance γ2 leads to a volatility surface σ(·, ·) that is symmetric
around the line π = 1/2. As a result, the stopping boundaries b1 and b2
are also symmetric around π = 1/2 with b2(t) = 1 − b1(t), so it suffices
to solve a single integral equation to determine both boundaries. Next,
recall that the conditional distribution µt,x is normal with standard deviation

γ(t) := γ/
√

1 + tγ2. Consequently, the x-value that gives π(t, x) = b(t) is
such that the conditional drift equals

m(t) := Φ−1(b(t))γ/
√

1 + tγ2.
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Now, given s > 0, let Y denote a N(m(t)s, s+s2γ2(t))-distributed random
variable. Then using (17), we calculate

K(t, s, b(t), b(t+ s)) := P
(
b(t+ s) < Π

t,b(t)
t+s < 1− b(t+ s)

)
= P

(
b(t+ s) < Φ

(
m(t) + γ2(t)Y

γ(t)
√

1 + sγ2(t)

)
< 1− b(t+ s)

)
= Φ(d2)− Φ(d1),

where

d1 :=
Φ−1(b(t+ s))γ(t)

√
1 + sγ2(t)−m(t)(1 + sγ2(t))

γ2(t)
√
s+ s2γ2(t)

and

d2 :=
−Φ−1(b(t+ s))γ(t)

√
1 + sγ2(t)−m(t)(1 + sγ2(t))

γ2(t)
√
s+ s2γ2(t)

.

Thus the kernel K appearing in the integral equation (38) and in the corre-
sponding equation for the infinite-horizon formulation is explicit.

π

t

C
b2(t)

b1(t)

Figure 1. The boundaries b1 and b2 calculated numerically
for the case of N(m, 1)-prior (note that the boundaries do
not depend on m ∈ R) and the cost of observation c = 0.5
per unit time.
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