Algebraic structures

First sheet of exercises

1. Let $\mathcal{P}(X)$ be the set of all subsets of a given set X. Show that $\mathcal{P}(X)$ is a monoid under the binary operation \cup . Describe those sets X for which $\mathcal{P}(X)$ is a group.

2. Find the multiplication table for S_3 .

3. List the elements of S_4 and find the order of each element.

4. If G and H are groups, then the cartesian product $G \times H$, with binary operation

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$$

is again a group, called the *product* of G and H. Show that $G \times H \xrightarrow{\sim} H \times G$.

5. Let $\varphi: G \to G'$ be an isomorphism of groups. Show that the inverse bijection $\varphi^{-1}: G' \to G$ also is an isomorphism of groups.

6. Let φ be a monomorphism of groups. Show that if α, β are group morphisms with $\varphi \alpha = \varphi \beta$, then $\alpha = \beta$.

7. Let φ be an epimorphism of groups. Show that if α, β are group morphisms with $\alpha \varphi = \beta \varphi$, then $\alpha = \beta$.

8. Prove that a group morphism φ is injective if and only if ker $\varphi = \{e\}$.

9. Let $\varphi : G \to G'$ be a morphism of groups. Let $x \in G$, and $y = \varphi(x)$. Prove that $o(y) \leq o(x)$, and more precisely o(y)|o(x) in case $o(x) < \infty$.

10. Prove that $Aut(C_2 \times C_2) \xrightarrow{\sim} S_3$.

Given a natural number $n \geq 2$, the *dihedral group* D_n of index n is the group of all isometries (i.e. distance preserving linear operators) on \mathbb{R}^2 leaving the regular n-gon with vertices $\left(\cos\frac{2\pi\nu}{n},\sin\frac{2\pi\nu}{n}\right), 0 \leq \nu \leq n-1$, invariant. It turns out that $D_n = \{\varrho_0,\ldots,\varrho_{n-1},\sigma_0,\ldots,\sigma_{n-1}\}$, where ϱ_{ν} denotes the rotation by angle $\frac{2\pi\nu}{n}$ about O and σ_{ν} denotes the reflection about the line L_{ν} through O and $\left(\cos\frac{\pi\nu}{n},\sin\frac{\pi\nu}{n}\right)$. The multiplication in D_n is given by

$$\varrho_i \varrho_j = \varrho_{i+j}, \quad \varrho_i \sigma_j = \sigma_{i+j}, \quad \sigma_i \sigma_j = \varrho_{i-j}, \quad \sigma_i \varrho_j = \sigma_{i-j}.$$

- 11. Find all morphisms $D_2 \rightarrow D_3$ and all morphisms $D_3 \rightarrow D_2$.
- 12. Show that $D_2 \xrightarrow{\sim} C_2 \times C_2$ and $D_3 \xrightarrow{\sim} S_3$.
- 13. Determine $Aut(D_3)$.

PLEASE TURN OVER!

14. Prove that the following statements hold true for all elements x, y, z in a group G, and for all $m, n \in \mathbb{Z}$.

- (a) If xz = yz, then x = y.
- (b) If zx = zy, then x = y.
- (c) If xy = e, then $x = y^{-1}$ and $y = x^{-1}$.
- (d) $(x^{-1})^{-1} = x$.
- (e) If $o(x) = \infty$, then $x^m = x^n \iff m = n$.
- (f) If $o(x) = \ell < \infty$, then $x^m = x^n \Leftrightarrow m \equiv n \pmod{\ell}$.