Algebraic structures

Second sheet of exercises

15. Show that $S_3 = \langle (1 \ 2), (2 \ 3) \rangle$.

16. Let $\varphi : G \to H$ be a morphism of groups, and $H = \langle Y \rangle$ for some subset $Y \subset H$. Show that φ is an epimorphism if and only if $Y \subset \operatorname{im} \varphi$.

17. Let $D_n = \langle \varrho, \sigma | \varrho^n = \varepsilon = \sigma^2$, $\sigma \varrho \sigma^{-1} = \varrho^{-1} \rangle$ be the dihedral group of order 2n, and let *H* be any group. Define a map $\varphi : D_n \to H$ by choosing $x = \varphi(\varrho)$ and $y = \varphi(\sigma)$ in *H* freely, and setting $\varphi(\varrho^i \sigma^j) = x^i y^j$ for all $0 \le i \le n-1$ and $0 \le j \le 1$. Prove that φ is a morphism if and only if x and y satisfy the relations $x^n = e = y^2$ and $yxy^{-1} = x^{-1}$.

18. (a) Show that every automorphism $\alpha \in Aut(D_3)$ induces a permutation $\alpha_{\iota} \in S_{\{\sigma, \rho\sigma, \rho^2\sigma\}}$.

(b) Show that the map $\varphi : \operatorname{Aut}(D_3) \to S_3, \ \varphi(\alpha) = \alpha_{\iota}$ is a monomorphism.

(c) Use exercise 17 to show that $\{(1\ 2), (2\ 3)\} \subset im\varphi$.

(d) Use exercises 15 and 16 to conclude that φ is an isomorphism (cf. exercise 13).

19. Prove that if $G \xrightarrow{\sim} H$, then $\operatorname{Aut}(G) \xrightarrow{\sim} \operatorname{Aut}(H)$.

20. Every group G determines a sequence of groups $\operatorname{Aut}^n(G)$, $n \in \mathbb{N}$, which is defined inductively by $\operatorname{Aut}^0(G) = G$, and $\operatorname{Aut}^n(G) = \operatorname{Aut}(\operatorname{Aut}^{n-1}(G))$ for all $n \geq 1$. Determine $\operatorname{Aut}^n(\mathcal{C}_2 \times \mathcal{C}_2)$ up to isomorphism, for all $n \in \mathbb{N}$.

21. Prove the so-called

Isomorphism Theorem for groups. Every group morphism $\varphi : G \to H$ induces an isomorphism $\overline{\varphi} : G/\ker \varphi \xrightarrow{\sim} \operatorname{im} \varphi, \ \overline{\varphi}(x \ker \varphi) = \varphi(x)$. Moreover, $\varphi = \iota \circ \overline{\varphi} \circ \pi$, where $\pi : G \to G/\ker \varphi$ is the quotient morphism and $\iota : \operatorname{im} \varphi \to H$ is the inclusion morphism.

22. Let $\varphi: G \to H$ be a morphism of finite groups. Show that $|im\varphi|$ is a common divisor of |G| and |H|.

23. (a) Show that for each subgroup $K < D_2$ with |K| = 2 and for each subgroup $I < D_3$ with |I| = 2 there is a unique morphism $\varphi : D_2 \to D_3$ such that ker $\varphi = K$ and im $\varphi = I$.

(b) Use (a) to describe all morphisms $D_2 \rightarrow D_3$ (cf. exercise 12).

PLEASE TURN OVER!

24. (a) Show that for each normal subgroup $K \triangleleft D_3$ with |K| = 3 and for each subgroup $I < D_2$ with |I| = 2 there is a unique morphism $\varphi : D_3 \rightarrow D_2$ such that ker $\varphi = K$ and $\operatorname{im} \varphi = I$.

(b) Use (a) to describe all morphisms $D_3 \rightarrow D_2$ (cf. exercise 12).

25. A subgroup H < G is called *characteristic* if $\alpha(H) = H$ holds for every automorphism α of G. Prove the following statements.

(a) Every characteristic subgroup is normal.

(b) For every group G, its center $Z(G) = \{z \in G \mid zx = xz \ \forall x \in G\}$ is a characteristic subgroup of G.

26. Find the center of D_n , for all $n \ge 2$.

27. Every element a of a group G determines a map $\kappa_a : G \to G, x \mapsto axa^{-1}$.

(a) Prove that κ_a is an automorphism of G, and that $\kappa : G \to \operatorname{Aut}(G), a \mapsto \kappa_a$ is a group morphism.

(b) Automorphisms of the form κ_a are called *inner automorphisms* of G. Prove that the inner automorphisms of G form a subgroup InAut $(G) < \operatorname{Aut}(G)$ which is isomorphic to G/Z(G).

28. Find all subgroups of \mathbb{Z} .

29. (a) Show that every finite group is finitely generated.

(b) Let $n, \ell \in \mathbb{N}$ and $p_1^{m_1}, \ldots, p_\ell^{m_\ell}$ be a sequence of prime powers. Show that the group

$$\mathbb{Z}^n \times \prod_{i=1}^{\ell} \mathbb{Z}_{p_i^{m_i}}$$

is finite if and only if n = 0.

(c) Use (a) and (b) to formulate the fundamental theorem for *finite* abelian groups in analogy to the fundamental theorem for *finitely generated* abelian groups, presented in lecture 4. 30. Let $\mathscr{L} = \{G_1, \ldots, G_7\}$, where

$$G_{1} = \mathbb{Z}_{5} \times \mathbb{Z}_{8} \times \mathbb{Z}_{9}$$

$$G_{2} = \mathbb{Z}_{15} \times \mathbb{Z}_{24}$$

$$G_{3} = \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$$

$$G_{4} = \mathbb{Z}_{5} \times \mathbb{Z}_{6} \times \mathbb{Z}_{12}$$

$$G_{5} = \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$$

$$G_{6} = \mathbb{Z}_{5} \times \mathbb{Z}_{72}$$

$$G_{7} = \mathbb{Z}_{360}$$

- (a) Verify that all of the groups $G_i \in \mathscr{L}$ are abelian and of order 360.
- (b) Find a subset $\mathscr{L}_0 \subset \mathscr{L}$ that is irredundant.
- (c) Extend \mathscr{L}_0 to a list \mathscr{L}_1 that classifies all abelian groups of order 360.