Algebraic structures

Seventh sheet of exercises

86. As an application of the theory of finite abelian groups one can prove the following **Theorem.** Every finite subgroup of the unit group of a field is cyclic.

Use this theorem to show that every finite extension of a finite field is simple.

87. Show that the real number $\alpha = 2 + \sqrt[4]{5}$ is algebraic, and find $\operatorname{irrpol}_{\mathbb{Q}}(\alpha)$.

88. The *n*-th cyclotomic polynomial is defined for all $n \in \mathbb{N} \setminus \{0\}$ as

$$\Phi_n(X) = \operatorname{irrpol}_{\mathbb{Q}}\left(e^{\frac{2\pi}{n}i}\right).$$

Find $\Phi_n(X)$ for all $1 \le n \le 8$.

89. Show that the field \mathbb{A} of all algebraic numbers has the following properties.

- (a) $[\mathbb{A}:\mathbb{Q}] = \infty$.
- (b) \mathbb{A} is not simple over \mathbb{Q} .
- (c) \mathbb{A} is not finitely generated over \mathbb{Q} .

90. A field K is called *algebraically closed* if K is the only algebraic extension of K. Show that \mathbb{C} is algebraically closed.

91. Show that \mathbb{A} is algebraically closed.

92. Show that every field extension $K \subset E$ of degree 2 is Galois, provided that $char(K) \neq 2$.

93. Prove that $|\operatorname{Gal}(E/K)| = [E:K]$, whenever $K \subset E$ is a finite Galois extension.

(Hint. According to the proof of Proposition 56 there exists a primitive element $\alpha \in E$ such that $E = K(\alpha)$ is a splitting field for $q(X) = \operatorname{irrpol}_{K}(\alpha)$. Let $R = \{\alpha_{1}, \ldots, \alpha_{n}\}$ be the set of all roots of q(X) in E, with $\alpha = \alpha_{1}$. Show that for each $\alpha_{i} \in R$ there is a unique $\sigma \in \operatorname{Gal}(E/K)$ such that $\sigma(\alpha) = \alpha_{i}$.)

PLEASE TURN OVER!

- 94. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$
- (a) Determine $\operatorname{Gal}(E/\mathbb{Q})$.
- (b) Describe all subgroups of $\operatorname{Gal}(E/\mathbb{Q})$, ordered by inclusion.
- (c) Describe all intermediate fields $\mathbb{Q} \subset F \subset E$, ordered by inclusion.
- 95. Let $E = \mathbb{Q}(\zeta)$, where $\zeta = e^{\frac{2\pi}{13}i}$.
- (a) Determine $\operatorname{Gal}(E/\mathbb{Q})$.
- (b) Describe all subgroups of $\operatorname{Gal}(E/\mathbb{Q})$, ordered by inclusion.
- (c) Describe all intermediate fields $\mathbb{Q} \subset F \subset E$, ordered by inclusion.
- 96. Let $K \subset E$ be a finite extension of degree n. Show that the inequality

 $\deg(\operatorname{irrpol}_K(\alpha)) \le n$

holds for all $\alpha \in E$.

- 97. Show that every irreducible real polynomial has degree 1 or 2.
- 98. Find the addition table and the multiplication table of a field of order 8.
- 99. Find the complex roots of the polynomial $f(X) = 12X^3 16X^2 + 3X 4$.