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of cyclic subgroups of Q = (Q,+). Show that A =
⋃
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Q = (Q,+) which is not finitely generated.

2. (a) Reproduce the statements of the three Sylow theorems.

(b) Show that every group of order 18 has a nontrivial proper normal subgroup.

3. (a) Reproduce the definition of a solvable group.

(b) Show that V = {e, (12)(34), (13)(24), (14)(23)} is a normal subgroup of the
symmetric group S4.

(c) Show that S4 is solvable.

4. Let K be a field.

(a) Explain why the polynomial ring K[X, Y ] is a factorial domain.

(b) Prove that K[X, Y ] is not a principal ideal domain.

5. (a) Reproduce the definition of an irreducible element p in a domain R.

(b) Give an explicit example of a ring extension R ⊂ S and an element p ∈ R
such that R and S are domains, and p is irreducible in R but not irreducible
in S.

(c) Show that if p is an irreducible element in a domain R, then p is irreducible
even in the polynomial ring R[X].
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6. (a) Reproduce the definition of an algebraic field extension K ⊂ E.

(b) Let K ⊂ F be a field extension, and let α, β be elements in F which are
algebraic over K. Prove that the field extension K ⊂ K(α, β) is algebraic.

7. Determine Gal(E/Q), where E = Q(
√

3,
√

5).

8. Let E = Q(ζ), where ζ = e
2π
13 i.

(a) Explain why Q ⊂ E is a finite Galois extension.

(b) Determine Gal(E/Q), up to isomorphism.

(c) Describe all subgroups of Gal(E/Q), ordered by inclusion.

(d) Describe all intermediate fields Q ⊂ F ⊂ E, ordered by inclusion.
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