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Course introduction

Outline of course goals

I Moduli spaces, Gromov compactness & Applications.

II Floer homology, Symplectic homology & Applications.

III The Fukaya Category.

IV The surgery formula for the Fukaya category of Weinstein
domains (T. Ekholm).
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Course introduction Goal of first couple of lectures

Goal of first lectures

Today:

Basic symplectic definitions
Basic example: projective spaces and blow-ups
Gromov’s compactness theorem for spheres.

Uniruledness of CPn & applications.

Relative uniruledness of product tori L(a1, . . . , an) ⊂ CPn &
applications.
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Basic definitions Symplectic geometry

Symplectic manifolds

Definition

A symplectic manifold is a pair (X 2n, ω) that consists of a
2n-dimensional smooth manifold X 2n equipped with a closed and
non-degenerate two-form ω ∈ Ω2(X ).

Question (Difficult and open)

Which closed manifolds admit a symplectic form?

Necessary topological conditions:
TX must admit an almost complex structure,
i.e. J ∈ End(TX ) for which J2 = −Id.
There is some α ∈ H2(X ,R) such that

0 6= α ^ α ^ . . . ^ α︸ ︷︷ ︸
n

∈ H2n(X ,R)
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Basic definitions Symplectic geometry

Example

The symplectic vector space R2n = Cn equipped with its linear
symplectic form

ω0 =
n∑

i=1

dxi ∧ dyi .

Surfaces (Σ2, ω) where ω is an area form.

Products (X1 × X2, ω1 ⊕ ω2)

The projective space (CPn, ωFS) equipped with the
Fubini–Study Kähler form. (More details later today).

Complex subvarieties of CPn or, more generallty, Kähler
manifolds.

Non Kähler examples by Thurston [Thu76], Fine–Panov [FP10].

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 6 / 42



Basic definitions Symplectic geometry

Definition

A symplectomorphism is a diffeomorphism φ : (X 2n
1 , ω1) ↪→ (X 2n

2 , ω2)
which satisfies φ∗ω2 = ω1.

Darboux’ theorem: All symplectic manifolds are locally
symplectomorphic to an open subset of (R2n, ω0).

Definition

A Hamiltonian isotopy is a smooth isotopy φt : X 2n
∼=−→ X 2n whose

generating vector field satisfies the property that

ι d
dt
φtω = −dHt

is a family of exact one-forms; the function H : X × Rt → R is called
the Hamiltonian.
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Basic definitions Symplectic geometry

Properties:

By Cartan’s formula it follows that φt preserves the symplectic
form (it is a symplectic isotopy) whenever

ι d
dt
φtω ∈ Ω1(X )

is closed.

Conversely, any function H : X × R→ R gives rise to a
Hamiltonian isotopy

φt
H : (X , ω)

∼=−→ (X , ω)

via Hamilton’s equations

ι d
dt
φtω = −dHt .

(work it out in Darboux coordinates!).

The Hamiltonian can be recovered from the Hamiltonian isotopy
up to a locally constant time-dependent function.
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Basic definitions Almost complex structures

Almost complex structures

Definition

An almost complex structure J ∈ End(TX ) is tamed by the
symplectic form ω if ω(v , Jv) > 0 whenever v 6= 0

An almost complex structure J ∈ End(TX ) is compatible with
the symplectic form ω if ω(·, J ·) is a Riemannian metric.

The space of tame and compatible almost complex structures will be
denoted by

J tame(X , ω) ⊃ J comp(X , ω)
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Basic definitions Almost complex structures

Almost complex structures

Example

The standard (integrable) almost complex structure J0 ∈ End(TR2n)
given by

J0(∂xi ) = ∂yi and J0(∂yi ) = −∂xi
is compatible with the standard linear symplectic form ω0. We can
now define d c f (·) = df (J0·) and thus write

ω0 =
∑
i

dxi ∧ dyi = −dd c
∑
i

‖zi‖2/4 =
∑
i

ridri ∧ dθi

in polar coordinates (d c f (r) = −rf ′(r)dθ).
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Basic definitions Almost complex structures

Almost complex structures

Definition

If J is an integrable almost complex structure (isomorphic to J0

above in suitable local coordinates), then (X , ω, J) is said to be a
Kähler manifold and ω(·, J ·) is a Kähler metric.

Lemma (Gromov [Gro85])

The spaces
J tame(X , ω) and J comp(X , ω)

are both contractible.
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The projective space

The Fubini–Study metric on CPn

For an almost complex structure J , recall that Recall that

d c f (·) = df (J ·), f ∈ C∞(X ,R),

When (X , J) is integrable (J is induced by local hol. coordinates), we
have

d c f =
∑
i

(∂yi f dxi − ∂xi f dyi) = i(∂ − ∂)f .

More generally

d = ∂ + ∂ and d c = i(∂ − ∂),

−dd c f = 2i∂∂f ,

where ∂ and ∂ are the Dolbeault operators (see [GH94])

∂ : Ωi ,j(X )→ Ωi+1,j(X ) and ∂ : Ωi ,j(X )→ Ωi ,j+1(X ),

∂2 = ∂
2

= 0, ∂∂ = −∂∂
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The projective space

The Fubini–Study metric on CPn

The Kähler potential

Consider the following Kähler potential in an affine chart
z ∈ Cn ⊂ CPn:

ρ(z) = log (1 + ‖z‖2)

where ‖ · ‖ denotes the Euclidean metric. We define the Fubini–Study
symplectic form by

ωFS := −dd c ρ

4
=

i

2
∂∂ρ ∈ Ω1,1(CPn)

in local affine coordinates.

Claim

The two-form ωFS ∈ Ω1,1(CPn) is well-defined, non-degenerate and
compatible with J0. Hence (CPn, ωFS, J0) is Kähler.
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The projective space

The Fubini–Study metric on CPn

The symplectic (Kähler) form

ωFS =
i

2
∂∂ρ, ρ = log (1 + ‖z‖2).

Proof of well-definedness.

Consider i :th and j :th affine coordinate charts

[z1 : . . . : zi−1 : 1 : zi+1 : . . . : zn+1],

[w1 : . . . : wj−1 : 1 : wj+1 : . . . : wn+1]

on CPn, where we set zi ≡ 1 and wj ≡ 1. They are related by the
coordinate transformation

wi = zi/zj , i = 1, . . . , n + 1, {zj 6= 0}.
Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 14 / 42



The projective space

The Fubini–Study metric on CPn

The symplectic (Kähler) form

ωFS =
i

2
∂∂ρ, ρ(z) = log (1 + ‖z‖2).

Proof of well-definedness.

We compute

ρ(z) = log ‖zj‖2(1 + ‖w‖2) = Re log z2
j + ρ(w).

since Re log z2
j is pluri-harmonic (real part of holomorphic fcn.), we

have ∂∂Re log z2
j = 0 on {zj = 0} and

i

2
∂∂ρ(z) =

i

2
∂∂ρ(w).
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The projective space

The Fubini–Study metric on CPn

The symplectic (Kähler) form

ωFS = −dd c ρ

4
=

i

2
∂∂ log (1 + ‖z‖2)

Proof of non-degeneracy.

Easily checked along coordinate C-lines in polar coordinates. Using
dr(J0·) = −rdθ we compute

ωFS = −dd c 1

4
log (1 + r 2) =

1

4
d

2r

1 + r 2
rdθ =

r

(1 + r 2)2
dr ∧ dθ.

This establishes the non-degeneracy at the origin. For the other
points, we can use the invariance of ωFS under the transitive
U(n + 1)-action on CPn (see next slide).
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The projective space

The Fubini–Study metric on CPn

The symplectic (Kähler) form

With our convention ωFS satisfies∫
CP1

ωFS = π

for any line CP1 ⊂ CPn.

Proof.

From computation on last slide:∫
CP1

ωFS = 2π

∫ ∞
0

r

(1 + r 2)2
dr = −π

[
1

1 + r 2

]+∞

r=0

= π.
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The projective space

The Fubini–Study metric on CPn

The symplectic (Kähler) form

ωFS = −dd c ρ

4
=

i

2
∂∂ρ =

i

2
∂∂ log (1 + ‖z‖2)

Properties:

The Fubini–Study form restricts to the Fubini–Study form on
any lower dimensional linear embedding CPm ⊂ CPn.

The action of U(n) in an affine chart Cn ⊂ CPn preserves the
potential and thus the form ωFS on all of CPn.

U(n) fixes the divisor CPn−1 ⊂ CPn at infinity setwise, and thus
restricts to symplectomorphisms on (CPn−1, ωFS).

In particular SU(2) ⊂ U(2) acts by symplectomorphism on
(CP1, ωFS), and the latter is the sphere with the “round” area
form of total area π.
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The projective space

The Fubini–Study metric on CPn

The symplectic (Kähler) form

ωFS = −dd c ρ

4
=

i

2
∂∂ρ =

i

2
∂∂ log (1 + ‖z‖2)

Properties:

J0 is integrable and thus compatible with ωFS.

The primitive −d c ρ
4

of the symplectic form ωFS has a Liouville
vector field ζ ∈ Γ(TX ) defined by

ιζωFS = −d c ρ

4
⇔ (ιζωFS)(J0·) = −d c ρ

4
(J0·) = d

ρ

4
.

In other words ωFS(ζ, J0·) = d ρ
4

and ζ = ∇ρ
4

is the gradient.
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The projective space

The Fubini–Study metric on CPn

The symplectic (Kähler) form

ωFS = −dd c ρ

4
=

i

2
∂∂ρ =

i

2
∂∂ log (1 + ‖z‖2)

Properties:
Since the Liouville vector field ζ corr. to −d c ρ

4
is transverse to

the concentric spheres S2n−1
r , it follows that −d c ρ

4
∈ Ω1(Cn)

restricts to a contact one-form on all S2n−1
r ⊂ (Cn, ωFS); by the

U(n)-symmetry of −d c ρ
4
, these are round contact spheres.

It is now easy to produce a symplectomorphism(
Cn, ωFS = −dd c ρ

4

)
→
(
B2n, ω0 = −dd c‖z‖2/4)

)
which preserves the primitives, and which takes the sphere

S2n−1
r ⊂ Cn to S2n−1

r√
1+r2

⊂ B2n.
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The projective space The blow-up

Rulings and line bundles

We will now consider the smooth CP1-bundles

P(O ⊕O(k))→ CPn−1, k ≥ 0.

They are algebraic subvarieties of (CPn−1 × CPn, λωFS ⊕ ωFS),
λ > 0, given as the compactification of

{([Z0 : . . . : Zn], (z0, . . . , zn)); (z0, . . . , zn) ∈ C · (Z k
0 , . . . ,Z

k
n )}

⊂
CPn−1 × Cn.

Endow them with the restriction of the product symplectic form
λωFS ⊕ ωFS).
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The projective space The blow-up

Rulings and line bundles
The CP1-bundles

P(O ⊕O(k))→ CPn−1, k ≥ 0,

satisfy:

Projection onto first factor CPn−1 is the bundle projection π.

P(O ⊕O(0)) = CPn−1 × CP1.

P(O ⊕O(1)) = Bl(CPn) (the blow-up of CPn)

P(O ⊕O(k)) \ (CPn−1 × {0}) = Tot(O(k)) (total space of a
positive C-bundle).
For k = 1 we get π : CPn \ {0} → CPn−1.

P(O⊕O(k)) \ (CPn−1×CPn−1
∞ ) = Tot(O(−k)) (total space of

a negative C-bundle).
For k = 1 we get the line bundle π : Bl0 Cn → CPn−1.
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The projective space The blow-up

O(−1)
The exceptional line bundle

Bl0 Cn = P(O ⊕O(1)) \ (CPn−1 × CPn−1
∞ )

satisfies:

The exceptional divisor E := CPn−1 × {0} ⊂ Bl0 Cn is the only
holomorphic section.

There exists a symplectomorphism between Bl0 Cn \ E and

(Cn \ D2n√
λ
, (λ + 1)ωFS) ⊂ (Cn, (λ + 1)ωFS)

where
(D2n√

λ
, (1 + λ)ωFS) ∼= (D2n√

λ
1+λ

, (1 + λ)ω0)

While the complex structure on Bl0 Cn \ E = Cn \ {0} extends
over {0} to all of Cn, it does not extend over D2n√

λ
! �
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The projective space The blow-up

The blow-down

The exceptional line bundle

Bl0 Cn = P(O ⊕O(1)) \ (CPn−1 × CPn−1
∞ )

satisfies:

Symplectic blow-down: Whenever we see a neighbourhood in
(X , ω) symplectomorphic to the above neighbourhood of
(E , λωFS), we can “simplify” X by blowing down: remove E and
insert the closed symplectic ball

(D2n
λ/
√

1−λ2 , ωFS) ∼= (D2n√
λ
, ω0)

with round boundary, where E is equipped with the symplectic
form λωFS.
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The projective space The blow-up

The blow-up
The exceptional line bundle

Bl0 Cn = P(O ⊕O(1)) \ (CPn−1 × CPn−1
∞ )

satisfies:

Symplectic blow-up: Whenever we see a symplectic disc
D ⊂ (X , ω) with round boundary parametrised by

(D2n
λ/
√

1−λ2 , ωFS) ∼= (D2n√
λ
, ω0) ↪→ (X 2n, ω)

we can remove it and insert an exceptional divisor E with the
symplectic form λωFS. Call the result (BlD X 2n, ωD).

Blow up does not deform the topology when n = 1, while in
general

BlD X 2n = X 2n]CPn.
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Gromov’s Compactness Theorem

Pseudoholomorphic spheres

Recall:

There exists precisely one algebraic curve of degree one (in the
homology class L ∈ H2(CPn) = Z · L) that passes through two
given points P1 6= P2 ∈ CPn: the complex line

CP1 → CPn,

[x1 : x2] 7→ x1 · P1 + x2 · P2

unique up to reparametrisation.

The fibres of a CP1-bundles e.g. Bl(CPn)→ CPn and
CPn × CP1 foliate CP1.
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Gromov’s Compactness Theorem

Pseudoholomorphic spheres

We will investigate to what extent this is true for other almost
complex structures J0.
First we need a definition. Let (Σ, j) be a Riemann surface.

Definition

A map u : (Σ, j)→ (X , J) is said to be J-holomorphic (also called
pseudoholomorphic) if it satisfies the fully non-linear first order PDE

∂Ju =
1

2
(du + J ◦ du ◦ j) = 0

of Cauchy–Riemann type.
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Gromov’s Compactness Theorem

Uniruledness

Tameness of J will be crucial; non-tame J may admit
null-homologous but non-constant J-holomorphic spheres.

For tame J we have
∫
u
ω > 0 whenever u is a non-constant

pseudoholomorphic map.

The precise statement that we want to show is that: for an
arbitrary tame J and two distinct points, there exists a
J-holomorphic map u : CP1 → CPn of degree one which passes
through these two points.

Even better: we want the algebraic count of such curve to be
equal to one if one identifies solutions under the action of
Aut(CP1) = PGl2(C) by reparametrisation.
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Gromov’s Compactness Theorem

Nodal pseudoholomorphic spheres

We also need the concept of a nodal sphere:

Definition

A nodal pseudoholomorphic sphere is a continuous map
u∞ : CP1 → (X , J) which is pseudoholomorphic for some almost
complex structure j∞ defined on CP1 \ Γ, where

Γ ⊂ CP1 is an embedded finite union of smooth circles, and

(CP1 \ Γ, j∞) is biholomorphic to a finite union of punctured
spheres (i.e. (CP1, j) \ {p1, . . . , pl}).

While there is a single almost complex structure on a sphere up to
biholomorphism, this is not true for a sphere with points removed.
�
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Gromov’s Compactness Theorem

Nodal pseudoholomorphic spheres

Figure: Left: a nodal sphere. Right: the union of desingularised
pseudoholomorphic sphere.
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem

One important feature is that removal of singularities holds in
this setting, which gives rise to a union {u1

∞, . . . , u
l
∞} of

ordinary pseudoholomorphic spheres from a nodal
pseudoholomorphic sphere.

The energy E (u) =
∫
u
ω ≥ 0 of any map depends only on the

cohomology class (ω is closed) and can be related to the
L2-norm of du when u is pseudoholomorphic (it is easily seen to
be non-negative).

The energy also makes sense for a nodal pseudoholomorphic
sphere, and satisfies

E (u∞) = E (u1
∞) + . . . + E (ul

∞).
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Gromov’s Compactness Theorem

Nodal pseudoholomorphic spheres

Definition

A nodal pseudoholomorphic sphere is stable if all punctured spheres
u∞|CP1\Γ which have less than three punctures are non-constant.

Remark

Non-constant is equivalent to having positive energy.

If we remove three or more points from (CP1, j), there are only
finitely many automorphisms.
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Gromov’s Compactness Theorem

Nodal pseudoholomorphic spheres

E > 0

E = 0

E > 0 E > 0

Figure: A stable nodal sphere.
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Gromov’s Compactness Theorem

Nodal pseudoholomorphic spheres

E = 0

Figure: An unstable nodal sphere.
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem

Now consider a sequence {ui} of pseudoholomorphic spheres

ui : (CP1, j)→ (X , J)

with i = 1, 2, 3, . . . inside a closed symplectic manifold (X , ω)
equipped with a tame almost complex structure J .
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem
A uniform bound of the derivative ‖du‖ may fail despite the
L2-bound: Consider the family

{z1z2 = t} ⊂ CP2, t → 0

of smooth conics which converge to the union {z1z2 = 0} of
coordinate lines.

−3 −2 −1 1 2 3

−2

2

x

y

Figure: A sequence of conics convering to a nodal conic.
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem
A uniform bound of the derivative ‖du‖ may fail despite the
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem

A uniform bound of the derivative ‖du‖ may fail despite the
L2-bound: Consider the family

{z1z2 = t} ⊂ CP2, t → 0

of smooth conics which converge to the union {z1z2 = 0} of
coordinate lines.
A sequence of parametrisations seen from southern and northern
hemispheres

[x : 1] 7→ [tx : x−1 : 1]→t→0 [0 : x−1 : 1],

[1 : y ] 7→ [ty−1 : y : 1] = [1 : t−1y 2 : t−1y ],

respectively.

On the northern hemisphere of CP1 the map converges to
[1 : 0 : y ] = [y−1 : 0 : 1] only after the reparametrisation y 7→ ty .

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 39 / 42



Gromov’s Compactness Theorem

Gromov’s Compactness Theorem

Theorem (Gromov [Gro85])

Assume that 0 < E (ui) ≤ C is uniformly bounded. After passing to a
subsequence, we may assume that there exists either:

1 A sequence φi ∈ Aut(CP1) of reparametrisations that makes
‖d(ui ◦ φi)‖ uniformly bounded, and the subsequence {ui ◦ φi} is
C∞-convergent to a J-holomorphic sphere u∞.

2 A stable nodal pseudoholomorphic sphere u∞ with at least two
nonconstant components, and reparametrisations φi , such that:

(φi )
∗j is a sequence of complex structures on CP1 which

C∞loc -converges to the complex structure j∞ on the nodal sphere;
ui ◦ φi converges uniformly to u∞ and C∞loc -converges on
CP1 \ Γ to u∞.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 40 / 42



Gromov’s Compactness Theorem

Gromov’s Compactness Theorem

Corollary

The convergent subsequence has the property that the homology
class of the ui becomes constantly equal to [u∞] ∈ H2(X ) for all
i � 0;

There are only finitely many homology classes inside the possibly
infinite subset

{u ∈ H2(X ); E (u) ≤ C} ⊂ H2(X )

that admit a pseudoholomorphic sphere when X is closed.
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Gromov’s Compactness Theorem
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