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Course introduction

Outline of course goals

UPPSALA
UNIVERSITET

Moduli spaces, Gromov compactness & Applications.
Floer homology, Symplectic homology & Applications.
The Fukaya Category.

o
o
Q
Q

The surgery formula for the Fukaya category of Weinstein
domains (T. Ekholm).
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Course introduction Goal of first couple of lectures

el Goal of first lectures

UNIVERSITET

o Today:
e Basic symplectic definitions
e Basic example: projective spaces and blow-ups
e Gromov's compactness theorem for spheres.

@ Uniruledness of CP" & applications.

@ Relative uniruledness of product tori L(aq,...,a,) C CP" &
applications.
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Basic definitions Symplectic geometry

Symplectic manifolds

Definition
A symplectic manifold is a pair (X?",w) that consists of a

2n-dimensional smooth manifold X2 equipped with a closed and
non-degenerate two-form w € Q2(X).

Question (Difficult and open)

Which closed manifolds admit a symplectic form?

Necessary topological conditions:
@ T7X must admit an almost complex structure,
i.e. J € End(TX) for which J? = —Id.
@ There is some o € H?(X,R) such that

0#£a—a—...—a€H"(X,R)
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Basic definitions Symplectic geometry

Example

@ The symplectic vector space R?” = C" equipped with its linear
symplectic form

Wy = i dX,' VAN dy,'.
i=1

Surfaces (X2, w) where w is an area form.

Products (X1 x Xz, w; & wy)

The projective space (CP”, wrs) equipped with the
Fubini-Study Kahler form. (More details later today).

Complex subvarieties of CP" or, more generallty, Kahler
manifolds.

Non Kahler examples by Thurston [Thu76], Fine-Panov [FP10].
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Basic definitions Symplectic geometry

Definition
A symplectomorphism is a diffeomorphism ¢: (X", wy) < (X3, w,)
which satisfies ¢*w, = wy.

Darboux’ theorem: All symplectic manifolds are locally
symplectomorphic to an open subset of (R?", wy).

Definition

~

A Hamiltonian isotopy is a smooth isotopy ¢f: X?" — X2 whose
generating vector field satisfies the property that

L%(ﬁtw = _dHt

is a family of exact one-forms; the function H: X x R; — R is called
the Hamiltonian. |
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Basic definitions Symplectic geometry

Properties:

e By Cartan’s formula it follows that ¢ preserves the symplectic
form (it is a symplectic isotopy) whenever

L%¢tw € QI(X)

is closed.

@ Conversely, any function H: X x R — R gives rise to a
Hamiltonian isotopy

Oh: (X,w) = (X,w)
via Hamilton's equations
L%d)tw — _dHt

(work it out in Darboux coordinates!).
@ The Hamiltonian can be recovered from the Hamiltonian isotopy
up to a locally constant time-dependent function.
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Basic definitions Almost complex structures

Almost complex structures

Definition
@ An almost complex structure J € End(TX) is tamed by the
symplectic form w if w(v, Jv) > 0 whenever v # 0

@ An almost complex structure J € End(TX) is compatible with
the symplectic form w if w(-, J-) is a Riemannian metric.

The space of tame and compatible almost complex structures will be
denoted by
jtame(X’ w) 5 jcomp(X’ w)
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Basic definitions Almost complex structures

Almost complex structures

Example

The standard (integrable) almost complex structure Jy € End( TR?")
given by
Jo(axi) = 8y, and Jo(ayl.) = —8X.

i

is compatible with the standard linear symplectic form wy. We can
now define d°f(-) = df(Jo-) and thus write

Wy = Z dX,' A dy, = —dd° Z ||Z,'H2/4 = Z r,-dr,~ A d9,

1

in polar coordinates (d°f(r) = —rf'(r)d0).
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Basic definitions Almost complex structures

Almost complex structures

Definition
If Jis an integrable almost complex structure (isomorphic to J

above in suitable local coordinates), then (X,w, J) is said to be a
Kahler manifold and w(-, J-) is a Kahler metric.

Lemma (Gromov [Gro85])

The spaces
jtame(X7w) and jcomp(X7 w)

are both contractible.
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The Fubini-Study metric on CP”

For an almost complex structure J, recall that Recall that
d°f(-) = df(J:), f e C(X,R),

When (X, J) is integrable (J is induced by local hol. coordinates), we
have /
d°f = (0, f dx; — O f dy;) = i(0 — D)f.

More generally
d=0+0 and d° = i(0— 9),
—dd“f = 2i00f,
where 0 and 0 are the Dolbeault operators (see [GH94])
0: QY(X) = QTH(X) and 9: QY (X) — QYTH(X)
?=0 =0, 90 =—00
Georgios Dimitroglou Rizell (Uppsala Univers SN NRRECHIE SRR ey 122
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The Fubini-Study metric on CP”

The Kahler potential
Consider the following Kahler potential in an affine chart
zc C"Cc CP™
p(z) = log (1 + ||[*)
where || - || denotes the Euclidean metric. We define the Fubini—Study
symplectic form by

wrs = —ddcg - é&ép e QUL(CP)

in local affine coordinates.

Claim

The two-form wgs € QM (CP™) is well-defined, non-degenerate and

compatible with J°. Hence (CP", ws, Jo) is Kahler.
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The Fubini-Study metric on CP"

The symplectic (Kahler) form

I —
Wrs = Eaapv p = log (1 +[|z[*).

Proof of well-definedness.
Consider i:th and j:th affine coordinate charts

[z2:. . i zi1 1 zigr o Zasa),

wa oo twjig i1 wipg oo W)

on CP", where we set z; = 1 and w; = 1. They are related by the
coordinate transformation

Wi:Zi/Zjv i:l,.--;n+17 {ZJ#O}
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The Fubini-Study metric on CP”

The symplectic (Kahler) form

| —
wes = 500p, p(z) =log (1+ [12])-

Proof of well-definedness.
We compute

p(z) = log|z[|*(1 + [[w]*) = Relog 27 + p(w).

since Relog zj2 is pluri-harmonic (real part of holomorphic fen.), we

have 99%Relog z2 = 0 on {z; = 0} and

I = I =
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The Fubini-Study metric on CP”

The symplectic (Kahler) form

WFs = —ddC/Z) - éaglog 1+ 2%

Proof of non-degeneracy.

Easily checked along coordinate C-lines in polar coordinates. Using

dr(Jo-) = —rdf we compute

1 1 2r r
= —dd°=log (1 +r?) = =d df = ———
“Fs glog (1) = gdir (1+r2)

This establishes the non-degeneracy at the origin. For the other
points, we can use the invariance of wgs under the transitive
U(n + 1)-action on CP" (see next slide).

2dr A do.
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The Fubini-Study metric on CP"

The symplectic (Kahler) form

With our convention wgs satisfies

/ WEs = T
cp?

for any line CP! C CP".

Proof.
From computation on last slide:

/ ) /°° r 1 ]t
Wps = 2 ————dr=—7 =
cpt P o (1+1r?)? 1+r2],_,
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The Fubini-Study metric on CP”
The symplectic (Kahler) form

P = I = 2
— —dd? — L55, = Lod10s (1
wes = —dd“; = 200p = 500 log (1 + ||2||%)

Properties:

@ The Fubini-Study form restricts to the Fubini—Study form on
any lower dimensional linear embedding CP™ C CP".

@ The action of U(n) in an affine chart C" C CP" preserves the
potential and thus the form wgs on all of CP".

e U(n) fixes the divisor CP™! C CP" at infinity setwise, and thus
restricts to symplectomorphisms on (CP" 1, wes).

@ In particular SU(2) C U(2) acts by symplectomorphism on
(CP',wes), and the latter is the sphere with the “round” area
form of total area 7.
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L T plective space |
The Fubini-Study metric on CP”

The symplectic (Kahler) form

— dd? — o5, — Lo 2
wrs = —dd* = S00p = 590log (1+||z[*)

Properties:
@ Jp is integrable and thus compatible with wgs.
@ The primitive —d°% of the symplectic form wrs has a Liouville

vector field ¢ € ['(TX) defined by
LeWrs = —dcg & (tewrs)(Jor) = —dC’Z)(JO-) = d%.

In other words wes((, Jo-) = df and ¢ = V£ is the gradient.
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The projective space

The Fubini-Study metric on CP”

The symplectic (Kahler) form

— _dd? — i55,= Lo :
ws = —dd“ = 700p = 500 log (1+ ||2||*)

Properties:

@ Since the Liouville vector field ¢ corr. to —d°% is transverse to
the concentric spheres 52", it follows that —d“£ € Q*(C")
restricts to a contact one-form on all 52"~ C (C", wgs); by the
U(n)-symmetry of —d%, these are round contact spheres.

@ It is now easy to produce a symplectomorphism

((C”,wps - —ddcg) = (B, wp = —dd“||2|[2/4))
which preserves the primitives, and which takes the sphere
St C C" to St C B

2112
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The projective space The blow-up

Rulings and line bundles

We will now consider the smooth CP-bundles
P(O @ O(k)) — CP™ !, k>0.

They are algebraic subvarieties of (CP"™! x CP", A\wrs & wrs),
A > 0, given as the compactification of

{(Zo:...: Z) (20, -, 20); (20, ., 2,) €C-(ZK,...,Z))
-
CPlx .

Endow them with the restriction of the product symplectic form
Awrs D wrs).
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The projective space The blow-up

Rulings and line bundles
The CP-bundles

P(O ® O(k)) — CP™, k>0,

satisfy:

@ Projection onto first factor CP"! is the bundle projection 7.

e P(O® O(0)) =CP"™ ! x CP.

e P(O & O(1)) = BI(CP") (the blow-up of CP")

o P(O® O(k))\ (CP™1 x {0}) = Tot(O(k)) (total space of a
positive C-bundle).
For k =1 we get m: CP"\ {0} — CP" L.

e P(O®O(k))\ (CP™* x CP™ 1) = Tot(O(—k)) (total space of
a negative C-bundle).
For k = 1 we get the line bundle 7: BlyC" — CP"1.

SN DT A geTA TN P2 QUL BV S Holomorphic Curve Theories in Symplectic Ge 22 /42



The projective space The blow-up

The exceptional line bundle
BloC" =P(O @ O(1)) \ (CP™ 1 x CP™h)

satisfies:

@ The exceptional divisor £ := CP""! x {0} C BlyC" is the only
holomorphic section.
@ There exists a symplectomorphism between Bly C" \ E and

(C"\ D2, (A + D)wrs) € (C", (A + L)wes)
where
D% (1 + Nwrs) = ( 1+ Awo)
(D5 ( Fs) J:A ,( 0)

@ While the complex structure on BloC" \ E = C" \ {0} extends
n 2n
over {0} to all of C", it does not extend over D! @
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The projective space The blow-up

The blow-down

The exceptional line bundle
BloC"=P(O @ O(1))\ (CP™! x CP™ 1)

satisfies:

@ Symplectic blow-down: Whenever we see a neighbourhood in
(X, w) symplectomorphic to the above neighbourhood of
(E, M\wrs), we can “simplify” X by blowing down: remove E and
insert the closed symplectic ball

(D3} 75 wrs) = (D75, wo)

with round boundary, where E is equipped with the symplectic
form Awes.
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The blow-up
The blow-up

The exceptional line bundle
Bl,C" =P(O & O(1))\ (CP™! x CP™Y)

satisfies:

e Symplectic blow-up: Whenever we see a symplectic disc
D C (X, w) with round boundary parametrised by

2 2
we can remove it and insert an exceptional divisor E with the

symplectic form Awrs. Call the result (Blp X", wp).

@ Blow up does not deform the topology when n = 1, while in
general
Blp X" = X2"4CP".
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Gromov's Compactness Theorem

Pseudoholomorphic spheres

Recall:

@ There exists precisely one algebraic curve of degree one (in the
homology class L € Hy(CP") = Z - L) that passes through two
given points P; # P, € CP": the complex line

CP! - CP",
[x1 %] = x1-P1+x- P,

unique up to reparametrisation.

@ The fibres of a CP!-bundles e.g. BI(CP") — CP" and
CP" x CP! foliate CP.
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Gromov's Compactness Theorem

Pseudoholomorphic spheres

We will investigate to what extent this is true for other almost
complex structures Jy.
First we need a definition. Let (X, /) be a Riemann surface.

Definition
A map u: (X,j) — (X, J) is said to be J-holomorphic (also called
pseudoholomorphic) if it satisfies the fully non-linear first order PDE

= 1
8Ju:§(du—|—Joduoj):0

of Cauchy—Riemann type.
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Gromov's Compactness Theorem

Uniruledness

@ Tameness of J will be crucial; non-tame J may admit
null-homologous but non-constant J-holomorphic spheres.

@ For tame J we have fuw > 0 whenever u is a non-constant
pseudoholomorphic map.

@ The precise statement that we want to show is that: for an
arbitrary tame J and two distinct points, there exists a
J-holomorphic map u: CP! — CP" of degree one which passes
through these two points.

@ Even better: we want the algebraic count of such curve to be
equal to one if one identifies solutions under the action of
Aut(CP?) = P Gly(C) by reparametrisation.

SSIEN DlTy Age Ty TV NP2 QUL BV VIS Holomorphic Curve Theories in Symplectic Ge 28 /42



Gromov's Compactness Theorem

Nodal pseudoholomorphic spheres

We also need the concept of a nodal sphere:
Definition
A nodal pseudoholomorphic sphere is a continuous map

Uso: CPY — (X, J) which is pseudoholomorphic for some almost
complex structure j,, defined on CP* \ I', where

o [ C CP! is an embedded finite union of smooth circles, and

@ (CP*\T,j.) is biholomorphic to a finite union of punctured
spheres (i.e. (CPY )\ {p1,---,pi}).

While there is a single almost complex structure on a sphere up to
biholomorphism, this is not true for a sphere with points removed.

®
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Gromov's Compactness Theorem

Nodal pseudoholomorphic spheres

sle
..

Figure: Left: a nodal sphere. Right: the union of desingularised
pseudoholomorphic sphere.
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Gromov's Compactness Theorem

Gromov's Compactness Theorem

@ One important feature is that removal of singularities holds in
this setting, which gives rise to a union {ul ... u’ } of
ordinary pseudoholomorphic spheres from a nodal
pseudoholomorphic sphere.

@ The energy E(u f w > 0 of any map depends only on the
cohomology class (w is closed) and can be related to the
L2-norm of du when u is pseudoholomorphic (it is easily seen to
be non-negative).

@ The energy also makes sense for a nodal pseudoholomorphic
sphere, and satisfies

E(us) = E(ut) + ...+ E(u).

o0
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Gromov's Compactness Theorem

Nodal pseudoholomorphic spheres

Definition
A nodal pseudoholomorphic sphere is stable if all punctured spheres
UOO|(CP1\r which have less than three punctures are non-constant.

Remark
@ Non-constant is equivalent to having positive energy.

@ If we remove three or more points from (CP!,j), there are only
finitely many automorphisms.
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Gromov's Compactness Theorem

Nodal pseudoholomorphic spheres

E>0 E>O

E

E>0

Figure: A stable nodal sphere.
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Gromov's Compactness Theorem

Nodal pseudoholomorphic spheres

fop =

Figure: An unstable nodal sphere.

SR DT gty TN NP2 QUL BV VIS Holomorphic Curve Theories in Symplectic Ge 34 /42



Gromov's Compactness Theorem

Gromov's Compactness Theorem

Now consider a sequence {u;} of pseudoholomorphic spheres
ui: (CPY,j) — (X, J)

with i =1,2,3,... inside a closed symplectic manifold (X, w)
equipped with a tame almost complex structure J.
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Gromov's Compactness Theorem

Gromov's Compactness Theorem

@ A uniform bound of the derivative ||du|| may fail despite the
L2-bound: Consider the family

{zlzgzt}C(CPz, t—0

of smooth conics which converge to the union {z;z, = 0} of
coordinate lines.
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Gromov's Compactness Theorem

Gromov's Compactness Theorem

@ A uniform bound of the derivative ||du|| may fail despite the
L2-bound: Consider the family

{zlzgzt}C(CPz, t—0

of smooth conics which converge to the union {z;z, = 0} of
coordinate lines.
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Gromov's Compactness Theorem

Gromov's Compactness Theorem

@ A uniform bound of the derivative ||du|| may fail despite the
L2-bound: Consider the family

{zlzgzt}C(CPz, t—0

of smooth conics which converge to the union {z;z, = 0} of
coordinate lines.
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Gromov's Compactness Theorem

Gromov's Compactness Theorem

@ A uniform bound of the derivative ||du|| may fail despite the
[2-bound: Consider the family

{legzt}C(CPZ, t—0

of smooth conics which converge to the union {z;z; = 0} of
coordinate lines.

A sequence of parametrisations seen from southern and northern
hemispheres

[x: 1]/ [tx:xt 1] =0 [0 x71: 1],
Lyl [ty Ly 1] =[1:t712: 7Yy,
respectively.
@ On the northern hemisphere of CP* the map converges to
[1:0:y]=[y':0:1] only after the reparametrisation y + ty.
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Gromov's Compactness Theorem

Gromov's Compactness Theorem

Theorem (Gromov [Gro85])

Assume that 0 < E(u;) < C is uniformly bounded. After passing to a
subsequence, we may assume that there exists either:

@ A sequence ¢; € Aut(CP') of reparametrisations that makes
||d(uj o ;)| uniformly bounded, and the subsequence {u; o ¢;} is
C*°-convergent to a J-holomorphic sphere u..

© A stable nodal pseudoholomorphic sphere u., with at least two
nonconstant components, and reparametrisations ¢;, such that:

o (¢;)*j is a sequence of complex structures on CP' which
C -converges to the complex structure j», on the nodal sphere;

loc™
e ujo ¢; converges uniformly to us, and C°-converges on

loc
CPI\T to .
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Gromov's Compactness Theorem

Gromov's Compactness Theorem

Corollary

@ The convergent subsequence has the property that the homology
class of the u; becomes constantly equal to [u.] € Ha(X) for all
1> 0;

@ There are only finitely many homology classes inside the possibly
infinite subset

{u € Hy(X); E(u) < C} C Hy(X)

that admit a pseudoholomorphic sphere when X is closed.
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Gromov's Compactness Theorem

sl References

UNIVERSITET

W J. Fine and D. Panov.
Hyperbolic geometry and non-Kahler manifolds with trivial
canonical bundle.
Geom. Topol., 14(3):1723-1763, 2010.

4 P. Griffiths and J. Harris.
Principles of algebraic geometry.
Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994.
Reprint of the 1978 original.

[ M. Gromov.
Pseudoholomorphic curves in symplectic manifolds.
Invent. Math., 82(2):307-347, 1985.

[ W. P. Thurston.
Some simple examples of symplectic manifolds.

D A C - CC/NAN.AL7 A0 1074
Georgios Dimitroglou Rizell (Uppsala Holomorphlc Curve Theories in Symplectic Ge 42 /42



	Course introduction
	Goal of first couple of lectures

	Basic definitions
	Symplectic geometry
	Almost complex structures

	The projective space
	The blowup

	Gromov's Compactness Theorem

