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Goal of lecture

Goal of lecture

Today:

More about Floer homology in different geometric settings.

Moduli spaces of discs with boundary punctures and operations
in Floer homology.

Application: Continuation Elements.
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Goal of lecture

Take-home Message

If a closed Lagrangian can be displaced by a Hamiltonian isotopy,
then it admits a non-constant pseudoholomorphic disc.

(X , ω)

L φ1
H(L)

Figure: The blue Lagrangian L is displaceable by a Hamiltonian isotopy
and bounds a holomorphic disc; the green Lagrangian which is
homologically essential is not Hamiltonian displaceable.
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Goal of lecture

Plan
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Goal of lecture

Discs with boundary punctures

Later today we will consider a general moduli space of smooth
pseudoholomorphic maps from the disc with

a finite number of boundary punctures in some arbitrary position,

a boundary condition in certain Lagrangian submanifolds on
each boundary arc between the punctures, and

punctures mapping to transverse intersection points of these
Lagrangians.

In particular, such a disc has a finite symplectic area.
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Goal of lecture

Discs with boundary punctures

Last lecture we only say examples when the disc has two boundary
punctures; A disc with two boundary points removed is biholomorphic
to the strip (we will see this later in today’s lecture).
Recall:

The differential counts strips (discs with two boundary
punctures) of index one;

The continuation map counts trips (discs with two boundary
punctures) of index zero.
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Goal of lecture

Discs with boundary punctures

Figure: Pseudoholomorphic discs with two and four boundary punctures.
Recall that a strip is biholomorphic to a disc with two boundary punctures
removed.
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Goal of lecture

Discs with boundary punctures

It is important to spell out the precise definition of the index in this
case:

By the index we mean the expected dimension of the solution space
where:

we consider the moduli space of maps (i.e. not the quotient
“maps modulo reparametrisation”),

if there are d + 1 boundary punctures, then we fix positions of
the first three (or any other choice) and allow only the position
of the remaining d − 2 punctures to vary. (In the case d ≤ 2
this is means that the position of all punctures are fixed.)
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Goal of lecture

Discs with boundary punctures

Recall: Aut(D2) is three-dimensional and each element is uniquely
determined by its value on three distinct boundary points.

Remark

Assume that we have three or more boundary punctures. Then

Reparametrisations do not contribute to the index, since the
identity is the unique automorphism which fixes the three
boundary punctures which are required to remain fixed in the
definition of the index; and hence

The moduli space of discs as above with three or more boundary
punctures, whose positions all are allowed to vary freely, has the
same expected dimension as the above index after taking the
quotient by reparametrisation.
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The two-dimensional case

The two-dimensional case
When dimR X = 2n = 2 (i.e. n = 1 and the Lagrangian is
one-dimensional) the index, as well as the transversality question
(i.e. whether the cokernel vanishes or not), is easy to determine
in view of the below proposition.

Figure: In the two-dimensional case this is an honest figure.
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The two-dimensional case

Strips and disc in dimension two

Proposition (Folklore)

Consider the moduli space of discs with boundary on pairwise
transverse one-dim. L0, L1, L2, . . .. Any holomorphic strip u (resp.
disc with more than three punctures) has index one (resp. zero) if
and only if

It is an immersion everywhere away from the punctures (in
particular, there are no branched points in the interior, nor along
the boundary away from the punctures); and

Near a boundary puncture pi , the interior of the disc is an
embedding into the complement of ∪iLi (in other words, it
covers a single quadrant near the corr. intersection).

In these cases, the solution is moreover transversely cut out.
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The two-dimensional case

The two-dimensional case

Conversely, it is easy to see that any immersion of the above
form is the image of a holomorphic disc; Roughly: pull back the
almost complex structure on the target space to the domain.

In conclusion: In dimension dimR X = 2 the
pseudoholomorphic maps of the above form can be found purely
by combinatorial means.
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The two-dimensional case

The two-dimensional case

Remark

Assume that p ∈ L0 ∩ L1 is a transverse intersection of two
n-dimensional Lagrangians.

A disc with 2k boundary punctures which maps constantly into
p, with an alternating condition on L0, L1, L0, L1, . . ., has index
equal to n + 2k − nk − 3 (the expected dimension after the
quotient by reparam.)

However, we know these solutions explicitly, and the moduli
space is clearly equal to dimR2k−1 = 2k − 3 when k ≥ 2
(regardless of the dimension of n).

This is the reason why we require the Lagrangians L0, L1, L2, . . . to be
pairwise transverse.
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The two-dimensional case

The two-dimensional case

L1

L0

x y w z

Figure: The Floer complex CF (L0, L1): ∂(x) = y + z , ∂(y) = w , ∂(z) = w
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The two-dimensional case
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The two-dimensional case

The two-dimensional case

L1
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The two-dimensional case

The two-dimensional case

L1

L0

x y w z

Figure: A strip with “input” at x and “output” at w . It is not rigid, since
the corner at w covers more than one quadrant; instead, it lives in a
one-dimensional moduli space.
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The two-dimensional case

The two-dimensional case

L1

L0

x y w z

Figure: A strip with “input” at x and “output” at w which comes in a
one-parameter family. We start to approach a nodal strip which
contributes to ∂2(x) = w − w = 0. There is a branched point at the
boundary (the strip is not immersed there).
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The two-dimensional case

L1

L0

x y w z

Figure: A strip with “input” at x and “output” at w which comes in a
one-parameter family. We start to approach a nodal strip which
contributes to ∂2(x) = w − w = 0. There is a branched point at the
boundary (the strip is not immersed there).

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 19 / 80



The two-dimensional case

The two-dimensional case
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The two-dimensional case
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The two-dimensional case

The two-dimensional case
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The two-dimensional case

The two-dimensional case
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The non-exact case.

Floer homology in the non-exact case

The setting of exact Lagrangians is very limited; e.g. the ambient
manifold cannot be closed.
The two main reasons why Floer homology in the non-exact case is
badly behaved:

1 Divergent sums when counting strips (or other moduli spaces);
This happens when e.g. a moduli space M(x , y) for fixed x , y
(differential, continuation, homotopy, etc.) does not satisfy an a
priori area bound; Solution: Coefficients in the Novikov field.

2 Bubbling of pseudoholomorphic discs with boundary on L; this is
sometimes an actual obstruction to defining Floer homology.
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The non-exact case.

Floer homology in the non-exact case

These two other settings are important cases where Floer homology
works well:

Weakly exact Lagrangians:∫
α

ω = 0 for all α ∈ π2(X , L)

Monotone Lagrangians; e.g. the Clifford torus from [Lecture 5].
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The non-exact case. The weakly exact case

Floer homology in the weakly exact case

Unlike in the exact case, the weakly exact condition does not imply
that the symplectic energy of strips in M(x , y) only depends on x ,y .
The difference of two strips in M(x , y), thought of as continuous
chains, can be considered as a continuous annulus with boundary on
L0 ∪ L1:

Two strips in M(x , y) have a symplectic area which differ by the
symplectic area of some continuous annulus with boundary on L0∪L1.

In other words

In the weakly exact case, Novikov coefficients must be used unless all
annuli as above have vanishing symplectic area.
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The non-exact case. The weakly exact case

Floer homology in the weakly exact case

L1

L0

p

θ

0

dg − dθ

Figure: The difference of two strips can be considered to be a continuous
annulus with boundary on the pair L0, L1. For the Lagrangians
L0 ∪ L1 ⊂ T ∗S1 in the figure, these annuli are of area k2π, k ∈ Z. The
area of a strip in M(x , y) is determined by x , y only modulo 2π.
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The non-exact case. The weakly exact case

Weakly exact example

L1

L0

p

θ

0

−dθ 2π

Figure: Two disjoint embedded weakly exact Lagranginans in T2 bound
many annuli of nonzero symplectic area; the one in the figure has area 2π.
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The non-exact case. The weakly exact case

Weakly exact example

φ1
H(L1)

L0

p

θ

0

dg − dθ 2π − ε
ε
y x

Figure: After a Hamiltonian isotopy the two disjoint weakly exact
Lagrangians intersect in two points. There are precisely two rigid Floer
strips, one of area 2π − ε and one of area ε, both contribute to the
coefficient 〈∂(x), y〉.
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The non-exact case. The weakly exact case

Weakly exact example

In the above example:

Clearly
CF (L0, L1) = {0}

since the Lagrangians are disjoint there are no generators.

However,
CF (L0, φ

1
H(L1)) = Z2x ⊕ Z2y

with trivial differential when Z2-coefficients are used (there are
two rigid Floer strips that contribute to ∂(x)).

This contradicts invariance under Hamiltonian isotopy! (First
complex is acyclic, second is not!) �
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The non-exact case. The weakly exact case

Weakly exact example
With Novikov coefficients

ΛZ2 :=

{
∞∑
i=1

aiT
λi , ai ∈ Z2, λi ∈ R, lim

i→+∞
λi = +∞

}
.

we get the correct answer: The complex

CF (L0, φ
1
H(L1)) = ΛZ2x ⊕ ΛZ2y

with differential
∂(x) = (T 2π−ε + T ε)y

is acyclic.

Remark

(T 2π−ε + T ε)−1 = T−ε
∞∑
i=0

T i(2π−2ε) ∈ ΛZ2
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The non-exact case. The weakly exact case

Exercise

φ1
H(L0)

L0

p

θ

0

Figure: Compute CF (L0, φ
1
H(L0)) for the above pair of Hamiltonian

isotopic curves on the two-dimensional symplectic torus.
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The non-exact case. The monotone case

Floer homology in the monotone case

Definition

We say that a Lagrangian submanifold L ⊂ (X , ω) is monotone if
there exists a constant c ≥ 0 so that∫

[u]

ω = cµL[u]

is satisfied.
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The non-exact case. The monotone case

Floer homology in the monotone case

In the case of monotone Lagrangians whose minimal positive Maslov
index is N ≥ 3:

CF (L, φ1
H(L)) is a well-defined complex with coefficients in Z2

(non-orientable case) or Q (orientable case); this complex has a
ZN-grading and differential of degree −1 ∈ ZN .

Monotonicity does not imply that annuli have vanishing
symplectic area, but when L0 and L1 are Hamiltonian isotopic,
the Maslov index of such an annulus is proportional to the area.
Hence, the strips in M(x , y) of the same index also have the
same area.
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The non-exact case. The monotone case

Floer homology in the monotone case

In the case of monotone Lagrangians whose minimal positive Maslov
index is N ≥ 3:

Nevertheless, the complex CF (L, φ1
H(L)) might be acyclic! (The

unit in degree zero is possibly killed by something in degree
1 ∈ ZN .)

For two monotone Lagrangians which are not Hamiltonian
isotopic, CF (L0, L1) can in general only be defined with Novikov
coefficients (even when their minimal Maslov numbers coincide).
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The non-exact case. The monotone case

Floer homology in the monotone case

Example

The Lagrangian sphere

{(z , z)} ⊂ (CP1 × CP1, ωFS ⊕ ωFS)

has minimal positive Maslov index

N = 2 · cTCP1

1 [CP1] = 2 · 2 = 4.

The standard Lagrangian projective plane

RPn ⊂ (CPn, ωFS)

has minimal positive Maslov index N = n + 2.
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The non-exact case. The monotone case

Floer homology in the monotone case

In the case of monotone Lagrangians whose minimal positive Maslov
index is N = 2:

CF (L, φ1
H(L)) is a complex with coefficients in Z2 (non-orientable

case) or Q (orientable case); the complex has a Z2-grading.

There is a possibility of bubbling, but a non-trivial argument due
to Oh shows that ∂2 = 0 still holds in this case; see [FOOO09,
Section 3.6].

CF (L0, L1) is not necessarily a complex, even with Novikov
coefficients, due to the possibility of bubbles. �
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The non-exact case. The monotone case

Floer homology in the monotone case

Example

The Clifford tori

(RP1)n = µ−1(1/4, . . . , 1/4) ⊂ (CP1)n

as well as

µ−1(1/(2(n + 1)), . . . , 1/(2(n + 1))) ⊂ (CPn, ωFS)

have minimal positive Maslov index N = 2.
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The non-exact case. The monotone case

The Floer complex: A monotone example

yx

L1

L0

Figure: A monotone Lagrangian L0 of minimal Maslov index 2 and a
weakly exact & monotone Lagrangian L1 inside the punctured torus.
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The non-exact case. The monotone case

The Floer complex: A monotone example

yx

L1

L0

u

Figure: The single strip u which contributes to ∂(x) = y
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The non-exact case. The monotone case

The Floer complex: A monotone example

yx

L1

L0

v

Figure: The single strip v which contributes to ∂(y) = x
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The non-exact case. The monotone case

The Floer complex: A monotone example

yyx

L1

L0

Figure: ∂2(x) = x 6= 0 implies the existence of bubbles: This is a
pseudoholomorphic disc of Maslov index two with boundary on L0.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 42 / 80



The non-exact case. The monotone case

The Floer complex: A monotone example

yx

L1

L0

u

v

Figure: The two strips u and v that contribute to ∂2(x) = x can be glued
to form a strip which lives in a one-dimensional moduli space.
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The non-exact case. The monotone case

The Floer complex: A monotone example

yx

L1

L0

Figure: The two strips u and v that contribute to ∂2(x) = x can be glued
to form a strip which lives in a one-dimensional moduli space.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 44 / 80



The non-exact case. The monotone case
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The non-exact case. The monotone case

The Floer complex: A monotone example
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The non-exact case. The monotone case

The Floer complex: A monotone example

yyx

L1

L0

Figure: One boundary point of the moduli space is a constant strip
attached to a non-constant disc of Maslov index two. This boundary point
of the moduli space is not a configurations that contributes to ∂2(x); this
explains why ∂2(x) 6= 0.
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Moduli space of punctured discs

Moduli space of punctured discs

Today we will need to consider a general moduli space which
combines the moduli spaces that we got acquainted in the previous
lecture, i.e.:

The moduli space of Floer strips with boundary on L0 ∪ L1;

The moduli space of continuation strips with the moving
boundary condition L0 ∪ φ−sH (L1) (s parametrises a point in the
domain!)

The moduli space Rd of d + 1 boundary punctures on D2 up to
reparam.
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Moduli space of punctured discs

Strips and discs
First, recall that the strip is biholomorphic to the disc:

{x + iy ; y ∈ [0, 1]}
∼=−→ H \ {0} = {x + iy ; y ≥ 0} \ {0},

z 7→ eπz

is a biholomorphism to the upper half-plane, which in turn is mapped
by

H \ {0}
∼=−→ D2 \ {−1, 1}

z 7→ z − i

z + i

biholomorphically to the disc. The composition is

ψ : {x + iy ; y ∈ [0, 1]}
∼=−→ D2 \ {−1, 1}

z 7→ eπz − i

eπz + i
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Moduli space of punctured discs

Strips and discs

∼=ψ

1−1 0

i/2

i
y

x

Figure: A biholomorphism from the strip {Imz ∈ [0, 1]} to D2. Uniquely
determined by its values at the points −∞,+∞, i/2!

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 50 / 80



Moduli space of punctured discs

Strips and discs
The inverse ψ−1 is given the composition

D2 \ {−1, 1}
∼=−→ H \ {0},

z 7→ z + 1

z − 1

composed with

H \ {0}
∼=−→ {x + iy ; y ∈ [0, 1]},

z 7→ 1

π
log z

i.e.

z 7→ ψ−1(z) =
π−1 log z + 1

π−1 log z − 1
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Moduli space of punctured discs

Strips and discs

In other words, instead of considering maps

u(s + it) ∈ (X , ω), u(s + ij) ∈ Lj , j ∈ {0, 1},
du(∂t) = Jtdu(∂s)

we can consder maps

u(s + it) ∈ (X , ω), u(e i(−1)
j+1θ) ∈ Lj , j ∈ {0, 1},

du(∂t) = JImψ−1(z)du(∂s)

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 52 / 80



Moduli space of punctured discs

Strips and discs

Conversely, near every point p = e iθ ∈ ∂D2 we can use the above
biholomorphism ψ precomposed with a suitable rotation to obtain the
coordinates

s + it 7→ e iθψ(s + it)

where s + it ∈ {t ∈ [0, 1]} ⊂ C2 are coordinates on the strip, and the
point p thus corresponds to the limit as s → +∞.

We say that these coordinates are choices of strip-like ends at
p ∈ ∂D2.

There are ambiguities in the choice of a striplike end:

Translation of the coordinate s in the domain.
Choice of point p′ ∈ ∂D2 \ {p} to which the coordinates are
asymptotic as s → −∞.
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Moduli space of punctured discs

Strips and discs
The following immediate result is useful for specifying strip-like ends:

Lemma

Three consecutive boundary punctures pj−1, pj , pj+1 gives rise to a
unique strip-like end on the disc for the puncture pj : we can send
e.g. pj−1 to the origin in the strip, pj to s = +∞, and pj+1 to
s = −∞.
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Moduli space of punctured discs

Moduli space of punctured discs

The general moduli space of punctured discs will be denoted by
MJ(X ,L) and depends on several choices of data.
Roughly speaking it consists of pseudoholomorphic discs modulo
reparametrisation where:

The boundary has at least three boundary punctures,

Varying boundary conditions at a collection L of families of
Lagrangians induced by Hamilonian isotopies,

Asymptotics to intersection points at some of its boundary
punctures.

In order to pin-point the above conditions, one must work on the
level of choices of representatives of Rd , but remembering that
reparametrisation must preserve the conditions. (So that we can pass
to a quotient.)
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Moduli space of punctured discs

General moduli space
The moduli space consists of equivalence classes (up to
reparametrisation) of

Smooth maps
u : D2 → (X , ω)

together with a configuration {p0, . . . , pd} ⊂ ∂D2 of d + 1 ≥ 3
disjoint boundary punctures.
We choose an almost complex structure Jz,r on X which
depends on both the point in the domain z ∈ D2 and on the
configuration r of the boundary punctures, and we require that

du ◦ j = Jz,r ◦ du
as well as the invariance Jφ(z),φ(r) = Jz,r with respect to reparam.
Since d + 1 ≥ 3 there are canonically identified strip-like ends
near each boundary puncture pj ; we choose Jz,r to be
t-dependent near the punctures with respect to these coord.
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Moduli space of punctured discs

General moduli space

We also choose d + 1 Hamiltonian isotopies of Lagrangian
submanifolds

φs
H(0),r

(L0), φs
H(1),r

(L1), φs
H(2),r

(L2), . . . , φs
H(d),r

(Ld)

where

H(i),r is a Hamiltonian which depends on r ∈ Rd ; we allow both
non-autonomous Hamiltonians, but also constant ones,

φs
H(i),r

(Li) is constant outside of s ∈ [0, 1],

The Lagrangian boundary conditions φαH(i),r
(Li) for different

α = 0, 1 and i is a collection of Lagrangians in which pairs either
coincide or intersects transversely.
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Moduli space of punctured discs

Strips and discs

We then specify the boundary condition by the requirement that:

On the j :th boundary arc e iθ at the angle θ ∈ [arg pj , arg pj+1]
we have the varying boundary condition

u(e iθ) ∈ φ
θ−arg pj
θ−arg pj+1

H(j),r
(Lj).

This is constructed by careful choices of representatives of
r ∈ Rd , and then extended to be invariant under reparam.

The map u is asymptotic to some intersection Lj ∩ Lj+1 at pj
if the boundary condition is discontinuous there.
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Moduli space of punctured discs

Strips and discs

Figure: A disc in the interior of the moduli space
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Moduli space of punctured discs

Gromov’s compactness theorem

Theorem (Seidel [Sei08])

For a suitable smooth extension of the boundary value conditions
over the compactifications Rd , the components of the
aforementioned moduli space that satisfies a fixed bound on the
symplectic energy

∫
u
ω is compact in the Gromov sense, where a

nodal limit has components that are either:

Discs with at least three boundary punctures including nodes
(i.e. solutions in the interior of a moduli space of the same
type), or

Non-constant discs with two boundary punctures with locally
constant boundary condition (e.g. “Floer strips”), or

Non-constant disc/sphere bubbles with a constant boundary
conditions and a single node.
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Moduli space of punctured discs

Gromov’s compactness theorem

Limits to a nodal disc can occur in two different ways, depending on
the underlying limit r∞ ∈ Rd of the configuration of boundary
punctures:

If r∞ ∈ Rd is contained in the interior. In this case a disc or
sphere bubbled off just as in the previous version of Gromov
compactness: due to a blow-up of the gradient. (The disc
bubble can also carry with it a single boundary puncture, but
only in the case when the boundary condition does not switch
Lagrangians there.)

If r∞ ∈ Rd is contained in the interior, it is also possible that a
“Floer strip” has broken off; this is a disc bubble that (except for
the node) also captures precisely one of the boundary punctures
in the limit where the boundary condition makes a jump;
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Moduli space of punctured discs

Gromov’s compactness theorem

Limits to a nodal disc can occur in two different ways, depending on
the underlying limit r∞ ∈ Rd of the configuration of boundary
punctures:

If r∞ ∈ Rd \ Rd is contained in the boundary. In this case a
blow-up of the gradient may or may not have happend, but due
to the nature of the compactification of Rd , we get a nodal
limit nevertheless.
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Moduli space of punctured discs

Strips and discs

Figure: A limit configuration in which the component in the middle is a
non-constant Floer strip. This configuration lives in the boundary of Rd .
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Moduli space of punctured discs

Strips and discs

Figure: A limit configuration: on the right there is a disc bubble, and on
the bottom there is a breaking of a “Floer strip.” This configuration lives
in the boundary of Rd .
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Moduli space of punctured discs

Strips and discs

Figure: This nodal configuration has boundary punctures r ∈ Rd in the
interior; one component is a Floer strip, one component is a disc bubble,
and one component has d + 1 boundary punctures.
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Moduli space of punctured discs

Strips and discs

Figure: This nodal configuration has boundary punctures r ∈ Rd in the
interior; two components are Floer strips and one component has d + 1
boundary punctures.
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Moduli space of punctured discs

The index

From now on we will mainly work in the exact setting. Hence, there
are no disc/sphere bubbles. In this case:

Lemma

The index of a smoothed nodal disc in Rd+1 can be obtained by:

Summing the indices of the components involved.

Adding the codimension of the stratum of Rd+1 in which the
nodal disc lives.

I.e. if nodal disc lives in the interior Rd+1, then you simply sum the
indices of all components; if the the nodal disc lives in a generic
boundary point, then you have to sum indices and add one; etc.
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Applications Operations and continuation elements

Operations
The count of transversely cut out rigid solutions in the above moduli
spaces – i.e. index zero and transversely cut out – with the
appropriate boundary conditions and asymptotics, gives rise to
operations

µd : CF (Ld−1, Ld)⊗CF (Ld−2, Ld−1)⊗ . . .⊗CF (L1, L2)→ CF (L0, Ld)

with d ≥ 2. Next lecture we will see that these operations satisfy the
A∞-relations.
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Applications Operations and continuation elements

Operations

Remark

The punctured discs that contribute to µd are rigid; there might be
several different conformal structures ri ∈ Rd which admit solutions
that contribute to the value of µd(x1, . . . , xd).
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Applications Operations and continuation elements

Invariance of the Floer complex

Theorem

Floer [Flo88] When Li ⊂ (X , dλ), i = 0, 1, are closed exact
Lagrangian submanifolds and Jt is cylindrical outside of a compact
subset then

1 The boundary ∂ of CF (L0, L1) is well-defined;

2 ∂2(x) = 0;

3 A compactly supported Hamiltonian isotopy φt
H of (X , dλ), and

choice of two-parameter family of almost complex structures
Js,t , induces a chain map

ΦH,Js,t : CF (L0, L1; J−1,t)→ CF (L0, φ
1
H(L1); J1,t)

which induces isomorphism in homology.
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Applications Operations and continuation elements

Proof: Invariance of the Floer complex

Figure: Recall: The continuation map ΦH,Js,t counts strips of index zero
with a moving boundary condition.
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Applications Operations and continuation elements

Proof: Invariance of the Floer complex

Figure: We reformulate this in our new moduli space: count index one
discs with four boundary punctures, but for a fixed conformal structure
r ∈ R3. (Index one now implies that the solution is rigid!)
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Applications Operations and continuation elements

Proof: Invariance of the Floer complex

Figure: The chain map property follows from counting such configurations
of index two; we again keep r ∈ R3 fixed, so we obtain a one-dimensional
space.
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Applications Operations and continuation elements

Proof: Invariance of the Floer complex

To show that the continuation map is invertible on homology level,
we consider the inverse Hamiltonian isotopy

φt
G = (φt

H)−1.

A direct computation shows that

Lemma

The Hamiltonian G can be taken to be the smooth function
determined by

Gt ◦ φt
G = −Ht .
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Applications Operations and continuation elements

Proof: Invariance of the Floer complex

Figure: The pairs of index one strips that define the counts ΦG ◦ ΦH can
be glued to form index three strips, again counted with some fixed
conformal structure r0 ∈ Rd near the boundary.
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Applications Operations and continuation elements

Proof: Invariance of the Floer complex

Figure: Interpolate to the constant boundary condition on L0 ∪ L1 in a
one-parameter family rt of conf. structures.
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Applications Operations and continuation elements

Proof: Invariance of the Floer complex

We finally get the sought chain homotopy relation

ΦG ◦ ΦH = IdCF (L0,L1) + K ◦ ∂ − ∂ ◦ K

where the latter two terms come from the fact that the strips might
break when varying the conformal structure in the one-parameter
family rt .
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Applications Operations and continuation elements

Continuation element

By a similar argument, the continuation map is chain homotopic to
the operation

m2(c , ·) : CF (L0, L1)→ CF (L0, φ
1(L1))

obtained by inserting the continuation element c ∈ CF (L0, L1) into
µ2, where c is given by counting rigid discs with a “single jump” (see
next slide). This will be explored further next lecture.
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Applications Operations and continuation elements

Continuation element

Figure: The continuation element and its insertion into the µ2-product
give the continuation map.
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