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Goal of lecture

Goal of lecture

Today:

Displaceability implies existence of pseudoholomorphic discs (Or
contrapositive: No holomorphic discs implies non-vanishing Floer
homology in the closed case.)

The A∞-structure in Floer homology and the Fuakay category
for closed exact Lagrangians.
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Goal of lecture

Take-home Message

The operations defined by counting pseudoholomorphic curves of a
certain type inherit algebraic relations from the geometry of the
moduli space.

Figure: The A∞-relations arise by summing the boundary points of the
one-dimensional moduli spaces of discs with punctures (the blue curves).
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Goal of lecture

Plan
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Vanishing

Section 2

Displaceability implies bubbling
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Vanishing

Bubbles from displaceability

Gromov proved in his original paper [Gro85] that:

Theorem (Gromov [Gro85], Hofer, Oh)

For any closed Lagrangian L ⊂ (X , ω) which can be displaced by a
Hamiltonian isotopy, and J ∈ J tame(X , ω) which is well-behaved
outside of a compact subset (e.g. cylindrical), there exists a
non-constant J-holomorphic disc

u : (D2, j0)→ (X , J)

with u(∂D2) ⊂ L (or a non-constant J-holomorphic sphere).

Corollary

There exists no closed exact Lagrangians inside (Cn, dλ0 = ω0).
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Vanishing

Invariance of the Floer complex

The original proof was not referring to Floer homology. We will prove
a (stronger version) of the contrapositive statement to the one on the
previous slide (formulated in terms of Floer homology).
Roughly:

If there are no pseudoholomorphic discs with boundary on L (and no
psh. sphere) then Floer homology is non-trivial and invariant, and
therefore L is not Hamiltonian displaceable.
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Vanishing

Invariance of the Floer complex
More precisely, we begin with:

Theorem (Floer)

If J is a tame almost complex structure for which L admits
no pseudoholomorphic discs and X admits no non-constant
J-holomorphic spheres, then CF (L, φ1

H(L)) is well-defined and
invariant under the choice of Hamiltonian φt

H(L) if the paths of
almost complex structures on the strips are of the form

Js,t = (Dφ
tρ(s)
H )∗J (fully domain dependent) in the case where

the boundary condition on the upper boundary arc {t = 1} of

the strip is taken in φ
ρ(s)
H (L); (for the Floer strips ρ(s) ≡ 1,

i.e. no s-dependence.)

In particular Js,0 = J along the entire lower boundary arc
{t = 0} of the strip.
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Vanishing

Invariance of the Floer complex
We need Novikov coefficients for well-definedness and invariance
in the above setting, unless we e.g. assume exactness.
Recall the strategy of the proofs of well-definedness and
invariance: study one-dimensional moduli spaces, and show that
the operations

∂2, ∂ ◦ ΦH − ΦH ◦ ∂, etc.

count boundary points of some moduli space; hence they all
vanish as sought. (The previous lecture this was proved in the
exact case.)
Under the above assumptions, our choice of almost complex
structure Js,t on the strips prevents bubbles of
pseudoholomorphic discs from forming (see the version of
Gromov compactness from the previous lecture). The
well-def. and invariance thus follows as in the exact case.
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Vanishing

Invariance of the Floer complex

Figure: The symplectomorphism φ1H gives a bijection between
J-holomorphic discs with boundary on L (which do not exist by
assumption) and D(φ1H)∗J-holomorphic discs with boundary on φ1H(L)
(and consequently there are no such discs either).
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Vanishing

Invariance of the Floer complex
The existence of psh. discs for any tame almost complex structure in
the case when L admits a Hamiltonian displacement follows
immediately from the following result that we now prove:

Theorem

When L is closed and admits a tame almost complex structure J for
which there are no non-constant pseudoholomorphic discs with
boundary on L, and no non-constant pseudoholomorphic spheres,
then the continuation element cL,H ∈ CF (L, φ1

H(L)) is a cycle which
is non-trivial in homology HF (L, φ1

H(L)). )

Remark

The proof of the existence of psh. discs does actually not need the
Floer complex, it suffices to consider the argument on the level of
moduli spaces.
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Vanishing

Invariance of the Floer complex

In fact, something stronger is true (c.f. [Lecture 6])

Theorem (Floer, [FOOO09a] generalising Floer [Flo88])

If H is sufficiently C∞-small so that φ1
H(L) is the section of the exact

one-form dg in a Weinstein neighbourhood of L for a Morse function
g : L→ R, then

CF (L, φ1
H(L)) is the Morse homology complex of L for the Morse

function −g for a suitable choice of a.c.s., and

the continuation element cL,H is the fundamental class
(maximum class) of this Morse complex; (With our conventions
it lives in degree zero, and should be considered as the unit in
Morse cohomology.)
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Vanishing

Invariance of the Floer complex

Remark

The Morse homology complex is never acyclic. (Why?)

Similar considerations show that cL,H is non-trivial in homology.
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Vanishing

Proof that cH ,L is nontrivial
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Vanishing

Proof that cH ,L is nontrivial
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Vanishing

Proof that cH ,L is nontrivial
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Vanishing

Proof that cH ,L is nontrivial
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Int

Section 3

A∞-operations

From now on: All Lagrangians are assumed to be exact.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 18 / 40



Int

A∞-operations
Recall:

The boundary ∂ : CF (L0, L1)→ CF (L0, L1) counts Floer strips
of index one which admit a natural R-action; thus they are rigid
after quotient by reparam.

The continuation map

ΦH,Js : CF (L0, L1)→ CF (L0, φ
1
H(L1))

counts continuation strips of index zero.

Similarly one defines maps

µd : CF (Ld−1, Ld)⊗CF (Ld−2, Ld−1)⊗ . . .⊗CF (L1, L2)→ CF (L0, Ld).

by counts of moduli spaces of discs of index zero with d + 1
punctures; the one at −1 is the output, while the remaining d
punctures are inputs.
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Int

A∞-operations

Figure: Rigid disc with punctures asymptotic to intersection points that
contributes to the count 〈µ4(x4, x3, x2, x1), x0〉. Recall that: The
conformal structure (i.e. position of the boundary punctures) is not fixed,
while we identify discs which differ by reparametrisation.)
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Int

A∞-operations

The above operations are defined for counts of index zero discs with
d + 1 ≥ 3 punctures. We also define a version of the differential with
a twisted sign:

µ1 : CF (L0, L1)→ CF (L0, L1)

x1 7→ (−1)|x1|∂(x1),

which (for the same reason as δ) is defined by counts of strips of
index one.
(The sign depends on the degree of the generators, we will say some
more words about this below.)
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Int

A∞-operations

Proposition

The above maps {µd}, d = 1, 2, 3, . . ., satisfy the A∞-relations∑
d1+d2=d+1
0≤k≤d1

(−1)z
k

µd1(xd , . . . , xk+d2+1, µd2(xk+d2 , . . . , xk+1), xk , . . . , x1)

for the sign

zk = k +
k∑

i=1

|xi |.

There is one relation for each d = 1, 2, 3, . . ., and we proceed to spell
out the first three of them explicitly.
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Int

A∞-operations
Unfortunately, neither signs of discs nor gradings of the generators of
CF (L0, L1) will be explained at this point. About we grading we
simply state the following:

The generators have a grading which is induced by the Maslov
class of a certain capping operator.
Each basis element x ∈ CF (L0, L1) is an intersection point; it
can of course naturally be identified with a basis element
x∨ ∈ CF (L1, L0) as well; the degrees satisfies the relation

|x | = dim L0 − |x∨|.

The index of the disc with input punctures x1, . . . , xd and output
x0 is equal to

|x1|+ . . . + |xd | − |x0|+ d − 2

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 23 / 40



Int

A∞-operations

In other words:

The operations µd are of degree d − 2, i.e. it take an element
xd ⊗ . . .⊗ x1 of homogeneous degree i to a sum of elements of
degree i − d + 2;

In particular µ1 = ∂ decreases the degree by one, µ2 preserves
the grading (of the tensor product), and µ3 increases the degree
(of the tensor product) by one.

The continuation element cH,L lives in degree zero. (We should
take d = 2 here.)

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 24 / 40



Int

A∞-relations

The A∞-relations are proven by considering the corresponding moduli
spaces of pseudoholomorphc discs with punctures mapping to
intersection points, but of index (i.e. dimension) one higher than the
index of those solutions whose counts define the corresponding
operation.

Example

Recall the proof that µ2
1 = 0: considering discs of index 2 (i.e. a

one-dimensional moduli space after quotient by reparam.) and use
the fact that the index of a nodal strip is the sum of the indices of
components.
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Int

A∞-relation for d = 1:

µ2
1 = 0

Figure: The fact that the boundary points of a one-dimensional moduli
space is even gives the relation 〈µ21(x1), x0〉 = 0 for any two fixed
generators x0, x1. The boundary of this moduli space consists of two strips
of index one, while the boundary consists of two strips of index two.
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Int

A∞-relation for d = 2:

We proceed to show in pictures the one-dimensional moduli spaces
which give rise to the first A∞-operations.
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Int

A∞-relations

µ1(µ2(x2, x1)) = µ2(x2, µ1(x1)) + (−1)1+|x1|µ2(µ1(x2), x1)

Figure: The associahedron R2 = K2 is just a point, so only breaking of
strips can occur. The index is additive.
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Int

A∞-relations for d = 3:

µ1(µ3(x3, x2, x1)) = A(x3, x2, x1) + B(x3, x2, x1)

where

A(x1, x2, x3) = µ2(x3, µ2(x2, x3)) + (−1)1+|x1|µ2(µ2(x3, x2), x1)

is a signed version of the associator (counts “stable” broken strips)
while

B(x1, x2, x3) = µ3(x3, x2, µ1(x1))

+ (−1)1+|x1|µ3(x3, µ1(x2), x1) + (−1)2+|x1|+|x2|µ3(µ1(x3), x2, x1)

counts “unstable” broken strips.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 29 / 40



Int

A∞-relation for d = 3:

Figure: The one dimensional moduli space shown on the top has only
stable breakings (for these the index is sub-additive, since the boundary of
the moduli space lies in the boundary of the space of conformal structures
R3 = K3). The other nodal configurations are unstable, and the index is
additive.
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Int

A∞-relation for d = 4:

Figure: One-dimensional moduli spaces with five boundary punctures. The
unstable breakings happen in the interior of R4 = K4 (index is additive),
while the stable breakings happen in the boundary (index is subadditive).
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Int

A∞-relations

Observe that:

∂(x1) = (−1)|x1|µ1(x1) is a boundary operator;

x2 · x1 := (−1)|x1|µ2(x2, x1) is a product which satisfies the
graded Leibniz rule

∂(x2 · x1) = ∂(x2) · x1 + (−1)|x2|x2 · ∂(x1)

with respect to ∂.

µ3 induces a null-homotopy of the associator

x3 · (x2 · x1)− (x3 · x2) · x1.
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Int

A∞-relations

In other words: On the homology level the above product is

well-defined (by the Leibniz rule), and

associative (by the µ3-relation).
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Int An A∞-category

A∞-category
The so-called Fukaya category is a unital A∞-category of closed
Lagrangians was constructed in [FOOO09a],[FOOO09b] by
Fukaya–Ohta–Ono–Oh, and in the exact case by Seidel [Sei08].
Roughly it consists of

Objects: exact closed Lagrangians (equipped with additional
data);

Morphisms: elements in the Floer complexes
Hom(L0, L1) = CF (L0, L1).

Composition: defined by the product.

Remark

Composition is not associative on the chain level, the higher
operations are also a part of the data of this category;�
We have not yet defined the endomorphisms of this category.
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Int An A∞-category

A∞-category
The endomorphisms cannot be defined as CF (L, L), since L ∩ L = L
is not transverse.
Solution [Sei08]:

Equip each L with the additional data of a push-off φ1
H(L) for a

C∞-small H , and define

CF (L, L) := CF (L, φ1
H(L)).

Define the operations

µd : CF (L, L)⊗ . . .⊗ CF (L, L)→ CF (L, L)

(and so on) by suitably perturbing the boundary conditions;
Unit: Homology level unit is the continuation element

eL := cH,L ∈ CF (L, L).
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Int An A∞-category

Perturbations for the endomorphisms
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Int An A∞-category

Perturbations for the endomorphisms
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Int An A∞-category

cH ,L is the homology unit
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Int An A∞-category

cH ,L is the homology unit
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