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1 Introduction

Domain theory is by now a rather large mathematical theory with applica-
tions in many areas such as denotational semantics, type theory and recur-
sive mathematics. For a short course on the mathematical theory of domains
it is therefore necessary to be selective and to choose a particular perspec-
tive. We have chosen to see domain theory as a theory of approximation and
a theory of computability via approximations and have selected our topics
accordingly.

In Section 2 we develop the basic theory of algebraic and continuous
domains. By analysing a notion of approximation we arrive naturally at
the axioms for domains. In Section 3 we develop the theory of domain
representability. We show how a large class of structures can be given natural
representations using domains. Together with an effective theory of domains
this provides a uniform method to study computability on such structures,
which is the topic of Section 5. The general theory of effective domains
is described in Section 4. In Section 6 we discuss bifinite domains and
show that the category of effective bifinite domains is cartesian closed. The
various power domain constructions are briefly considered in Section 7. In
the final Section 8 we barely touch on the problem of representing relations
and non-continuous functions using domains.

I want to thank Göran Hamrin for his comments on initial drafts of these
notes.

2 Basic theory

2.1 Approximation structures and domains

We take as our starting point the following problem. Suppose we want to
compute on a possibly uncountable structure such as the field of real num-
bers R. The elements of R are in general truly infinite objects (Cauchy
sequences or Dedekind cuts) with no finite description. However, real om-
putations, that is computations that can in principle be performed by a
digital computer or Turing machine must operate on ‘concrete’ objects. By
an element being concrete we mean (at least) that it is finitely describable
or, equivalently, coded by a natural number. In particular, the structure on
which the computations are performed must be countable. Therefore it is
not possible to compute directly on R, we can at best compute on concrete
approximations of elements in R. If the approximations are such that each
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real number is a limit of its approximations then we can extend a computa-
tion to R by interpreting a computation on a real number as the ‘limit’ of
the computations on its approximations, where such a limit exists. This is
the technique used in recursive analysis, see e.g. Pour-El and Richards [35].

Is there a general method or a general class of structures which captures
computations via approximations as in the example of the reals R? We shall
show that a simple analysis of the notion of approximation leads naturally to
the class of structures called algebraic domains which has the generalisation,
also natural from the approximation point of view, to continuous domains.

Let us consider the problem of approximation abstractly. Suppose that
X is a set (or more generally a structure). To say that a set P is an ap-
proximation for X should mean that elements of P are approximations for
elements of X. That is, there is a relation ≺, the approximation relation,
from P to X with the intended meaning for p ∈ P and x ∈ X,

p ≺ x⇐⇒ “p approximates x”.

We illustrate this with a few relevant examples.

Example 2.1. Let P = {[a, b]: a ≤ b, a, b ∈ Q} and X = R. Define

[a, b] ≺ x⇐⇒ x ∈ [a, b].

Note that P consists of concrete elements in the sense that an interval [a, b]
is finitely describable from finite descriptions of the rational numbers a and
b and the symbols “[”, “]” and “,”.

Example 2.2. Let X be a topological space with a topological base B. For
B ∈ B and x ∈ X define

B ≺ x⇐⇒ x ∈ B.

For second countable spaces the set of approximations B can be chosen (by
definition!) to be countable.

Example 2.3. Let P = Q and X = R. For a ∈ Q and x ∈ R define

a ≺ x⇐⇒ a < x

where < is the usual order on R.

Note that Example 2.1 provides a better approximation of R than Ex-
ample 2.3 in that [a, b] ≺ x gives (roughly) more information than a ≺ x.

Let P and X be sets and let ≺ be a relation from P to X. Then ≺
induces a relation v on P , called the refinement (pre-)order obtained from
or induced by ≺, in a natural way: for p, q ∈ P let

p v q ⇐⇒ (∀x ∈ X)(q ≺ x =⇒ p ≺ x).
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Thus p v q expresses that q is a better approximation than p, or q refines
p, in the sense that q approximates fewer elements in X than does p. Note
that the induced refinement order indeed is a preorder, i.e. it is reflexive and
transitive.

We now put some reasonable requirements on P and ≺ in order to obtain
an approximation structure for X. We require that

• each element x ∈ X is uniquely determined by its approximations, and

• each element x ∈ X is the ‘limit’ of its approximations.

In addition it is useful to require P to have a trivial approximation, i.e., an
approximation which approximates all elements of X (and hence contains
no information about elements of X). This leads us to

Definition 2.4. Let P and X be sets, ≺ a relation from P to X and v
the refinement preorder obtained from ≺. Then (P ;v) is an approximation
structure for X w.r.t. ≺ if

(i) (∀x, y ∈ X)({p ∈ P : p ≺ x} = {p ∈ P : p ≺ y} ⇐⇒ x = y);

(ii) p ≺ x and q ≺ x =⇒ (∃r ≺ x)(p v r and q v r);

(iii) (∃p ∈ P )(∀x ∈ X)(p ≺ x).

Examples 2.1 and 2.3 are approximation structures when we add a trivial
approximation. Example 2.2 gives an approximation structure precisely
when the space X is T0. In this sense (i) in Definition 2.4 is a T0 property.

Let (P ;v) be an approximation structure for X w.r.t. ≺. Then each
x ∈ X is uniquely identified with the set {p ∈ P : p ≺ x}. Note that if
p v q ≺ x then p ≺ x. Together with (ii) and (iii) in Definition 2.4 we see
that {p ∈ P : p ≺ x} is an ideal over (P ;v).

For a preorder P = (P ;v), a set A ⊆ P is said to be directed if A is
non-empty and if p, q ∈ A then there is an r ∈ A such that p, q v r, i.e.,
every finite subset of A has an upper bound in A. A subset I ⊆ P is an ideal
over P if I is directed and downwards closed. We often use the notation
↓p = {q ∈ P : q v p} and ↑p = {q ∈ P : p v q}. Note that ↓p is an ideal, the
principal ideal generated by p. We denote by Idl(P ;v), or just Idl(P ), the
set of all ideals over (P ;v).

Thus given an approximation structure (P ;v) of X w.r.t. ≺ we obtain
an injection of X into Idl(P ), i.e. X “lives” in Idl(P ). (However, this
may not be the best injection, as we shall see later.) In addition Idl(P )
contains the approximation structure P that we started with by means of
the principal ideals ↓p. So Idl(P ) contains both the original space and its
approximations.
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Idl(P ) is naturally ordered by inclusion ⊆. For if ideals I ⊆ J then J
contains more approximations and hence more information about the ele-
ments approximated than does I. We therefore consider Idl(P ) as a structure
ordered by inclusion.

Definition 2.5. Let P = (P ;v) be a preorder. The ideal completion of P
is the structure P̄ = (Idl(P );⊆).

We also denote the set Idl(P ) by P̄ . Here are the relevant properties of
the ideal completion.

Theorem 2.6. Let P = (P ;v) be a preorder and let P̄ = (P̄ ;⊆) be the ideal
completion of P ordered by inclusion.

(i) ⊆ is a partial order.

(ii) If F ⊆ P̄ is a directed family of ideals then
⋃

F is an ideal and
⋃

F =
supremum of F w.r.t. ⊆.

(iii) If p ∈ P , F ⊆ P̄ is directed and ↓p ⊆
⋃

F then there is I ∈ F such
that ↓p ⊆ I.

(iv) Let I ∈ P̄ . Suppose for each directed F ⊆ P̄ such that I ⊆
⋃

F there
is J ∈ F such that I ⊆ J . Then I = ↓p for some p ∈ P .

(v) Let I ∈ P̄ . Then the set {↓p: ↓p ⊆ I} ⊆ P̄ is directed and I =
⋃

{↓p: ↓p ⊆ I}.

Proof. Straightforward. (For (iv) let F = {↓p: p ∈ I}.)

The interesting point for us is that the theorem, with notions motivated
from simple considerations about approximations, gives the axioms for an
algebraic cpo simply by replacing (P̄ ;⊆) by a partial order (D;v).

Note that if P contains a ‘least’ element ⊥ as in an approximation struc-
ture then ↓⊥ is least in P̄ . It is often convenient to have a least element,
e.g., for the existence of fixed points and for the function space construction.

Definition 2.7.

(i) Let D = (D;v,⊥) be a partially ordered set with least element ⊥.
Then D is a complete partial order (abbreviated cpo) if whenever A ⊆
D is directed then

⊔

A (the least upper bound or supremum of A)
exists in D.

(ii) Let D be a cpo. An element a ∈ D is said to be compact or finite if
whenever A ⊆ D is a directed set and a v

⊔

A then there is x ∈ A
such that a v x. The set of compact elements in D is denoted by Dc.
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(iii) A cpo D is an algebraic cpo if for each x ∈ D, the set

approx(x) = {a ∈ Dc: a v x}

is directed and x =
⊔

approx(x).

With this terminology, Theorem 2.6 states that P̄ = (P̄ ;⊆, ↓⊥) is an
algebraic cpo.

Here is a representation theorem for algebraic cpos. For its simple proof
see Stoltenberg-Hansen et al. [39].

Theorem 2.8. Let D = (D;v,⊥) be an algebraic cpo and let Dc be the
ideal completion of Dc = (Dc;v). Then D ' Dc.

Note that if D is an algebraic cpo then (Dc;v) is an approximation
structure for D w.r.t. ≺, where for a ∈ Dc and x ∈ D,

a ≺ x⇐⇒ a v x.

We have shown that algebraic cpos are precisely ideal completions of
approximation structures.

It is well-known that the class of algebraic cpos is not closed under the
function space construction. The usual added requirement is the following.

Definition 2.9. Let D be a cpo. Then D is said to be consistently complete
if whenever x, y ∈ D are consistent in D (i.e. have a common upper bound)
then their supremum x t y exists in D.

A consistently complete algebraic cpo will be called an algebraic domain.
Other terms in the literature are Scott domain or Scott-Ershov domain after
the originators of our theory.

For an approximation structure P = (P ;v) we often want the ideal
completion P̄ to be an algebraic domain. It is an easy exercise to see that
a necessary and sufficient condition (when v is a partial order) is that P is
a conditional upper semilattice or cusl, i.e., if p, q ∈ P are consistent in P
then p t q exists in P . The approximation structures in Examples 2.1 and
2.3 are cusls and the topological base B in Example 2.2 can be chosen such
that it is a cusl.

Assume P is an approximation structure for X via ≺. Then we obtain
an induced approximation from X to X by

x ≤ y ⇐⇒ (∀p ∈ P )(p ≺ x =⇒ p ≺ y).

Clearly, (X;≤) is an approximation structure for X w.r.t. ≤.
In Example 2.1 the induced relation ≤ is discrete, i.e., ≤ is =. The

induced relation in Example 2.2 is known as the specialisation order. It is
discrete if, and only if, X is a T1 space. The induced relation in Example
2.3 coincides with the usual ordering on R and hence is far from discrete.
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In applications we are mainly interested in approximations P of X such
that the induced relation ≤ on X is discrete. The reason is the following.
Suppose I ∈ P̄ determines or represents a unique element x ∈ X and suppose
J ⊇ I. Then J contains as much information as I and hence should also
represent or determine x. That is, it is desirable that the representations in
P̄ are upwards closed.

Define a function rep: P̄ → ℘(X) by

rep(I) = {x ∈ X: (∀p ∈ I)(p ≺ x)}.

We say that I ∈ P̄ is convergent if rep(I) is a singleton and then we denote
rep(I) = {x} by I → x. Let P̄R = {I ∈ P̄ : I convergent} and define
ν: P̄R → X by

ν(I) = x⇐⇒ I → x.

If the representation is upwards closed then ν is a surjection.
It is not necessarily the case that each x ∈ X has a unique representation

in P̄R. In Example 2.1 each irrational has a unique representation while
each rational has exactly four representations. (Can you describe all these
representations?)

From an approximation P for X we have constructed an algebraic cpo
(often an algebraic domain) P̄ which includes both the approximations for
elements of X and also (representations of) the elements of X. Now we can
use the general theory of domains to study the structure X via the mapping
ν, including

• fixed point theorems (generalises Banach’s fixed point theorem, used
for example in studying iterated function systems, see Edalat [11, 12]
and Blanck [6]);

• ability to build higher type objects (e.g. streams and stream trans-
formers, see [7]);

• computability, inherited from the computability of P .

Our claim is that the use of domains (of various kinds) provides a general,
uniform and useful way to study computability via approximations on a large
class of structures. It is a hope that the use of domain representability will
help to give insights into ways of doing feasable exact or secure computations
on certain topological algebras such as R. For some interesting work in this
direction see Potts [34].

2.2 Scott topology

There is a natural topology on cpos given by Scott.

Definition 2.10. Let D = (D;v,⊥) be a cpo. Then F ⊆ D is closed if
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(i) whenever A ⊆ F is directed then
⊔

A ∈ F ; and

(ii) if x ∈ F and y v x then y ∈ F .

A directed set should be thought of as a generalised sequence. In a cpo
all such “sequences” converge. Thus condition (i) has a clear motivation.

Examples of closed sets are ↓x = {y ∈ D: y v x}. In fact, the topological
closure {x} of {x} is ↓x.

Open sets are complements of closed sets. Thus U ⊆ D is open if

(i) whenever A ⊆ D is directed and
⊔

A ∈ U then A ∩ U 6= ∅; and

(ii) if x ∈ U and x v y then y ∈ U .

Part (ii) has been motivated as follows (see Smyth [38]). The ordering v
on D is considered as an information ordering, i.e., y contains more informa-
tion than x if x v y. Open sets are thought of as “observable properties”. If
x has enough information for the property U to hold, i.e., x ∈ U , and x v y
then y also contains enough information for the property U to hold. Thus
we assume information to be consistent, and hence to satisfy a property is
definite when the information is sufficient.

Remark 2.11. If D is an algebraic cpo then the family {↑a: a ∈ Dc} is a
topological base for the Scott topology.

Exercise 2.12. Let (X, τ) be a topological space. The specialisation order
≤ on X is defined by

x ≤ y ⇐⇒ ∀U open(x ∈ U =⇒ y ∈ U).

Show that for a cpo D = (D;v,⊥) equipped with the Scott topology the
order v is the specialisation order. Conclude that D is a T0 space and that
D is a T1 space only if D = {⊥}.

The Scott topology is the correct one for the natural order theoretic
version of continuity.

Proposition 2.13. Let D and E be cpos. Then a function f :D → E is
continuous with respect to the Scott topology if, and only if, f is monotone
and for each directed set A ⊆ D,

f(
⊔

A) =
⊔

f [A].

The proof is a straightforward exercise.
Consider the unit interval [0, 1]. It is a cpo under the usual ordering ≤.

However, the Scott topology is radically different from the usual Euclidean
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topology on [0, 1]. For example, the step function f : [0, 1] → [0, 1] defined
by

f(x) =

{

0 if 0 ≤ x ≤ 1
2

1 if 1
2 < x ≤ 1

is Scott continuous but not continuous with respect to the usual topology.
A non-monotone function is not Scott continuous.

For cpos D and E we define the function space [D → E] of D and E by

[D → E] = {f :D → E | f continuous}.

We order [D → E] by

f v g ⇐⇒ (∀x ∈ D)(f(x) v g(x)).

It is easy to see that [D → E] is a cpo where for a directed set F ⊆ [D → E]
and x ∈ D,

(
⊔

F)(x) =
⊔

{f(x): f ∈ F}.

We form a category CPO⊥whose objects are cpos and whose morphisms
are continuous functions between cpos. It is well-known and easy to prove
that CPO⊥ is a cartesian closed category, where the product of cpos D and
E is given by

D ×E = {(x, y):x ∈ D, y ∈ E}

and ordered by

(x, y) v (z, w) ⇐⇒ x vD z and y vE w.

The exponent of D and E is the function space [D → E]. In particular
this means that the corresponding projection functions for the product are
continuous. Furthermore eval: [D → E]×D → E defined by

eval(f, x) = f(x)

is continuous and curry: [D ×E → F ] → [D → [E → F ]] defined by

curry(f)(x)(y) = f(x, y)

is continuous.
Finally we have the existence of least fixed points.

Proposition 2.14. Let D = (D;v,⊥) be a cpo.

(i) For each f ∈ [D → D] there is a least x ∈ D such that f(x) = x, i.e.,
f has a least fixed point.

(ii) The function fix : [D → D] → D defined by

fix(f) = least fixed point of f

is continuous.

9



Proof. The least fixed point of f is
⊔

n f
n(⊥) where

{

f0(⊥) = ⊥
fn+1(⊥) = f(fn(⊥)).

We leave the continuity of fix as an exercise.

2.3 Continuous and algebraic domains

We will briefly discuss continuous domains, which is a broader class of struc-
tures than algebraic domains. It turns out that for the purpose of using
domains to study computability on topological algebras it suffices, and is
in our view sometimes preferable, to consider the simpler structures of al-
gebraic domains. However, when dealing with topological algebras which
can only have weak computability properties then continuous domains may
seem more natural.

2.3.1 Continuous cpos

In this section we discuss the appropriate approximation relation on cpos.
Then we isolate those cpos which are well-behaved with respect to this
approximation relation. These are the continuous cpos.

Definition 2.15. Let D = (D;v,⊥) be a cpo. Then for x, y ∈ D we say x
is way below y, denoted x� y, if for each directed set A ⊆ D,

y v
⊔

A =⇒ (∃z ∈ A)(x v z).

The way below relation is sometimes called the approximation relation.
Note that x ∈ D is compact if, and only if, x � x. Of course, ⊥ � x

always holds.

Exercise 2.16. Show that the way below relation on an algebraic cpo D is
characterised by

x� y ⇐⇒ (∃a ∈ Dc)(x v a v y).

Lemma 2.17. Let D = (D;v,⊥) be a cpo and x, y, z, w ∈ D. Then the
following hold.

(i) x� y =⇒ x v y.

(ii) z v x� y v w =⇒ z � w.

In particular we see that � is transitive and antisymmetric. But it need
not be reflexive.

Example 2.18. Let CI = ([0, 1];≤, 0) where ≤ is the usual order. Then

x� y ⇐⇒ x < y.
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Example 2.19. Let CIR = {[x, y] : x, y ∈ R, x ≤ y} ∪ {R} ordered by
reverse inclusion. Then

[x, y] � [z, w] ⇐⇒ x < z ≤ w < y,

i.e., [z, w] ⊆ (x, y), the interior of [x, y].

Exercise 2.20. Determine the compact elements in the above examples.

Definition 2.21. A cpo D = (D;v,⊥) is continuous if for each x ∈ D,

(i) the set {y ∈ D: y � x} is directed (w.r.t. v); and

(ii) x =
⊔

{y ∈ D: y � x}.

Useful notation for sets determined by the way below relation are, for x
an element of a cpo D,

↓↓x = {y ∈ D: y � x} and ↑↑x = {y ∈ D:x� y}.

As observed above, the way below relation � is not necessarily reflexive.
However, for continuous cpos it satisfies the following crucial interpolation
property.

Lemma 2.22. Let D be a continuous cpo. Let M ⊆ D be a finite set and
suppose M � y, i.e., (∀z ∈ M)(z � y). Then there is x ∈ D such that
M � x� y.

Proof. (Sketch) Suppose M � y. Let A = {x ∈ D:∃x′(x � x′ � y)}.
Using the continuity of D one shows that A is directed and

⊔

A = y. Say
M = {z1, . . . , zn}. Then we know from the above that there are ai ∈ A such
that zi v ai and hence there is a ∈ A such that M v a. But then, by the
definition of A, there is x such that M � x� y.

It follows that if D is a continuous cpo then ↓↓y = {x ∈ D:x � y} is
directed with respect to � for each y ∈ D.

For an algebraic cpo D we have seen that all the information is contained
in the behaviour of the compact elements Dc of D. We say that Dc is a base
for D. This is essential when using domains in order to study computability.
We now introduce the analogous notion for continuous cpos.

Definition 2.23. Let D = (D;v,⊥) be a cpo. A subset B ⊆ D is a base
for D if for each x ∈ D,

approxB(x) = {y ∈ B: y � x}

is directed and
⊔

approxB(x) = x.
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Actually it suffices to require that for each x ∈ D there is a directed
subset A ⊆ approxB(x) such that x =

⊔

A. Note that if B is a base for a
cpo D then Dc ⊆ B.

If D is a continuous cpo then trivially D is a base for D. As already
mentioned, Dc is a base for an algebraic cpo D. In Example 2.18, [0, 1] ∩Q

is a base and in Example 2.19, the intervals [a, b] with a, b ∈ Q (along with
bottom) make up a base.

The following proposition is an easy exercise.

Proposition 2.24. A cpo is continuous if, and only if, it has a base.

Exercise 2.25. Show that a cpo D is algebraic if, and only if, Dc is a base
for D. Also show that a continuous cpo D has a least base if, and only if,
D is algebraic.

Just as for an algebraic cpo the behaviour of a continuous cpo is deter-
mined by a base. For example, the interpolation property (Lemma 2.22) is
such that the witness always can be chosen from a base of D.

Theorem 2.26. Let D be a cpo with a base B. Then a topological base for
the Scott topology on D is given by the family {↑↑x:x ∈ B}.

Proof. First we note that ↑↑x is open for any x ∈ D. It is clearly upwards
closed. Suppose x�

⊔

A where A is directed. Then, by interpolation, there
is y such that x � y �

⊔

A. Hence there is a ∈ A such that y v a, so
x� a.

Suppose w ∈ ↑↑x ∩ ↑↑y, i.e., x, y � w. By interpolation we choose b ∈ B
such that x, y � b � w. Thus w ∈ ↑↑b ⊆ ↑↑x ∩ ↑↑y. Similarly one shows that
for each open U ⊆ D,

U =
⋃

x∈U∩B

↑↑x.

The continuous functions between continuous cpos are characterised by
their behaviour on bases of the cpos. The following Proposition will often
be tacitly used. We leave its easy proof as an exercise.

Proposition 2.27. Let D and E be continuous cpos with bases BD and BE

respectively.

(i) A function f :D→ E is continuous if, and only if, f is monotone and
for each x ∈ D,

(∀b ∈ approxBE
(f(x)))(∃a ∈ approxBD

(x))(b� f(a)).
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(ii) For each monotone function f :BD → E There is a largest continuous
function f̄ :D → E given by

f̄(x) =
⊔

{f(a): a ∈ approxBD
(x)}

such that for each a ∈ BD, f̄(a) v f(a).

Recall that if D and E are algebraic then the way below relation � in
the above proposition is just v.

We conclude this section by providing a connection between algebraic
cpos and continuous cpos. Of course, every algebraic cpo is continuous.

Let D and E be cpos. Then a pair of functions e:D → E and p:E → D
is a projection pair from D to E if they are continuous and

p ◦ e = idD and e ◦ p v idE

where id is the identity function.
Let D be a continuous cpo with a base B and let E = Idl(B;v), the

ideal completion of the partial order (B;v). It follows by Theorem 2.6 that
E is an algebraic cpo. Define e:D → E and p:E → D by

e(x) = approxB(x) = {y ∈ B: y � x} and p(I) =
⊔

DI.

Proposition 2.28. The pair (e, p) is a projection pair from D to E.

The proof is straightforward, noting that the continuity of e depends on
the interpolation property.

2.3.2 The function space

In this section we discuss the function space construction for continuous
domains and algebraic domains, i.e., continuous and algebraic cpos which
are consistently complete.

It is well-known that the categories of continuous cpos and algebraic cpos
are not cartesian closed. The categories of continuous domains and algebraic
domains are cartesian closed and these are the ones most often considered
in semantics. However, there are important larger cartesian closed sub-
categories of the continuous and algebraic cpos. The category of bifinite
domains is particularly important. The latter category is essential in con-
nection with the Plotkin power domain construction. Bifinite domains (or
a continuous analogue) are also important from the point of view of domain
representability. For example, they are used to study the computability of
iterated function systems (see Blanck [6] and Edalat [11, 12]). Bifinite do-
mains and different power domain constructions will be discussed in Sections
6 and 7.
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To know the structure of a base for the function space, rather than just
its existence, is essential in order to determine the effectivity of the function
space.

In what follows we will describe the construction for continuous domains.
This includes the construction for algebraic domains, where the cusl of com-
pact elements plays the role of a base, recalling the characterisation of the
way below relation for the algebraic case.

Given cpos D and E with bases BD and BE we want to construct a
base for the function space [D → E]. It turns out that such a base, under
appropriate conditions, can be taken as finite suprema of step functions
determined from BD and BE. Here is the definition of a step function.

Definition 2.29. Let D = (D;v,⊥) and E = (E;v,⊥) be cpos. For a ∈ D
and b ∈ E define 〈a; b〉:D → E by

〈a; b〉(x) =

{

b if a� x
⊥ otherwise.

Note that each step function 〈a; b〉 is continuous since ↑↑a is open for each
a ∈ D.

Proposition 2.30. Let D and E be cpos and let a ∈ D and b ∈ E.

(i) Suppose f :D → E is continuous. Then

b� f(a) =⇒ 〈a; b〉 � f.

(ii) If D and E are continuous cpos with bases BD and BE and f :D → E
is continuous then

f =
⊔

{〈a; b〉: a ∈ BD, b ∈ BE , 〈a; b〉 � f}.

Proof.

(i) Suppose f v
⊔

F where F ⊆ [D → E] is directed and b � f(a).
Then f(a) v

⊔

{g(a) : g ∈ F} and hence b v g(a) for some g ∈ F , i.e.,
〈a; b〉 v g.

(ii) Suppose {〈a; b〉 : a ∈ BD, b ∈ BE, 〈a; b〉 � f} has g as an upper
bound and let x ∈ D. Then x =

⊔

{a ∈ BD : a � x} and hence
f(x) =

⊔

{f(a) : a � x}. For b � f(x) we obtain (by interpolation)
a � x such that b � f(a) and hence, by (i), 〈a; b〉 � f . Thus
〈a; b〉 v g. In particular, b = 〈a; b〉(x) v g(x) so f(x) v g(x).

14



It is clearly not the case that the set in (ii) is directed in general. In order
to obtain a directed set we expand it by including suprema of finite subsets of
step functions way below f . Consistent completeness of E suffices to obtain
such suprema. (In Section 6 we consider a weaker sufficient condition.)

The following characterisation is important when considering the effec-
tivity of the functions space construction.

Proposition 2.31. Let D be a continuous cpo, E a consistently complete
cpo, and let a1, . . . , an ∈ D and b1, . . . , bn ∈ E. Then

{〈a1; b1〉, . . . , 〈an; bn〉} is consistent in [D → E]

if, and only if,

∀I ⊆ {1, . . . , n}(
⋂

i∈I

↑↑ai 6= ∅ =⇒ {bi: i ∈ I} consistent).

Proof. For the non-trivial direction define h:D → E by

h(x) =
⊔

{bi: ai � x}.

Then h is well-defined by consistent completeness and h is monotone. Sup-
pose A ⊆ D is directed and ai �

⊔

A. By the continuity of D there is
di ∈ A such that ai � di and hence bi v h(di). Thus

h(
⊔

A) =
⊔

{bi: ai �
⊔

A} v
⊔

h[A].

Note that if {〈a1; b1〉, . . . , 〈an; bn〉} is consistent then the function h in
the proof is

⊔n
i=1〈ai; bi〉.

Exercise 2.32. Let D be a continuous cpo. Show that if a, b� x and at b
exists then a t b � x. Also show that if a base BD of D is consistently
complete then D is consistently complete.

Using Proposition 2.30 (ii) it is now straightforward to prove that the
categories of continuous domains and algebraic domains are cartesian closed.

Theorem 2.33. Let D and E be continuous cpos with bases BD and BE.
If E is consistently complete then [D → E] is continuous and consistently
complete, i.e., a continuous domain. A base for [D → E] is

B[D→E] = {
n
⊔

i=1

〈ai; bi〉 : ai ∈ BD, bi ∈ BE , {〈a1; b1〉, . . . , 〈an; bn〉} consistent}.
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For algebraic domains we let the bases be cusls of compact elements Dc

and Ec. For a ∈ Dc and b ∈ Ec the step function 〈a; b〉 is compact. It follows
that B[D→E] is a base for [D → E] consisting only of compact elements. This
shows that [D → E] is an algebraic domain.

In conclusion we emphasise again that a continuous or algebraic domain
is completely determined by a base (and hence by the compact elements in
the algebraic case). In addition, a continuous function from a domain into
a cpo is completely determined by its values on a base.

3 Domain representability

In this section we describe how large classes of topological algebras can be
given natural domain representations which later will be shown to satis-
factorily model concrete computations on the algebras. To a topological
algebra A is associated a domain (of some kind) DA from which a subset
DR

A is selected to make a representation of A via a surjective quotient map
ν:DR

A → A. Also the operations on A must be tracked by continuous op-
erations on D, i.e., D must be a Σ-domain when representing a topological
Σ-algebra.

The notion of effective domain representability for topological algebras
was, as far as we know, first made explicit in Stoltenberg-Hansen and Tucker
[40] where it was used to study the effective content of the completion of a
computable Noetherian local ring. It was further extended to ultrametric
spaces and locally compact regular spaces in [41, 42, 43] and to metric spaces
in the thesis [3].

However, it was clear from the beginning of the development of domain
theory that domain theory is a theory of approximation and computation,
and that computability often implies continuity. This was exploited in [15]
where Ershov gave a domain representation of the Kleene-Kreisel contin-
uous functionals. An effective and adequate domain model of Martin-Löf
partial type theory is given in Palmgren and Stoltenberg-Hansen [32] which
has been extended in Waagbø [45] to provide a domain representation of
Martin-Löf total type theory (see also Berger [9] and Normann [30]). Also
related to domain representability is Weihrauch and Schreiber [46] where
embeddings of metric spaces into complete partial orders equipped with
weight and distance is considered.

The work on domain representability referred to above use algebraic
domains. Related work on domain representability using continuous (most
often non-algebraic) domains has been pursued by Edalat and his group; for
a survey of their work see Edalat [13].
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3.1 Basic definitions

Let X and Y be topological spaces. A function ν:X → Y is a quotient
mapping if U ⊆ Y is open if, and only if, ν−1[U ] is open in X. In case ν
is surjective we then have that X/∼ and Y are homeomorphic spaces when
the former is given the quotient topology and where ∼ is the equivalence
relation induced on X by ν, i.e., x ∼ y ⇐⇒ ν(x) = ν(y).

The concepts below are valid both for continuous domains and algebraic
domains. Therefore in this section we simply use the term domain to mean
continuous domain or, if the reader so desires, algebraic domain. For D a
domain we use the notation BD for a base of D. In case D is algebraic the
reader should read Dc for BD, recalling that Dc is a base of D if, and only
if, D is algebraic.

Definition 3.1. Let X be a topological space, let D be a domain and DR

a subset of D. Then (D,DR, ν) is a domain representation of X in case
ν:DR → X is a surjective quotient map when DR is given the (relativised)
Scott topology.

In the discussion in Section 2.1 we created a domain representation via an
approximation structure for a set X. In that case the projection ν induced
a topology on X from the Scott topology of the domain. In the present
situation we are given a topology on X. Thus the domain representation
must be such that the induced topology from the Scott topology of the
representing domain coincides with the given topology. In the examples
already given the approximation structure for the topological space X was
chosen to respect the topology on X. It is interesting, at least initially, that
all topological spaces have a domain representation and hence a topology
induced by the Scott topology via a quotient map.

As already remarked, a domain representation (D,DR, ν) of X contains
both concrete and proper approximations of elements of X, the elements in
a base BD, and “total” elements in DR containing sufficient information to
represent elements of X exactly via ν. Since the function ν in the definition
above is a quotient map we have

DR/∼ ∼= X.

Here are some useful and natural properties desirable for domain repre-
sentations.

Definition 3.2. A domain representation (D,DR, ν) of a space X is

(i) upwards closed if whenever x ∈ DR and x v y then y ∈ DR and
ν(x) = ν(y);

(ii) dense if for each a ∈ BD, ↑↑a ∩DR 6= ∅;
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(iii) local if (∀x, y ∈ DR)(ν(x) = ν(y) =⇒ x and y are consistent).

Upwards closed domain representations (D,DR, ν) are natural when re-
garding the ordering v on D as an information ordering. If x ∈ DR com-
pletely determines ν(x) ∈ X and x v y then y contains all the information
of x and hence also completely determines ν(x). Note that if the represented
space X is T1 then the condition ν(x) = ν(y) is redundant.

We also distinguish between domain representations by putting require-
ments on the quotient map ν. For a thorough study of various kinds of
domain representations we refer to Blanck [5]. Here we will just consider
the following.

Definition 3.3. Let (D,DR, ν) be a domain representation on X.

(i) (D,DR, ν) is a retract representation of X if ν is a retract, i.e., if there
is a continuous function e:X → D such that ν ◦ e = idX .

(ii) (D,DR, ν) is an open representation of X if ν is an open mapping.

(iii) (D,DR, ν) is a homeomorphic representation of X if ν is a homeomor-
phism.

Domain representations are uniformly closed under most of the usual
constructions, such as retracts, quotients, disjoint sums and direct limits.
However, perhaps surprisingly, domain representations are not uniformly
closed under products. That is, if (D,DR, ν) and (E,ER, µ) are domain
representations of X and Y respectively, then ν × µ:DR × ER → X × Y
need not be a quotient map (see [5]). Retract representations are uniformly
closed under (arbitrary) products.

The next step is to represent continuous functions between topological
spaces.

Definition 3.4. Let (D,DR, ν) and (E,ER, µ) be domain representations
of X and Y respectively. A function f :X → Y is represented by (or lifts
to) a continuous function f̄ :D → E if f̄ [DR] ⊆ ER and µ(f̄(x)) = f(ν(x)),
for all x ∈ DR.

Let (D,DR, ν) and (E,ER, µ) be domain representations of X and Y
respectively. Suppose f̄ :D → E is such that f̄ [DR] ⊆ ER and such that
ν(x) = ν(y) =⇒ µ(f̄(x)) = µ(f̄(y)). Then f̄ induces a unique function
f :X → Y defined by f(ν(x)) = µ(f̄(x)). In the terminology above, f is
represented by f̄ .

Observe that if (D,DR, ν) is local and upwards closed and (E,ER, µ) is
upwards closed then every continuous function f̄ :D → E such that f̄ [DR] ⊆
ER induces a unique function f :X → Y .

Proposition 3.5. If f :X → Y is represented by a continuous f̄ :D → E
then f is continuous.
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The proof is simple and depends on the fact that ν is assumed to be a
quotient (only continuity of µ is required). It is a topological result and has
nothing to do with the special case of domains.

Thus every continuous function f̄ :D → E, such that f̄ [DR] ⊆ ER and
ν(x) = ν(y) =⇒ µ(f̄(x)) = µ(f̄(y)) for x, y ∈ DR, trivially induces a
continuous function f :X → Y . The problematic part is the converse.

Question: When does a continuous function f :X → Y have a lifting
f̄ :D → E?

Let (D,DR, ν) be a domain representation of a space X. Then ν induces
a relation ≡ on D by

x ≡ y ⇐⇒ ν(x) = ν(y).

The relation ≡ is symmetric and transitive on D, i.e., ≡ is a partial equiva-
lence relation (abbreviated per) on D with field DR.

Let D be a domain and ≡ a per on D. We say the the pair (D,≡) is a
domain with per. Given a domain with per (D,≡) we extract the set

D̄ = {x ∈ D : x ≡ x} = Field(≡).

Then the pair (D, D̄) is a domain with totality. We now take the quotient
D̄/ ≡ of D̄ with ≡, defined by

D̄/≡ = {[x]:x ∈ D̄}

where [x] = {y ∈ D̄:x ≡ y} is the equivalence class of x, and give it the
quotient topology. The latter is defined by

U ⊆ D̄/ ≡ open ⇐⇒
⋃

U ⊆ D̄ open

where D̄ has the subspace topology from the Scott topology on D. Define
ν: D̄ → D̄/ ≡ by

ν(x) = [x].

Then ν is a quotient map, so (D, D̄, ν) is a domain representation of D̄/ ≡.
Now let (D,DR, ν) and (E,ER, µ) be domain representations of X and

Y respectively and let ≡D and ≡E be the induced pers. Suppose f :X → Y
is represented by f̄ :D → E. Then it is immediate from Definitions 3.1 and
3.4 that for each x, y ∈ D,

x ≡D y =⇒ f̄(x) ≡E f̄(y). (1)

If ḡ:D → E is another lifting of f then

(∀x, y ∈ D)(x ≡D y =⇒ f̄(x) ≡E ḡ(y)). (2)
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Conversely, if f̄ :D → E is a continuous function satisfying (1) then f̄ is the
lifting of a continuous function f :X → Y by Proposition 3.5.

We have shown that an equivalent alternative to domain representability
is the use of domains with pers.

Let (D,≡D) and (E,≡E) be domains with pers. Then, guided by (2),
we define a relation ∼ on [D → E] by

f ∼ g ⇐⇒ (∀x, y ∈ D)(x ≡D y =⇒ f(x) ≡E g(y)). (3)

It is immediate that ∼ is a per on [D → E].
The domains with pers make up a category PER(Dom) in the following

way. Let Dom be a category of domains (continuous or algebraic) with
continuous functions as morphisms. An object in PER(Dom) is a domain
with a per (D,≡D). A morphism from (D,≡D) to (E,≡E) is obtained as
follows. Let ∼ be the per on [D → E] defined by (3). For f ∈ [D → E]
such that f ∼ f let [f ] be the equivalence class of f w.r.t. ∼. Then we say
that [f ]: (D,≡D) → (E,≡E) is a morphism. Furthermore, the operation on
morphisms is defined by [f ] ◦ [g] = [f ◦ g] and id(D,≡D) = [idD]. It is an easy
exercise to show, using the equivalence given by (3), that

Proposition 3.6. PER(Dom) is a cartesian closed category.

This means that we can build type structures in a natural way over a
domain representable space X. We return to this topic in Section 3.4.

We have defined what is meant by a topological space being domain
representable and by a continuous function to be representable. We now
extend this in the natural way to topological algebras.

Let Σ be a (finite) signature. Recall that a topological Σ-algebra A
is a structure A = (A;σ1, . . . , σk) where A is a topological space and the
operations σi:A

ni → A are continuous. The signature Σ gives k and the
arity of each σi. (A constant is regarded as a 0-ary operation.)

Definition 3.7. A structure D = (D;v,⊥;ψ1, . . . , ψk) is a structured do-
main or Σ-domain for a signature Σ if

(i) (D;v,⊥) is a domain, and

(ii) each ψj is a continuous nj-ary operation on D, that is ψj : Dnj → D
is continuous, where Dnj is given the product topology, and k and the
arities nj are given by Σ.

By DA being a Σ-substructure of a Σ-domain D we mean that DA is a
substructure of D with respect to the operations named by Σ.

Definition 3.8. A topological Σ-algebra A = (A;σ1, . . . , σk) is domain
representable by a Σ-domain D = (D;v,⊥; σ̂1, . . . , σ̂k) if there is a Σ-
substructure DA = (DA; σ̂1, . . . , σ̂k) of D and a Σ-epimorphism

νA : DA → A
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which is a quotient map with respect to the subspace topology of DA. The
triple (D,DA, νA) is a domain representation of A.

We say that a topological Σ-algebra A is domain representable if A is
representable by some Σ-domain D.

3.2 Ultrametric algebras

In this section we consider domain representations of ultrametric algebras.
It is a known fact that both domains and (ultra-)metric spaces behave well
and in similar ways when used in denotational semantics, despite the fact
that domains and metric spaces have drastically different topological prop-
erties. A perhaps naive explanation for this is that (ultra-)metric spaces
have natural domain representations. In particular, by Proposition 3.21 we
see that the Banach fixed point construction over a complete ultrametric
space is precisely the least fixed point construction over the representing
domain. This is also the case for a complete metric space.

We will show how to represent completions of ultrametric algebras or,
more generally, certain inverse limits of algebras by algebraic domains. A
domain representation (D,DR, ν) of the complete ultrametric space X will
be such that DR = Dm, the set of maximal elements of D, and ν:DR → X
is a homeomorphism. This illustrates how the ideal completion corresponds
to the ultrametric completion.

We consider certain inverse limits obtained from a family of separating
congruences on an algebra A. Let A = (A;σ1, . . . , σk) be a Σ-algebra. A
binary relation ≡ on A is said to be a congruence relation on A if it is an
equivalence relation and if for each operation σ in A, say n-ary, if xi ≡ yi

for i = 1, . . . , n, then σ(x1, . . . , xn) ≡ σ(y1, . . . , yn).

Definition 3.9. Let A = (A;σ1, . . . , σk) be a Σ-algebra and let I = (I;≤, 0)
be a directed set with least element 0. Then {≡i}i∈I is a family of separating
congruences on A if

(i) each ≡i is a congruence relation on A,

(ii) j ≥ i and x ≡j y =⇒ x ≡i y, and

(iii)
⋂

i∈I ≡i = {(x, x) : x ∈ A}.

For convenience we always assume x ≡0 y for each x, y ∈ A. Of course,
ω = (ω;≤, 0) is a directed set with least element, where we identify the set
of natural numbers N with the ordinal ω. Furthermore, in order to obtain
a consistently complete domain representation, one should assume that the
index set I is closed under finite suprema and that the family of separating
congruences {≡i}i∈I on A is upward consistent , i.e.,

a ≡i b & a ≡j b =⇒ (∃k ≥ i, j)(a ≡k b).
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This trivially holds for I = ω.

Example 3.10. (i) On the natural numbers N, let ≡n be the equivalence
relation corresponding to the partition

{0}, {1}, {2}, . . . , {n− 1}, {n, n+ 1, n+ 2, . . .}.

Note that ≡n is a congruence for addition and multiplication (and any
monotone operation).

(ii) Let T (Σ, X) be the term algebra over a signature Σ and a set of vari-
ables X. Then, for t, t′ ∈ T (Σ, X) let t ≡n t

′ if t and t′ are identical
up to height n− 1, for n ∈ ω.

(iii) Let R be a local commutative ring whose unique maximal ideal is m.
Define for x, y ∈ R and n ∈ ω, x ≡n y ⇔ x−y ∈ mn. Then, by Krull’s
Theorem, {≡n}n∈ω is a family of separating congruences with respect
to the ring operations (see Stoltenberg-Hansen and Tucker [40]).

(iv) Let 2ω = {f | f : ω → {0, 1}}, the Cantor set. For f, g ∈ 2ω, n ∈ ω
define

f ≡n g ⇐⇒ (∀i < n)(f(i) = g(i)).

Then {≡n}n∈ω is a family of separating congruences on 2ω.

(v) Suppose we are given an algebra A and a family of separating congru-
ences {≡i}i∈I on A. Let J be a non-empty possibly infinite set and
let AJ = {f | f : J → A}. We make AJ into a Σ-algebra in the usual
way by saying, for σ ∈ Σ n-ary,

σ(f1, . . . , fn)(j) = σA(f1(j), . . . , fn(j)).

We define a family of separating congruences on AJ as follows. Let

I(J) = {s | s : J → I and s(j) = 0 a.e.},

where a.e. means everywhere except on a finite set. We order I (J) by

s ≤ t⇔ (∀j ∈ J)(s(j) ≤ t(j)).

Clearly I(J) is a directed set with least element the constant zero
function. For a, b ∈ AJ and s ∈ I(J) define

a ≡s b⇔ (∀j ∈ J)(a(j) ≡s(j) b(j)).

It is easily shown that the family {≡s}s∈I(J) is a family of separating
congruences on AJ over I(J).
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An algebra A with a family {≡i}i∈I of separating congruences has a
natural topology with a base given by

B(a, i) = {b ∈ A : a ≡i b} for a ∈ A and i ∈ I.

Proposition 3.11. The algebra A is a topological algebra.

Proof. We must show that each operation in A is continuous. For an n-ary
operation σ in A we have

σ−1(B(a, i)) =
⋃

σ(x1 ,...,xn)≡ia

B(x1, i) × · · · ×B(xn, i).

Let (X, d) be a metric space. Then (X, d) is an ultrametric space, and
d is an ultrametric, if d satisfies the following stronger form of the triangle
inequality: for x, y, z ∈ X

d(x, y) ≤ max{d(x, z), d(z, y)}.

An ultrametric algebra (A, d) has non-expansive operations if each op-
eration σ in A, say n-ary, is non-expansive, i.e., satisfies the following:

d(σ(x1, . . . , xn), σ(y1, . . . , yn)) ≤ max{d(xi, yi) : 1 ≤ i ≤ n}.

Given an ultrametric algebra (A, d) we define a family {≡n}n∈ω of sep-
arating equivalences on A by

x ≡n y ⇐⇒ d(x, y) ≤ 2−n.

If the operation σ is non-expansive then each ≡n is a congruence. (The
choice of 2−n is not essential. Any strictly decreasing sequence approaching
0 will do.) Thus we see that to an ultrametric algebra A with non-expansive
operations we naturally associate a family of separating congruences indexed
by ω.

Conversely, suppose A is an algebra and {≡n}n∈ω is a family of separat-
ing congruences for A. Then define d:A×A→ R by

d(x, y) =

{

0 if x = y
2−n if x 6= y, where n is least s.t. x 6≡n y.

It easily follows from Definition 3.9 that d is an ultrametric and that each
operation is non-expansive with respect to d.

Proposition 3.12. Let (A, d) be an ultrametric algebra with non-expansive
operations and let (A, d′) be the ultrametric algebra obtained from (A, d) by
composing the two operations above. Then (A, d) ∼= (A, d′) as topological
algebras.
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To be precise we mean that (A, d) and (A, d′) are homeomorphic spaces
with a witnessing homeomorphism which is also an isomorphism in the alge-
braic sense. Of course, we do not claim that (A, d) and (A, d′) are isometric.

We now describe the construction of a domain D(A) representing A.
Let A = (A;σ1, . . . , σk) be a Σ-algebra, let {≡i}i∈I be a fixed family of
separating congruences on A which is upward consistent, and assume that
the index set I is closed under finite suprema. Let Ai = A/≡i be the set of
equivalence classes of ≡i, and let

C =
⊎

{Ai : i ∈ I},

the disjoint union of the Ai. We denote an element of C by [a]i, where a ∈ A
and i ∈ I, thus letting the i indicate that [a]i is taken from Ai in the disjoint
union. We define a partial order on C by

[a]i v [b]j ⇐⇒ i ≤ j and a ≡i b.

We claim that C with this ordering is a cusl. Clearly [a]0 is the least
element in C by our standing assumption on ≡0 that all elements are ≡0

equivalent, where 0 is the least element in I. Now suppose [a]i and [b]j are
bounded in C by, say, [c]k. Then i, j ≤ k and a ≡i c and b ≡j c. Thus [c]i∨j

is an upper bound. To see that [c]i∨j is the least upper bound let [d]m be
another upper bound. This means that i, j ≤ m and a ≡i d and b ≡j d.
But then c ≡i d and c ≡j d and hence, by upward consistency, c ≡i∨j d. It
follows that [c]i∨j ≤ [d]m.

Having shown that C is a cusl we now define D(A) = C, the ideal com-
pletion of the cusl C. Identifying the principal ideals in D(A) with their
generating elements in C we obtain D(A)c = C.

Note that if I = ω then D(A) is a tree of height ω, where the maximal
elements in the domain correspond to the infinite branches in the tree.

Given a Σ-algebra A with a family of separating congruences {≡i}i∈I we
form the Σ-algebra

Â = lim
←
A/≡i

the inverse limit of the A/≡i w.r.t. the homomorphisms φj
i : Aj → Ai defined

by φj
i ([a]j) = [a]i, for i ≤ j. Without going into details of the inverse limit

construction we only remark that lim←A/≡i should be regarded as the
completion of A.

The inverse limit Â = lim←A/≡i has a natural topology obtained from
the family of separating congruences {≡i}i∈I as follows. Let φ̂i: Â → A/≡i

be the homomorphisms obtained in the inverse limit. Then a base for the
topology on Â is given by

B̂(a, i) = {x ∈ Â : φ̂i(x) = [a]i} for a ∈ A and i ∈ I.

This makes Â into a topological Σ-algebra.
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Example 3.13. Referring to Examples 3.10 we have that the completion of
N as in (i) is the one-point compactification, where one element ∞ is added.
The completion of T (Σ, X) in (ii) is the set T∞(Σ, X) of all finite and
infinite terms. The completion of a local ring R as in (iii) is the standard
construction of completion for local rings. Finally, the completion of the
Cantor space in (iv) gives us the Cantor space back, since the Cantor space
already is complete.

Proposition 3.14. Let A be an ultrametric Σ-algebra and let {≡n}n∈ω be
a family of separating congruences on A obtained from the metric as above.
Let Ā be the metric completion of A. Then Ā is an ultrametric Σ-algebra
and

Ā ∼= lim
←
A/ ≡n

as topological algebras.

We now consider representations of operations on A.

Definition 3.15. Let A be a Σ-algebra with a family of separating congru-
ences {≡i}i∈I which is upward consistent and where the index set I is closed
under finite suprema. Let λ : In → I be a function which is monotone in
each argument. We say that a function f : An → A is λ-congruent if for
each i1, . . . , in ∈ I,

a1 ≡i1 b1, . . . , an ≡in bn =⇒ f(a1, . . . , an) ≡λ(i1,...,in) f(b1, . . . , bn).

Let f : An → A be λ-congruent. Then define

φλ
f ([a1]i1 , . . . , [an]in) = [f(a1, . . . , an)]λ(i1,...,in).

Lemma 3.16. Let f : An → A be λ-congruent. Then φλ
f : D(A)n

c → D(A)
is well-defined and monotone.

Proof. That φλ
f is well-defined follows from the λ-congruence of f . To prove

that f is monotone it suffices to prove monotonicity in each argument. So
we assume for notational simplicity that f is unary. Suppose [a]i v [b]j ,
that is i ≤ j and a ≡i b. By the λ-congruence of f we have f(a) ≡λ(i) f(b),
and by the monotonicity of λ we have λ(i) ≤ λ(j). Thus

φλ
f ([a]i) = [f(a)]λ(i) = [f(b)]λ(i) v [f(b)]λ(j) = φλ

f ([b]j).

It follows that we can extend φλ
f uniquely to a continuous function φλ

f :
D(A)n → D(A). This is the representation of f with respect to λ on D(A).

The algebras A and Â are topologically embedded into D(A) as follows.
Θ : A→ D(A) is defined by

Θ(a) = {[a]i: i ∈ I}
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and Ψ: Â→ D(A) is defined by

Ψ(x) = {[φ̂i(x)]i: i ∈ I}.

It is easy to see that these functions are well defined embeddings and in fact
homeomorphisms between A and Θ[A] and Â and Ψ[Â], respectively.

Definition 3.17. Let f : An → A be λ-congruent. Then f is continuous
with respect to λ if λ is unbounded, that is for each i ∈ I there is i1, . . . , in ∈ I
such that i ≤ λ(i1, . . . , in).

Lemma 3.18. Let f : An → A be continuous with respect to λ. Then φλ
f is

a faithful representation of f , that is for each a1, . . . , an ∈ A,

Θ(f(a1, . . . , an)) = φλ
f (Θ(a1), . . . ,Θ(an)).

Proof. For notational simplicity we assume that n = 1. Note that for a ∈ A,
Θ(a) =

⊔

{[a]i : i ∈ I} and approx(Θ(a)) = {[a]i : i ∈ I}. Thus

φλ
f (Θ(a)) = φλ

f (
⊔

{[a]i : i ∈ I})

=
⊔

{φλ
f ([a]i) : i ∈ I}

=
⊔

{[f(a)]λ(i) : i ∈ I}
v

⊔

{[f(a)]j : j ∈ I}
= Θ(f(a)).

The converse inequality follows from the continuity condition on λ. For
given j ∈ I choose i ∈ I such that λ(i) ≥ j. Then

φλ
f (Θ(a)) w [f(a)]λ(i) w [f(a)]j

so φλ
f (Θ(a)) w Θ(f(a)).

We have shown that each function f : An → A, continuous with respect
to λ, extends continuously to the whole domain D(A) by φλ

f . Suppose that
the index set I is a lattice. Then, assuming σi is an n-ary operation in A,
we define λi : In → I by

λi(i1, . . . , in) = i1 ∧ . . . ∧ in.

It follows that σi is λi-congruent and that λi is unbounded. Thus φλi
σi

rep-
resents σi on D(A).

We have arrived at the main theorem of this section. The remaining
details to verify are left to the reader.

Theorem 3.19. Let A = (A;σ1, . . . , σk) be a Σ-algebra together with a
family of separating congruences {≡i}i∈I on A which is upward consistent
and suppose the index set I is a lattice with a least element. Let Â =
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lim←A/≡i and let Θ : A → D(A) and Ψ : Â → D(A) be the embeddings
defined above. Then A and Â are representable by the Σ-domain

D(A) = (D(A);v,⊥;φλ1
σ1
, . . . , φλk

σk
),

where (D(A),Ψ[Â],Ψ−1) is a representation of Â and (D(A),Θ[A],Θ−1) is
a representation of A.

Using Proposition 3.14 we obtain the corresponding result for ultrametric
algebras.

Theorem 3.20. Suppose A = (A;σ1, . . . , σk) is an ultrametric Σ-algebra
with non-expansive operations and let Ā be the ultrametric completion of A.
Then there is a Σ-domain D(A) = (D(A); σ̂1, . . . , σ̂k) such that

(i) D(A)m is a Σ-substructure of D(A);

(ii) D(A)m
∼= Ā as topological algebras;

(iii) (D(A), D(A)m,Ψ
−1) is a homeomorphic domain representation of Ā;

and

(iv) (D(A),Θ[A],Θ−1) is a homeomorphic domain representation of A.

We conclude this section by showing how the Banach fixed point theorem
is obtained from the least fixed point theorem for domains.

Let (X, d) be a complete metric space. Then f :X → X is said to be a
contraction mapping if there is a constant c < 1 such that for each x, y ∈ X,

d(f(x), f(y)) < c · d(x, y).

Proposition 3.21. (Banach) Let (X, d) be a complete metric space and
suppose f :X → X is a contraction mapping. Then f has a unique fixed
point, i.e., there is a unique x0 ∈ X such that f(x0) = x0.

Proof. We prove the proposition for ultrametric spaces using our domain
representation. A similar proof holds for arbitrary complete metric spaces
using domain representations described in Section 3.3.

We may without loss of generality assume X is bounded, say by 1.
Uniqueness is proved in the usual way. Let c < 1 be the constant associated
with the contraction mapping f . Define a family {≡n}n∈ω of separating
equivalences on X by

x ≡n y ⇐⇒ d(x, y) ≤ cn.

Let X̂ = lim←X/ ≡n, the completion of X w.r.t. {≡n}n∈ω. Then X̂ and X
are homeomorphic since X is complete, so we identify X, X̂ and D(X)m.
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Note that if d(x, y) ≤ cn then

d(f(x), f(y)) ≤ c · d(x, y) ≤ cn+1

i.e. x ≡n y =⇒ f(x) ≡n+1 f(y). Thus f is s-congruent where s is the
successor function s(n) = n+ 1. Let ρ:D(X) → ω ∪ {ω} be a rank function
defined by

ρ(x) =

{

n if x ∈ X/ ≡n

ω if x ∈ D(A)m.

Let φs
f :D(X) → D(X) be the function representing f with respect to s.

Thus for x ∈ X, f(x) = φs
f (x) by Lemma 3.18. Furthermore, from the

definition of φs
f , ρ(x) = n =⇒ ρ(φs

f (x)) ≥ n+ 1. It follows that

ρ(fix(φs
f )) = ρ(

⊔

n

(φs
f )n(⊥)) = ω

and hence fix(φs
f ) ∈ X. Now

f(fix(φs
f )) = φs

f (fix(φs
f )) = fix(φs

f ),

i.e., fix(φs
f ) is the fixed point of f .

3.3 Standard algebraic representations

In the previous section we showed that ultrametric spaces have algebraic
homeomorphic domain representations where each representing element is
maximal. Thus these representations are upwards closed, local and dense.
It is the case that algebras important in logic and semantics often are ultra-
metric with non-expansive operations. However, in mathematical analysis
this is no longer the case. For example, the real numbers R and the complex
numbers C are far from being ultrametric and the same is true for Banach
spaces and Hilbert spaces usually studied. In this section we discuss domain
representations for such spaces.

Exercise 3.22. Let D be an algebraic domain and let Dm denote the set of
maximal elements in D. Show that the Scott topology on Dm has a clopen
base (i.e., each element in the base is both open and closed).

It follows thatDm is totally disconnected. This means that for x, y ∈ Dm,
if x 6= y then there are disjoint open sets U and V such that Dm = U ∪ V ,
x ∈ U and y ∈ V .

Theorem 3.23. (Blanck [5]) A compact topological space X has an algebraic
homeomorphic representation by maximal elements if, and only if, X is
totally disconnected.
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We conclude that if we want to represent spaces used in analysis, such
as the reals R, we have two alternatives. The first alternative is to use
continuous domain representations. It is commonly the case that the repre-
sented space X can be topologically embedded into the maximal elements of
the representing continuous domain. The second alternative, which we will
pursue here, is to use algebraic domain representations (D,DR, ν) where by
necessity the quotient DR/ ≡ν is non-trivial.

Each approach has its advantage. A representation by maximal ele-
ments is appealing but continuous domains are generally more complicated
objects than algebraic domains. Algebraic domains, on the other hand,
are “concrete” and simple and arise in a natural way from approximations
as described in Section 2.1. But an algebraic domain representation often
necessitates a quotient structure. From a computational point of view the
latter is not as problematic as it may seem since computations are performed
on the representation and are only induced on the quotient structure.

From Proposition 2.28 we see that every continuous domain has an al-
gebraic dense retract domain representation. It follows that every space X
representable by a continuous domain is also representable by an algebraic
domain. Thus the choice is mainly a matter of convenience.

Let X be a topological space. We shall (essentially) use the construction
in Section 2.1 to obtain an algebraic retract representation (D,DR, ν) of X.

We choose as a set of approximations a family of subsets of X satisfying
the following with respect to the topology of X.

Definition 3.24. Let X be a topological space. Then a family P of non-
empty subsets of X is a neighbourhood system if X ∈ P and

(i) if F,G ∈ P and F ∩G 6= ∅ then F ∩G ∈ P ; and

(ii) if x ∈ U , where U is open, then (∃F ∈ P )(x ∈ F ◦ ⊆ F̄ ⊆ U).

Some remarks on notation and concepts. For F ⊆ X, F ◦ denotes the
interior of F , i.e., F ◦ =

⋃

{U : U ⊆ F and U open}. Similarly, F̄ denotes
the closure of F , i.e., F̄ =

⋂

{H : F ⊆ H and H closed}.
A Hausdorff space X is said to be regular if whenever x ∈ U , where U

is open, there is V open such that x ∈ V ⊆ V̄ ⊆ U . Condition (ii) above
implies that a Hausdorff space with a neighbourhood system is regular.

Here are some examples of neighbourhood systems for X.

Example 3.25.

(i) A topological base B for a regular space X closed under intersection.

(ii) The set P of all non-empty compact sets (and X) for a locally compact
regular space X.

(iii) The set P of all non-empty closed subsets of a regular space.
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Of course, there is no need generally to take all compact or closed sets
in Example 3.25. It is enough to take sufficiently many. This is crucial from
a computational point of view.

Example 3.26. For R we have the following natural neighbourhood sys-
tems.

(i) P1 = {(a, b): a < b, a, b ∈ Q} ∪ {R};

(ii) P2 = {[a, b]: a ≤ b, a, b ∈ Q} ∪ {R}.

Note that P1 is a neighbourhood system of type (i) in Example 3.25
whereas P2 is of type (ii) and type (iii). Perhaps surprisingly, the neigh-
bourhood system P2 will turn out to be preferable to P1.

Let P be a neighbourhood system for X. Then P = (P ;⊇, X) is a cusl
and it is an approximation structure for X via the approximation

F ≺ x⇐⇒ x ∈ F.

Let P̄ be the ideal completion of P . It is an algebraic domain.

Definition 3.27. An ideal I ∈ P̄ converges to a point x ∈ X if for every
open set U containing x there is F ∈ I such that x ∈ F ⊆ U . I converges
to x is denoted by I → x.

This definition differs slightly from the one given in Section 2.1. However,
for neighbourhood systems as in Example 3.25 (ii) and (iii) (for complete
metric spaces) they coincide. It is easy to see that if X is a Hausdorff space
then a converging ideal converges to a unique point.

Let X be a Hausdorff space and let P̄R = {I ∈ P̄ : I convergent}. Define
ν: P̄R → X by

ν(I) = x⇐⇒ I → x.

We will show that (P̄ , P̄R, ν) is a retract representation of X. For x ∈ X
we define the important ideal

Ix = {F ∈ P : x ∈ F ◦}.

Note that Ix → x and that J → x⇐⇒ Ix ⊆ J .

Theorem 3.28. Let X be a Hausdorff space and P a neighbourhood system
for X. Then (P̄ , P̄R, ν) is an algebraic retract representation of X which is
upwards closed.

Proof. Suppose U ⊆ X is open and ν(I) = x ∈ U . By Definition 3.24 (ii)
there is F ∈ P such that x ∈ F ◦ ⊆ F̄ ⊆ U . Thus F ∈ Ix and hence F ∈ I.
Suppose J ∈ P̄R and F ∈ J . Then, clearly ν(J) ∈ F̄ , i.e., ↑F ⊆ U . (As
usual F is identified with its principal ideal ↓F .) Thus ν is continuous.
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Define η:X → P̄R by η(x) = Ix. Then ν ◦ η = idX . Furthermore η is
continuous since for F ∈ P ,

η−1(↑F ∩ P̄R) = {x ∈ X:F ∈ Ix} = {x ∈ X:x ∈ F ◦} = F ◦.

The representation is upwards closed since Ix is the smallest ideal converging
to x.

Exercise 3.29. Show that the domain representation of R obtained from
P1 in Example 3.26 is not local, but the one obtained from P2 is local.

The exercise indicates why open neighbourhood systems such as P1 may
not be as useful as closed neighbourhood systems.

Suppose P is a neighbourhood system for X consisting of only closed
sets. Then for x ∈ X,

Ix = {F ∈ P :x ∈ F}

is an ideal, Ix → x, and Ix is the largest ideal converging to x.

Theorem 3.30. Every regular Hausdorff space X has an algebraic retract
representation which is upwards closed, dense and local.

Proof. Choose the neighbourhood system P consisting of all non-empty
closed subsets of X. Then the representation (P̄ , P̄R, ν) is dense since for
F ∈ P there is x ∈ F and hence F ∈ Ix, i.e., Ix ∈ ↑F . The representation
is local since Ix is the largest ideal converging to x.

Example 3.31. The algebraic interval domain
We let R be the domain representation of R obtained from P2 in Example
3.26. Note that each irrational x ∈ R is represented by exactly one ideal,
namely Ix = Ix. Each rational x ∈ R, on the other hand, is represented by
four distinct ideals: Ix, Ix, and

I−x = {[a, b] : a < x ≤ b} and I+
x = {[a, b] : a ≤ x < b}.

We know by Theorem 3.23 that R cannot be homeomorphically represented
by the maximal elements in R since R is a connected space.

We close this part by mentioning a theorem which says that if we want
an upwards closed algebraic retract domain representation of a space X then
we may as well use a neighbourhood system. (In particular they exist.)

Theorem 3.32. (Blanck [5]) A topological space X has an upwards closed
algebraic retract domain representation if, and only if, X is a regular Haus-
dorff space.

A domain representation of X obtained from a neighbourhood system is
said to be a standard algebraic representation of X.

Next we consider the problem of lifting continuous functions to the rep-
resenting domains.
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Theorem 3.33. Let X and Y be regular Hausdorff spaces with neighbour-
hood systems P and Q, respectively. Let (P̄ , P̄R, ν) and (Q̄, Q̄R, µ) be the
domain representations of X and Y obtained from P and Q. Suppose
f :X → Y is a continuous function. Then there is a continuous function
f̄ : P̄ → Q̄ such that for all I ∈ P̄R,

µ(f̄(I)) = f(ν(I)),

i.e., f̄ is a lifting or representation of f .

Proof. Given continuous f :X → Y define f̄ :P → Q̄ by

f̄(F ) = {G ∈ Q: f [F ] ⊆ G◦}.

It is easily verified that f̄(F ) is an ideal and that f̄ is monotone. We also
denote by f̄ its unique continuous extension to all of P̄ . In fact for I ∈ P̄ ,

f̄(I) = {G ∈ Q: (∃F ∈ I)(f [F ] ⊆ G◦)}.

Suppose I ∈ P̄R and ν(I) = x. Then Ix ⊆ I and hence f̄(Ix) ⊆ f̄(I). Thus
it suffices to show that If(x) ⊆ f̄(Ix).

Let G ∈ If(x). Then f(x) ∈ G◦ and x ∈ f−1[G◦]. But then there is
F ∈ Ix such that F ⊆ f−1[G◦]. This shows that G ∈ f̄(Ix).

Corollary 3.34. Let A = (A;σ1, . . . , σk) be a topological Σ-algebra and
suppose A is a regular Hausdorff space. Then A has an algebraic retract
domain representation which is upwards closed, dense and total.

Proof. This follows from the theorem since if P is a neighbourhood system
for A then P n is a neighbourhood system for An.

The ring operations on R are continuous so the ring of real numbers has
a nice domain representation. In Section 5 we will show that the domain
representation for the ring R obtained from P2 in Example 3.26 is effective.

3.4 Type structures

In this section we briefly return to the category PER(Dom) discussed in
Section 3.1. Here we restrict ourselves to the case when Dom is the category
of algebraic domains with continuous functions as morphisms.

The category PER(Dom) is cartesian closed as noted by Proposition
3.6. This means that we can build type structures over a domain with a
per (D,≡). Recall that if (D,≡D) and (E,≡E) are domains with pers then
≡[D→E] defined by

f ≡[D→E] g ⇐⇒ ∀x, y(x ≡D y =⇒ f(x) ≡E g(y))
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is a per on [D → E] and

([D → E],≡[D→E])

is the exponent (function space) in PER(Dom).
We also define a per ≡D×E on D ×E by

(x, y) ≡D×E (z, w) ⇐⇒ x ≡D z and y ≡E w.

The set of finite type symbols TS is defined inductively by o ∈ TS; and
if σ, τ ∈ TS then (σ × τ) ∈ TS and (σ → τ) ∈ TS.

Given a domain with per (Do,≡o) we obtain a typestructure







Do = (Do,≡o)
Dσ×τ = (Dσ ×Dτ ,≡σ×τ )
Dσ→τ = ([Dσ → Dτ ],≡σ→τ ).

Exercise 3.35. Let D and E be algebraic domains and suppose f :D → E
and g:D → E are continuous. Show that if x, y ∈ D then x u y ∈ D, where
x u y = infimum of x and y. Show also that (f u g)(x) = f(x) u g(x).

We say that a per ≡ on D is upwards closed if

x ≡ x and x v y =⇒ x ≡ y.

Consider the type structure above when the per ≡σ is ignored. Then
we obtain a partial type structure of domains in that it contains partial
elements, e.g., ⊥ in Do. There is a natural way to isolate the total elements
of this partial type structure as follows. A pair of elements is total if each
component is total, and a function is total if it takes total elements to total
elements. We thus obtain the following type structure of total elements.







D̄o = {x ∈ Do : x ≡o x}
D̄σ×τ = D̄σ × D̄τ

D̄σ→τ = {f ∈ [Dσ → Dτ ] : f [D̄σ] ⊆ D̄τ}.

Here is a useful connection between total elements and the corresponding
pers. Note that it holds even when density is not assumed. The proposition
indicates that our concepts are correct.

Proposition 3.36. (Longo-Moggi [26]) Assume that ≡o is upwards closed
in the type structire {Dσ}σ∈TS. Then for each σ ∈ TS and x, y ∈ Dσ,

x ≡σ y ⇐⇒ x u y ∈ D̄σ

Proof. By an easy induction on σ.
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When studying a type structure of domains with pers there are two
natural questions to be considered.

Lifting: Let (D,≡D) and (E,≡E) be domains with pers. Then D̄/≡D and
Ē/≡E are topological spaces given the quotient topology from the Scott
topology. Does a continuous function f : D̄/≡D → Ē/≡E have a continuous
representation or lifting f̄ :D → E?

Density: Is the per ≡D dense in D, i.e., does every non-empty open subset
of D contain an element x such that x ≡D x? For algebraic domains this
equivalent to the question if for each a ∈ Dc there is x ∈ D such that a v x
and x ≡D x.

Exercise 3.37.

(i) Let (D,≡) be a dense domain with per. Show that every continuous
function f : D̄/≡ → N (where N is given the discrete topology) has a
continuous lifting f̄ :D → N⊥.

(ii) Let (D,≡) be an algebraic domain with per and assume D is sepa-
rable and ≡ is upwards closed. Show that every continuous function
f : D̄/≡ → N has a continuous lifting f̄ :D → N⊥.

Example 3.38. (Ershov [15]) LetDo = N⊥ and let n ≡o m⇐⇒ n = m ∈ N.
Then

D̄σ/ ≡σ
∼= Ct(σ)

where {Ct(σ)}σ∈TS is the type structure of the Kleene-Kreisel total con-
tinuos functionals ([21, 22]). Moreover the two type structures {D̄σ/ ≡σ}σ

and {Ct(σ)}σ are naturally isomorphic in that they respect the evaluation
functionals. The type structure satisfies both lifting and density.

Example 3.39. Consider the neighbourhood system P for R given in Ex-
ample 3.26 (ii) and let R be the ideal completion of P . Let also R denote
the standard domain representation R = (R,RR, ν) for R. Then define for
x, y ∈ R,

x ≡o y ⇐⇒ x, y ∈ RR and ν(x) = ν(y).

Then (R,≡) is a domain with per. Note that RR/ ≡ ∼= R and that ≡
is upwards closed and dense. Consider the type structure over (R,≡). It
has been shown for the first few levels in [7] and in general by D. Normann
[31] that the type structure is dense and has liftings. Note that the type
structure obtained from the neighbourhood system given in Example 3.26
(i) is not dense. The topology of [R → R]/ ≡R→R is the compact-open
topology (see di Gianantonio [16] and Blanck [5]).

We close this section by mentioning that also transfinite type structures
have been studied. Thus, for example, Waagbø [45] has given a domain
representation of Martin-Löf type theory, building on work by Palmgren
and Stoltenberg-Hansen [32] and Normann [30].
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4 Effective domains

Until now we have, tacitly, identified computability with continuity. This
identification, though of course not generally valid, may be defended as
follows. There are rather general theorems, such as Ceitin’s theorem (see
Ceitin [10] and Moschovakis [29]), which state that computable functions
between effective metric spaces (satisfying natural conditions) are continu-
ous. On the other hand it is an empirical fact that “natural” functions in
analysis shown to be continuous are also computable. Nonetheless we need
a precise notion of computability to even make such statements. In addition
the effective theory is interesting by itself.

In this section we will impose and study notions of computability or ef-
fectivity on domains. The type of effectivity we consider is based on what
may be described as “concrete” computability, i.e., based on computations
which may in principle be performed on a digital computer. Put differently,
our computability theory is driven by the partial recursive functions. We
use the Mal’cev-Ershov-Rabin theory of numberings in order to extend com-
putability from the natural numbers to other structures, such as domains.

We know from 2.3.1 that an algebraic cpo is completely determined
by its cusl of compact elements and, more generally, a continuous cpo is
determined by a base. Moreover continuous functions between continuous
cpos are completely determined by their behaviour on the bases of the cpos
(see Proposition 2.27). Thus it suffices to compute on a base of the cpo.
A further argument is that a base for a cpo is an approximation structure
with respect to the way below relation and that we compute on cpos by
computing on the approximations.

We assume some very basic knowledge of recursion theory. This can be
found in any text on recursion theory and also in Stoltenberg-Hansen et al.
[39]. Here are a few conventions and facts. Throughout we let {We}e∈ω be a
standard numbering of the recursively enumerable (r.e.) sets. Let W be an
r.e. set. An enumeration of W is a total recursive function λn.W n, where
W n is (a canonical index for) a finite set, such that the following hold:

(i) m ≤ n =⇒ Wm ⊆W n, and

(ii) W =
⋃

n∈ω W
n.

Each r.e. set has an enumeration. In fact, there is a total recursive
function λen.W n

e such that for each e, λn.W n
e is an enumeration of We.

Let A be a set. A numbering of A is a surjective function α:ω → A.
It should be thought of as a coding of A by natural numbers. A subset
S ⊆ A is α-semidecidable if α−1(S) is r.e. and S is α-decidable if α−1(S) is
recursive.

Let B be a set with a numbering β. Then a function f :A → B is said
to be (α, β)-computable if there is a recursive function f̄ :ω → ω such that
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for each n,
f(α(n)) = β(f̄(n)).

We say that f̄ tracks f .
We develop the theory for continuous cpos. The treatment for algebraic

cpos is in certain places slightly simpler and the reader may for convenience
think of a domain as an algebraic cpo and of its base as the cusl of compact
elements.

Definition 4.1. A continuous cpo D = (D;v,⊥) is weakly effective if D
has a base B for which there is a surjective function

α:ω → B

such that the relation α(n) � α(m) is a recursively enumerable relation on
ω.

Terminology: In this section we use “domain” to denote a continuous
cpo unless otherwise specified.

We denote a domain weakly effective under a numbering α by (D,α).
Implicit in this notation is a fixed base B = α[ω]. We will use the notation
B for such a base. Thus for x ∈ D, we let approxα(x) = {a ∈ B: a� x}, the
set of approximations of x w.r.t. the base B determined by α. The condition
on the numbering in Definition 4.1 is usually stated as � is α-semidecidable.

Computable elements are those that can be effectively approximated and
effective functions are those whose values can be effectively approximated
from effective approximations of the arguments.

Definition 4.2. Let (D,α) and (E, β) be weakly effective domains.

(i) An element x ∈ D is α-computable if the set

{n ∈ ω : α(n) � x} = α−1(approxα(x))

is r.e. An r.e. index for the set α−1(approxα(x)) is an index for x.

(ii) A continuous function f :D→ E is (α, β)-effective if the relation

β(m) � f(α(n))

is r.e. An r.e. index for the set {〈m,n〉:β(m) � f(α(n))} is an index
for f .

The intuition in part (ii) is that the approximations to f(x) are generated
simultaneously with the approximations to x.

Notation Dk,α = {x ∈ D:x α-computable}.
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Proposition 4.3. Let (D,α), (E, β) and (F, γ) be weakly effective domains
and suppose f :D → E and g:E → F are (α, β)-effective and (β, γ)-effective,
respectively.

(i) If x ∈ D is α-computable then f(x) is β-computable.

(ii) h = g ◦ f is (α, γ)-effective.

Proof. (i) Let W = {n:α(n) � x}. Then W is r.e. and

β(m) � f(x) ⇐⇒ (∃n ∈W )(β(m) � α(n))

by Proposition 2.27. (ii) is proved similarly.

Observe that the proof is uniform. This means there is a total recursive
function which given indices for x and f computes an index for f(x). Simi-
larly, there is a recursive function which given indices for f and g computes
an index for g ◦ f .

We now show that Dk,α has a natural numbering.

Theorem 4.4. Let (D,α) be a weakly effective domain with base B = α[ω].
Then there is a numbering ᾱ:ω → Dk,α such that

(i) the inclusion mapping ι:B → Dk,α is (α, ᾱ)-computable; and

(ii) the relation α(n) � ᾱ(m) is r.e., i.e., approxα(ᾱ(m)) is α-semidecidable
uniformly in m.

Proof. Let s:ω → ω be a total recursive function such that

Ws(e) = {n: (∃m ∈We)(α(n) � α(m))}

and let λn.�n be a recursive enumeration of �.
We define total recursive functions f(e, n) and r(e, n), a recursive relation

R(e, n) and a recursive enumeration of finite sets V n
e . Set f(e, 0) = n⊥,

where α(n⊥) = ⊥, r(e, 0) = 0, and V 0
e = {n⊥} = {f(e, 0)}. Let

R(e, n) ⇐⇒ (∃k ∈W n
s(e))(α[V n

e ∪W
r(e,n)
s(e) ] �n α(k)).

Now define

f(e, n+ 1) =

{

(some k ∈W n
s(e))(α[V n

e ∪W
r(e,n)
s(e) ] �n α(k)) if R(e, n)

f(e, n) if ¬R(e, n);

r(e, n+ 1) =

{

r(e, n) + 1 if R(e, n)
r(e, n) if ¬R(e, n);
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and
V n+1

e = V n
e ∪ {f(e, n+ 1)}.

These functions are clearly recursive. Let Ve =
⋃

n V
n
e . Then Ve is r.e. with

an r.e. index computed uniformly from e. Let t:ω → ω be a total recursive
function such that

Wt(e) = {m ∈ ω: (∃k ∈ Ve)(α(m) � α(k))}.

It is not hard to show, using interpolation when appropriate, that α[Wt(e)]
is an ideal, that α[Ve] is a �-chain and that

⊔

α[Wt(e)] =
⊔

α[Ve].
Define ᾱ:ω → Dk,α by

ᾱ(e) =
⊔

α[Wt(e)] =
⊔

α[Ve].

Then ᾱ is a surjective numbering of Dk,α.
Let ι:B → Dk,α be the inclusion mapping and let g be a total recursive

function such that Wg(n) = {m:α(m) � α(n)}. Then

ᾱ(g(n)) =
⊔

α[Wtg(n)] =
⊔

α[Wg(n)] = α(n)

since Wtg(n) = Wg(n). Thus ι is (α, ᾱ)-computable.
Finally, it follows that α(n) � ᾱ(e) is r.e. since

α(n) � ᾱ(e) =
⊔

α[Wt(e)] ⇐⇒ (∃m ∈Wt(e))(α(n) � α(m)).

A numbering γ of Dk,α satisfying (i) and (ii) of the theorem, as does ᾱ, is
said to be a constructive numbering of Dk,α. We say that ᾱ is the canonical
numbering of Dk,α obtained from α.

From the proof of the theorem we easily abstract the following important
facts.

Lemma 4.5. Let (D,α) be a weakly effective domain and let ᾱ be the canon-
ical numbering of Dk,α obtained from α.

(i) There is a total recursive function t:ω → ω such that for each e,
Wt(e) = α−1(approxα(ᾱ(e))) and ᾱ(t(e)) = ᾱ(e).

(ii) For each x ∈ Dk,α, We = α−1(approxα(x)) =⇒ ᾱ(e) = x.

(iii) If α[We] is directed then ᾱ(e) =
⊔

α[We].

The following approximations will be used later.

Lemma 4.6. Let (D,α) be a weakly effective domain with base B = Im(α).
There is a function α̃:ω2 → B and a total recursive function p:ω2 → ω such
that for each e ∈ ω,

38



(i) m ≤ n =⇒ α̃(e,m) � α̃(e, n);

(ii) ᾱ(e) =
⊔

n α̃(e, n); and

(iii) α̃(e, n) = α(p(e, n)).

Proof. We use the notation in the proof of Theorem 4.4. The function
r(t(e), n) is unbounded so we define a recursive function q by q(0) = 0 and

q(n+ 1) = (least k > q(n))R(t(e), k).

Let p(e, n) = f(t(e), q(n)) and α̃(e, n) = α(p(e, n)).

Definition 4.7. Let (D,α) be a weakly effective domain. A constructive
numbering γ of Dk,α is recursively complete if there is a total recursive
function h such that for each e,

γ[We]directed =⇒ γh(e) =
⊔

γ[We].

Theorem 4.8. Let (D,α) be a weakly effective domain and let ᾱ be the
canonical numbering of Dk,α.

(i) ᾱ is recursively complete.

(ii) If γ is a recursively complete constructive numbering of Dk,α then
id:Dk,α → Dk,α is (ᾱ, γ)-computable and (γ, ᾱ)-computable.

Part (ii) of the theorem says that ᾱ and γ are equivalent as numberings
of Dk,α, i.e., Dk,α is stable with respect to recursively complete numberings.

Proof. (i) Let We be r.e. such that ᾱ[We] is directed. Then

α(n) �
⊔

ᾱ[We] ⇐⇒ (∃k ∈We)(α(n) � ᾱ(k)).

Thus there is a total recursive function h such that

Wh(e) = {n: (∃k ∈We)(α(n) � ᾱ(k))},

since ᾱ is constructive. By Lemma 4.5 ᾱ(h(e)) =
⊔

ᾱ[We].
The proof of (ii) is similar, again using Lemma 4.5.

Example 4.9.

(i) Let (D,α) be a weakly effective flat domain. Then Dk,α = D.

(ii) Let P be the domain of all partial functions from N into N ordered
by graph inclusion. Let α be a standard numbering of the set Pc of
finite functions. Then Pk,α is the set of partial recursive functions.
The numbering ᾱ is a standard numbering of the partial recursive
functions satisfying the universal property and the s-m-n theorem.
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(iii) Let ℘(ω) be the domain of subsets of ω ordered by inclusion and let
α be the canonical numbering of the finite sets. Then ℘(ω)k,α is the
family of r.e. sets.

Exercise 4.10. Let {·}:ω → Pk.α be defined by {e}(n) ' U(〈e, n〉) where
U is a partial recursive universal function. (This means that for each partial
recursive function f there is e such that f(n) ' U(〈e, n〉)). Show that
{·} is a constructive numbering of Pk,α. Show further that if the s-m-n
theorem also holds for {·} then {·} is recursively complete. Deduce a form
of Roger’s isomorphism theorem which states that all enumerations of the
partial recursive functions which are universal and satisfy the s-m-n theorem
are recursively equivalent.

We are now going to consider the equivalence of a function between
weakly effective domains being computable and being effective in the sense
of Definition 4.2. One direction is simple.

Proposition 4.11. Let (D,α) and (E, β) be weakly effective domains. If
f :D → E is (α, β)-effective then f |Dk,α

:Dk,α → Ek,β is (ᾱ, β̄)-computable.

Proof. Considering the functions from Lemma 4.6 we have

f(ᾱ(e)) = f(
⊔

n∈ω

α̃(e, n)) =
⊔

n∈ω

fα̃(e, n).

But α̃(e, n) = α(p(e, n)) where p is total recursive, so

β−1(approxβ(fᾱ(e))) = {m:∃n(β(m) � f(α(p(e, n))))}.

The right hand side is r.e. uniformly in e so there is a total recursive function
g such that Wg(e) = {m:∃n(β(m) � f(α(p(e, n))))}. But then

β̄(g(e)) = fᾱ(e),

i.e., g recursively tracks f |Dk,α
.

Note that an index for g is obtained uniformly from an index for f .
We are now going to show the converse of the above proposition. We

are, however, going to show something stronger, namely, that each (ᾱ, β̄)-
computable function f :Dk,α → Ek,β has an (α, β)-effective (and hence con-
tinuous) extension f̄ :D → E.

First we need a recursion theoretic lemma, a consequence of the second
recursion theorem.

Lemma 4.12. (Berger) Let V and W be r.e. sets such that W contains all
r.e. indices for V . Let r be a total recursive function and let λq.V q be a
recursive enumeration of V . Then there is e ∈W and q ∈ ω such that

We = V q ∪Wr(q).
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In other words, if W contains all r.e. indices for V then W also contains
an index for Wr(q) for some q, modulo a finite subset of V .

Proof. Let λq.W q be an enumeration of W such that W 0 = ∅. Define We

using the second recursion theorem by

x ∈We ⇐⇒ ∃q[(x ∈ V q ∧ e /∈W q) ∨ (x ∈Wr(q) ∧ e ∈W
q+1 −W q)].

Suppose e /∈W . Then

x ∈We ⇐⇒ ∃q(x ∈ V q) ⇐⇒ x ∈ V,

i.e., We = V . But then e ∈W by assumption, so we conclude e ∈W . Let q
be such that e ∈W q+1 −W q. Then

x ∈We ⇐⇒ x ∈ V q ∨ x ∈Wr(q).

We now connect effectivity with the Scott topology.

Definition 4.13. Let (D,α) be a weakly effective domain.

(i) U ⊆ D is α-effectively open if there is an r.e. set W such that

U =
⋃

e∈W

↑↑α(e).

An r.e. index for W is an α-index for U as an effectively open set.

(ii) U ⊆ Dk,α is α-effectively open in Dk,α if there is an α-effectively open
set V such that U = Dk,α ∩ V .

Theorem 4.14. (Ershov) Let (D,α) be a weakly effective domain. Then
U ⊆ Dk,α is ᾱ-semidecidable if, and only if, U is α-effectively open in Dk,α.

Proof. Suppose U is α-effectively open and let W be an r.e. set such that
U =

⋃

e∈W (Dk,α ∩ ↑↑α(e)). Then

ᾱ(n) ∈ U ⇐⇒ (∃e ∈W )(α(e) � ᾱ(n))

so U is ᾱ-semidecidable.
For the converse suppose U ⊆ Dk,α is ᾱ-semidecidable and consider

W = {e ∈ ω:α(e) ∈ U}. Note that W is r.e. since the inclusion ι:B → Dk,α

is (α, ᾱ)-computable and U is ᾱ-semidecidable. Suppose we have shown

(i) U is upwards closed with respect to � in Dk,α, and

(ii) for each x ∈ U there is a ∈ B ∩ U such that a� x.
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Then U =
⋃

e∈W (Dk,α ∩ ↑↑α(e)), i.e., U is α-effectively open.
To prove (i) we show

x ∈ U, y ∈ Dk,α and x v y =⇒ y ∈ U.

Suppose x = ᾱ(m) and y = ᾱ(n) and let W = ᾱ−1(U). We assume m ∈W
and x v y and we show n ∈ W . Let t be the total recursive function from
Lemma 4.5 and consider Wt(m) = α−1(approxα(x)). Suppose We = Wt(m).
Then

ᾱ(e) = ᾱ(t(m)) = ᾱ(m) = x ∈ U,

i.e., e ∈ W . Thus W contains all r.e. indices for Wt(m). Let r(q) be the
constant function with value t(n). Then by Lemma 4.12, there are numbers
e and q such that e ∈W and We = W q

t(m) ∪Wt(n). But

Wt(m) = α−1(approxα(x)) ⊆ α−1(approxα(y)) = Wt(n)

so We = Wt(n). Again by Lemma 4.5

y = ᾱ(n) = ᾱ(t(n)) = ᾱ(e)

and e ∈W , so y ∈ U .
To prove (ii) we again let W = ᾱ−1(U) and x = ᾱ(m) ∈ U . Let p be

the total recursive function from Lemma 4.6 and let r be a total recursive
function such that Wr(q) = {p(t(m), q)} for q ∈ ω. Let

W q
t(m) = {k ≤ q : α(k) �q α(p(t(m), q))}.

By the properties of t and p, we see that λq.W q

t(m) is a recursive enumeration
of Wt(m). By Lemma 4.12 there is e ∈W and q ∈ ω such that

We = W q

t(m)
∪Wr(q) = W q

t(m)
∪ {p(t(m), q)}.

But α(p(t(m), q)) is top element in α[We]. In particular α[We] is directed
and hence

ᾱ(e) =
⊔

α[We] = α(p(t(m), q)) = α̃(t(m), q) � ᾱ(t(m)) = ᾱ(m) = x.

By the above, ᾱ(e) is the sought element.

Note that the proof of the theorem is uniform.

Remark 4.15. The Rice-Shapiro theorem follows from the theorem above
when applied to the domain ℘(ω).

Exercise 4.16. Show that A ⊆ Dk,α is ᾱ-decidable if, and only if, A = ∅
or A = Dk,α. This is a generalisation of Rice’s theorem.
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Definition 4.17. Let (D,α) and (E, β) be weakly effective domains and let
D′ ⊆ D and E′ ⊆ E. Then a function f :D′ → E′ is effectively continuous
if there is a total recursive function g:ω → ω such that

f−1[E′ ∩ ↑↑β(e)] =
⋃

m∈Wg(e)

(D′ ∩ ↑↑α(m)).

We leave the following proposition as a straightforward exercise.

Proposition 4.18. Let (D,α) and (E, β) be weakly effective domains and
let D′ ⊆ D and E′ ⊆ E containing the bases determined by α and β. Suppose
f :D′ → E′ is continuous.

(i) f is effectively continuous if, and only if, the relation β(m) � f(α(n))
is r.e.

(ii) f has a unique continuous extension to f̄ :D → E and f̄ is (α, β)-
effective if, and only if, f is effectively continuous.

Here follows a generalisation of the Myhill-Shepherdson theorem.

Theorem 4.19. Let (D,α) and (E, β) be weakly effective domains and let
f :Dk,α → Ek,β. Then f is (ᾱ, β̄)-computable if, and only if, there is an
(α, β)-effective function f̄ :D → E such that f̄ |Dk,α

= f .

Proof. One direction is Proposition 4.11. For the other direction we assume
f :Dk,α → Ek,β is (ᾱ, β̄)-computable. Let f̂ be the total recursive function
tracking f . Then

ᾱ(n) ∈ f−1(↑↑β(m) ∩Ek,β) ⇐⇒ β(m) � f(ᾱ(n)) ⇐⇒ β(m) � β̄f̂(n).

The latter relation is r.e. since β̄ is a constructive numbering. Thus the
set f−1(↑↑β(m) ∩Ek,β) is open by Theorem 4.14. By the uniformity of that
theorem we compute an index for the open set from m, i.e., f is effectively
continuous. Now the result follows from Proposition 4.18.

We see from the above theorem that the rather weak hypothesis that the
way below relation � is semidecidable nonetheless suffices to obtain strong
results. However, we cannot build effective type structures. For this we need
a stronger notion of domain (since the categories of continuous and algebraic
cpos are not cartesian closed) and a stronger notion of effectivity. Here
we give one such notion, for simplicity restricting ourselves to consistently
complete algebraic cpos, i.e., algebraic domains.

Definition 4.20. An algebraic domain D = (D;v,⊥) is effective if there
is a numbering α:ω → Dc such that the following relations are recursive:

(i) α(m) v α(n);
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(ii) ∃k(α(m), α(n) v α(k)); and

(iii) α(m) t α(n) = α(k).

An effective algebraic domain is a pair (D,α) where D is an algebraic
domain and α is an effective numbering of Dc in the above sense.

Let EADOM be the category of effective algebraic domains whose mor-
phisms from (D,α) to (E, β) consists of the (α, β)-effective functions from
D to E.

Theorem 4.21. The category EADOM is cartesian closed.

Proof. Straightforward from the results in Section 2.3.2

5 Effective domain representations

Our motivation for the study of domain representability was its use together
with the theory of effective domains in investigating in a uniform way the
effective content of topological algebras. In this section we survey some
results of this approach indicating that it is a general method. A further
conclusion is that various notions of computability via “concrete” computa-
tions coincide, thus showing that the theory of “concrete” computability is
stable (see Stoltenberg-Hansen and Tucker [44]).

5.1 Effective topological algebras

The general method we pursue to study the effective properties of a gen-
erally uncountable topological algebra A is to find an effective domain D
representing A in the sense of Definition 3.1 and then measure the effectiv-
ity of A by means of the effectivity of the representing domain D. Thus the
effectivity of A is dependent on the domain representation D and its effec-
tivity. In practice, given an algebra A one finds a computable or effective
structure P of “concrete” approximations for A which is such that the ideal
completion P̄ of P is a domain representation of A.

Definition 5.1. Let A be a topological Σ-algebra.

(i) A is (weakly) effectively domain representable by (D,DA, ν, α) when
(D,DA, ν) is a domain representation of A and (D,α) is a (weakly)
effective Σ-domain.

(ii) A is effectively domain representable if A is representable by an effec-
tive domain.

Next we consider the set of computable elements of a weakly effectively
domain representable algebra A, analogous to the set Dk,α of computable
elements in a weakly effective domain (D,α).
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Definition 5.2. Let A be a topological Σ-algebra weakly effectively do-
main representable by (D,DA, ν, α). Then the set Ak,α of (D,DA, ν, α)-
computable elements of A is the set

Ak,α = {x ∈ A : ν−1(x) ∩Dk,α 6= ∅}.

We suppress the reference to (D,DA, ν, α) whenever possible and simply
write Ak,α (or Ak when also α is suppressed) for the set of computable
elements, the effective domain representation being understood.

A Σ-algebra A is said to have a numbering with recursive operations if
there is a surjection β : Ω → A, where Ω ⊆ ω, such that each operation in A
is β-computable. By a k-ary operation σ on A being β-computable we mean
that there is a partial recursive function σ̂ such that

n1, . . . , nk ∈ Ω =⇒ σ̂(n1, . . . , nk) defined,

and for n1, . . . , nk ∈ Ω,

σ(β(n1), . . . , β(nk)) = β(σ̂(n1, . . . , nk)),

that is σ̂ tracks σ with respect to β in the usual way.
We say that (A, β) is a numbered algebra with recursive operations if β is a

numbering of A with recursive operations. Note that we put no requirement
on the complexity of the code set Ω nor on the (relative) complexity of the
equality relation.

Proposition 5.3. Let (A;σ1, . . . , σq) be a topological Σ-algebra weakly ef-
fectively domain representable by (D,DA, ν, α).

(i) Ak,α is a subalgebra of A.

(ii) Ak,α is a numbered algebra with recursive operations with a numbering
α̃ induced by α.

Proof. Let ᾱ:ω → Dk,α be the canonical constructive numbering of Dk,α

obtained from α. Let ΩA = ᾱ−1(Dk,α ∩DA) and define α̃: ΩA → Ak.α by

α̃(n) = ν(ᾱ(n)).

Then α̃ is a surjective numbering of Ak,α.
Now (i) follows immediately from Proposition 4.3 (i). For the proof of

(ii) let σ be an m-ary operation tracked by the effective operation σ̂ on D.
Then by Proposition 4.11 there is a recursive function f :ωm → ω tracking
σ̂ on Dk,α. Thus for each n1, . . . , nm ∈ ΩA,

σ(α̃(n1), . . . , α̃(nm)) = ν(σ̂(ᾱ(n1), . . . , ᾱ(nm)))
= ν(ᾱ(f(n1, . . . , nm)))
= α̃(f(n1, . . . , nm)),

showing that f also tracks σ with respect to α̃.

45



Now we introduce two notions of effectivity for functions between weakly
effectively domain representable topological spaces.

Definition 5.4. Let A and B be topological spaces, weakly effectively do-
main representable by (D,DA, νA, α) and (E,EB , νB , β), respectively.

(i) A continuous function f :A → B is said to be (α, β)-effective if there
is an (α, β)-effective continuous function f̄ : D → E representing f ,
that is f̄ [DA] ⊆ EB and for each x ∈ DA, f(νA(x)) = νB(f̄(x)).

(ii) A function f :Ak,α → Bk,β is (α̃, β̃)-computable, where α̃ and β̃ are the
numberings obtained in Proposition 5.3, if there is a partial recursive
function f̂ such that ΩA ⊆ dom(f̂) and for all n ∈ ΩA,

f(α̃(n)) = β̃(f̂(n)),

that is f̂ tracks f with respect to α̃ and β̃.

Note that in (ii) we do not require f to be continuous. In many im-
portant situations it is the case that each (α̃, β̃)-computable function is
continuous. Examples are Ceitin’s theorem ([10, 29]) for recursive metric
spaces which are recursively separable and have limit algorithms, and the
Kreisel-Lacombe-Shoenfield theorem ([23]) on recursive operators on the set
of total recursive functions. Berger [9] has proved a generalisation of the
Kreisel-Lacombe-Shoenfield theorem to algebraic domains which via care-
fully chosen domain representations also imply Ceitin’s theorem.

Example 5.5. Inverse limits and ultrametric algebras.
Recall the discussion in Section 3.2. Let {≡n}n∈ω be a family of sepa-

rating congruences on a Σ-algebra A. In order for Â = lim→A/≡n to be
effectively domain representable it clearly suffices that ≡n is decidable uni-
formly in n. In case ≡n is semidecidable uniformly in n then Â is weakly
effectively domain representable. Examples (i), (ii) and (iii) in 3.10 are effec-
tively domain representable (for (iii) we need to assume R is a computable
ring, i.e., the ring operations are computable and equality is decidable).

In order to obtain a weakly effective domain representation of an ultra-
metric space it suffices that the space is a weakly effective metric space (see
Definition 5.18).

Exercise 5.6.

(i) Let 2ω = {f | f :ω → {0, 1}}, the Cantor set. Show that 2ω is effec-
tively domain representable such that (2ω)k is the set of (characteristic
functions of the) recursive sets.

(ii) Let X be a complete effective ultrametric space and let f :X → X be
an effective contraction mapping. Show that the fixed point of f is
computable.
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5.2 Locally compact Hausdorff spaces

In this section we analyse the effectivity of standard algebraic domain rep-
resentations from Section 3.3 for locally compact Hausdorff (and hence reg-
ular) spaces. We restrict our attention to effective domain representations.
The reader is invited to make a similar analysis of weakly effective domain
representations using continuous domains or using the technique described
in Stoltenberg-Hansen and Tucker [44].

Let X be a locally compact Hausdorff space and let P be a neighbour-
hood system for X in the sense of Definition 3.24 consisting of compact sets
(except possibly X). We call such a P for a compact neighbourhood system.

A compact neighbourhood system is said to be α-computable if α is a
numbering of P satisfying the conditions in Definition 4.20. It follows that if
P is α-computable then P̄ , the ideal completion of P , is an effective domain.

The extra needed hypothesis on a computable compact neighbourhood
system is that the relation F ⊆ G◦ must be semidecidable.

Below we assume P is an α-computable compact neighbourhood sys-
tem of X and we consider the standard algebraic domain representation
(P̄ , P̄R, ν, α) of X.

A first observation is that the ideals Ix play an important role.

Lemma 5.7. Suppose the relation F ⊆ G◦ is α-semidecidable for F,G ∈ P .
Let f : P̄ → P̄ be the function defined by

f(I) = {G ∈ P : (∃F ∈ I)(F ⊆ G◦)}.

(i) f is a continuous (α, α)-effective function and f [P̄R] ⊆ P̄R.

(ii) f restricted to P̄R
k,α is ᾱ-computable.

Proof. The proof of (i) is immediate using the added hypothesis. Part (ii)
follows from Proposition 4.11

Corollary 5.8. Suppose the relation F ⊆ G◦ is α-semidecidable for F,G ∈
P . Then x ∈ Xk,α if, and only if, the ideal Ix = {G ∈ P : x ∈ G◦} ∈ P̄k,α.

Proof. For the non-trivial direction assume x ∈ Xk,α. Let I ∈ P̄R be an α-
computable ideal and let f be the effective function from Lemma 5.7. Then
f(I) = Ix and hence Ix is computable by the effectivity of f .

Next we give a sufficient condition for continuous functions between lo-
cally compact Hausdorff spaces to be effective. The crucial condition is the
semidecidability of whether, for given compact sets, the image of one is in
the interior of the other.

Proposition 5.9. Let X and Y be locally compact Hausdorff spaces with
cusls P and Q of compact neighbourhood systems, respectively. Suppose P

47



is α-computable and Q is β-computable. Let f :X → Y be a continuous
function such that the relation

f [F ] ⊆ G◦

is (α, β)-semidecidable for all (compact) F ∈ P and G ∈ Q. Then f is
(α, β)-effective.

Proof. Let f̄ : P̄ → Q̄ be the continuous function representing f , defined in
the proof of Theorem 3.33. Thus, for compact F ∈ P ,

f̄(F ) = {G ∈ Q : f [F ] ⊆ G◦},

that is
↓ G v f̄(F ) ⇐⇒ f [F ] ⊆ GO.

This relation is by assumption (α, β)-semidecidable, so f̄ is (α, β)-effective.

In the remaining part of this section we consider the effective content
of the ring of real numbers R. The set P2 of Example 3.26 is a compact
neighbourhood system for R. LetR = P̄2 and let α be a standard numbering
making R into en effective domain. Then (R,RR, ν, α) is the standard
domain representation of R that we consider.

The effective theory of R has been much studied and is well under-
stood. Our purpose here is to show that the standard effective theory of
R is equivalent with that obtained from domain representability. A nice
general reference for recursive analysis is Pour-El and Richards [35].

Definition 5.10. An element x ∈ R is a computable real if there is a com-
putable sequence of rational numbers (rn) such that for each n,

|rn − x| < 2−n.

Proposition 5.11. The set Rk,α is precisely the set of computable reals.

Proof. Suppose x ∈ R is a computable real. Let (rn) be a computable
sequence of rationals converging to x with the modulus prescribed by Defi-
nition 5.10. For each n, let Fn = [rn − 2−n, rn + 2−n]. Then x ∈ F ◦n and the
set {Fn : n ∈ ω} generates a computable ideal, in fact Ix. Thus x ∈ Rk,α.

For the converse inclusion suppose x ∈ Rk,α. Then an α̃-index for x
is an ᾱ-index for some ideal I ∈ RR such that

⋂

I = {x}. By Lemma
4.5 we uniformly obtain an r.e. index for α−1[I]. For each n we effectively
search through I and find [an, bn] ∈ I such that bn − an < 2−n, and set
rn = (bn + an)/2. Then (rn) is a computable sequence of rational numbers
witnessing that x is a computable real.

48



An index for a computable real x is an index for a computable sequence
(rn) of rationals converging to x in the manner prescribed by Definition 5.10.
Thus we obtain a numbering

β : Ω → Rk,α

where Ω is the set of such indices. The above proof is uniform in the sense
that given a β-index for a computable real x then we can compute an α̃-index
for x, and conversely. To be precise, there are partial recursive functions f
and g such that if e is a β-index for a computable real x then f(e) is defined
and f(e) is an α̃-index for x. Similarly, if e is an α̃-index for x then g(e) is
defined and g(e) is a β-index for x. Of course, it is not recursively decidable
whether or not a number e is an index of a computable real. In fact, Ω is a
∏0

2 set.
We now proceed to show that a function on R is computable in the sense

of recursive analysis if, and only if, it is effective in our sense.
The notion of a computable or recursive function in recursive analysis is

a sensitive one. Here we consider the generally accepted notion, originally
due to Grzegorczyk [17] and Lacombe [25].

Definition 5.12. A sequence (xn) of real numbers is computable if there is
a computable double sequence (rnk) of rational numbers such that

|rnk − xn| ≤ 2−k for all k and n.

Definition 5.13. A function f : R → R is computable if the following hold.

(i) If (xn) is a computable sequence of real numbers then the sequence
(f(xn)) is computable.

(ii) There is a recursive function d:ω2 → ω such that for all natural num-
bers N and M and for each x, y ∈ [−M,M ],

|x− y| <
1

d(M,N)
=⇒ |f(x)− f(y)| < 2−N .

Condition (ii) assures that a computable function on R is continuous.
Thus, in order to show that such a function f is effective, it suffices by Propo-
sition 5.9 to show that the relation f([a, b]) ⊆ [c, d]◦ is α-semidecidable,
where f([a, b]) denotes the image of [a, b] under f . Of course, f([a, b]) is
again a compact interval by continuity.

Lemma 5.14. Let f : R → R be a computable function. Then f is (α, α)-
effective.
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Proof. We sketch the argument. It is well-known from recursive analysis that
given recursive real numbers a ≤ b we can compute indices for recursive real
numbers m ≤ M such that f([a, b]) = [m,M ]. (Note, however, that one
cannot in general compute where a maximum or minimum is taken.) It is
also well-known and easy to see that the < relation on the recursive reals is
semidecidable. It follows that for [a, b], [c, d] ∈ Rc the relation

f([a, b]) ⊆ [c, d]◦

is α-semidecidable, and hence that f is (α, α)-effective.

Now assume that f : R → R is effective. Thus f is represented by an
effective continuous function f̄ :R → R. By Lemma 5.7 we may assume
that f̄(I) = If(x) whenever I is a total ideal representing x. We shall show
that f is computable.

To prove condition (i) let (xn) be a computable sequence of reals and
let (wnk) be an associated computable double sequence of rationals such
that |wnk − xn| < 2−k for each n and k. Then the ideal Ixn is computable,
uniformly in n, since it is generated by

[wnk − 2−k, wnk + 2−k] for k ∈ ω.

By the effectivity of f̄ , the ideal If(xn) = f̄(Ixn) is computable, uniformly in
n. Thus, given a number t, we search effectively for [c, d] ∈ If(xn) such that
|d − c| < 2−t. In this way we obtain a computable double sequnce (snt) by
letting

snt = (c+ d)/2.

Clearly |snt − f(xn)| < 2−t for each n and t, so (f(xn)) is a computable
sequence.

It remains to prove the existence of a recursive modulus function for f .
Suppose we are given positive natural numbers M and N . For each k ∈ ω,
partition [−M,M ] into k subintervals

[aki, aki+1] i = 0, . . . , k − 1

of equal length.

Claim. There is k such that for each i = 0, . . . , k − 1 there is [c, d] ∈
f̄([aki, aki+1]) such that |d− c| < 2−N .

Suppose the claim is false for N . Then for each k we choose ik, 0 ≤ ik ≤
k − 1, such that

[c, d] ∈ f̄([akik , akik+1]) =⇒ |d− c| ≥ 2−N .

Choose xk ∈ [akik , akik+1]. Then, by compactness, the set {xk : k ∈ ω}
has a limit point x in [−M,M ]. Suppose first that x 6= ±M . Choose
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[c, d] ∈ If(x) = f̄(Ix) such that |d − c| < 2−N . Thus for some [a, b] ∈ Ix,
[c, d] ∈ f̄([a, b]). But then there is k sufficiently large so that [akik , akik+1] ⊆
[a, b] and hence

[c, d] ∈ f̄([akik , akik+1])

which is a contradiction. In case x = M we consider the ideal IL
x , generated

by {[a,M ] : a < M}, in place of Ix to obtain a contradiction. The case
x = −M is handled similarly, completing the proof of the claim.

Given M and N we compute a number k which witnesses the claim. The
computation is performed by an effective search, using the effectivity of f̄ .
Then we define d:ω2 → ω by

d(M,N) = least number > k/2M.

Thus d is a total recursive function with an index obtained uniformly from
an index of f̄ .

Suppose x, y ∈ [−M,M ] and |x − y| < 1/d(M,N). Then for the k
computed above, |x− y| < 2M/k so there is i such that

|x− aki| < 2M/k and |y − aki| < 2M/k.

Say, without loss of generality, that x ∈ [aki, aki+1]. Then there is [c, d] ∈
f̄([aki, aki+1]) such that |d− c| < 2−N . It is easy to see that

f [[aki, aki+1]] ⊆ [c, d]

so |f(x)− f(aki)| < 2−N . The same holds for y and hence we have

|f(x)− f(y)| ≤ |f(x)− f(aki)|+ |f(aki)− f(y)| < 2−N + 2−N = 2−N+1.

We have proved the following theorem.

Theorem 5.15. A function f : R → R is computable in the sense of recursive
analysis if, and only if, f is effective.

5.3 Metric spaces

Some early analysis of the effective content of metric spaces are Lacombe
[25] and Moschovakis [29]. There is also an important constructive analysis
of metric spaces in Ceitin [10].

Definition 5.16. A metric space (X, d) is recursive in the sense of Moscho-
vakis if

(i) there is a surjective numbering α: Ωα → X, where Ωα ⊆ ω;

(ii) d:X ×X → Rk, where Rk is the set of recursive real numbers; and
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(iii) the distance function d is (α, ρ)-computable, where ρ: Ωρ → Rk is a
standard numbering.

This is a very general definition. Its weak point is that calculations with
distances are limited to those possible with recursive reals. Nonetheless it is
possible to give a weakly effective domain representation to (the completion
of) a recursive metric space along the lines given below. We shall not pursue
this here.

An alternate definition is possible that strengthens the computability of
the space and which is more appropriate for examples.

By an ordered field K we mean a field K = (K; +,−,×, 0, 1,≤). The
field K is computable if there is a numbering of K from ω such that all the
operations and the relation ≤ (and hence =) are recursive. It is known that
if K is a computable ordered field then its real closure is computable as an
ordered field (Madison [27]). Furthermore, if K is archimedian then K can
be computably embedded into Rk (Lachlan and Madison [24]).

Definition 5.17. A metric space (X, d) is computable if

(i) there is a numbering α:ω → X with decidable equality;

(ii) d:X ×X → K, for some computable archimedian ordered field K;

(iii) the distance function d is (α, γ)-computable, where γ:ω → K is a
computable numbering of K.

These two definitions determine two general definitions of effective metric
spaces.

Definition 5.18.

(i) A metric space (X, d) is weakly effective if there exists a dense subspace
A of X such that (A, d) is recursive in the sense of Moschovakis.

(ii) A metric space (X, d) is effective if there exists a dense subspace A of
X such that (A, d) is computable.

The existence of a recursive or computable dense subset A of X allows
us to define the computable elements of the metric space; these are the
elements of X that can be approximated by computable Cauchy sequences
of elements from A with computable modulus functions. To define the setXk

of computable elements of X we embed the space X in the metric completion
A∗ of A. So we may assume that A ⊆ X ⊆ A∗. From the numbering
α: Ωα → A we can construct a canonical numbering αk: Ωαk

→ Ak of the set
Ak of computable elements in the completion A∗. Then we set Xk = X∩Ak,
and give it the numbering αk restricted to α−1

k (Xk).
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Example 5.19. The majority of examples of interest are effective metric
spaces (rather than weakly effective metric spaces), including: (i) the Eu-
clidean spaces Rn; (ii) the space C[0, 1] of continuous functions [0, 1] → R

with the sup norm; and (iii) Lp spaces for rational p ≥ 1.

We now describe how to obtain an effective algebraic domain represen-
tation of an effective metric space.

Let (X, d) be a metric space with a dense subset A. A formal closed
ball is a “notation” Fa,r, where a ∈ A and r ∈ Q+, the set of non-negative
rational numbers. The formal ball is a name or syntax for a closed ball and
we may write it semantically by

Fa,r = {x ∈ X : d(a, x) ≤ r}.

Two formal balls are consistent,

Fa,r ↑ Fb,s if d(a, b) ≤ r + s.

We say that Fb,s is formally contained in Fa,r,

Fa,r v Fb,s if d(a, b) + s ≤ r.

A set {Fa1 ,r1 , . . . , Fan ,rn} of formal balls is permissible if the balls are
pairwise consistent and no ball is contained within another, i.e., for 1 ≤
i ≤ j ≤ n, Fai ,ri

↑ Faj ,rj
and it is not the case that Fai,ri

v Faj ,rj
or

Faj ,rj
v Fai,ri

. We use the notation σ, τ for permissible sets.
Let P be the set of all permissible sets of formal balls. We need to extend

the relation v to permissible sets:

σ v τ ⇐⇒ (∀Fa,r ∈ σ)(∃Fb,s ∈ τ)(Fa,r v Fb,s).

We note that consistency is characterised by

σ ↑ τ ⇐⇒ (∀Fa,r ∈ σ)(∀Fb,s ∈ τ)(Fa,r ↑ Fb,s).

Given consistent permissible sets σ and τ , the supremum σ t τ = g(σ, τ)
where g removes those formal balls in σ ∪ τ properly contained in others.

The following is immediate from the construction above. But note that
we need to consider sets of formal balls in order to be able to compute the
supremum operation.

Lemma 5.20. If (A, d) is a computable metric space then the obtained struc-
ture P = (P ;v, ↑,t,⊥) is a computable cusl with a numbering α obtained
from the numbering of A.

We now let D = P̄ , the ideal completion of P . Thus (D,α) is an effective
domain.
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An ideal I ∈ D is converging if for any ε > 0 there exists {Fa,r} ∈ I
such that r < ε. We define x ∈ A∗ to be approximated by the ideal I if
(∀σ ∈ I)(∀Fa,r ∈ σ)(x ∈ Fa,r). A convergent ideal I approximates exactly
one element x in A∗; we write I → x. Let DX = {I ∈ D : I → x ∈ X}. The
function νX :DX → X defined by

νX(I) = x⇐⇒ I → x

is a quotient mapping. Using this construction one may now verify

Theorem 5.21. Each effective metric space X has an effective domain
representation D such that the computable elements Xk obtained from the
metric coincides uniformly with the computable elements induced by D, i.e.,
Xk = Xk,D.

The situation with computable functions is more difficult. We just state
the following theorem which is, essentially, Theorem 3.4.33 in Blanck [3]. It
uses Berger’s generalisation in [9] of the Kreisel-Lacombe-Shoenfield theo-
rem.

Theorem 5.22. Let X and Y be effective metric spaces. Then there exists
a semieffective domain representation D of X consisting of permissible sets
of formal balls such that together with a standard effective formal ball repre-
sentation E of Y , the following are equivalent for any function f :Xk → Yk:

(i) the function f :Xk → Yk is computable; and

(ii) there is a continuous extension of f to f :X → Y that is effective with
respect to the domain representations D and E of the metric spaces X
and Y .

By a semieffective domain we mean one where the consistency relation
on the compact elements need not be decidable. The semieffective domain
representation in the theorem is obtained by taking the dense part of a
standard effective formal ball representation of X.

The implication (i) implies (ii) has a form of Ceitin’s Theorem as a
corollary.

6 Bifinite domains

A main advantage of domain theory is the ease with which one can build
type structures. Thus we know, e.g., that the category of cpos with con-
tinuous functions as morphisms is cartesian closed. This means that the
cartesian product of finitely many cpos is a cpo and the set of continuous
functions between two cpos is a cpo. However, for computability we want to
consider subclasses or subcategories of cpos and these are not always carte-
sian closed. Finite cartesian products are not problematic. The problem
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is the function space. Thus it is wellknown that the category of algebraic
cpos is not cartesian closed, whereas the category of consistently complete
algebraic (or continuous) cpos is cartesian closed (Theorem 2.33). We leave
as a not completely trivial exercise to construct an algebraic cpo D such
that [D → D] is not algebraic.

A possible solution would be to restrict oneself to the categories of con-
sistently complete algebraic (or continuous) cpos, and this is often done.
There is, however, one important domain construction, the Plotkin power
domain described in Section 7, under which the class of consistently com-
plete algebraic cpos is not closed. Fortunately there is a larger subcategory
of the algebraic cpos, the bifinite domains, which is cartesian closed and
which is also closed under the Plotkin power domain construction. It turns
out, as shown by Jung [20], the the category of bifinite domains is a maximal
cartesian closed subcategory of the algebraic cpos. When restricting to the
category of countably based algebraic cpos, then the countably based bifinite
domains make up the largest cartesian closed subcategory, i.e. it contains
all other cartesian closed subcategories (see Smyth [37]). A countably based
bifinite domain is also called an sfp-object, indicating that it is the limit of
a sequence of finite partial orders.

This section closely follows the presentation given in Hamrin [19].

6.1 Basic definitions

To motivate our definition let (P ;v) be a partial order and let us consider
v as an information ordering. Suppose A ⊆ P . When is A sufficiently
well-structured so that A contains witnesses to all the consistent pieces of
information in A?

Definition 6.1. Let (P ;v,⊥) be a partial order with a least element.

(i) B ⊆ P is a complete set (in P ) if

(∀C ⊆ B)(∀x w C)(∃b ∈ B)(C v b v x).

(ii) A family F = {Bi : i ∈ I} of finite subsets of P is a complete cover of
P if each Bi is complete and for each A ⊆∗f P there is i ∈ I such that
A ⊆ Bi.

As usual, C v b means (∀c ∈ C)(c v b) and A ⊆∗f B means that A is a
nonempty finite subset of B. Note that if B is complete then ⊥ ∈ B.

The following immediate observation is crucial.

Lemma 6.2. Suppose A ⊆ P is a finite non-empty complete set and let
x ∈ P . If A ∩ ↓x 6= ∅ then max(A ∩ ↓x) exists and is a member of A.

What we require of a bifinite domain is that each finite subset of compact
elements be covered by a finite complete set of compact elements.
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Definition 6.3. D is a bifinite domain if D is an algebraic cpo and Dc has
a complete cover.

By the algebraicity of a bifinite domain D the covering property holds
for each x ∈ D.

For a partial order (P ;v) and A ∈ P∗f (P ) we let mub(A) be the set of
minimal upper bounds of A.

Suppose D is a bifinite domain. Then for each A ∈ P ∗f (Dc) there is a
finite complete set B ⊇ A. Clearly this set contains mub(A) so mub(A)
is finite. (Why is mub(A) ⊆ Dc?) Furthermore, if A v x then there is
a ∈ mub(A) such that A v a v x, again since B is complete. Now we
iterate the mub operation as follows:

(i) mub0(A) = mub(A).

(ii) mubn+1(A) =
⋃

{mub(C) : C ∈ Pf (mubn(A))}.

And then we set mc(A) =
⋃

n∈Nmubn(A).
Note that each mubn(A) ⊆ B and hence mc(A) is finite. In addition

mc(A) is complete. For if C ⊆ mc(A) then C ⊆ mubn(A) for some n
and hence for each x w C there is a ∈ mubn+1(A) which witnesses the
completeness.

Proposition 6.4. Let D be a bifinite domain. Then F = {mc(A) : A ∈
P∗f (Dc)} is a complete cover of Dc. Furthermore mc(A) is the least complete
set containing A ⊆∗f Dc, so F is the finest complete cover of Dc.

Remark 6.5. A consistently complete algebraic cpo D is bifinite. For if
A ∈ P∗f (Dc) then mc(A) = mub1(A) = {

⊔

B : B ⊆ A}.

Exercise 6.6. Give an example of a bifinite domain which is not consistently
complete.

There is an equivalent characterisation of bifinite domains in terms of
finite projections.

Definition 6.7. Let D be a cpo. A continuous function p:D → D is a
projection if p v idD and p is idempotent. A projection p is finite if its
image im(p) is finite.

We leave the following lemma as an exercise.

Lemma 6.8. Let p and q be finite projections on a cpo D. Then

(i) p v[D→D] q ⇐⇒ im(p) ⊆ im(q);

(ii) im(p) ⊆ Dc;

(iii) p ∈ [D → D]c.
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Here is the characterisation in terms of finite projections.

Proposition 6.9. Let D be a cpo. Then D is a bifinite domain if, and only
if, there exists a directed family (pi)i∈I of finite projections such that

⊔

i∈I

pi = idD.

Proof. For the only if direction let F be a complete cover of Dc and define,
for A ∈ F ,

pA(x) =
⊔

{a ∈ A : a v x}.

Then the conclusion holds for (pA)A∈F .
For the converse let F = {im(pi) : i ∈ I}. The algebraicity of D follows

from Lemma 6.8.

We now show that the function space between bifinite domains is bifinite.
There are several ways to do this. Let us first sketch the result using finite
projections.

Theorem 6.10. Let D and E be bifinite domains. Then [D → E] is a
bifinite domain.

Proof. Let (pi)i∈I and (qj)j∈J be families of finite projections witnessing
that D and E are bifinite. For (i, j) ∈ I×J define Fij : [D → E] → [D → E]
by Fij(h) = qj ◦ h ◦ pi. It is routine to verify that Fij is continuous and
idempotent and that

⊔

ij Fij = id[D→E]. The image im(Fij) is finite since it
is determined by im(qj) and im(pi), which are finite by assumption.

In order to consider the effectivity of a function space [D → E] of bifi-
nite domains D and E we need a finitary characterisation of the compact
elements in [D → E] in terms of the compact elements in D and E.

Definition 6.11. Let D and E be bifinite domains.

(i) A non-empty finite set

{(ai, bi) : i ∈ I} ⊆∗f Dc ×Ec

is said to be joinable if the set {ai : i ∈ I} is complete and ai v aj =⇒
bi v bj.

(ii) Suppose u = {(ai, bi) : i ∈ I} is joinable and let A = {ai : i ∈ I}.
Then su: [D → E] → [D → E] is defined by

su(x) = bi ⇐⇒ ai = max(A ∩ ↓x).

Note that su is well defined by Lemma 6.2 since A ∩ ↓x 6= ∅ for each x.
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Lemma 6.12. Let D and E be bifinite domains and let u be joinable.

(i) su is continuous.

(ii) su =
⊔

{〈a; b〉 : (a, b) ∈ u}.

(iii) [D → E]c = {su : u ⊆ Dc ×Ec, u joinable}.

Proof. (i) and (ii) are routine given Lemma 6.2. To show (iii) we first note
that each step function 〈a; b〉 is compact and hence by (ii) that su is compact
when u is joinable. Now suppose f ∈ [D → E]c. By the argument of
Proposition 2.30,

f =
⊔

{〈a; b〉 : 〈a, b〉 v f, a ∈ Dc, b ∈ Ec}.

Consider a finite set {(ai, bi) : i ∈ I} such that each 〈ai, bi〉 v f . Let
A = {ai : i ∈ I} and B = {bi : i ∈ I} and let Ā ⊇ A and B̄ ⊇ B be finite
complete sets of compact elements. For each a ∈ Ā let ba = max(B̄ ∩↓f(a))
and let u = {(a, ba) : a ∈ Ā}.

Clearly su is joinable. For suppose a1, a2 ∈ Ā and a1 v a2. Then
f(a1) v f(a2) and hence ba1 v ba2 . Furthermore 〈a; b〉 v f for (a, b) ∈ u,
since then b ≤ f(a). By (ii) we then have su v f .

By an analogous argument we see that the set

{su : su v f and su joinable}

is directed and its supremum is f . It follows that f = su for some joinable
u since f is compact.

Remark 6.13. It is easily seen from the above proof that it suffices to
consider the joinable sets obtained from a complete cover of Dc in order to
obtain all of [D → E]c.

6.2 Effective bifinite domains

We shall briefly consider a notion of effective bifinite domains. It should be
an extension of the effectivity of consistently complete algebraic cpos. We
shall simply effectivise our definition of a bifinite domain.

Suppose α:ω → A is a numbering of a set A. Then let α∗:ω → P∗f (A)
be the numbering defined by α∗(e) = α[Ke], where Ke ⊆ ω is the non-empty
finite subset with canonical index e.

Definition 6.14. A bifinite domain D is an effective bifinite domain if there
is a numbering α:ω → Dc such that

(i) the relation α(n) v α(m) is recursive, i.e. v is α-decidable, and

(ii) there is a complete cover F of Dc such that F is α∗-decidable.
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We leave the following as an exercise.

Proposition 6.15. Let D be a bifinite domain and let α be a numbering of
Dc such that v is α-decidable. Then (D,α) is an effective bifinite dumain
if, and only if, mub:P∗f (Dc) → P∗f (Dc) is (α∗, α∗)-computable.

Let (D,α) be an effective bifinite domain. Then by the above we get
that mubn is (α∗, α∗)-computable for each n, uniformly in n. It follows that
mc is (α∗, α∗)-computable since mc(A) = mubn(A) where n is such that
mubn(A) = mubn+1(A). Thus we can also conclude that the relation “A is
complete” for A ∈ P∗f (Dc) is α∗-decidable, since

A is complete ⇐⇒ mc(A) = A.

Proposition 6.16. Let (D,α) be an effective bifinite domain. Then

(i) mc:P∗f (Dc) → P∗f (Dc) is (α∗, α∗)-computable;

(ii) The relation “A is complete” is α∗-decidable.

The category of effective bifinite domains is cartesian closed.

Theorem 6.17. Let (D,α) and (E, β) be effective bifinite domains. Then
[D → E] is an effective bifinite domain with a numbering obtained uniformly
from α and β.

Proof. From an α∗-decidable complete cover F of Dc we obtain (by Remark
6.13) an (α× β)∗-decidable family U ⊆ Dc ×Ec of joinable sets such that

[D → E]c = {su : u ∈ U}.

Thus we obtain in a standard way a numbering γ:ω → [D → E]c, uniformly
from α, β and F . The relation v on [D → E]c is γ-decidable since

su v sv ⇐⇒ (∀(a, b) ∈ u)(b = ⊥E ∨ (∃(c, d) ∈ v)(c v a ∧ b v d)).

We are to construct a γ∗-decidable complete cover of [D → E]c. Let
G be a β∗-decidable complete cover of Ec. Then, using the notation in
the proof of Proposition 6.9, (pA)A∈F and (qB)B∈G are directed families of
projections witnessing that D and E are bifinite. Using the notation and
proof of Theorem 6.10 it suffices, by Proposition 6.9, to show that the family

{im(FAB) : A ∈ F , B ∈ G}

is γ∗-decidable. For this it suffices to show that for all u joinable with respect
to F ,

su ∈ im(FAB) ⇐⇒ (∃v ⊆ A×B)(v joinable ∧ π0(v) = A ∧ su = sv),
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where π0 is the first projection function.
We leave the straight forward proof of the “if” direction as an exercise.

To prove the “only if” direction let su ∈ im(FAB) where u = {(c, dc) : c ∈ C}
is joinable and C ∈ F . For a ∈ A let ca = max(C ∩ ↓a) ∈ C. Note that a v
a′ =⇒ ca v ca′ and hence dca v dca′

. Thus the set v = {(a, dca) : a ∈ A} is
joinable. For (a, dca) ∈ v we have

dca = 〈ca; dca〉(a) v su(a)

and hence sv v su.
For c ∈ C let cA = max(C ∩ ↓pA(c)). We have for c ∈ C,

FAB(su)(c) = qBsupA(c)

= qB〈cA; dcA
〉pA(c)

= qB(dcA
).

But FAB(su)(c) = su(c) = dc and hence dc = qB(dcA
) v dcA

. But
cA v c so dcA

v dc, that is equality holds. In particular dc ∈ B and hence
v ⊆ A×B.

To prove su v sv let (c, dc) ∈ u. Then cA v pA(c) v c and, in fact,
cA = cpA(c). From the above, dc = dcA

, and hence

dc v 〈pA(c); dcA
〉(c) v sv(c)

which proves that su v sv.

7 Power domains

Power domains were introduced by Plotkin [33] in order to give a semantics
for finitely branching non-deterministic or parallel programs. Assume that
each run or possible outcome of a class of non-deterministic programs has
an interpretation in a fixed domain D. Then an interpretation of a non-
deterministic program in this class would be the set of interpretations of all
possible outcomes of the program. Thus an appropriate domain to interpret
this class of non-deterministic programs should be something analogous to
the power set of D, the power domain of D.

For simplicity we will in this section restrict ourselves to algebraic cpos.
We will define three types of power domains of which the Plotkin power
domain (also called the convex power domain) is the most important.

For a set S we let

P∗f (S) = {A ⊆ S : A finite and A 6= ∅}.

Definition 7.1. Let S be a preordered set under v and let F be a family
of non-empty subsets of F . Let A and B be in F .
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(i) A vl B ⇐⇒ (∀a ∈ A)(∃b ∈ B)(a v b).

(ii) A vu B ⇐⇒ (∀b ∈ B)(∃a ∈ A)(a v b).

(iii) A vEM B ⇐⇒ A vl B and A vu B.

The relations defined above are clearly preorders on F . The preorder
vEM is known as the Egli-Milner ordering.

Definition 7.2. Let D be an algebraic cpo.

(i) The lower or Hoare power domain Pl(D) of D is the ideal completion
of (P∗f (Dc),vl).

(ii) The upper or Smyth power domain Pu(D) of D is the ideal completion
of (P∗f (Dc),vu).

(iii) The Plotkin power domain PP (D) of D is the ideal completion of
(P∗f (Dc),vEM ).

Thus the power domains of algebraic cpos are algebraic cpos whose com-
pact elements are determined by the elements in P ∗f (Dc).

The upper power domain is discussed in Smyth [36].
Similar definitions are made for a continuous domain D by considering

the ideal completion of (B,�), where� is the way below relation on a basis
B for D.

The following proposition is straight forward.

Proposition 7.3. Let (S,v) be a preordered set and let A and B be non-
empty subsets of S.

(i) A vl B ⇐⇒ ↓A vl B.

(ii) A vl B ⇐⇒ ↓A ⊆ ↓B.

(iii) A vu B ⇐⇒ A vu ↑B.

(iv) A vu B ⇐⇒ ↑B ⊆ ↑A.

In particular it follows that A ∼l ↓A and A ∼u ↑A, where, as usual,
A ∼ B means A v B and B v A.

Exercise 7.4. Determine Pl(N⊥) and Pu(N⊥).

Proposition 7.5. Let D be an algebraic cpo.

(i) Pl(D) is consistently complete.

(ii) If D is bifinite then Pu(D) is consistently complete.
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Proof. Given A,B ∈ P∗f (Dc) it is clear that [A]l t [B]l = [A ∪ B]l, where
[A]l denotes the compact ideal in Pl(D) determined by A. This proves (i).
For (ii) let

C =
⋃

{mub(a, b) : a ∈ A, b ∈ B, and a, b consistent}.

If A and B are consistent then C 6= ∅. Furthermore C is finite since D is
assumed bifinite. It is now straight forward to see that [A]ut[B]u = [C]u.

In particular consistent completeness is preserved by the upper and lower
power domain constructions. However, this is not true for the Plotkin power
domain construction.

Exercise 7.6. Let D be the four element diamond lattice and let E = D×
D. Then E is consistently complete. Show that PP (E) is not consistently
complete.

The bifinite domains are preserved under the Plotkin power domain con-
struction.

Theorem 7.7. If D is a bifinite domain then so is PP (D).

Proof. Let (pi)i∈I be a directed family of finite projections on D such that

⊔

i∈I

pi = idD .

Define p̄i:PP (D) → PP (D) by, for {a1, . . . , an} ∈ P
∗
f (Dc),

p̄i(↓{a1, . . . , an}) = ↓{pi(a1), . . . , pi(an)}.

It is routine to verify that (p̄i)i∈I is a well-defined directed family of finite
projections on PP (D) such that

⊔

i∈I p̄i = idPP (D) .

The Plotkin power domain is also called the convex power domain for
the following reason. Suppose (P,v) is a preorder. For A ⊆ P let

cvxP (A) = {p ∈ P : (∃q, r ∈ A)(q v p v r)},

the convex hull of A in P . A set A ⊆ P is said to be convex if cvxP (A) = A.
For subsets A and B it is easily verified that

A ∼EM B ⇐⇒ cvxP (A) = cvxP (B).

Proposition 7.8. Let D be an algebraic cpo and let C(Dc) = {cvxDc(A) :
A ∈ P∗f (Dc)}. Then the Plotkin power domain PP (D) is isomorphic to the
ideal completion of (C(Dc),vEM ).
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The Plotkin power domain construction preserves effective bifinite do-
mains, uniformly.

Theorem 7.9. Let (D,α) be an effective bifinite domain. Then the Plotkin
power domain PP (D) is an effective bifinite domain with a numbering ob-
tained uniformly from α.

Proof. The set of compact elements PP (D)c is numbered by α∗:ω → P∗f (Dc),
the canonical numbering obtained from α. The order relation v on PP (D)c
is clearly α∗-decidable using the α-decidable ordering of Dc.

Let F be a complete cover of Dc. We claim that

G = {P∗f (A) : A ∈ F}

is a complete cover of PP (D)c. (Here we work on representations of the
elements in PP (D)c.) Note that G is obviously α∗∗-decidable. For A ∈ F
and C ⊆∗f Dc let

BC = {max(A ∩ ↓c) : c ∈ C}.

Then BC ⊆ A since A is complete. Furthermore BC = max(P∗f (A) ∩ ↓C)
and hence P∗(A) is complete in PP (D). To see that G is a complete cover
suppose B1, . . . , Bk ⊆

∗
f Dc. Then choose A ∈ F such that ∪k

i=1Bi ⊆ A.

The Plotkin power domain construction has been used by Edalat [11, 12]
and Blanck [6] to study computability of compact subsets of metric spaces
and iterated function systems on metric spaces.

We just cite a few results in order to illustrate the use of the Plotkin
power domain in relation to domain representability.

Theorem 7.10. (Blanck [6]) Let (D,DR, ν) be a standard effective domain
representation of a complete effective metric space X and let E = PP (D).
Then there is ER ⊆ E and µ such that (E,ER, µ) is an effective domain
representation of H(X), the set of compact subsets of X.

The topology induced on H(X) is the one given by the Hausdorff metric
on H(X). Recall that the Hausdorff metric dH on H(X) is given by

dH(K,K ′) = max(sup
x∈K

d(x,K ′), sup
y∈K′

d(y,K)),

where d(x,K) = infy∈K d(x, y) and d is the metric on X.
To get a feeling for the Plotkin power domain construction in terms

of domain representability the reader should consider the standard interval
domain for the real numbers and take the Plotkin power domain of it. Then
construct an ideal which represents the Cantor set.

An application area of this theory is that of Iterated Function Systems
(IFS).

Theorem 7.11. (Blanck [6]) An effective hyperbolic IFS on an effective
complete metric space has a unique effective non-empty compact attractor.
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8 Representation of non-continuous functions

There are important phenomena in computing that are not continuous. Sup-
pose we model a stream of data as a function from time into a set of data.
Let us think of time as being continuous. Then it is reasonable to model
time by the real number line R or a final segment of R. If the data set
is discrete, i.e., has the discrete topology, then the only continuous func-
tions or streams are the constant functions. The reason is that the reals
R is a connected space. (Streams that takes values in a discrete data set
are sometimes called signals.) Thus, in order to represent such a stream
space, or a space of signals, by a function space domain, we need a way
to represent a non-continuous function by a continuous function between
domains. We know by Proposition 3.5 that this is impossible. We have to
settle for representing non-continuous functions approximately. For a discus-
sion of streams, stream transformers and domain representations see Blanck,
Stoltenberg-Hansen and Tucker [7].

Another example is that of solid geometry. Suppose we want to represent
a solid body in space. If the space is modelled by Rn, which is usual, then
the solid body is modelled by a function f : Rn → {0, 1}, where f(x) = 0
if x is in the solid body and f(x) = 1 otherwise. That is, a solid body is
represented by its characteristic function. Again we meet the problem that
no such function is continuous and hence cannot be represented exactly. For
a discussion of modelling solid geometry see Edalat and Lieutier [14] and of
constructive volume geometry see Blanck, Stoltenberg-Hansen and Tucker
[8].

An analogous problem is how to represent a relation on a topological
space. A canonical example is the space of real numbers R. How do we
represent the ≤ relation?

Let X be a topological space and let B = {true, false} be the discrete
boolean space. An n-ary relation P on X can be identified with its charac-
teristic function cP :X → B defined by

cP (a1, . . . , an) =

{

true, if P (a1, . . . , an);
false, if ¬P (a1, . . . , an).

The idea is to represent the possibly non-continuous characteristic function
continuously in such a way that it gives exact values at points of continuity
and possibly only proper approximations at points of discontinuity. We
know that this is the best possible.

Let (D,DR, ν) be a domain representation of X and let P be an n-ary
relation on X. Define c̄P : Dn

c → B⊥ by

c̄P (~a) =







true, if (∀~x ∈ (DR)n)(~a v ~x =⇒ P (ν(~x)));
false, if (∀~x ∈ (DR)n)(~a v ~x =⇒ ¬P (ν(~x)));
⊥, otherwise.
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c̄P is clearly monotone and hence extends uniquely to a continuous function

c̄P :Dn → B⊥.

We say that c̄P represents cP or P approximately.

Example 8.1. Consider the standard interval representation R of the reals
R (Example 3.31), and the relation ≤ on R. Then

c̄≤([a, b], [c, d]) =







true, if b ≤ c;
false, if d < a;
⊥, otherwise.

Note that c̄≤ is effective. If x < y in R then c̄≤(Ix, Iy) = true and if y < x
in R then c̄≤(Ix, Iy) = false. In case x = y then c̄≤(Ix, Ix) = ⊥.

The function c≤: R2 → B is continuous on

{(x, y) : x 6= y} ⊆ R2,

and discontinuous on the diagonal. Thus c̄≤ represents c≤ exactly on points
of continuity. At points of discontinuity c̄≤ only provides the trivial approx-
imation of the value of c≤.

It is well-known that ≤ is not decidable or even semidecidable on the re-
cursive reals Rk, the problem being that equality on Rk is not semidecidable.
(Equality is cosemidecidable, i.e., 6= is semidecidable.) This is reflected by
the discontinuity of c≤.

We now want to generalise the continuous representation of relations
to continuous representations of non-continuous functions. The idea is the
same. We want our representation to be exact at points of continuity and
as good as possible in terms of approximations at points of discontinuity.
Here is the definition.

Definition 8.2. Let (D,DR, νX) and (E,ER, νY ) be domain representa-
tions of the topological spaces X and Y , respectively. Then a function
f :X → Y (not necessarily continuous) is said to be represented approxi-
mately by (or lifts approximately to) f̄ :D → E if

(i) f̄ is continuous,

(ii) (∀x ∈ DR)(f continuous at νX(x) =⇒ f̄(x) ∈ ER and fνX(x) =
νY f̄(x)), and

(iii) (∀x ∈ DR)(f not continuous at νX(x) =⇒ (∃y ∈ ν−1
Y [fνX(x)])(f̄ (x) v

y)).

The following example illustrates the notion above.
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Example 8.3. The floor function b·c: R → Z is discontinuous at precisely
the integer points. We shall represent the floor function by a continuous
domain function in the above precise sense.

Let R be the standard interval domain representation of R. We could
choose Z⊥ as a representation of Z and proceed as in the case of representing
relations. However we can do much better if we choose a domain representa-
tion with more care. Let E = Pu(Z⊥), the upper (or Smyth) power domain
of Z⊥. By Exercise 7.4, E can be identified with P∗f (Z) ∪ {Z} ordered by
reverse inclusion⊇. Thus the singleton sets {n}, for n ∈ Z, are the maximal
elements. Letting ER be the set of maximal elements we obtain a domain
representation of Z.

Define f :Rc → E by

f([a, b]) = {m ∈ Z : bac ≤ m ≤ bbc}

and f(R) = Z (i.e., f is strict). Clearly, f is monotone and hence extends
uniquely to a continuous function f :R→ E.

Let x ∈ R and let Ix ∈ RR be the smallest ideal representing x. If x
is not an integer then f(Ix) = {bxc}. Thus f represents the floor function
exactly for all points of continuity. Now consider an integer m. Recall the
four different representations of m described in Example 3.31. It is easily
seen that

f(Im) = {m− 1,m},

f(I−m) = {m− 1,m},

f(I+
m) = {m}, and

f(Im) = {m}.

It follows that f represents the floor function approximately in the sense
of Definition 8.2. However, thanks to our choice of representation for Z we
are able to obtain much information also at points of discontinuity. This
illustrates the importance of choosing appropriate representations of the
data types. Had we chosen Z⊥ to represent Z then the representation of the
floor function would provide no information at points of discontinuity.

We close this section by showing that, under rather general conditions,
there is a best continuous approximate representation of an arbitrary func-
tion, if there is one at all.

Theorem 8.4. Let (D,DR, νX) and (E,ER, νY ) be domain representa-
tions of X and Y , respectively. Assume that DR is dense in D, and that
(E,ER, νY ) is upwards closed and local. Let f :X → Y be a function and
assume that f has one approximate representation in [D → E]. Then there
is a best approximate representation f̄ ∈ [D → E] in the sense of the domain
ordering.
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Proof. Let Af = {f̄ ∈ [D → E]: f̄ represents f approximately}. We show
that Af is directed. Af 6= ∅ by assumption. Suppose f̄1, f̄2 ∈ Af . We first
show that f̄1 and f̄2 are consistent. For this it suffices by the density of DR

to show that f̄1(x) and f̄2(x) are consistent for each x ∈ DR.
Fix x ∈ DR and assume f is continuous at νX(x). Thus f̄1(x), f̄2(x) ∈

ER and
νY (f̄1(x)) = νY (f̄2(x)) = f(νX(x)).

But by the hypotheses on (E,ER, νY ) the supremum f̄1(x) t f̄2(x) exists
and

νY (f̄1(x) t f̄2(x)) = f(νX(x)).

Now assume f is discontinuous at νX(x). Then there are y1, y2 ∈ E
R such

that νY (y1) = νY (y2) = f(νX(x)) and f̄1(x) v y1 and f̄2(x) v y2. Again,
by the assumptions on (E,ER, νY ),

f̄1(x) t f̄2(x) v y1 t y2 ∈ E
R

and ν(y1 t y2) = f(νX(x)). We conclude that f̄1 and f̄2 are consistent and
f̄1 t f̄2 ∈ Af , that is, Af is directed.

Let f̄ =
⊔

Af . We need to show that f̄ ∈ Af . Let x ∈ DR be such that
f is continuous at νX(x) and let ḡ ∈ Af . Then ḡ(x) v f̄(x) and ḡ(x) ∈ ER

so f̄(x) ∈ ER and

νY (f̄(x)) = νY (ḡ(x)) = f(νX(x)).

Now suppose f is discontinuous at νX(x). Let ȳ ∈ ER be the maximal
element such that νY (ȳ) = f(νX(x)). The assumptions on (E,ER, νY ) imply
that such ȳ exists. Thus ḡ(x) v ȳ and hence

f̄(x) =
⊔

{ḡ(x) : ḡ ∈ Af} v ȳ,

proving that f̄ ∈ Af .
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