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ABSTRACT

We propose stochastic packet level models for the NewReno and
Tahoe versions of TCP during persistent data transmission. It is
shown how throughput and the risk of experiencing time-out depend
on the packet error probability. We show how this error rate could
be interpreted under different variants of Active Queue Management
like RED and DropTail. The models clearly separate aspects of the
flow control dynamics that are fundamental for generic TCP under
general networking topologies from those that are highly dependent
on the particular choice of AQM. Modeling the AQM dependent cor-
relation structure in packet losses is shown to have a big impact on
TCP throughput and time-out probability implying the importance
of more measurement based studies on the structure of packet loss
correlation in the real Internet. We use a previously introduced tech-
nique to approximate window sizes and cycle lengths by continuous
quantities and extend earlier derived renewal-reward arguments to
be valid for NewReno as well as for the originally modeled Tahoe.
Important aspects of the flow control such as fast retransmit, fast re-
covery and time-outs are considered. The ns-2 simulator is used to
validate and verify the proposed models.

1 INTRODUCTION

1.1 Purpose and scope

The stability of the current Internet relies heavily upon a joint ef-
fort between the end-user’s TCP protocols and congestion signals
from different forms of Queue Management. TCP adjusts its send-
ing rate in response to the existing networking conditions that are
being communicated from the network either implicitly or explic-
itly. The most widely used TCP versions from the Tahoe and Reno
family aim at detecting network congestion on the basis of packet
loss indications. Several versions of subsequent retransmission and
recovery algorithms after packet loss exist and this is the most dis-
tinctive separating feature among various TCP variants [32].

Our scope is to identify the basic stochastic dynamics in the win-
dow size control of TCP and use this to study the throughput per-
formance and time-out risk as a function of packet error rate. We
do this for different versions of TCP under various assumptions on
the form of Active Queue Management used in the network. Much
attention has been given to single source TCP models during the last
years, see for example [3], [21], [23], [26] and [28]. In this pa-
per we stress the importance the queueing environment has on the
single source TCPs throughput. We also bring a unified modeling
approach to the performance degrading time-outs for different TCP
versions in various queueing environments. Our aim is on providing

the reader with a method applicable for other queueing environments
than those considered here.

1.2 Brief introduction to TCP

We assume the reader to be familiar with TCP flow control of
the Tahoe and NewReno type, see [12], [15], [32], and continue our
exposition with some aspects of particular interest for our modeling
purpose.

TCP’s transmission of packets proceeds in terms of rounds. The
sender begins a round by sending in back-to-back fashion a group of
packets. The number of packets in the group is determined by the
current window size W . The sender then waits during a round-trip-
time for the transmitted packets to be acknowledged. Upon recep-
tion of acknowledgement packets, ACKs, the algorithm updates the
congestion control window value to W ′ and continues with the next
round of transmissions. The update rules for the new window size
value W ′ are of the additive-increase type during loss-free transmis-
sion and multiplicative-decrease in case of congestion.

The detection of outstanding non-acknowledged packets is taken
as indications of packet loss to which TCP reacts by either adjusting
the window to half of its previous value or resetting the window to
its minimal value. It is the indications of packet error and the sub-
sequent window decrease epochs that generate the cyclic behavior
of TCP’s window size. TCP uses two different mechanisms to de-
tect a lost packet. They are called triple duplicate detection (TD)
and time-out detection (TO). If a packet is lost within a full win-
dow worth of packets, packets in the same round sent after the lost
packet and packets sent in the next round as a response to the pre-
loss packets might still get through to the receiver. These packets
will generate duplicate ACKs all acknowledging the packet before
the first lost one. If a given number κ, the duplicate ACK thresh-
old, of duplicate ACKs are received the sender will conclude that a
packet has been lost, enter the fast recovery phase and quickly re-
send the packet using the fast retransmit procedure. The NewReno
variant then remains in the fast recovery phase and tries to re-send
all packets that were lost upon entering fast recovery while Tahoe on
the other hand only resends the first lost packet and then decreases
its window to the initial size. If less than κ duplicate ACKs arrive,
the sender must wait for its retransmit timer to expire and a time-out
occurs. The probabilities of experiencing time-outs is dependent on
the type of Active Queue Management, AQM, present in the network
and we will describe the AQM’s implication on TCP throughput.

1.3 Brief introduction to Active Queueing Management

One of our goals is to illuminate how the single source TCP
throughput is affected by the type of queueing mechanism that is
used in the network. The importance of modeling this user-network
interaction has started to draw much attention lately, see for example



[7], [9] and [25]. Most of these modeling approaches rely upon char-
acterizations of the single algorithms used by individual end users as
well as the algorithms used by the queueing management. An iter-
ative method is then applied to find the networks operating point.
As noted in [7], better characterizations of the single source TCP al-
gorithms would probably yield better results for their multiple TCP
interaction approach.

Different AQMs use various congestion measures and methods
for sending back congestion information to the senders. We will
consider the most passive variant, DropTail, and the more operative
variant Random Early Detection, RED [16].

DropTail is a FIFO server with a limited buffer. As long as the
queue is not full all packets are forwarded. If the queue is full all
packets will be lost on arrival. Research has shown that DropTail
queue management introduces synchronization between flows and
correlated losses on small time-scales, hence if a packet is lost there
is a high probability of losing another packet sent shortly after the
first one [11].

RED is also a FIFO server with a limited queue. However, RED
implements a more active algorithm with the intention of avoiding
correlated packet losses and flow synchronization to increase the
overall throughput. Packets are discarded randomly before the buffer
is completely filled with an increasing probability as a configurable
moving average mean queue length increases. The aim is to indicate
by feedback to an appropriate proportion of the senders that there
is a beginning congestion in the network, forcing them to decrease
their sending rate to avoid congestion and hence maintaining a high
network utilization. To achieve this goal with RED careful consid-
eration must be taken when configuring the RED queue, see [9], [5].
Variants of RED like the recently re-introduced modified Adaptive
RED algorithm [10] seek to overcome these difficulties.

For our modeling purpose in this paper, the behavior of the re-
spective loss model will be idealized. For a properly configured
RED queue the actual queue length should vary slowly around a
mean queue length and the queue should never be completely full.
By assuming this desired property, and hence that drops are due to
the RED dropping algorithm and not due to buffer overflow, we can
make the assumption that packets are discarded independent of each
other with probability p.

On the contrary, if the queueing management is a simple DropTail
queue we adopt an observation regarding the correlation between
packet drops from, among others, [33]. For DropTail queueing the
network is considered to be either in a good state with no packet
losses or in a bad state where the queue is full and all arriving pack-
ets will be lost. The packet error probability p is the probability of
going from the good to the bad state and it is thus the probability
of losing a packet, given that the last packet was correctly received.
Once a packet is lost the network remains in the bad state through-
out the loss round, packets already sent in the same round are thus
also considered lost. Packets in different rounds, separated by one
round-trip-time, are considered independent. The interpretation of
p is coherent for different types of queueing environments, but the
loss process once a packet is lost differs. The idealized RED model
could be considered to be valid in a network with many simultaneous
users and a correctly configured RED queue with a slowly varying
mean queue length. For DropTail, the assumed packet loss corre-
lation might be reasonable if many users simultaneously traverse a
congested link with a large buffer. During congestion packet bursts
will arrive from many sources at the same time and then the single
user’s contribution to the congestion could be considered small.

While examining real Internet traces it seems hard to find out the
exact cause for time-outs and losses with today’s measurement tools.

On the other hand, while studying the same phenomena in a simula-
tor like ns-2 we have total control over the state of all systems and
can trace everything that happens to every packet. The problem here
is in setting up reasonable Internet like topologies and constructing
real world like traffic scenarios that introduce Internet type packet
arrival- and loss processes in our queues.

We remark that the loss process in the Internet is still an open
issue under research. To the best of our knowledge there are no final
results about the current loss process. Since the networks continue
to develop it is also likely that the loss process will change implying
the importance of a modeling method capable of adjusting to new
queueing environments.

2 TCP THROUGHPUT

The approach we pursue towards modeling TCP throughput on the
packet level has been introduced in [20], [21], [27] and elaborates on
a set of ideas first presented in Padhye et al. [28] and Kumar [23]. In
this work we continue the study of a single connection TCP source
with the purpose of capturing not only the main features of the dif-
ferent versions of TCP but also the throughput behavior in different
queueing environments. This can be used for analysis of the sin-
gle source in itself or as a building block in user-network interaction
models [7].

We begin our study by making the following assumptions. The
single TCP source is sending packets persistently over time at a rate
only restricted by the current window size. Packets are subject to
constant round-trip-times, equal to a given time span R0, and con-
stant over the transmission period. TCP initiates a round by sending
the current window of W packets. The round ends R0 time units
later when ACKs are received, or a time-out loss is induced from
the lack of ACK packets. Assuming constant round-trip-times also
implies constant time out intervals lasting a given time T0 and in the
model we treat T0 as a pre-set parameter. Measurements of TCP
traffic in real systems reveal jitter of packet delays and thus it would
be more satisfactory to allow randomly varying round-trip-times in
the model. However, in most attempts to model TCP to this date
the same simplifying assumption is made. As an approximation one
may think of the parameter R0 in this model as an average value of
a randomly varying RTT that is not varying too much. Rare spikes
in the RTT should not impact the mean RTT in any essential way.
Also, describing transmission in terms of rounds implicitly implies
TCP connections over a WAN where the round-trip-time is signifi-
cantly longer than the time it takes for the sender to feed TCP packets
onto the link.

By throughput of TCP we mean the asymptotic rate of successful
transmission, measured in for example packets per round, of TCP
traffic persisting over a long period of time. We consider throughput
as a function of the typical packet error rate, and we obtain such
error-throughput relationships as averages over cycles by applying
the renewal-reward theorem from probability theory.

2.1 General notations

In this section we introduce some notation used to describe the
TCP window dynamics as shown in Figure 1. The reductions of the
sending window following a TO or a successful fast recovery form
intervals that we call cycles. Each cycle consists of a random number
of rounds. For each cycle we will consider the amount of sent data
and the required number of rounds.

Put

An = number of packets transmitted in cycle n before
first loss



and let

Bn = number of packets transmitted in cycle n after
the first loss until the fast recovery is entered or
a time-out occurs,

so that Bn denotes the additional number of successfully transmitted
packets in the loss round after the first lost packet and successfully
transmitted packets based on ACKs from the pre-loss packets in the
loss round.

Fig. 1. TCP window dynamics in congestion avoidance mode

If a packet is lost, TCP-NewReno might succeed entering the fast
recovery phase instead of timing out. The probability of entry to fast
recovery is based on the number of duplicate ACKs that are received
within a given time frame, and this number is in turn influenced by
the number of packets Bn transmitted after the first loss in cycle n.
Associate with each cycle n the random variables

Jn =

{

1 if cycle n ends with a successful fast recovery
0 if cycle n ends with a time-out interval.

TCP-Tahoe also tries to avoid a time-out by observing these du-
plicate ACKs. If enough dup ACKs are received TCP-Tahoe will
end this cycle and begin a new cycle by quickly re-sending the lost
packet using the fast retransmit algorithm. In the rest of the pa-
per we will slightly abuse notation and use the term fast recovery
phase to denote both the time period needed for the triple dupli-
cate detection and the additional time spent in the fast recovery
mode. TCP-NewReno goes through both these phases whereas TCP-
Tahoe’s more elementary variant only includes the initial triple du-
plicate detection phase.

Let Zn=length of cycle n in number of rounds. Each cycle ends
with a successful fast recovery or with a time-out interval. To en-
compass these options we write

Zn = Yn + ZFR
n + ZTO

n ,

where Yn is the number of effective transmission rounds including
the loss round in which the first loss event in cycle n occurs, and

ZFR
n or ZTO

n is the length of the recovery interval for cycle n in the
cases when the loss indication is resolved in the fast recovery phase

or if a time-out occurs. For each cycle n, exactly one of ZFR
n and

ZTO
n is different from zero.
The time-outs are points of regeneration for the window dynam-

ics, after each time-out the transmission of TCP packets starts afresh

with the window re-initiated to the initial size. This is the basis for a
renewal-reward argument that will follow. To prepare for this argu-
ment we keep a record of the number of cycles that elapse between
time-outs. Assign L0 = 0 and let

Lj = inf{k ≥ Lj−1 + 1 : Jk = 1}, j ≥ 1,

be the ordering number of the cycle where the jth TO loss indication
occurs, let Kj = Lj − Lj−1 j ≥ 1 be the number of cycles since
the last time-out at the time the jth time-out occurs, see Figure 1.

As a formal probabilistic framework for the situation we have de-
scribed above the sequences of random variables An, Bn, Zn, Jn

can be considered to be adapted sequences on a filtered probability
space (Ω,F , P ), (Fn), and each Lj a stopping time,

{Lj ≥ n} ∈ Fn for all n ≥ 1.

Here Fn can be thought of as containing all information about the
TCP connection during its first n rounds. The stopping time assump-
tion only amounts to saying that no feedback from rounds n + 1 or
later is allowed to affect (in a time delayed fashion) the occurrence
of a time-out in round n.

2.2 General throughput relation

In [21] the asymptotic throughput in TCP-Tahoe is derived under
the main assumptions that {An} is a stationary, ergodic sequence of
random variables with finite mean, and that the time-out epochs form
regeneration points for a renewal process. For the purpose of this pa-
per we start from the stronger assumption that {An} is a sequence
of independent and identically distributed random variables. Hence
even on short time scales no statistical dependence in the packet er-
ror rate is carried over from one cycle to the next. The derivations
of explicit throughput relations will be carried out under the even
stronger assumption of independent packets, which is to say that
each An is a geometrically distributed random variable. Before stat-
ing this assumption formally we present in some greater generality
the basic throughput relation obtained from renewal-reward theory.

The intervals between consecutive time-outs,

Lj
∑

k=Lj−1+1

Zk =

Lj
∑

k=Lj−1+1

(Yk + ZFR
k ) + ZTO

Lj
,

form renewal cycles and the number of successfully transmitted
packets between consecutive time-outs,

Lj
∑

k=Lj−1+1

(Ak + Bk), j ≥ 1,

form renewal rewards for the corresponding renewal process. It is
assumed that each Lj is a stopping time and therefore

E(

Lj
∑

k=Lj−1+1

Ak) = E(Kj)E(A1)

(Wald’s Lemma). We may assume that the renewal process is sta-
tionary, in particular that the sequence (Kj) has a stationary dis-
tribution K∞ for the number of cycles between two consecutive
time-outs. Assume that time-outs do occur so that E(K∞) =
E(L1) < ∞. According to the renewal reward theorem the asymp-
totic throughput in packets per round-trip-time for TCP in its most
general form is given by the ratio of cycle averages

T-put =
E(K∞)E(A1) + E

(
∑K∞

k=1
Bk

)

E
(
∑K∞

k=1
Yk

)

+ E
(
∑K∞

k=1
ZFR

k

)

+ E(ZTO
∞ )

. (1)



This is a general throughput expression valid for all TCP variants
from the Tahoe and Reno family no matter if they are using the stan-
dardized combination of congestion avoidance and slow start, only
congestion avoidance or only slow start to update its window.

For the case of TCP-Tahoe the sequences (Bn), (Yn) and (Zn)
are stationary. We may extract steady state random variables B∞,
Y∞ and ZFR

∞ and write E
(
∑K∞

k=1
Bk

)

= E(K∞)E(B∞), simi-
larly for the other sums. In the more general case of TCP-NewReno
these sequences are non-stationary. The distributions of Bn, Yn and
Zn depend on the window size at the start of cycle n, initialized after
a time-out and half the size of the previous window after a success-
ful fast retransmit/fast recovery. Various approximations of sums
such as

∑K∞
k=1

Bk are possible. For simplicity we assume that ap-
propriate B∞, Y∞ and ZFR

∞ can be found such that we still have
E
(
∑K∞

k=1
Yk

)

= E(K∞)E(Y∞), etc., at least as an approxima-
tion.

During the jth renewal cycle of length Kj there are Kj − 1 suc-
cessful fast retransmits/fast recoverys and one time-out. Define

Q = 1/E(K∞).

We may interpret the quantity Q as the time-out probability, that is
the probability that a cycle ends with a time-out.

Now we can write 1 in the form

T-putTCP =
E(A1) + E(B∞)

E(Y∞) + (1 −Q)E(ZFR
∞ ) + QE(ZTO

∞ )
. (2)

In the rest of the paper we are going to study the distributions of
the random quantities we have identified with the goal of approxi-
mating the expected values appearing in 2. To find the underlying
distributions we will have to consider the dynamics of TCP’s win-
dow size during periods without losses and also what happens after
packet loss.

Some parts of the throughput analysis for the considered versions
of TCP (Tahoe, NewReno) are identical in various queueing envi-
ronments (DropTail, RED) whereas some of the underlying distri-
butions are affected by the queueing environment. In the following
we aim at identifying which parts of the TCP dynamics that are af-
fected by the queueing environment and which parts are not. The
expressions appearing in 2 are summarized for TCP-Tahoe and TCP-
NewReno in RED and DropTail environments in section 4.

By separating the analysis into a queueing dependent and inde-
pendent part we will give the reader a method to consider single
source throughput in other AQM environments and also to be able
to refine our analysis when different AQM’s packet loss processes
are better understood.

2.3 Defining the packet error rate p

Due to TCP’s dynamical adaption of its window size at packet
drop events we want to interpret the packet error rate as the proba-
bility of going from a non-congested network into a congested state.
Our starting point is the sequence (An). During n cycles of persis-
tent transmission n packets out of a total of

∑n

1
(Ak + 1) are lost as

the first in their cycle. Now the law of large numbers enables us to
define the packet error probability p as the long-term error rate given
by the limit

p = lim
n→∞

n
∑n

1
(Ak + 1)

=
1

E(A∞) + 1
a.s.

Having identified in this way the relation E(A∞) = (1 − p)/p
we emphasize that the distribution of the underlying sequence An

is arbitrary as long as it has a finite mean. One could for example
consider situations where An is heavy tailed.

2.4 Time-out interval

The additional contributions to the renewal cycle time in the de-
nominator of 1 involve the round-delay times Zn. The time-out de-
lays ZTO

n are independent of the queueing environment. To find
E(ZTO

K∞) we must also consider multiple backoffs. The length of
a time-out interval is determined by the probability that the first
packet that is sent following a time-out period is again lost which
we denote by p0 = P (An = 0) . For each immediate consec-
utive time-out the waiting time is doubled up to a maximum of
26T0. Following the calculatation in Padhye et al. [28] we note

that if n is a TO cycle then ZTO
n is determined by the number

of doublings k in the exponential back-off algorithm and given by
`k = ((2k − 1)1{k≤6} + (26 − 1 + (k − 6)26)1{k≥6})T0. Hence

E(ZTO
∞ ) =

∞
∑

k=1

(1− p0)p
k−1
0 `k

=

{

1− p0 − 26p7
0

(1− p0)(1− 2p0)
T0 if p0 6= 1/2

8T0 p0 = 1/2 ,

and with good accuracy for

p0 ≤ 0.3, E(ZTO) ≈ T0/(1 − 2p0).

2.5 Recovery time and the influence of AQM

If the sender receives at least κ duplicate ACKs confirming the
same sequence number a packet loss is inferred, and the fast re-
covery phase is entered. For Tahoe the lost packet is immediately
retransmitted using the fast retransmit algorithm and a new cycle
begins without waiting for a coarse time-out. NewReno also im-
mediately resends the lost packet but remains in fast recovery mode
and tries to re-send one lost packet per round until all packets that
were unacknowledged when fast recovery was entered have been re-
sent. Should one of these resent packets be lost, fast recovery will
be unsuccessful and a time-out will occur.

The recovery times ZFR
n of fast retransmit/fast recovery are

queueing dependent and will be considered in detail later. Here we
give some background used in the forthcoming later sections.

Fig. 2. TCP-NewReno in a DropTail envi-
ronment

Fig. 3. TCP-Tahoe in a DropTail environ-
ment

The choice of queueing environment affects the dropping behav-
ior once packets start getting lost. Hence the immediate influence of
the queueing environment lies in the distribution of the number of
packets that are transmitted after the first loss, (Bn), which in turn
affects the renewal cycle length K∞ and the time-out probability Q.
Figures 2, 3, 4 and 5 show how TCP-NewReno and TCP-Tahoe act
at times of congestion in RED and DropTail queueing environments.

Figure 2 describes a NewReno sender in a DropTail environment.
Five packets are successfully transmitted before the first error in the



Fig. 4. TCP-NewReno in a RED environ-
ment

Fig. 5. TCP-Tahoe in a RED environment

loss round. Due to our assumption in DropTail queues of correlated
losses within each round we lose the two packets after the first lost
one as well. As a response to the five successfully transmitted pack-
ets in the loss round five new packets are transmitted in the follow-
ing round out of which four, all but the last one, reach the receiver.
These four packets generate four duplicate ACKs. NewReno enters
the fast recovery phase and remains in this mode during four rounds
resending one lost packet per round-trip-time. Since all of these
were successfully transmitted fast recovery succeeds and NewReno
starts the next cycle with a window halved compared to the size in
the loss round. In the modeling we will ignore the fact that, while
still in the fast recovery phase, TCP-NewReno can sometimes send
additional new packets with higher sequence number than the last
ACKed packet. These new packets are sent if retransmission of
packet number n returns an ACK for a packet with a higher sequence
number than n since then the window size would allow new pack-
ets to be sent. Since we assume correlated losses for our DropTail
queueing and hence that there are no holes in the sequence of lost
packets we can ignore this fact.

Figure 3 describes Tahoe experiencing the same packet loss pat-
tern. The difference between NewReno and Tahoe is that the four
duplicate ACKs directly make Tahoe start the next cycle with a re-
transmit of the lost packet. Since Tahoe does not know which packet
it has already sent the reception of the ACK for the re-sent packet
will make Tahoe increase its window by one and send the two con-
secutive packets. These reach the sender who finds some previously
correctly received packets in its receive buffer and ACKs the last cor-
rectly received packet in the round following the loss round. Tahoe
thereafter receives these ACKs, updates its window and continues
by sending new packets.

Figures 4, 5 similarily show how NewReno and Tahoe act in a
RED environment. Our assumption about independent packet losses
in and between rounds results in fewer packet losses and hence the
packets after the first lost packet in the loss round are also candidates
for duplicate ACK generators.

2.6 Window dynamics, continuous approximation

To study the distributions of Bn and Yn and understand the be-
havior of TCP renewal cycles we have to consider TCP’s window
dynamics. The characteristic of TCPs from the Reno family is that
the window is reduced to half of its previous size and the next cycle
begins without any further time-out delay if the fast recovery phase
is successful. For Tahoe type TCP on the other hand the window
starts at its minimal value whether a loss indication is solved by fast
retransmit or a time-out. To cover both cases we include a multi-
plicative window decrease parameter a ∈ [0, 1) in the model. The
case a = 1/2 corresponds to TCP-NewReno and the case a = 0 to
TCP-Tahoe.

We now identify the window dynamics for a pure congestion
avoidance model (see [27] for a modeling of the slow start algorithm
using a similar method). Every bth round the window increases by
one until a loss is discovered, hence during each active transmission
period the window increases linearly with slope 1/b until the next
TO loss indication when again the window is reset to the initial size.
We note that the absence of the slow start phase from the modeling
should be less important for the Reno family than the Tahoe fam-
ily due to the fast recovery phase, after which congestion avoidance
takes place.

Recall the previously introduced notations that the first loss in
cycle n is detected in round Yn and that Jn indicates whether cycle
n ended with a successful fast recovery or time-out. Put W0 = 0
and let for n ≥ 1

Wn = window size at the end of cycle n.

To derive the distributions of Yn and Wn we study their relationship
to An whose distribution is considered known and depends on the
packet loss behavior before the first loss in each cycle. Our main
technique for studying the dynamics of the integer valued sequences
(Yn) and (Wn) is to consider, more generally, real valued sequences
(keeping the same notation) satisfying the basic relationships An =
aWn−1Jn−1Yn + Y 2

n /2b and

Wn = aJn−1Wn−1 + Yn/b. (3)

Fig. 6. TCP-NewReno continous window approximation

Both relations can be understood from Figure 6, as An corre-
sponds to the area swept out by the window during the nth cycle.
The indicators Jn−1 determine whether the initial window size in
cycle n equals aWn−1 due to a successful fast retransmit/fast recov-
ery (Jn−1 = 1) or was reset to the initial size because a time-out
occurred (Jn−1 = 0).

We obtain

Yn/b =
√

a2Jn−1W 2
n−1 + 2An/b− aJn−1Wn−1

and Wn = aJn−1Wn−1 + Yn/b =
√

a2Jn−1W 2
n−1 + 2An/b.

Iteration shows that

W 2
n = a2Jn−1W

2
n−1 + 2An/b

= a4Jn−1Jn−2W
2
n−2 + 2(a2Jn−1An−1 + An)/b,

and so

Wn =

√

√

√

√

2

b

(

An +

n−1
∑

k=1

a2(n−k)AkJk · . . . · Jn−1

)

(4)

where the J1 . . . Jn−1 are all equal to one because of a successful
fast recovery.



3 TCP THROUGHPUT, INDEPENDENT PACKETS

In the previous sections we have derived throughput relations in an
abstract setting starting from the sequence (An). We identified the

sequences (Yn), (ZFR
n ), (ZTO

n ) as the contributions to the length
of TCP window cycles and we studied their dependence on the type
of loss indication. We have also started to analyze the effect of the
AQM since it affects the sequence (Bn).

To get further we now make additional assumptions regarding the
independence of packets which allow for rather explicit throughput
estimates. We take the RED packet drop mechanism to justify the
simplifying assumption that packets act independently of each other.
For the case of DropTail it is still reasonable to consider indepen-
dence of packets until the network changes its state from good to
bad, that is until the first loss indication in a cycle has occurred.
Hence from now on we consider only the case of independent pack-
ets before the first loss. Under this assumption each An is a geomet-
rically distributed random variable, An ∈ Ge(p), such that

E(An) = (1− p)/p, p0 = P (An = 0) = p.

In line with the continuous approximations applied to Yn and Wn

it is natural also to approximate the geometric distribution of An

by the exponential distribution, this technique is used in [20], [21]
and [27]. We simplify the numeric evaluations of our throughput
formulas by making in a final stage the identification

An = Vn/p n ≥ 1, (5)

where {Vn} is an i.i.d sequence of exponentially distributed random
variables with mean one, an approximation valid for p smaller than
approximately 0.4.

3.1 Transmitted packets in the loss round

Introduce

Cn = number of transmitted packets before first loss
in loss round no n,

and write Dn = Wn − Cn − 1 for the number of attempted packet
transmissions after the first loss in loss round number n. This parti-
tioning of the loss round allows us to distinguish RED and DropTail
in their influence on the distribution of Bn, the number of success-
ful packets in addition to the An pre-loss packets in cycle n. In the
RED environment there are a total of Wn − 1 attempts to transmit
after the first loss. Of these attempts, Dn are sent in the loss round
and an additional Cn are sent in the next round in response to the
Cn pre-loss ACKs in the loss round. It is now a further consequence
of the packet independence assumption that we obtain, conditionally
on the window size Wn, Bn ∈ Bin(Wn − 1, 1 − p). Similarly for
DropTail we have Bn ∈ Bin(Cn, 1 − p), since in this case 1 + Dn

packets require retransmission. We put

Bn ∈ Bin(Xn, 1− p), (6)

where

Xn =

{

Wn − 1, RED
Cn, DropTail.

(7)

In the same manner as we introduced continuous approximations
of Wn and Yn we apply continuous approximations of Cn and Dn.
With slight abuse of the above considerations we normalize them
such that Cn + Dn = Wn. As supported by simulations, and to
keep the model simple, we pick at this point a sequence of i.i.d.
random variables uniformly distributed on (0, 1) and assign

Cn = UnWn, Dn = (1 − Un)Wn. (8)

3.2 Window size and cycle length distribution

Next we apply the continuous window size approximation of sec-
tion 2.6 together with the simplifying structure of independent pack-
ets. Let (Vn)n≥0 be an i.i.d. sequence of exponential unit mean
random variables. In 4 make the replacement Ak = Vn−k/p,
k = 1, . . . , n. Then, letting n → ∞ we obtain an abstract rep-
resentation of the steady state window size distribution as

W∞ =

√

√

√

√

2

bp

K0

∑

k=0

a2kVk, (9)

where K0 signifies the steady state distribution for the number of
TD loss indications since the most recent time-out.

In [21] the case a = 0 of TCP-Tahoe was studied in detail. In that
case K0 = 0 and the density function of the continuous window
size distribution W∞ =

√

2V0/bp is given by

fW (v) = bpv e−bpv2/2 v ≥ 0, (10)

with E(W∞) =
√

π/2bp, E(W 2
∞) = 2/bp.

Here we will need in addition the continuous approximative dis-
tribution of Cn = UnWn which we derive in TCP-Tahoe steady
state. Since FC(x) =

∫ 1

0
P (W ≤ x/u)fU (u) du it follows that

fC(x) =

∫ 1

0

fW (x/u)
1

u
du =

∫ ∞

x

bpe−bpv2/2 du

=
√

2πbp
(

1− Φ(
√

bp x)
)

, x ≥ 0, (11)

where Φ(x) is the probability function for the standard Normal dis-
tribution with zero mean and unit variance. From 8,

E(C) =
1

2
E(W∞), E(C2) =

1

3
E(W 2

∞). (12)

Of course, Dn has the same marginal distribution as Cn.
Turning to TCP-NewReno it is more difficult to find a useful ap-

proximation of the window size distribution in 9. A model where
all errors are of the triple duplicate type corresponding to the upper
bound obtained from letting K0 = ∞ is discussed in [20]. Here we
restrict to finding estimates of the first two moments. We apply the
upper bound approximation

E





√

√

√

√

K0

∑

k=0

a2kVk



 ≤

√

√

√

√E

(

K0

∑

k=0

a2kVk

)

≈
√

1−E(a2(K0+1))

1 − a2

Since 1/K0 cycles end with a time-out we may estimate K0 to have

a geometric distribution with parameter q. This gives E(a2K0

) =
q/(1 − a2(1 − q)), the right hand side in the inequality above is
therefore 1/

√

1− a2(1 − q). A final estimate is to simply let q =
Q be the time-out probability, which we estimate in the next section.
These estimates together give for a = 1/2

E(W∞) ≤
√

E(W 2
∞) ≈

√

2

bp

2√
3 + Q

. (13)

To estimate the mean cycle length E(Y∞) we apply a steady state
version of 3, which together with 13 yield

E(Y∞) = bE(W∞ − aJ∞W∞)

≈ b(E(W∞)− a(1−Q)E(W∞))

≈ b

(

1−
√

2

bp

1−Q√
3 + Q

)

. (14)



3.3 Time-out probabilities

Now we are prepared to compute the time-out probabilities. TCP
must acknowledge every packet arriving out of order so the cumula-
tive acknowledgement parameter b is not used during error recovery.
To avoid a time-out in TCP-Tahoe it suffices to obtain at least κ du-
plicate ACKs. Hence

1−Qn = P (Bn ≥ κ) = P (Xn ≥ κ , Bn ≥ κ).

By 6, conditionally given Xn = x,

P (Bn ≥ κ|Xn = x) =

x
∑

k=κ

(

x

k

)

(1− p)kpx−k

≈ 1 −
(

x

κ− 1

)

px−κ+1. (15)

Thus for TCP-Tahoe we obtain the approximation

Qn = 1 −E

[(

1−
(

Xn

κ− 1

)

pXn−κ+1

)

; Xn ≥ κ

]

,

with Xn from 7. Here we use the notation E(Z; A) = E(Z 1A),
where Z is a random variable and 1A is the indicator function of an
event A. Hence E(Z; A) denotes the expected value of Z on the set
A.

Taking the generic value κ = 3 and an appropriate approximation
of the resulting integral, keeping in mind that the window starts at
zero in our approximation, this gives for TCP-Tahoe and RED the
expression

Q = 1 −
∫ ∞

3

(

1− 1

2
(v − 1)(v − 2)pv−3

)

fW (v) dv. (16)

In complete analogy our model yields for the time-out probability of
TCP-Tahoe under DropTail

Q = 1−
∫ ∞

3

(

1 − 1

2
x(x− 1)px−2

)

fC(x) dx (17)

with fC from 11.
To avoid a time-out in TCP-NewReno it is required in addition

to receiving at least κ duplicate ACKs, that any outstanding packet
loss is accounted for by a successful retransmission. In a DropTail
environment we have assumed that there are always 1 + Dn lost
packets in loss round n. Under RED conditions a total number of
1+Bin(Dn, p) lost packets must be retransmitted to end the cycle.
If all of these losses pass during retransmission, the next cycle will
start from half of the previous window, if not we have a TO loss
indication and the window is reset to its minimum. Hence for TCP-
NewReno

Qn = 1 − P (Bn ≥ κ, Fn = 0),

where Fn = number of failed retransmissions. Since

E[(1− p)Bin(Dn,p)|Dn] = (1− p2)Dn ,

we have

P (Fn = 0|Dn) =

{

(1− p)(1− p2)Dn , RED
(1− p)1+Dn , DropTail.

Summing up, for TCP-NewReno under RED

1−Qn = (1 − p)E[(1− p2)Dn ; Bn ≥ κ], (18)

and for TCP-NewReno under DropTail

1 −Qn = (1− p)E[(1− p)Dn ; Bn ≥ κ]. (19)

For any r ∈ (0, 1), using again 15

E[rDn ; Bn ≥ κ] = E[rDn ; Xn ≥ κ, Bn ≥ κ]

= E

[(

1 −
(

Xn

κ− 1

)

pXn−κ+1

)

rDn ; Xn ≥ κ

]

. (20)

Using RED we have Xn = Wn − 1, Dn = (1 − Un)Wn and
r = 1− p2. Since

E[r(1−Un)Wn |Wn = v] =
1 − rv

−v log r
(21)

we can combine 20 and 21 for κ = 3 and get,

E

[(

1 −
(

Wn − 1

2

)

pWn−3

)

r(1−Un)Wn ; Wn ≥ 3

]

(22)

=

∫ ∞

3

(

1 − 1

2
(v − 1)(v − 2)pv−3

)

1− rv

−v log r
fW (v) dv

with r = 1 − p2.
Using DropTail we have Xn = Cn = UnWn, Dn = (1 −

Un)Wn and r = 1 − p. Now

E

[(

1−
(

Cn

2

)

pCn−2

)

r(1−Un)Wn ; Cn ≥ 3

]

=

∫ 1

0

∫ ∞

3/u

(

1−
(

uv

2

)

puv−2

)

r(1−u)vfW (v) dvdu

≈
∫ 1

0

∫ ∞

3/u

r(1−u)vfW (v) dvdu

=

∫ ∞

3

1− (1 − p)v−3

−v log(1− p)
fW (v) dv.

We have elaborated on the number of terms that need to be in-
cluded in approximation 15, and on the lower integration limits
in 16 and 22 to minimize the errors resulting from approximating
the discrete window with its continuous counterpart. Also we have
used continuous window approximations starting at W0 = d, where
d ∈ (0 . . . 1). Every approximation has its benefits and drawbacks
and we find the method used in this paper to be the most coherent of
our alternatives and one that gives accurate results.

3.4 Length of the fast recovery interval

For the length of the fast recovery interval in TCP-Tahoe we as-
sume that an error solved by fast recovery can be resolved in one

round and assign ZFR
n = 1. The length of the fast recovery interval

in our TCP-NewReno model is given by ZFR
n = 1 + N , where N

conditional on Dn is a geometric random variable which is truncated
at Dn in the case of a DropTail scenario and truncated at Bin(Dn, p)
under RED assumptions. For a fixed level of truncation 1 + d we
have

P (N = k) =
(1− p)k−1p

1− (1− p)1+d
, 1 ≤ k ≤ 1 + d

and

E(N) =
1

p
− (1 + d)(1− p)d

1 − (1− p)1+d
∼ d

2
− (d− 4)d

12
p, p → 0.



Hence asymptotically as p → 0

E(ZFR
n ) ≈

{

1 + 1
2
E(Dn) + 1

3
E(Dn) p− 1

12
E(D2

n) p, DropTail

1 + 5
12

E(Dn)p− 1
4
E(Dn)p2 + 1

12
E(D2)p3, RED.

In view of 12 the terms that dominate for small p can be sorted
out as

E(ZFR
n ) ≈

{

1 + 1
4
E(Wn), DropTail

1 + 5
24

E(Wn)p, RED.

4 SUMMARY OF THROUGHPUT FORMULAS

We have completed the analysis of the general throughput rela-
tion 2. We list for both versions TCP-Tahoe and TCP-NewReno and
for both queueing environments RED and DropTail the resulting ex-

pressions for E(A1), E(B∞), E(Y∞), E(ZFR
∞ ), E(ZTO

∞ ) and Q.
The length of the time-out interval is the same for all four cases and
according to section 2.4 given approximately by

E(ZTO
∞ ) = T0/(1− 2p).

The expected number of packets transmitted before the first loss is

E(A1) = (1 − p)/p

and the Tahoe window density used for time-out calculation is given
by

fW (v) = bpv e−bpv2/2 v ≥ 0.

4.1 TCP-Tahoe/RED

E(W∞) =
√

π/2bp

E(B∞) = (1− p)(E(W∞)− 1)

E(Y∞) = (1− p)
√

bπ/2p

E(ZFR
∞ ) = 1

and

Q =

∫ 3

0

fW (v) dv +
1

2

∫ ∞

3

(v − 1)(v − 2)pv−3fW (v) dv.

4.2 TCP-Tahoe/DropTail

E(W∞) =
√

π/2bp

E(B∞) = (1− p)E(W∞)/2

E(Y∞) = (1− p)
√

bπ/2p

E(ZFR
∞ ) = 1

and

Q =

∫ 3

0

fC(x) dx +
1

2

∫ ∞

3

x(x− 1)px−2fC(x) dx

with
fC(x) =

√

2πbp
(

1 − Φ(
√

bp x)
)

, x ≥ 0.

4.3 TCP-NewReno/RED

E(W∞) =

√

2

bp

2√
3 + Q

E(B∞) = (1− p)(E(W∞)− 1)

E(Y∞) = b

(

1 −
√

2

bp

1 −Q√
3 + Q

)

E(ZFR
∞ ) = 1 +

5

24
E(W∞)p

and

Q = 1 − (1− p)

∫ ∞

3

g(v)fW (v) dv

with

g(v) = (1− 1

2
(v − 1)(v − 2)pv−3)

1− (1− p2)v

−v log(1− p2).

4.4 TCP-NewReno/DropTail

E(W∞) =

√

2

bp

2√
3 + Q

E(B∞) = (1− p)E(W∞)/2

E(Y∞) = b

(

1 −
√

2

bp

1 −Q√
3 + Q

)

E(ZFR
∞ ) = 1 +

1

4
E(W∞)

and

Q = 1 − (1− p)

∫ ∞

3

g(v)fW (v) dv

with

g(v) =
1− (1− p)v−3

−v log(1− p).

5 SIMULATIONS

This section discusses simulation results obtained using the ns-2
simulator [17] for the TCP Tahoe and TCP NewReno protocols un-
der the DropTail and RED scenarios considered in the previous sec-
tions. We report on results for long-lived FTP file transfers. Simula-
tions are first performed in scenario I for idealized RED and Drop-
Tail dropping schemes with simple traffic used to verify the TCP-
model. These simulations are followed by a more complex network
topology and advanced traffic scenario in scenario II in order to jus-
tify our modeling assumptions. Similarities and differences between
the two different simulation scenarios and the analytical results are
pointed out and a discussion of their origins follows.

5.1 Reference scenarios

We have identified what is common and what differs for the TCP
protocols in the RED and DropTail queueing environments. In the
models, the behavior of the respective loss model has been ideal-
ized. Our objective is on examining the single TCP’s dynamics on
the packet level under real world observed loss behaviors, not on
constructing complex traffic scenarios that introduce these loss be-
haviors in the network. So, we start by creating our RED and Drop-
Tail queueing environments and the desired loss behaviors somewhat
artificially in scenario I to validate the model.



Fig. 7. Ns simulation scenario I

5.1.1 Scenario I: Idealized RED and DropTail queueing environ-
ments

In scenario I we let the idealized congested RED queue be repre-
sented by a DropTail queue with a large buffer followed by a device
that discards packets independently with a configurable parameter
p. The set-up is shown in Figure 7 and consists of one persistent
WAN-connection where data is sent from source A to source D over
the bottleneck link B-C. The bottleneck link B-C is supposed to be
a scarce resource, hence the bandwidth here is lower than on the
access link.

This configuration reflects some of the assumptions made while
deriving the different TCP protocols stochastic dynamics. The large
buffers and the packet-discarding device assure that packets are lost
independently of each other and the assumption of persistent transfer
makes it possible to talk about equilibrium distributions of the win-
dow size. The WAN assumption guarantees that the RTT is larger
than the time it takes for the TCP sender to send a full window of
packets and hence the assumption of packet transmission proceed-
ing in terms of different rounds is satisfied. The assumption of a
constant RTT is also justified since to some extent the average time
spent queueing in this scenario is much less than the minimum RTT.

To simulate the congested DropTail link with its assumed burst
packet losses we introduce a similar but slightly more complicated
scenario. A two state dropping device is connected after the queue
on the bottleneck link B-C. No packets are dropped in the good state
whereas all packets are discarded in the bad state. The probability
of going from the good to the bad state is p. The dropping device
stays in the bad state for a time period ∆t and then returns to the
good state. The time period ∆t is chosen large enough to discard
the remaining packets in the window after the first loss but shorter
than the round-trip-time.

The simulation setup in scenario I tests the TCP protocol under
the idealized modeling assumptions with independent dropping in
the RED case and correlated dropping in the DropTail case. Hence,
scenario I validates the TCP model.

5.1.2 Scenario II: Real RED and DropTail queueing environments

In scenario II we construct a more realistic network topology and
traffic mix. We introduce a larger topology with real RED and Drop-
Tail queueing and with heterogeneous nodes and concurrent TCP
senders downloading finite size files. The TCP whose performance
measures we gather still performs an infinite file download but the
file requests from the competing cross traffic will arrive randomly
according to a Poisson process. We do this for environments where
the congested link is either DropTail or RED. The aim in scenario
II is on observing the TCP performance metrics in a more realistic
environment and to observe how packets are lost, once they start get-
ting lost on a congested link. Hence, scenario II validates modeling
assumptions.

The set-up for scenario II is shown in Figure 8 and consists of a
network with 62 nodes where files are transfered between A1 and
D1, A2 and D2, . . . , A30 and D30 . All connections share the bot-
tleneck link between node B and node C which is a 15 Mbps, 100 ms

delay link with a 150 packets queue. The bottleneck link B-C is sup-
posed to be a scarce resource, hence the bandwidth here is lower than
on the access links. This relation between access and congested link
bandwidth impacts the degree of correlation between packets. The
B-C queueing policy is either DropTail or RED. The senders and
receivers are grouped in three different categories with different de-
lays on their accesslink towards the congested link. The access links
from nodes A1 . . . A10 towards B and D1 . . . D10 towards C are
90Mbps, 10ms delay links, A11 . . . A20 towards B and D11 . . . D20

towards C are 90Mbps, 30ms delay links and A21 . . . A30 towards
B and D21 . . . D30 towards C are 90Mbps, 50ms delay links. Hence
we have three different bundles of connections with minimal RTTs
of (240ms, 320ms, 400ms). Between 0 and 20 TCPs can be ac-
tive at the same time on each node and hence between 0 and 600
file downloads could occur in the network at the same time. The
sender whose performance we measure performs a persistent FTP
file download from node A1 to node D1. The competing cross traf-
fic is introduced into the network by letting the other TCPs perform a
file download of a 100KB file. Download requests arrive to the net-
work as a Poisson process with a configurable mean intensity param-
eter and the congestion level in the network is controlled by varying
the intensity of the file request process.

Fig. 8. Ns simulation scenario II

5.2 Simulation results: idealized queueing environments

We now perform our simulation studies for Tahoe and NewReno
in the idealized RED and DropTail environments. The simula-
tions in the idealized queueing environments were performed us-
ing the following network parameters: Simulation Time=2000 sec,
RTTmin = 0.240 sec, RTT observed = 0.26 sec, maximum
window=20 packets, PacketSize=1500 Bytes, b=1 packet/ACK.
Hence the maximal attainable throughput is 20 packets per RTT re-
sulting in 117 KB/sec.

5.2.1 Time-out Probabilities Tahoe & NewReno

We begin by comparing the time-out modeling approach from sec-
tion 3.3 with simulations. In Figures 9, 10 we show simulated and
analytical time-out probabilities for TCP-Tahoe and TCP-NewReno
in RED and DropTail queueing environments. The analytical for-
mulas estimate the simulation results with good accuracy throughout
the considered range of error rates p ∈ (0.001 . . . 0.35). First one
should note that the type of queueing environment with its assumed
packet loss behavior has a big impact on the occurrence of time-outs.
Secondly, by comparing Figure 9 and Figure 10 for the same packet
error rates we see that the NewReno variant has a slightly higher
risk of experiencing a time-out than Tahoe. This is in line with our
modeling assumption since NewReno, in addition to receiving three
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Fig. 9. Time-out probability for TCP-Tahoe in an idealized DropTail and RED environ-
ment

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Loss probability p

Q = P(Cycle ends with a TimeOut)

____
Analytic NewReno/DT

* * * * Sim. NewReno/DT

____
Analytic NewReno/RED

 o o o Sim. NewReno/RED

Fig. 10. Time-out probability for TCP-NewReno in an idealized DropTail and RED
environment

duplicate ACKs to enter fast recovery, has to re-send all lost packets,
one per round-trip-time, to avoid a time-out. However the difference
between time-out probabilities for the different TCP versions appear
to be bigger in the model than observed in the simulations.

The analytical time-out probability curves in the graphs were
obtained by a straightforward numerical integration of expression
16, 17, 18 and 19 in Matlab, corresponding to the Tahoe/RED,
Tahoe/DropTail, NewReno/RED and NewReno/DropTail environ-
ments. We do however use the Tahoe window density fw from
(10) and fC from (11) for both the Tahoe and NewReno TCP ver-
sions. This is a simplification, but the Tahoe window size distribu-
tion seems adequate for the Q-modeling purpose and the finer details
of the fast recovery/fast retransmit phase and the various queueing
environments seem more important to include in the model.

We again compare the RED and the DropTail graphs and remark
that experiencing a coarse time-out has serious negative impact on
throughput. This implies that, for given probability p of going from
a non-congested to a congested state, the TCP sender will achieve
better performance with RED queueing. The throughput degradation

due to time-outs could be even worse in the real Internet than is
shown here from our simulations. The typical time-out period in our
simulations is of the order of three round-trip-times whereas real
traffic traces as studied in [28] show time-out periods in the range
three to fifteen round trip times.

5.2.2 Throughput Tahoe & NewReno

Figure 11 and 12 compare simulated throughput values with the
analytical formulas from section 4. Throughput estimation is in
the correct range for Tahoe and NewReno in both the RED and
the DropTail queueing environments. We see that for indepen-
dent packet losses, the Tahoe and NewReno version achieve similar
throughput. In the DropTail environment the NewReno throughput
is more heavily affected by the correlated losses than Tahoe through-
put. The many concurrent losses in the DropTail environment forces
the NewReno sender to spend many rounds in the fast recovery
phase with only (in the slightly simplified model) one packet sent
per round-trip-time until it can start increasing its window again.
The NewReno version is however more polite towards the network
compared to Tahoe since Tahoe sometimes starts a new cycle by
re-sending packets that were already correctly transmitted to the re-
ceiver, see Figure 3.

This more severe degradation for NewReno also depends on the
fact that we are considering throughput, defined as the number of
packets successfully transmitted during a period of time, and not
goodput which would be defined as the number of unique packets
that are sent during a period of time.
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Fig. 11. Throughput for TCP-Tahoe in an idealized DropTail and RED environment

5.3 Simulation results: real queueing environment

We report on results with the TCP-Tahoe protocol from scenario
II. Figure 13 and 14 compares analytical time-out probability and
throughput with simulations using scenario II. Figure 17 shows the
DropTail queue dynamics during approximately 4 round-trip-times,
Figure 18 shows the same queue in a busy period during 5ms to-
gether with an arriving window burst of packets from a sender. Fi-
nally, Figure 15 shows the current and average RED queue and Fig-
ure 16 shows an enlarged 3ms interval with an arriving packet burst
in this RED environment.

The simulations with real DropTail and RED queueing disciplines
were performed with the following network parameters: Simulation
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Fig. 12. Throughput for TCP-NewReno in an idealized DropTail and RED environment
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Fig. 13. Time-out probability for TCP-Tahoe in a real DropTail and RED environment

Time=2000 sec, RTTmin = 0.240 sec, RTT
DropTail
observed = 0.26

sec, RTT
RED
observed = 0.24 sec, maximum window=20 packets,

PacketSize=500 Bytes, b=1 packet/ACK. Hence the maximal attain-
able throughput is 20 packets per RTT resulting in 37.6 KB/sec in
the DropTail environment and 40.7 KB/sec in the RED environment.
(Note that the only difference between this simulation scenario and
the first one in terms of TCP parameters is that we are using a packet
size of 500 bytes and hence the maximal throughput has been scaled
down a factor three times.)

5.3.1 Time-out Probabilities Tahoe

The time-out probability for Tahoe in a DropTail and RED envi-
ronment is shown in Figure 13. The time-out estimation is very good
for the RED case with observed values close to the analytical esti-
mation and also very similar to the observed values in the idealized
simulations shown in Figure 9. The resemblence between the ide-
alized and real RED simulation indicates that it is recommended to
model RED drops as independent events. The slope of the simulated
time-out probability for RED does however appear to be slightly

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

Packet Loss probability p

Throughput (KB/sec)

____
Analytic Tahoe/DT

* * * * Real sim. Tahoe/DT

____
Analytic Tahoe/RED

 o o o Real sim. Tahoe/RED

Fig. 14. Throughput for TCP-Tahoe in a real DropTail and RED environment
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Fig. 15. Queue dynamics in a RED queue during a period 40 ms, approximately 2
round-trip-times

higher than the analytical. We have no definitive explanation for this
but we conjecture that for high loss rates corresponding to a long
average queue we might experience tail drop and the packet inde-
pendence assumption in RED should be questioned.

We can see a typical loss event taking place if we look at Fig-
ures 15, 16. During the approximately 2 round-trip-times shown in
Figure 15 the current queue fills and empties many times whereas
the average queue is being more slowly updated. In Figure 16 we
zoom in on the queue dynamics, observing an event where a win-
dow worth of packets arrives in a burst from our observed sender.
Out of the arriving 7 packets, only the 5th packet is lost. Since the
current queue is approximately 25 packets, less than the maximal
150 packets, the loss is due to the RED dropping algorithm. We also
see that the average queue is almost constant during this interval and
hence the packet dropping probability is the same for all packets in
the arriving burst. This is exactly the assumptions in the analytical
model.

Turning to the time-out probability in the DropTail environment
we clearly see that it is different from the RED case but that it is
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somewhat lower than the analytical estimation. This is also in line
with what was suspected. The model assumption that all packets in
one window are lost after the first lost packet is a bit too pessimistic.
Figure 17 shows the congested DropTail queue’s dynamics during
approximately 4 round-trip-times during which the queue switches
from congested to non-congested state a number of times. Figure
18 magnifies a 5ms interval during which the queue experiences a
busy period and shows a packet burst of 7 packets arriving from our
observed sender. Out of the 7 packets, packets number 2, 4, 6, 7 are
lost. In the idealized model, once a packet is lost the remaining
packets are also considered lost. Hence in the model packets 3 and
5 would also have been lost. These extra packets getting through
in the real environment are candidates for generating duplicate acks,
increasing the possibility of a successful fast retransmit and hence
decreasing the time-out probability. This decreased time-out prob-
ability is exactly what is seen in Figure 13. Nevertheless, from the
simulation studies is is seen that there is a high degree of corre-
lation between packet losses in the DropTail environment. Since
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Fig. 18. Queue dynamics in a DropTail queue and an arriving packet burst from one
TCP sender during a period of 5 ms. Enlargement of Figure 17

queues builds up and empties quickly it is also seen that loss events
seperated by one or more round-trip-times could be considered inde-
pendent. An important observation from our simulations is that the
RED modeling assumption with independent packets seems to be
less sensitive to the topology and traffic mix than the DropTail mod-
eling assumption. The type of loss correlation in the DropTail case
depends a lot on the degree of multiplexing used on the link and the
relationship between the senders access rate on the Ai - B link and
the congested link’s rate. With high access rates and many concur-
rent senders, a higher degree of packet loss correlation is observed in
the DropTail queue. For our simulations, the congestion level in the
network is determined by the intensity of the cross-traffic and it is
seen that the time-out probability estimation is better for higher loss
rates. To conclude, assuming that once a packet is lost, the remain-
ing packets sent in the same window are also lost, seems like an
adequate method. Since so many interacting properties determine
the loss pattern even in our controlled simulations, we consider it
unlikely to find the exact form of loss correlation in a real DropTail
environment.

We finally look at Figure 14 which compares the analytical
throughput with the simulated. There is a clear distinction between
the RED and DropTail case. In the RED environment the simulated
values are correctly estimated throughout the interval like in the ide-
alized simulation case. For the DropTail environment the estimation
is good for error rates approximately larger than 3 percent whereas
we under-estimate throughput for lower error rates due to the already
mentioned over-estimated time-out probability in this loss range.

6 CONCLUSIONS AND FUTURE WORK

The Internet consists of a vast variety of TCP versions and dif-
ferent forms of queue management. The most common queueing is
certainly DropTail and RED and there have been recommendations
from the research community of continuing the deployment of RED
[6]. Tools that make it possible to find out what types of TCPs are
being used have appeared recently [29]. As these tools show the
NewReno variant is becoming a popular TCP variant in the Internet
today which makes it important to model. Here we have brought the
modeling of these important areas together and considered different
TCP versions in various queueing environments.

As the theory and the simulations show the queueing loss behav-



ior has big impact on the TCP dynamics justifying its importance
for modeling. At the same time the queueing loss behavior is an
area without, as far as we know, well established results. Let us con-
sider, supported by our simulation studies, that the assumption that
loss events separated by one round-trip-time are independent to be
valid. Then, for the loss correlation within a single round, one could
consider the RED assumption of independent packet losses and the
DropTail assumption of correlated losses to be two extreme cases.
One could then conjecture that real world loss behaviors fall some-
where in between. As a result it seems reasonable that real Internet
throughput and time-out probabilities should fall in between our de-
rived RED and DropTail curves shown in Figures 9, 10.

It remains to determine the networks’ equilibrium error rate from
knowledge about the network topology and assumption on the file
request distribution. This equilibrium error rate is probably also de-
pendent on what type of queueing management is being used. Al-
though outside the scope of this paper we remark that the characteri-
zation of the NewReno protocol and the impact of different queueing
environments considered in this paper, the description of the Tahoe
protocol in [21], the slow start algorithm in [27] together with ideas
approaches and results from [4], [7], [22], [24], [25] and [31] should
be good building blocks for considering the interaction between mul-
tiple TCP algorithms and the network. By using methods and results
from [24] the equilibrium loss rate for various TCP/AQM combina-
tions can be derived from the network topology. Hence using fix-
point arguments it should be possible to derive throughput expres-
sions as a function of network topology parameters and for example
measure the effect a change of the bottleneck capacity would have
for the single TCP.

REFERENCES

[1] M. Allman, S. Floyd, and C. Partridge, Increasing TCP’s Initial Window.
September 1998, RFC 2414.

[2] M. Allman, V. Paxson, W. R. Stevens, TCP Congestion Control, April 1999,
RFC 2581.

[3] E. Altman, K. Avrachenkov, C. Barakat, A Stochastic Model of TCP/IP with
Stationary Random Losses, Comp. Comm. Review 30 (October 2000), 231-242,
ACM Sigcomm 2000.
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