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Abstract

The key to the Hard Lefschetz Theorem for combinatorial intersection cohomology
of polytopes is to prove the Hodge-Riemann bilinear relations. In these notes,
we strive to present an easily accessible proof. The strategy essentially follows the
original approach of [Ka], applying induction à la [BreLu2], but our guiding principle
here is to emphasize the geometry behind the algebraic arguments by consequently
stressing polytopes rather than fans endowed with a strictly convex conewise linear
function. It is our belief that this approach makes the exposition more transparent
since polytopes are more appealing to our geometric intuition than convex functions
on a fan.

1 Introduction

The proof of the Hard Lefschetz Theorem for the “Combinatorial Intersection Cohomo-

logy” of polytopes given in [Ka] was the keystone in a long endeavour of several research

groups to verify that Stanley’s generalized (“toric”) h-vector for polytopes has the con-

jectured properties: The theorem (usually referred to as “HLT” in the sequel) implies

that the generalized h-vector agrees with the vector of even degree Intersection Cohomol-

ogy Betti numbers and that this vector enjoys the unimodality property (in addition to

symmetry and non-negativity).

The HLT is an easy consequence of the so-called bilinear “Hodge-Riemann relations”

(“HR relations” or “HRR” for short); and since the latter, being a “positivity result”,

reflect convexity in a more appropriate way than the HLT, the focus has shifted towards

proving these relations. The first proof of the HRR given in [Ka] has been rather involved.

The task of making it more easily accessible has been taken up in different articles, cf.

[BreLu2] and [BBFK3]. With the present notes, we further pursue this direction: Being

convinced that polytopes are closer to our geometric intuition, we present an approach that
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stresses geometric operations on polytopes rather than algebraic operations on strictly

convex conewise linear functions.

Let us briefly recall the setup, referring to section 4 for further details: To an n-

dimensional polytope P in an n-dimensional real vector space V , one associates its outer

normal fan ∆ = ∆(P ) in the dual vector space V ∗, and a conewise linear strictly convex

function ψ. The “combinatorial intersection cohomology” IH(∆) is a finite-dimensional

real vector space with even grading
⊕n

k=0 IH2k(∆). There is a perfect pairing

∩ : IHq(∆)× IH2n−q(∆) −→ R ,

the “intersection product”, so Poincaré duality holds on IH(∆).

On IH(∆), the multiplication with ψ induces an endomorphism

L : IHq(∆) −→ IHq+2(∆)

called the Lefschetz operator. The key result of [Ka] (see also [BreLu2]) reads as follows:

Hard Lefschetz Theorem (HLT). For each k = 0, the iterated Lefschetz operator

Lk : IHn−k(∆) −→ IHn+k(∆)

is an isomorphism.

By Poincaré duality, it suffices to prove that each map Lk be injective or surjective.

Using the intersection product, the Hard Lefschetz Theorem can be restated in a

different framework: Each mapping Lk (for k = 0) yields a bilinear form

sk : IHn−k(∆)× IHn−k(∆) −→ R , (ξ, η) 7−→ ξ ∩ Lk(η),

called the k-th Hodge-Riemann bilinear form, or “HR-form” for short. This form is

symmetric since L is self-adjoint with respect to the intersection product. In this set-up,

the HLT is equivalent to the non-degeneracy of all forms sk.

Beyond non-degeneracy, the HR relations provide explicit formulæ for the signatures

of these pairings. To that end, we have to consider the primitive intersection coho-

mology

IP n−k(∆) := ker
(
Lk+1 : IHn−k(∆) −→ IHn+k+2(∆)

)

for 0 5 k 5 n (with k ≡ n mod 2). In fact, assuming the HLT, there is an sk-orthogonal

decomposition

IHn−k(∆) = L
(
IHn−k−2(∆)

)⊕ IP n−k(∆) .

More generally, we see:
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Proposition 1.1. If the HLT holds for the Lefschetz operator L on the intersection co-

homology of the fan ∆ = ∆(P ), then, for each k, the intersection cohomology splits as an

orthogonal direct sum

IHn−k(∆) =
⊕

j=0

Lj
(
IP n−k−2j(∆)

)
.

Now for each q 5 n − 2, the restricted operator L provides an isometric embedding

IHq(∆) ↪→ IHq+2(∆) with respect to the pertinent HR-forms. Hence, in order to de-

termine the signature of sk, it suffices to consider the restrictions of the Hodge Riemann

forms sk+2j to the corresponding primitive subspaces IP n−k−2j(∆). Here is the statement:

Hodge-Riemann Bilinear Relations (HRR). For each k = 0 (with k ≡ n mod 2),

the Hodge-Riemann bilinear form sk is (−1)(n−k)/2-definite on IP n−k(∆) .

The HR relations imply the HLT, since the HR forms are readily seen to be non-

degenerate by descending induction on k: For k = n, that follows from IP 0(∆) = IH0(∆).

For k < n, we assume that sk+2 is non-degenerate. Then so is the restriction of sk to

L
(
IHn−k−2(∆)

)
. This implies

IHn−k(∆) = L(IHn−k−2(∆))⊕ L
(
IHn−k−2(∆)

)⊥
,

and it now suffices to prove L
(
IHn−k−2(∆)

)⊥
= IP n−k(∆). The inclusion “⊃” follows

from the fact that L is ∩-self-adjoint, while “⊂” is a consequence of Poincaré duality for

the complementary dimensions n− k − 2 and n + k + 2.

From Proposition 1.1, we immediately obtain a reformulation of the HRR in which

the primitive cohomology does not enter explicitly:

Proposition 1.2. The HRR are equivalent to the HLT together with the additional condi-

tion that the Hodge-Riemann bilinear forms sk on IHn−k(∆) satisfy the “HR-equation”

sign(sk) = sign(sk+2) + (−1)(n−k)/2(bn−k − bn−k−2) ,

where bq := dimR IHq(∆) denotes the qth intersection cohomology Betti number of the fan

∆.

2 Outline of the proof of the Hodge-Riemann rela-

tions

The HR relations are known to hold if the polytope P is simple. The first proof has

been given in [Mc]; a simplified version followed in [Ti]. This result is the basis for the
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proof of the general case by a twofold induction: The “outer loop” is on the dimension

n := dim(P ). For the more involved “inner loop”, following [BreLu2], we associate to P

an integer µ := µ(P ) = 0 that measures how far P is from being simple: It counts those

faces, here called “normally stout” (see 3.6), that witness non-simplicity, with µ = 0

characterizing simple polytopes. The inner induction on µ requires three main steps:

Cutting off (Section 3): Given a face F ≺ P , we consider an affine hyperplane H that

is sufficiently near and parallel to a supporting hyperplane for the face F ≺ P and

intersects
◦
P . Let P = G ∪ R be the corresponding decomposition of P into the

“germ G = GP (F ) of P along the face F” and the residual polytope R.

Then, if F ≺ P is a normally stout face of minimal dimension, we have µ(R) < µ(P ),

so the HRR hold for R by induction hypothesis. For the investigation of the germ

G, it is important that the face F itself is a simple polytope and that it is “normally

trivial” in P , cf. 3.12.

HRR for special n-polytopes (Section 5): Assuming the HRR to hold for m-polyto-

pes (with m < n), we prove the validity for the following special n-polytopes:

5.1 A pyramid P = Π(Q) with an (n− 1)-dimensional base Q.

5.2 A non-trivial product P = S × P0, where S is simple.

Furthermore, we prove the following Gluing property:

5.3 The HRR hold for an n-polytope P that can be cut “transversally” into two

polytopes P1 and P2 such that the HRR hold for both pieces.

Deformation of the germ G into a product (Section 6): There is a continuous family

(Qt)t∈[0,1] of pairwise combinatorially equivalent polytopes with Q1 = G and Q0 =

F × Π(L) with the pyramid Π(L) over a “link” L = LP (F ) of F in P . Then HRR

is valid for Q1 = G iff it is for Q0.

By induction hypothesis, the HRR hold for the lower dimensional polytopes F and L,

and thus, by 5.1 and 5.2, hold also for Q0 = F × Π(L), hence eventually also for G.

Finally, the gluing result of 5.3 applied with P1 = R and P2 = G from Step 1 (“Cutting

off”) yields the HRR for the initial polytope P .

In section 4, we recall the definition and basic properties of combinatorial intersection

cohomology as needed later on.
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3 Cutting off

In this section, we explain how a polytope can be made simple by successively cutting off

faces containing non-simple points. In that process, we have to make sure in each step

that we get closer to the class of simple polytopes. A measure for the “distance” of a

polytope P to that class is the number µ(P ) of its “normally stout” faces, see Def. 3.6.

We first introduce some basic constructions.

Remark and Definition 3.1. The complement V \ H of an affine hyperplane H ⊂ V

consists of two open connected components

V \H = U1 ∪ U2 .

We say that a subset A ⊂ V lies strictly on one side of H if either A ⊂ U1 or A ⊂ U2.

Let P ⊂ V be a polytope, and H, a hyperplane as above. We call H a cutting

hyperplane for P if it intersects the relative interior, i.e., H ∩
◦
P 6= ∅. Such a hyperplane

yields a decomposition

P = P1 ∪ P2

of P into polytopes Pi := P ∩ Ui with dim P1 = dim P2 = dim P . Both pieces meet along

the common facet P1 ∩ P2 = H ∩ P that we call the cut facet.

We say that H cuts P transversally if no vertex of P lies on H. Moreover, for a

proper face F � P , we say that such a transversal hyperplane H is sufficiently near to F

(or a “nearby hyperplane”) if F lies strictly on one side of H – say F ⊂ U1 –, whereas

all the remaining vertices of P (i.e., those not contained in F ) lie on the other side U2.

If in addition H is parallel to a supportimg hyperplane H0 ⊂ V for the face F ≺ P , i.e.

P ∩H0 = F , we also say that H “cuts off” the face F .

In the sequel, cutting off a proper face F of P by a nearby parallel hyperplane plays

an important role: The resulting decomposition

P = G ∪R

of P into one polytope G containing the face F and a “residual polytope” R allows a

“divide et impera” (divide and conquer) approach to the HRR problem.

Definition 3.2. Let F � P be a proper face of a polytope P in V .

1. A germ G = GP (F ) of P along the face F is any polytope G obtained as follows:

Choose an affine hyperplane H0 in V with P ∩ H0 = F and let H be a parallel

hyperplane such that F lies strictly on one side, say U1, of H, and the vertices of

P not contained in F on the other side U2. Then G := P1, while R := P2 is the

corresponding residual polytope.
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2. A link L = LP (F ) of the face F � P is any polytope obtained in the following way:

• If F = {a}, then LP (F ) := LP (a) := P ∩H (the cut facet) for H as above.

• If dim F > 0, choose a transversal affine subspace N ⊂ V to F , i.e., comple-

mentary to the affine span aff(F ), and intersecting the relative interior
◦
F . Put

P̃ := P ∩N and F̃ := F ∩N . Then LP (F ) := L eP (F̃ ) (so LP (F ) = N ∩P ∩H).

We note that the combinatorial type of a germ and that of a link is independent of

all choices made in the construction. — In the literature on convex polytopes, a link of a

vertex is usually called “vertex figure”, and a link LP (F ) of a face is called “face figure”

or “quotient polytope”, often noted P/F .

We recall the notion of the join of two “relatively skew” polytopes.

Definition 3.3. Let Q1, Q2 be disjoint polytopes in V such that dim aff(Q1 ∪ Q2) =

dim Q1 + dim Q2 + 1. Then their join Q1 ∗Q2 is the convex hull of Q1 ∪Q2 in V .

We note that Q∗∅ = Q, and Q1∗Q2 = Q2∗Q1. We remark that the join Q1∗Q2 is the

disjoint union of Q1, Q2, and all open segments (x, y) joining points x ∈ Q1 and y ∈ Q2.

We further remark that all faces of the join are of the form F1 ∗ F2, where Fi ¹ Qi is a

(possibly empty) face, and that a link LQ1∗Q2(Q1) is combinatorially equivalent to Q2. —

We denote with Π(P ) := P ∗ {a} for a 6∈ aff(P ) the pyramid with apex a and base P .

An iterated pyramid Πi(P ) for i > 0 is thus a join P ∗ Si−1 with an (i− 1)-simplex Si−1,

whereas Π0(P ) = P .

We now study the local geometry near a face F of a polytope P in V . For a given

vertex a ∈ F , we fix a nearby cutting hyperplane H ⊂ V . The cut facet H ∩ P is a link

LP (a) of a in P , and its face F ∩H is a link LF (a) of a relative to F .

Definition 3.4. A proper face F � P of the polytope P is called

• normally trivial (in P ) at the vertex a if the link LP (a) is the join LF (a) ∗Sa

with a suitable “complementary” face Sa ¹ LP (a) , and

• normally trivial (in P ) if it is normally trivial at each of its vertices.

We remark that every vertex of a polytope P is normally trivial as a face. If a is

a simple vertex of P , then every face F containing a is normally trivial at a: A link

L = LP (a) of a in P is a simplex, so for the face F ′ = LF (a) of L, there is a unique

complementary face; the latter being again a simplex, any link of F in P is a simplex.

If F � P is an edge or a facet of a three-dimensional polytope, then the converse holds:

Normal triviality at a vertex a is equivalent to a being simple.

More generally, for a face F � P that is normally trivial at the vertex a, there is a

unique face F ′
a � P “cutting out” the complementary face Sa in the link L, i.e., satisfying
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Sa = LP (a) ∩ F ′
a. That face is complementary to F at a, i.e., we have F ∩ F ′

a = a,

dim F + dim F ′
a = dim P , and every edge emanating from a either lies in F or in F ′

a.

Shifting the affine span of F ′
a to the relative interior of F yields a transversal subspace N

to F as in Def. 3.2, 2. As a consequence, the polytope Sa has the same combinatorial

type as LP (F ), so that type does not depend on the vertex a ∈ F .

Normal triviality of a face yields a combinatorial local product structure:

Remark 3.5. Let F � P be a normally trivial face with link L = LP (F ) = N ∩ P ∩H

as in Def. 3.2, 2. Denote with G = GP (F ) a corresponding germ and with π : V → N the

(affine) projection onto N along aff(F ), i.e., collapsing aff(F ) to a single point v0. Then

π induces a surjective map

π|G : G −→ Π(L)

onto the pyramid Π(L) := G ∩ N over L with apex v0, mapping vertices onto vertices.

Moreover, we obtain a bijection between the vertices of G and the vertices of F ×Π(L) as

follows: A vertex u lying on the “ridge” F of the “hip roof” G is mapped to (u,v0), and a

vertex v lying on the “bottom facet” G∩H (i.e., on the cut facet), being the end point of

an edge emanating from a unique vertex u ∈ F , is mapped to (u, π(v)). That map yields

a combinatorial equivalence between the polytopes G and F × Π(L).

If the link of a face is not a pyramid, then no vertex lying on that face is a simple

point of the ambient polytope. This observation motivates the interest of the following

concept that is essential for the inner loop, cf. [BreLu2] 2.7:

Definition 3.6. 1. A (non-empty) polytope P is called stout if it is not the pyramid

over one of its facets.

2. A face F ¹ P is called normally stout in P if one (and thus any) link L = LP (F )

is stout.

Equivalently, a polytope P is stout if for each facet F , there are at least two vertices

of P not lying on F . Hence, “stoutness” only depends on the combinatorial type and

dim P ≥ 2 for a stout polytope P . In particular, a normally stout face F ≺ P always has

codimension at least 3.

The relation general versus stout polytopes is as follows:

Lemma 3.7. If a polytope P is not a simplex, then it has exactly one maximal stout

face B ¹ P . In particular P is the iterated pyramid

P = Πc(B) = B ∗ Sc−1

(with c := codimP B = 0) over that “base face”. Moreover, if P is not stout (i.e., c > 0),

then the complementary simplex Sc−1 is the unique minimal normally stout face of P .
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Proof. If the polytope is stout, then there is nothing to show. The general case is seen by

induction on n := dim P = 2, with the case n = 2 already being settled. For n = 3, we

may thus assume that P is a pyramid Π(F ) = F ∗ {a} over one of its facets F ≺ P . By

induction hypothesis, the statement holds for that facet F . Since all faces of P containing

the apex a are pyramids, every stout face already lies in F . Hence, the unique maximal

stout face B of F also is the unique maximal stout face of P .

The fundamental role played by normally stout faces in the present approach to the

HRR is that they “witness” non-simplicity, cf. [BreLu2] 2.9:

Lemma 3.8. A polytope is simple if and only if it has no normally stout faces.

Proof. If a polytope is simple, then the links of all its faces are simplices, so no face is

normally stout. On the other hand, a non-simple n-polytope P has a vertex a ∈ P that

is incident to at least n + 1 edges. A link L = LP (a) of that vertex is thus an (n− 1)-

polytope with more than n vertices, so it is not a simplex. Hence, as seen above, it can

be (uniquely) written as an iterated pyramid L = Πc(B) (for some c = 0) over a stout

base face B ¹ L. If c = 0, i.e., L = B, then the vertex a already is a normally stout

face of P . Otherwise we have L = B ∗ Sc−1 with a (non-empty) simplex Sc−1 � L that

is normally stout in L. Then the unique face F ≺ P cutting out the face Sc−1 ≺ L, i.e.

such that Sc−1 = F ∩ L, is normally stout in P .

We may thus measure how “far” a polytope is from being simple:

Definition 3.9. The defect µ(P ) ∈ N of a polytope P is defined as the number of normally

stout faces of P .

We can restate Lemma 3.8 in these terms: A polytope P is simple if and only if its

defect vanishes, i.e., µ(P ) = 0. — Pursuing the idea sketched at the beginning of this

section, we now show that cutting off a minimal normally stout face brings us closer to

“simplicity”:

Lemma 3.10. Let F � P be a normally stout face of minimal dimension, and let R

denote the residual polytope obtained by cutting off the face F from P . Then the “defect”

satisfies

µ(R) = µ(P )− 1 .

Proof. No proper face F0 � G∩R is normally stout in R, since G∩R ≺ R, as a cut facet,

is normally trivial in R and thus LR(F0) = Π(LG∩R(F0)). On the other hand there is a

bijection between the faces of P not contained in F and the faces of R not contained in

G∩R. Since corresponding faces have the same links and no proper face of F is normally

stout in P by the minimality of F , we obtain µ(R) = µ(P )− 1.
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Corollary 3.11. By finitely many successive cut-offs, every polytope is transformed into

a simple one.

Proof. This follows from the above result together with the fact that a polytope P with

µ(P ) = 0 is simple, cf. Lemma 3.8.

So, finally, we are left with the problem to show that the HRR for the residual polytope

R obtained by cutting off a minimal normally stout face imply the HRR for the polytope P

itself. To that end, we have to study the “cut-off” part, namely, a germ of that face. With

Remark 3.5 at our disposal, the following result turns out to be of crucial importance, cf.

also [BreLu2] 2.12:

Lemma 3.12. A normally stout face F ≺ P of minimal dimension is normally trivial

and is itself a simple polytope.

Proof. We let d := dim F , the minimal dimension of any normally stout face. The case

d = 0 being trivial, we may assume d > 0. Since an arbitrary vertex a ∈ F is neither

simple nor normally stout in P , its link may be written in the form LP (a) = B ∗ Sc−1,

where B is stout and c ≥ 1. The normally stout faces F ′ � P containing a correspond

bijectively to the normally stout faces of LP (a) via F ′ 7→ F ′ ∩ LP (a). Since F ′ = F has

minimal dimension, and Sc−1 is the unique normally stout face of LP (a) having minimal

dimension, it follows that LF (a) = F ∩ LP (a) = Sc−1, i.e., the point a is a simple vertex

of F , and with Sa := B � LP (a) in Def. 3.4, the face F is seen to be normally trivial in P

at a.

4 Intersection Cohomology of Fans

In this section, we briefly recall the construction of the intersection cohomology of a

(quasi-convex) fan ∆, referring to [BBFK2] or [BreLu1] for details. All complete fans

considered in the sequel occur as outer normal fans ∆(P ) for a polytope P ⊂ V . Hence,

we systematically consider fans in the dual V ∗ of a given vector space V . We are not

going to deal with non-polytopal complete fans.

4.A The fan space: Motivated by the coarse “toric topology” on a toric variety given

by torus-invariant open sets, we consider a fan ∆ in V ∗ as a finite topological space with

the subfans as open subsets. The “affine” fans

〈σ〉 := {σ} ∪ ∂σ ¹ ∆ with boundary fan ∂σ := {τ ∈ ∆ ; τ � σ}

form a basis of the fan topology by open sets that cannot be covered by smaller ones.

Here ¹ means that a cone is a face of another cone or that a set of cones is a subfan of
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some other fan. In fact, by abuse of notation, we often write σ instead of 〈σ〉, if there is

no danger of confusion.

4.B Sheaves: Sheaf theory on a fan (space) ∆ is particularly simple since a presheaf

given on the basis uniquely extends to a sheaf. In order to simplify notation, given a

sheaf F on ∆, we write

FΛ := F(
Λ)

for the set of sections on the open subset (i.e., subfan) Λ ¹ ∆. Then a sheaf F is flabby

if and only if each restriction homomorphism

%σ
∂σ : Fσ → F∂σ

is surjective.

Here are the two most important examples:

1. The structure sheaf A of ∆ is defined by

Aσ := S(span(σ)∗) ,

the graded algebra of real-valued polynomial functions on the subspace span(σ) ⊂
V ∗ or rather on σ itself, the homomorphisms %σ

τ : Aσ −→ Aτ for τ ¹ σ being

the restriction of functions. Hence, for Λ ¹ ∆, the global sections ∈ AΛ are the

Λ-conewise polynomial functions |Λ| −→ R. The grading is chosen to be twice the

standard grading, e.g. cone-wise linear functions get the degree 2.

The structure sheaf A is flabby if and only if ∆ is a simplicial fan.

2. The “equivariant” intersection cohomology sheaf E (also called “minimal

extension sheaf” in [BBFK2]) is the “smallest” flabby sheaf of graded A-modules

on ∆ such that Eσ is a finitely generated free Aσ-module for every cone σ ∈ ∆, and

Eo = Ao = R for the zero cone o := {0}.
Let us explain the minimality condition in “smallest”: Let

A := S(V ) = S
(
(V ∗)∗

)

denote the (even-graded) algebra of polynomial functions on the vector space V ∗

(so in particular, Aσ = A for an n-cone σ, and for any fan Λ both, AΛ and EΛ are

graded A-modules in a natural way). Furthermore, let

m := A>0
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denote the unique homogeneous maximal ideal of the graded algebra A. Then, given

a graded A-module, we define its reduction M , a graded real vector space, by

M := (A/m)⊗A M .

Since E is flabby, the reduced restriction

%σ
∂σ : Eσ → E∂σ

is also surjective. Requiring it to be even an isomorphism means minimizing the

rank of the free Aσ-module Eσ. Note that, on the other hand, the surjectivity of

%σ
∂σ already implies that of %σ

∂σ.

The above conditions determine E up to isomorphy of graded A-modules, and in

particular we see that E ∼= A iff ∆ is simplicial.

4.C The intersection cohomology IH(∆) of a complete (or more general: ”quasi-

convex”) fan is defined as the graded vector space

IH(∆) := E∆ .

4.D Quasi-convex fans: We call a fan quasi-convex if it is purely n-dimensional, i.e.,

all maximal cones are n-dimensional, and the support |∂∆| of its boundary subfan is a

real homology manifold or empty. Here ∂∆ ¹ ∆ is the subfan generated by those (n-1)-

cones which are a facet of exactly one n-cone in ∆. In fact, quasi-convex fans ∆ are

characterized by the fact that E∆ is a (finitely generated) free A-module, cf. [BBFK2],

4.1 and 4.4.

So in particular fans with convex or coconvex support (i.e., V ∗ \ |∆| is convex) as well

as stars of cones in a complete fan provide examples of such fans. Furthermore if Λ ¹ ∆

is a quasi-convex subfan of the complete fan ∆, we denote with Λc ¹ ∆ its (quasi-convex)

complementary subfan, i.e., Λc is the subfan generated by the n-cones in ∆ \ Λ.

4.E Outer normal fan and Lefschetz Operator: Any n-polytope P ⊂ V induces a fan

∆ = ∆(P ) in V ∗ together with a strictly convex ∆-conewise linear function ψ : V ∗ −→ R

as follows: For any facet F ¹1 P choose an ”outer normal vector” nF ∈ V ∗ \ {0}, i.e.,

nF |F ≡ const ≥ nF |P , and denote with ν(F ) := R≥0nF the associated ”outer normal

ray” of the facet F . To any face G ¹ P , we associate a cone σ(G) ⊂ V ∗ as follows:

σ(G) :=
∑

G¹F¹1P

ν(F ) .

Note in particular that σ(P ) = o := {0} ⊂ V ∗, the zero cone. Then the outer normal fan

∆(P ) is defined as

∆(P ) := {σ(G); G ¹ P} .
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We remark that ∆(P ) is simplicial, iff P is simple.

Denote v1, . . . ,vr ∈ V the vertices of P . Then σi := σ({vi}), i = 1, . . . , r are the n-

dimensional cones in ∆. Denote ψi ∈ (V ∗)∗ the image of vi with respect to the biduality

isomorphism V −→ (V ∗)∗. Then

ψ|σi
:= ψi

defines a strictly convex conewise linear function ψ ∈ A2
∆(P ). Put ∆ := ∆(P ). The

multiplication map

µψ : E∆ −→ E∆ , f 7−→ ψf

induces a degree 2 map

L := µψ : E∆ = IH(∆(P )) −→ E∆ = IH(∆(P )) ,

the ”Lefschetz operator”. We remark that ∆(P + a) = ∆(P ) for a ∈ V with the

same Lefschetz operator, since the correponding strictly convex functions only differ by

the “globally linear” function a ∈ V ∼= (V ∗)∗ = A2.

If aff(P ) 6= V , the above constructions apply mutatis mutandis in order to give a fan

∆(P ) in V ∗/aff0(P )⊥, with the subspace aff0(P ) := aff(P ) − a, a ∈ aff(P ), as well as a

Lefschetz operator on IH(∆(P )).

4.F The intersection product: For details cf. [BBFK3]. We need this notation for a

sheaf F on a quasi-convex fan ∆: The module F(∆,∂∆) ⊂ F∆ of “sections with compact

support on ∆” is defined as

F(∆,∂∆) := ker(%∆
∂∆) = {f ∈ F∆; f |∂∆ = 0} ,

such that for ∆ ¹ Λ, there is a natural inclusion F(∆,∂∆) ⊂ FΛ by trivial extension of

sections. In order to discuss the intersection product, we have to fix a volume form

ω ∈ det V :=
∧n V on V ∗. If the fan ∆ is simplicial, we can, following [Bri], define a

graded A-linear “evaluation map”

ε : A(∆,∂∆) −→ A[−2n]

as follows: For each n-cone σ, we denote gσ ∈ A2n
(σ,∂σ) ⊂ Aσ = A the unique non-trivial

function ≥ 0, which is the product of linear forms in A2 ∼= V , whose wedge product

agrees, up to sign, with ω. Then the map ε is the composite

(1) E(∆,∂∆)
∼= A(∆,∂∆) ⊂

⊕
σ∈∆n

Aσ −→ Q(A) , f = (fσ)σ∈∆n 7−→
∑

σ∈∆n

fσ

gσ

,

mapping A(∆,∂∆) onto A ⊂ Q(A). We remark that any (graded) A-linear map A(∆,∂∆) −→
A[−2n] is a scalar multiple of ε, and that a multiplication of ω with a scalar λ ∈ R results

in a multiplication of ε with |λ|.
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The intersection product then is the composite

.. ∩ .. : A∆ × A(∆,∂∆)
mult−→ A(∆,∂∆)

ε−→ A[−2n]

of the multiplication of functions and the evaluation map ε : A(∆,∂∆) −→ A[−2n]. In the

general case the definition uses the dual sheaf DE of E , cf. [BBFK3]. Its sections over a

cone σ ∈ ∆ are

(DE)σ := Hom(E(σ,∂σ), Aσ)⊗ det Vσ,

with Vσ := V/span(σ)⊥ ∼= span(σ)∗. The determinant factor produces a degree shift

(Vσ = A2
σ being of weight 2) and plays an important role in the definition of the restriction

homomorphisms (DE)σ −→ (DE)τ for τ ¹ σ. Here it is necessary to fix an orientation

of span(σ) for every cone σ ∈ ∆, with the n-cones getting the orientation defined by the

volume form ω ∈ det V . Then the defining formula holds even globally:

(DE)∆
∼= Hom

(
E(∆,∂∆), A

)⊗ det V ∼= Hom
(
E(∆,∂∆), A[−2n]

)
,

where the second isomorphy uses the isomorphism det V ∼= R, ω 7→ 1. Furthermore there

are natural isomorphisms E ∼= DE – in fact, the naturality is obtained only with the HLT

for fans in lower dimensions – and E∆
∼= (DE)∆, whence we finally obtain the intersection

product

.. ∩ .. : E∆ × E(∆,∂∆) −→ A[−2n] ,

which uniquely extends to a map

.. ∩ .. : E∆ × E∆ −→ Af−1[−2n],

where f ∈ A is the minimal product of linear forms with f |∂∆ = 0. In fact, there is

another way to obtain it (cf. [BBFK3], 4): Take a simplicial refinement ι : Σ −→ ∆ and

realize E as a direct summand of ι∗(A), where A denotes the structure sheaf of the fan Σ,

(cf. [BBFK2], 2.5) – the corresponding inclusion then is also called a direct embedding.

Then the composition

E∆ × E(∆,∂∆) ↪→ AΣ × A(Σ,∂Σ)
mult−→ A(Σ,∂Σ)

ε−→ A[−2n]

of the induced embeddings and the intersection product on Σ provides the intersection

product on ∆.

A third possibility is to mimic the multiplication of functions (cf. [BBFK3], 4): Choose

an ”internal intersection product”, i.e., any symmetric A-bilinear sheaf homomorphism

β : E × E −→ E extending the multiplication of functions on the 2-skeleton – but note

that its construction involves choices and is not natural. On the other hand there is a

distinguished section 1 ∈ E∆ and its image with respect to the isomorphism

E∆

∼=−→ (DE)∆
∼= HomA(E(∆,∂∆), A[−2n])
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provides an evaluation map ε : E(∆,∂∆) −→ A[−2n]. Then if we take the composite

E∆ × E(∆,∂∆)
β−→ E(∆,∂∆)

ε−→ A[−2n],

we finally once again obtain the intersection product!

5 HRR for special n-polytopes

5.1 HRR for pyramids

Proposition 5.1. If the HRR hold for polytopes in dimension < n, then also for any

n-dimensional pyramid P = Π(Q) over some (n− 1)-polytope Q.

Proof. We may assume that 0 ∈ V is the apex of our pyramid, i.e. Π(Q) = Q ∗ {0}. Let

∆ := ∆(Π(Q)) and denote σ := σ({0}) ∈ ∆ the cone corresponding to the apex 0 of the

pyramid. Then the complementary fan ∆0 := ∆ \ {σ} = 〈σ〉c satisfies

∆0 = st(ν(Q)) = ∂σ + ν(Q) := ∂σ + 〈ν(Q)〉

with the outer normal ray ν(Q) of Q ¹1 P = Π(Q), and ψ|σ = 0 resp. ψ ∈ A2
(∆0,∂∆0) ⊂

A2
∆. We regard the exact sequence

0 −→ E(σ,∂σ) −→ E∆ −→ E∆0 −→ 0 .

It even splits, since E∆0 is free, the fan ∆0 being quasi-convex. Thus, there is a corre-

sponding exact sequence

0 −→ IH(σ, ∂σ) −→ IH(∆) −→ IH(∆0) −→ 0

with IHq(σ, ∂σ) = 0 for q ≤ n, since HLT holds for fans in dimension < n, cf. [BBFK2],1.8;

so for k ≥ 0 the restriction from ∆ to ∆0 induces an isomorphism

IHn−k(∆)
∼=−→ IHn−k(∆0) ∼= IH(n−1)−(k−1)(∆(Q)) .

Let us comment here on the second isomorphy: The outer normal fan ∆(Q) is a fan in

W := V ∗/RnQ, and the quotient projection π : V ∗ −→ W induces a fan map ∆0 −→
∆(Q). Then, with B := S(W ∗) ⊂ A = S((V ∗)∗) we have

E∆0
∼= A⊗B E∆(Q) ,

whence the last isomorphism. The dual picture looks as follows

IHn+k(∆) ∼= IHn+k(∆0, ∂∆0) ∼= IHn+k−2(∆0) ∼= IH(n−1)+(k−1)(∆(Q)) .
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Here the second isomorphism is the ”Thom isomorphism”, the isomorphism induced

by:

E∆0

∼=−→ E(∆0.∂∆0), f 7→ ψf .

Analogously with k + 2 instead of k it is like this:

IHn+k+2(∆) ∼= IH(n−1)+(k−1)+2(∆(Q)) .

For k > 0, these isomorphisms transform

Lk : IHn−k(∆) −→ IHn+k(∆)

into

Lk−1 : IH(n−1)−(k−1)(∆(Q)) −→ IH(n−1)+(k−1)(∆(Q)) .

This gives the HLT for ∆. Now let us look at the HRR: The homomorphism

Lk+1 : IHn−k(∆) −→ IHn+k+2(∆)

corresponds to

L(k−1)+1 : IH(n−1)−(k−1)(∆(Q)) −→ IH(n−1)+(k−1)+2(∆(Q)) .

So

IP n−k(∆) ∼= IP (n−1)−(k−1)
(
∆(Q)

)
for k > 0 ,

while for k = 0 there is no contribution: IP n(∆) = 0 because of L0 = id. Now the

above isomorphism respects the Hodge-Riemann forms, if we endow V ∗/RnQ with the

volume form η, such that q∗(η)∧ψτ = ω with the volume form ω of V ∗, the quotient map

q : V ∗ −→ V ∗/RnQ and ψτ = ψ|τ ∈ A2 = (V ∗)∗ with an n-cone τ ∈ ∆0. So the HRR

hold for Π(Q), since they do for Q.

5.2 The Künneth formula

We want to show that the product S×P0 of a “HRR polytope” P0 with a simple factor S

again has the “HRR property”. We start with discussing the intersection cohomology,

endowed with the intersection product.

Proposition 5.2. Let P = S × P0 be a polytope in V ×W with a simple factor S, and

let ∆ = Σ ⊕ ∆0 be the corresponding decomposition of the respective outer normal fans.

Then there is a natural isomorphism

IH(∆)
∼=−→ IH(Σ)⊗R IH(∆0)

of graded vector spaces endowed with the intersection forms.
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Proof. We let A = S(V ) and B = S(W ) denote the algebra of polynomials on V ∗ and

on W ∗, respectively. Disregarding the intersection products, the isomorphism is seen as

follows: Since S is simple, the fan Σ is simplicial. Hence, assigning to a cone δ = σ × δ0

in ∆ = Σ⊕∆0 the Aδ-module

Eδ := Aσ ⊗R Eδ0

defines a minimal extension sheaf on ∆, as follows from an iterated application of Lemma

1.5 in [BBFK2]. Since the functor Aσ ⊗ ... is exact we obtain

Eσ×∆0
∼= Aσ ⊗ E∆0 ,

for each σ ∈ Σ. Using the analogous argument with the functor ...⊗ E∆0 , we obtain

E∆
∼= AΣ ⊗ E∆0 .

Since both, AΣ and E∆0 , are free modules over their base rings A and B, respectively, the

latter isomorphism descends to the level of intersection cohomology.

It remains to check the compatibility with the intersection products. We first assume

that the fan ∆0 is simplicial, too. In that case, up to suitable shifts, the tensor product

of the evaluation maps AΣ → A and A∆0 → B defines the evaluation map

A∆
∼= AΣ ⊗ A∆0 −→ A⊗B,

associated to the product of the pertinent volume forms on V and on W , respectively.

This implies the compatibility.

If ∆0 is non-simplicial, we choose a simplicial subdivision ι : ∆̂0 → ∆0 and a direct

embedding E ↪→ ι∗(Â) of the intersection cohomology sheaf E on ∆0 into the direct image

of the structure sheaf Â on ∆̂0. It induces a direct embedding on ∆ = Σ × ∆0. Since

these embeddings provide the respective intersection products on E∆0 and on E∆, the

compatibility holds.

To show the HRR property, we need some purely algebraic considerations. In that

framework, it is convenient to make degrees symmetric by a shift: Instead of IH(∆),

graded in even degrees ranging from 0 to 2n and endowed with the intersection pairing

and the Lefschetz operator, we consider the following

Abstract HR setup 5.3. Let

W :=
m⊕

k=−m

W k

be a finite dimensional graded vector space endowed with the following structures:



Hodge-Riemann Relations for Polytopes 17

• A non-degenerate symmetric bilinear form, also called the “intersection form”,

〈 , 〉 : W ×W −→ C

of total degree 0 satisfying 〈
W−k,W k

〉 ⊂ ikR ,

• the structure of a graded module over the polynomial ring R[L] with deg L = 2 such

that the “Lefschetz operator” µL := L · ... is self-adjoint with respect to the above

form.

For the convenience of notation we simply write L instead of µL. These data give rise

to “HR-forms” sk(x, y) := (x, Lky) on W−k, and furthermore, to “primitive subspaces”

P (W−k) := ker(Lk+1 : W−k → W k+2) .

Definition 5.4. A graded R[L]-module W endowed with such a structure is called an HR-

module if the restriction of iksk to the primitive subspace P (W−k) is positive definite.

We note that obviously, an HR-module satisfies dim W k = dim W−k (“numerical

Poincaré duality”).

The following HR-modules Am (for m ∈ N) are the simple ones. They are defined by

putting

Ak
m :=





R for −m 5 k 5 m with k ≡ m mod 2 ,

0 otherwise.

with the intersection form mapping the pair (1, 1) ∈ A−k
m ×Ak

m to 〈1, 1〉 = (−i)m, and the

“Lefschetz operator” L : Ak
m → Ak+2

m mapping 1 7→ 1, whenever that makes sense.

Remark 5.5. i) Every HR-module is isomorphic to a direct sum of modules Am.

ii) A graded R[L]-submodule U ⊂ W of an HR-module W is again an HR-module iff

it satisfies numerical Poincaré duality dim U−k = dim Uk.

The link with intersection cohomology of polytopes is provided as follows:

Remark 5.6. Let P be an n-polytope and put ∆ := ∆(P ). Endow the graded R-vector

space W (P ) := IH(∆)[−n] (i.e., having weight spaces W k(P ) := IHn+k(∆) for −n 5
k 5 n) with the intersection form, multiplied by (−i)n, and put L to be the Lefschetz

operator. Then the polytope P satisfies HRR iff W (P ) is an HR-module. Furthermore

W (Sn) ∼= An holds for the n-simplex Sn.

We now state and prove the “Künneth theorem” for HR-modules.
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Proposition 5.7. Let W,W ′ be HR-modules. Then both, W ⊕ W ′ and W ⊗ W ′ are

HR-modules, where the action of L on W ⊗W ′ is given by L(x⊗ y) := Lx⊗ y + x⊗Ly.

Proof. The first part of the statement being obvious, we only have to consider the tensor

product. Since both, W and W ′ are direct sums of modules of type An and the tensor

product commutes with direct sums, it suffices to look at An ⊗ Am . As a first step, a

direct computation shows that, for n ≥ 1,

An ⊗ A1
∼= An+1 ⊕ An−1

is an HR-module. By induction on n, it follows that

(A1)
⊗n ∼= An ⊕R

also is an HR-module, where the “remainder” R is a direct sum of terms Am with m < n

of the same parity as n. Hence the graded vector space

B := An ⊗ Am

is an R[L]-submodule of the HR-module C := (A1)
⊗(n+m). Satisfying numerical Poincaré

duality dim B−k = dim Bk, it is an HR-module itself.

Corollary 5.8. If, in the situation of Proposition 5.2, the polytope P0 satisfies HRR, then

so does P = S × P0.

Proof. According to 5.2 and in the notation of 5.6, the graded R[L]-module W (P ) can

be written as

W (P ) ∼= W (S)⊗W (P0) ;

hence the claim follows from 5.7 and the HRR for the simple polytope S.

5.3 Transversal Cuttings

Proposition 5.9. If the affine hyperplane H cuts P transversally into the polytopes P1

and P2, i.e., H has nonempty intersection with the relative interior of P and does not

contain vertices of P , then the validity of HRR for P1 and P2 and for lower dimensional

polytopes implies HRR for P .

Proof. Let us write

Fi := P ∩H ¹ Pi,

using the index i = 1, 2 in order to indicate when P ∩H should be considered as a facet

of Pi.
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(A) Fans involved. First of all let, as usual,

∆ := ∆(P ) , and put ∆i := ∆(Pi) for i = 1, 2 .

Secondly, we consider the “intermediate” polytope Q cut out from P by H and a nearby

parallel hyperplane. Its outer normal fan ∆(Q) is obtained by just putting together the

stars

Λi := st(ν(Fi)) ¹ ∆i

of the outer normal ray to the “cut” facet with respect to the fans ∆i to a new complete

fan

Λ := Λ1 ∪ Λ2 = ∆(Q) .

Finally, we let Φ := ∆(F1) = ∆(F2) denote the outer normal fan of F := F1 = F2 in

W := V ∗/(R · nFi
) (note that nF2 = −nF1).

(B) Gluing of IH. Let G and E denote the respective intersection cohomology sheaves

on Φ and Λ. The projection π : V ∗ → W induces a map of fans Λ → Φ, and we have

E ∼= π∗(G). In particular, writing B := S(W ∗) ⊂ A := S((V ∗)∗), there is a natural

injection

A⊗B GΦ ↪→ EΛ,

which after restriction to the subfans Λi ¹ Λ gives isomorphisms

EΛ1

∼=←− A⊗B GΦ

∼=−→ EΛ2 .

Denote with

S : EΛ1

∼=−→ EΛ2

the resulting A-module isomorphism. Now consider the exact sequence

(2) 0 −→ K −→ E∆1 ⊕ E∆2 −→ EΛ2 −→ 0,

where the second nontrivial map sends (f1, f2) to S(f1|Λ1) − f2|Λ2 , and K ⊂ E∆1 ⊕ E∆2

is the kernel of that map. Since EΛ2 is a free A-module and

IH(Λi) ∼= IH(Φ),

the exact sequence (2) induces the exact sequence

(3) 0 −→ K −→ IH(∆1)⊕ IH(∆2) −→ IH(Φ) −→ 0.

Furthermore we need

(4) 0 −→ D −→ K −→ E∆ −→ 0,
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where the second nontrivial map is gluing of sections: The fan ∆ is the union

∆ = Λc
1 ∪ Λc

2

of the complementary subfans Λc
i ¹ ∆i of Λi ¹ ∆i, i.e.,

∆i = Λi ∪ Λc
i

with the quasi-convex fans Λi and Λc
i intersecting only in their common boundary fan

and, in particular, |Λi| = |Λc
j| for j 6= i. Now for a pair (f1.f2) ∈ K ⊂ E∆1 ⊕ E∆2 we

define its image as the section f ∈ E∆ satisfying f |Λc
i
:= fi|Λc

i
. The kernel D then satisfies

D = {(h, S(h)); h ∈ E(Λ1,∂Λ1)} ∼= E(Λ1,∂Λ1) .

(C) Gluing of the intersection product. The exact sequence (4) yields an isomor-

phism

E∆
∼= K/D,

in fact that quotient representation holds even with respect to the intersection pairings on

E∆ and K ⊂ E∆1 ⊕ E∆2 : Consider two pairs (f1, f2), (g1, g2) ∈ K and denote f, g ∈ E∆

their respective images in E∆. Then in Q(A) we obtain

(f1, f2) ∩ (g1, g2) = f1 ∩ g1 + f2 ∩ g2

(5) = f1 ∩Λc
1
g1 + f1 ∩Λ1 g1 + f2 ∩Λ2 g2 + f2 ∩Λc

2
g2

= f1 ∩Λc
1
g1 + f2 ∩Λc

2
g2 = f ∩ g,

since the middle terms in (5) add up to 0. This can be seen as follows: The restrictions

E∆i
−→ EΛi

, i = 1, 2, combine to a map

E∆1 ⊕ E∆2 ⊃ K −→ EΛ ⊂ EΛ1 ⊕ EΛ2

with image A⊗BGΦ. Denote f̂ , ĝ ∈ EΛ the respective images of the pairs (f1, f2), (g1, g2) ∈
K. Then

f̂ ∩ ĝ = f1 ∩Λ1 g1 + f2 ∩Λ2 g2.

So what we finally have to prove is that

A⊗B GΦ ⊂ EΛ

is an isotropic subspace. For this we may even assume that Φ and thus also Λ is simplicial

(remember that Φ ∼= ∂Λi), otherwise take a simplicial refinement ι : Φ̂ −→ Φ and a direct
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embedding G −→ ι∗(A), whereA is the structure sheaf of Φ̂. There is an induced simplicial

refinement Λ̂ −→ Λ and embedding EΛ ↪→ AbΛ respecting the intersection product. Since

A⊗B GΦ ⊂ A⊗B AbΦ, our claim holds for Λ, if it does for Λ̂.

So let us now consider the case where Φ and hence also Λ is simplicial. In that

situation, it suffices to check that the evaluation map ε : EΛ = AΛ −→ A[−2n] vanishes

on A⊗B GΦ. We use the formula (1) in section 4.F for ε:

EΛ
∼= AΛ ⊂

⊕
σ∈Λn

Aσ −→ Q(A) , f = (fσ)σ∈Λn 7−→
∑
σ∈Λn

fσ

gσ

.

But the n-cones in Λ may be grouped in pairs σi ∈ Λi, i = 1, 2 with π(σ1) = π(σ2). Then

for f ∈ A⊗B GΦ = A⊗B AΦ, we have

fσ1 = fσ2 , while gσ1 = −gσ2 ,

and thus ε(f) = 0. —

(D) The HR relations for P . Since

D ∼= IH∗(Λi, ∂Λi) ∼= IH∗−2(Λi) ∼= IH∗−2(Φ)

and the third module E∆ in the exact sequence (4) is free, there is an associated exact

sequence

0 −→ IH∗−2(Φ) −→ K −→ IH(∆) −→ 0,

realizing IH(∆) = E∆ in the same way as before E∆. Furthermore it is compatible with

the natural Lefschetz operators on all three terms; we shall denote them simply L in all

cases.

Now let ζ ∈ IHn−k(∆), ζ 6= 0, be a primitive class, i.e., Lk+1(ζ) = 0. We can lift it

to a pair ξ = (ξ1, ξ2) ∈ K. We may actually assume that the classes ξi ∈ IHn−k(∆i) are

again primitive, i.e., ξi ∈ IP n−k(∆i): Because of Lk+1(ζ) = 0, we have

Lk+1(ξ) = η ∈ IHn+k(Φ) ⊂ K
n+k+2

,

and since

Lk+1 : IHn−k−2(Φ) = IH(n−1)−(k+1)(Φ)
∼=−→ IH(n−1)+(k+1)(Φ) = IHn+k(Φ)

is an isomorphism – by the assumption, HRR and thus HLT holds for the lower dimen-

sional polytope P1 ∩ P2 – , we may replace ξ with ξ − L−(k+1)(η).

So now let both ξ1 and ξ2 be primitive. Since ζ 6= 0, we have ξi 6= 0 for at least one

index i. Thus

(−1)(n−k)/2ζ ∩ Lk(ζ) = (−1)(n−k)/2ξ1 ∩ Lk(ξ1) + (−1)(n−k)/2ξ2 ∩ Lk(ξ2) > 0,

since the HRR hold for P1 and P2.
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6 Deformation

Proposition 6.1. The germ G = GP (F ) of a normally trivial face F ≺ P can be deformed

into the product F × Π(L), where L := LP (F ) denotes a link of F in P .

Proof. We use the terminology of 3.5 and assume that
◦
F ∩ N = {0}; so the affine span

U := aff(F ) as well as N are linear subspaces, and V = U ⊕ N . Furthermore write

N = W ⊕R, such that H = U ×W ×{1}, and LP (F ) = L×{1} with a polytope L ⊂ W .

Denote u1, . . . ,ur ∈ U the vertices of F and w1, . . . ,ws ∈ W the vertices of L, then G

has vertices (ui, 0, 0) and (ui + uij,wj, 1) with suitable vectors uij ∈ U .

Now let Gt := G ∩ (U ×W × [0, t]) be the truncated germ, and consider on

V = U ⊕N = U ⊕ (W ⊕R)

the linear isomorphism

Ft := idU ⊕ t−1idN .

Then (0, 1] 3 t 7→ Qt := Ft(Gt) extends to a deformation [0, 1] 3 t 7→ Qt with Q0 =

F × Π(L). In fact the polytope Qt has vertices (ui, 0, 0) and (ui + tuij,wj, 1).

Theorem 6.2. Let F ≺ P be a normally trivial face of an n-dimensional polytope P , and

assume that F itself is a simple polytope. Then the HRR hold for G = GP (F ) if they hold

for lower dimensional polytopes.

Proof. For dim F = 0, the germ G = Π(LP (F )) is a pyramid, so we may apply Proposition

5.1. Now let dim F > 0. Let us first give a

Survey of proof: We consider the deformation Qt, 0 ≤ t ≤ 1, of Prop. 6.1, which

deforms Q1 = G into Q0 = F × Π(L). The HLT and the HRR hold on Q0 according

to the Künneth formula. Then we show that the HLT holds on Qt for all t ∈ (0, 1],

cf. 6.4, hence the HR-forms on IH(∆(Qt)) are non-degenerate for any t ∈ [0, 1]. Since

the combinatorial type of the polytopes Qt is constant along the deformation, the Betti

numbers are so too, in fact both IHn−k(∆(Qt)), t ∈ [0, 1] and the k-th HR-form st
k on

IHn−k(∆(Qt)) depend continuously on t ∈ [0, 1], cf. 6.3. Since they are non-degenerate,

their signature is independent of the parameter t ∈ [0, 1]. Hence the HR-equations 1.2

hold for all t, since they do for t = 0.

(A) The deformation on the fan level:

The case t > 0: For t > 0 the fan ∆t := ∆(Qt) is “linearly equivalent” to ∆1 = ∆(G),

i.e., ∆t is the image of ∆1 with respect to a linear isomorphism of the vector space V ∗,
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namely the inverse (F ∗
t )−1 of the dual F ∗

t of the map Ft : V −→ V transforming Gt into

Qt in the proof of 6.1. It provides an isomorphism

F ∗
t : ∆t = ∆(Qt) −→ ∆(Gt) = ∆(G) = ∆(Q1) = ∆1 .

Behaviour near 0: We replace the linear isomorphism (F ∗
t )−1 mapping ∆1 onto ∆t with

a ∆0-conewise-linear isomorphism St : V ∗ −→ V ∗, such that

St(∆0) = ∆t .

The construction of St is as follows: Consider the subfan Γ ¹ ∆(G) generated by the

cones σ(F0), where F0 ¹ G is a minimal face projecting onto the entire pyramid Π(L),

i.e., π(F0) = Π(L) with the projection π : V = U ⊕ N −→ N . The support |Γ| is the

graph of a map H : U∗ −→ N∗. In fact that map is Φ-conewise linear for the outer normal

fan Φ := ∆(F ) of the polytope F ⊂ U , and

St : U∗ ⊕N∗ −→ U∗ ⊕N∗, (x,y) 7→ (x,y + tH(x))

then defines a ∆0-conewise linear isomorphism with the desired properties. Note here

that ∆0 is the product

∆0 = Φ× Λ

of the (simplicial) fan Φ := ∆(F ) in U∗ and the fan Λ := ∆(Π(L)) in N∗.

(B) Pull back isomorphisms: Both (F ∗
t )−1 and St act on the global sections of the

structure resp. the intersection cohomology sheaf by pull back. Let us write

At := A∆t , Et := E∆t .

Then (F ∗
t )−1 induces A-module isomorphisms

At −→ A1 , Et −→ E1 ,

in particular IH(∆t) ∼= IH(∆1) in a natural way, while for St the corresponding maps

At −→ A0 , Et −→ E0 ,

both denoted S∗t , are only isomorphisms of graded vector spaces due to the fact that for

the subalgebra A ⊂ At of ”global polynomials” we in general have S∗t (A) 6⊂ A ⊂ A0. So

we can not any longer identify IH(∆t) in a reasonable way with IH(∆0).

(C) Continuity statements: That everything is continuous in t ∈ (0, 1] follows now

immediately from the fact that the strictly convex function on ∆1 = ∆(G) given by the

vertices of Gt is continuous in t. Near 0 there is no natural trivialization of the family

IH(∆t); instead we have to represent IH(∆t) as a factor space E/Mt of a bigger vector

space E independent of t with varying subspace Mt:
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Proposition 6.3. There is a finite dimensional graded vector space E and continuous

families of

1. subspaces Mt ⊂ E of constant dimension, such that in a natural way

IH(∆t) ∼= E/Mt ,

2. endomorphisms L̂t : E −→ E with L̂t(Mt) ⊂ Mt inducing the Lefschetz operator of

∆t = ∆(Qt),

3. symmetric bilinear forms βt : E × E −→ R with βt(Mt, E) = 0, inducing the

intersection product.

Proof. Let us start with

The vector spaces E and Mt: Write ∆ := ∆0. We take:

E :=
2n⊕

q=0

Eq
0

and

Mt := S∗t (mEt) ∩ E ⊂ E.

The subspaces Mt can be represented in the form Φt(m
<2n⊗E) with the continuous family

of linear maps

Φt : m<2n ⊗ E −→ E, g ⊗ f 7→ S∗t (g)f ;

furthermore, since ∆t and ∆ are combinatorially equivalent, we get that dim Mt = dim E−
dim IH(∆t) is independent of t. The map L̂t is multiplication with S∗t (ψt) := ψt◦St, except

on the highest weight subspace E2n
∆ , where it vanishes. Here ψt denotes the strictly convex

function belonging to Qt.

Continuity of the intersection product: Here we consider in general the situation,

where we have a fan ∆ in V ∗ and ∆t := St(∆) with a continuous family of ∆-conewise

linear isomorphisms St : V ∗ −→ V ∗. The bilinear form we consider is

βt : E × E ⊂ E∆ × E∆
(S−1

t )∗−→ Et × Et
∩−→ A[−2n] −→ A0 ∼= R

where the last arrow is (up to the shift) the projection A = A0 ⊕m −→ A0.

Let us first look at the case of a

Simplicial fan ∆: Then we have E = A. Take r, s with r + s = 2n. We have to show

that the map

Ar
0 × As

0

(S−1
t )∗−→ Ar

t × As
t

∩−→ A0 = R
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depends continuously on t ∈ [0, 1]. But that map may be rewritten as

Ar
0 × As

0
mult−→ A2n

0

(S−1
t )∗−→ A2n

t
εt−→ A0 = R ,

using the fact that (S−1
t )∗ commutes with the multiplication of functions. Here εt denotes

the restriction of the evaluation map

At −→ A[−2n]

to the 2n-th weight space A2n
t . It is well defined after having fixed a volume form on V .

So, eventually we have to check that the map

A2n
0

(S−1
t )∗−→ A2n

t
εt−→ R

depends continuously on t ∈ [0, 1]. Take any n-cone σ0 ∈ ∆ = ∆0, set σt := St(σ0) ∈ ∆t

and choose a non-negative function ft ∈ A2n
(σt,∂σt)

⊂ A2n
t , the product of linear forms

∈ (V ∗)∗, whose ∧-product is up to sign the volume form on V . Denote Tt : V ∗ −→ V ∗

the linear map, which coincides with St on σ0. Then we have S∗t (ft) = det(Tt) f0, and the

map εt ◦ (S−1
t )∗ : A2n

0 −→ R can be thought of as det(Tt)
−1 times the projection operator

A2n
0 −→ Rf0 ⊂ A2n

0 with kernel M2n
t ⊂ E2n = A2n

0 , since εt(ft) = 1. That yields the

desired continuity with respect to t ∈ [0, 1].

The general case: Take a simplicial refinement Σ
ι−→ ∆ and consider an enbedding

E ↪→ ι∗(A) and E∆ ↪→ AΣ

as in section 4.F. For Σt := St(Σ) it induces embeddings

Et := E∆t ↪→ At := AΣt ,

which according to [BBFK3] respect the intersection pairings. Then the intersection

product takes the form

Er
0 × Es

0 −→ Ar
0 × As

0

(S−1
t )∗−→ Ar

t × As
t

∩−→ A0 = R ,

so the simplicial case applies.

(D) Statement HLT for the Qt, t ∈ (0, 1]: Finally we show

Proposition 6.4. The HLT holds for the polytopes Qt, t ∈ (0, 1], in particular the HR-

forms are non-degenerate for all t ∈ [0, 1].
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Proof. Since the linear isomorphism F ∗
t : V ∗ −→ V ∗ induces an isomorphism

IH(∆t)
∼=−→ IH(∆1)

we may replace ∆t with ∆ := ∆1 = ∆(G) = ∆(Gt). Denote ψ := ψt the function given by

the vertices of Gt and L = Lt the corresponding Lefschetz operator. Because of Poincaré

duality it suffices to prove that the corresponding k-th iteration of the Lefschetz map

Lk : IHn−k(∆) −→ IHn+k(∆) is injective for k > 0. We have

∆ = Θ ∪Θ0 ,

with the subfan Θ = st(σ(F )) corresponding to the ridge F ¹ G of the ”hip roof” G, and

the subfan Θ0 := st(ν(G ∩H)) associated to the bottom or cut facet G ∩H. The rays of

∆ not contained in σ(F ) are the outer normal rays %i := ν(Fi) of the facets F0, . . . , Fr of

G not containing F - say, F0 := G ∩H ≺ G is the bottom of G. Since F is simple, they

are normally trivial in G (To see that use the fact that G is combinatorially equivalent to

F ×Π(L), cf. 3.5, and that the F1, . . . , Fr under that equivalence correspond to facets of

F times the pyramid Π(L), while for the cut facet F0 the claim is obvious), in particular

we find that any n-cone σ º %i is the sum of %i = ν(Fi) and the unique opposite facet of

σ (corresponding to the unique edge starting in the vertex the cone σ is associated with,

and not contained in the facet Fi.)

As a consequence, there are (unique) functions ψi ∈ A2
∆ vanishing outside Θi :=

st(ν(Fi)) with ψi = ψ on the ray ν(Fi) for i = 0, . . . , r. On the other hand, we may

assume 0 ∈ F resp. ψ|σ(F ) = 0. So altogether we have

ψ =
r∑

i=0

ψi .

Now assume k ≡ n mod(2), 0 < k ≤ n and ξ ∈ IHn−k(∆) with Lk(ξ) = 0. For Θi :=

st(ν(Fi)) we show 0 = ξ|Θi
∈ IH(Θi). First of all Lk(ξ) = ψkξ = 0 gives

0 = ξ ∩ ψkξ =
r∑

i=0

ξ ∩ ψiψ
k−1ξ =

r∑
i=0

ξi ∩ ϕk−1
i ξi

with ξi := ξ|Θi
∈ IHn−k(Θi) ∼= IH(n−1)−(k−1)(∆(Fi)), the strictly convex conewise linear

function ϕi ∈ A2
∆(Fi)

being the pullback of ψ|∂Θi
with respect to the inverse of π|∂Θi

:

∂Θi

∼=−→ ∆(Fi), where π is the quotient projection π : V ∗ −→ V ∗/span(ν(Fi)), the

intersection product ξi∩ϕk−1
i ξi referring to ∆(Fi). The equality ξ∩ψiψ

k−1ξ = ξi∩ϕk−1
i ξi

is obtained as follows: If we use the internal product approach to the intersection product,
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we obtain a commutative diagram

(ξi, ξi) (ξ, ψiξ)|Θi

∈ ∈
IH(n−1)−(k−1)(∆(Fi))× IH(n−1)−(k−1)(∆(Fi)) −→ IHn−k(Θi)× IHn−k+2(Θi, ∂Θi)

↓ ↓
IH2n−2(∆(Fi))

∼=−→ IH2n(Θi, ∂Θi)

,

where the left vertical arrow denotes the (k–1)rst HR-form of ∆(Fi) and the right one is

the intersection product composed in one argument with multiplication with ψk−1. The

second component of the upper horizontal homomorphism and the lower one are pull back

to the fan Θi followed by the Thom isomorphism (cf. the proof of 5.1), i.e., multiplication

with ψi.

Now as a consequence of Lk(ξ) = 0 we have ξi ∈ IP (n−1)−(k−1)(∆(Fi)). Hence the

HRR for ∆(Fi) give that all the summands are either non-negative or non-positive. So

necessarily ξi ∩ϕk−1
i ξi = 0 resp. ξi = 0 for i = 0, . . . , r. In particular ξ0 = 0 and the exact

sequence

0 −→ IHn−k(Θ, ∂Θ) −→ IHn−k(∆) −→ IHn−k(Θ0) −→ 0

tells us that ξ ∈ IHn−k(Θ, ∂Θ) ⊂ IHn−k(∆), and thus, in order to conclude ξ = 0,

it suffices to prove that Lk|IHn−k(Θ,∂Θ) is injective for k > 0 resp. that dually Lk :

IHn−k(Θ) −→ IHn+k(Θ) is surjective for k > 0. In fact we show, that the graded vector

space IH(Θ)/Lk(IH(Θ)) has weights at most n + k − 1.

Now the fan Θ has the form

Θ = S(Φ× σ(0)) ⊂ U∗ ⊕N∗

with the cone σ(0) ⊂ N∗ associated to the apex 0 ∈ Π(L) of the pyramid Π(L) ⊂ N and

S := S1. Using the induced vector space isomorphism

S∗ : EΘ −→ EΦ×σ(0)
∼= AΦ ⊗ Eσ(0)

we can write

IH(Θ) ∼= AΦ ⊗ Eσ(0)/S
∗(m)(AΦ ⊗ Eσ(0)))

with S∗(m) ⊂ AΦ×σ(0). Since ψ|σ(F ) = 0 (because of 0 ∈ F ) and Θ = st(σ(F )) (remember

that σ(F ) = o × σ(0) ⊂ U∗ ⊕ N∗), we can write ψ|Θ = χ ◦ p with the projection

p : U∗⊕N∗ −→ U∗ and a function χ ∈ A2
Φ. Now in order to compute IH(Θ)/Lk(IH(Θ))

we have to regard on AΦ ⊗ Eσ(0) the ”twisted” A-module structure obtained from that

of EΘ by pull back via S, with other words, a function f ∈ A acts on AΦ ⊗ Eσ(0) by

”standard” multiplication with f ◦ S ∈ AΦ×σ(0).
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Now write A = C ⊗ D with the polynomial algebras C := S((U∗)∗) resp. D :=

S((N∗)∗) on U∗ resp. N∗. Then g = g(x) ∈ C acts on the first factor AΦ only, while

h ∈ D acts by standard multiplication with h(y + H(x)). We have now to divide by the

submodule obtained by multiplication with mC , χk, mD. Looking first at mC and χk gives

(IH(Φ)/Lk(IH(Φ))⊗ Eσ(0) ,

a D-module. The graded vector space F := IH(Φ)/Lk(IH(Φ)) has weights at most

s+ k− 1, s := dim U∗ < n, according to the HLT for F . It admits a descending filtration

by the D-submodules

F≥i ⊗ Eσ(0), 0 ≤ i ≤ s + k ,

with free successive quotients

F≥i ⊗ Eσ(0)/F
≥i+1 ⊗ Eσ(0)

∼= (F≥i/F≥i+1)⊗ Eσ(0) ,

since h ∈ D acts only on the second factor of the right hand side — the twist being

factored out. The short exact sequences

0 −→ F≥i+1 ⊗ Eσ(0) −→ F≥i ⊗ Eσ(0) −→ F≥i ⊗ Eσ(0)/F
≥i+1 ⊗ Eσ(0) −→ 0

remain exact after reduction mod mD: The third terms being free D-modules, they are

split. So, since the third non-trivial term has weights < i + t with t := dim N∗ according

to [BBFK2] 1.7, we see by descending induction on i that the reduction of F≥i ⊗ Eσ(0)

has weights at most (s + k − 1) + t = n + k − 1. The case i = 0 gives the claim.

This finishes the proof of both, 6.4 and 6.2.
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